1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LiveInterval analysis pass which is used
11 // by the Linear Scan Register allocator. This pass linearizes the
12 // basic blocks of the function in DFS order and uses the
13 // LiveVariables pass to conservatively compute live intervals for
14 // each virtual and physical register.
16 //===----------------------------------------------------------------------===//
18 #define DEBUG_TYPE "liveintervals"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "VirtRegMap.h"
21 #include "llvm/Value.h"
22 #include "llvm/Analysis/LoopInfo.h"
23 #include "llvm/CodeGen/LiveVariables.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/CodeGen/SSARegMap.h"
28 #include "llvm/Target/MRegisterInfo.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetMachine.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/ADT/STLExtras.h"
41 RegisterAnalysis<LiveIntervals> X("liveintervals", "Live Interval Analysis");
43 static Statistic<> numIntervals
44 ("liveintervals", "Number of original intervals");
46 static Statistic<> numIntervalsAfter
47 ("liveintervals", "Number of intervals after coalescing");
49 static Statistic<> numJoins
50 ("liveintervals", "Number of interval joins performed");
52 static Statistic<> numPeep
53 ("liveintervals", "Number of identity moves eliminated after coalescing");
55 static Statistic<> numFolded
56 ("liveintervals", "Number of loads/stores folded into instructions");
59 EnableJoining("join-liveintervals",
60 cl::desc("Join compatible live intervals"),
64 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const
66 AU.addRequired<LiveVariables>();
67 AU.addPreservedID(PHIEliminationID);
68 AU.addRequiredID(PHIEliminationID);
69 AU.addRequiredID(TwoAddressInstructionPassID);
70 AU.addRequired<LoopInfo>();
71 MachineFunctionPass::getAnalysisUsage(AU);
74 void LiveIntervals::releaseMemory()
83 static bool isZeroLengthInterval(LiveInterval *li) {
84 for (LiveInterval::Ranges::const_iterator
85 i = li->ranges.begin(), e = li->ranges.end(); i != e; ++i)
86 if (i->end - i->start > LiveIntervals::InstrSlots::NUM)
92 /// runOnMachineFunction - Register allocate the whole function
94 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
96 tm_ = &fn.getTarget();
97 mri_ = tm_->getRegisterInfo();
98 tii_ = tm_->getInstrInfo();
99 lv_ = &getAnalysis<LiveVariables>();
100 allocatableRegs_ = mri_->getAllocatableSet(fn);
101 r2rMap_.grow(mf_->getSSARegMap()->getLastVirtReg());
103 // If this function has any live ins, insert a dummy instruction at the
104 // beginning of the function that we will pretend "defines" the values. This
105 // is to make the interval analysis simpler by providing a number.
106 if (fn.livein_begin() != fn.livein_end()) {
107 unsigned FirstLiveIn = fn.livein_begin()->first;
109 // Find a reg class that contains this live in.
110 const TargetRegisterClass *RC = 0;
111 for (MRegisterInfo::regclass_iterator RCI = mri_->regclass_begin(),
112 E = mri_->regclass_end(); RCI != E; ++RCI)
113 if ((*RCI)->contains(FirstLiveIn)) {
118 MachineInstr *OldFirstMI = fn.begin()->begin();
119 mri_->copyRegToReg(*fn.begin(), fn.begin()->begin(),
120 FirstLiveIn, FirstLiveIn, RC);
121 assert(OldFirstMI != fn.begin()->begin() &&
122 "copyRetToReg didn't insert anything!");
125 // number MachineInstrs
126 unsigned miIndex = 0;
127 for (MachineFunction::iterator mbb = mf_->begin(), mbbEnd = mf_->end();
128 mbb != mbbEnd; ++mbb)
129 for (MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
131 bool inserted = mi2iMap_.insert(std::make_pair(mi, miIndex)).second;
132 assert(inserted && "multiple MachineInstr -> index mappings");
133 i2miMap_.push_back(mi);
134 miIndex += InstrSlots::NUM;
137 // Note intervals due to live-in values.
138 if (fn.livein_begin() != fn.livein_end()) {
139 MachineBasicBlock *Entry = fn.begin();
140 for (MachineFunction::livein_iterator I = fn.livein_begin(),
141 E = fn.livein_end(); I != E; ++I) {
142 handlePhysicalRegisterDef(Entry, Entry->begin(),
143 getOrCreateInterval(I->first), 0, 0, true);
144 for (const unsigned* AS = mri_->getAliasSet(I->first); *AS; ++AS)
145 handlePhysicalRegisterDef(Entry, Entry->begin(),
146 getOrCreateInterval(*AS), 0, 0, true);
152 numIntervals += getNumIntervals();
154 DEBUG(std::cerr << "********** INTERVALS **********\n";
155 for (iterator I = begin(), E = end(); I != E; ++I) {
156 I->second.print(std::cerr, mri_);
160 // join intervals if requested
161 if (EnableJoining) joinIntervals();
163 numIntervalsAfter += getNumIntervals();
165 // perform a final pass over the instructions and compute spill
166 // weights, coalesce virtual registers and remove identity moves
167 const LoopInfo& loopInfo = getAnalysis<LoopInfo>();
169 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
170 mbbi != mbbe; ++mbbi) {
171 MachineBasicBlock* mbb = mbbi;
172 unsigned loopDepth = loopInfo.getLoopDepth(mbb->getBasicBlock());
174 for (MachineBasicBlock::iterator mii = mbb->begin(), mie = mbb->end();
176 // if the move will be an identity move delete it
177 unsigned srcReg, dstReg, RegRep;
178 if (tii_->isMoveInstr(*mii, srcReg, dstReg) &&
179 (RegRep = rep(srcReg)) == rep(dstReg)) {
180 // remove from def list
181 LiveInterval &interval = getOrCreateInterval(RegRep);
182 // remove index -> MachineInstr and
183 // MachineInstr -> index mappings
184 Mi2IndexMap::iterator mi2i = mi2iMap_.find(mii);
185 if (mi2i != mi2iMap_.end()) {
186 i2miMap_[mi2i->second/InstrSlots::NUM] = 0;
187 mi2iMap_.erase(mi2i);
189 mii = mbbi->erase(mii);
193 for (unsigned i = 0; i < mii->getNumOperands(); ++i) {
194 const MachineOperand& mop = mii->getOperand(i);
195 if (mop.isRegister() && mop.getReg() &&
196 MRegisterInfo::isVirtualRegister(mop.getReg())) {
197 // replace register with representative register
198 unsigned reg = rep(mop.getReg());
199 mii->getOperand(i).setReg(reg);
201 LiveInterval &RegInt = getInterval(reg);
203 (mop.isUse() + mop.isDef()) * pow(10.0F, (int)loopDepth);
211 for (iterator I = begin(), E = end(); I != E; ++I) {
212 LiveInterval &li = I->second;
213 if (MRegisterInfo::isVirtualRegister(li.reg))
214 // If the live interval legnth is essentially zero, i.e. in every live
215 // range the use follows def immediately, it doesn't make sense to spill
216 // it and hope it will be easier to allocate for this li.
217 if (isZeroLengthInterval(&li))
218 li.weight = float(HUGE_VAL);
225 /// print - Implement the dump method.
226 void LiveIntervals::print(std::ostream &O, const Module* ) const {
227 O << "********** INTERVALS **********\n";
228 for (const_iterator I = begin(), E = end(); I != E; ++I) {
229 I->second.print(std::cerr, mri_);
233 O << "********** MACHINEINSTRS **********\n";
234 for (MachineFunction::iterator mbbi = mf_->begin(), mbbe = mf_->end();
235 mbbi != mbbe; ++mbbi) {
236 O << ((Value*)mbbi->getBasicBlock())->getName() << ":\n";
237 for (MachineBasicBlock::iterator mii = mbbi->begin(),
238 mie = mbbi->end(); mii != mie; ++mii) {
239 O << getInstructionIndex(mii) << '\t' << *mii;
244 std::vector<LiveInterval*> LiveIntervals::
245 addIntervalsForSpills(const LiveInterval &li, VirtRegMap &vrm, int slot) {
246 // since this is called after the analysis is done we don't know if
247 // LiveVariables is available
248 lv_ = getAnalysisToUpdate<LiveVariables>();
250 std::vector<LiveInterval*> added;
252 assert(li.weight != HUGE_VAL &&
253 "attempt to spill already spilled interval!");
255 DEBUG(std::cerr << "\t\t\t\tadding intervals for spills for interval: "
258 const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(li.reg);
260 for (LiveInterval::Ranges::const_iterator
261 i = li.ranges.begin(), e = li.ranges.end(); i != e; ++i) {
262 unsigned index = getBaseIndex(i->start);
263 unsigned end = getBaseIndex(i->end-1) + InstrSlots::NUM;
264 for (; index != end; index += InstrSlots::NUM) {
265 // skip deleted instructions
266 while (index != end && !getInstructionFromIndex(index))
267 index += InstrSlots::NUM;
268 if (index == end) break;
270 MachineInstr *MI = getInstructionFromIndex(index);
272 // NewRegLiveIn - This instruction might have multiple uses of the spilled
273 // register. In this case, for the first use, keep track of the new vreg
274 // that we reload it into. If we see a second use, reuse this vreg
275 // instead of creating live ranges for two reloads.
276 unsigned NewRegLiveIn = 0;
279 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
280 MachineOperand& mop = MI->getOperand(i);
281 if (mop.isRegister() && mop.getReg() == li.reg) {
282 if (NewRegLiveIn && mop.isUse()) {
283 // We already emitted a reload of this value, reuse it for
284 // subsequent operands.
285 MI->getOperand(i).setReg(NewRegLiveIn);
286 DEBUG(std::cerr << "\t\t\t\treused reload into reg" << NewRegLiveIn
287 << " for operand #" << i << '\n');
288 } else if (MachineInstr* fmi = mri_->foldMemoryOperand(MI, i, slot)) {
289 // Attempt to fold the memory reference into the instruction. If we
290 // can do this, we don't need to insert spill code.
292 lv_->instructionChanged(MI, fmi);
293 MachineBasicBlock &MBB = *MI->getParent();
294 vrm.virtFolded(li.reg, MI, i, fmi);
296 i2miMap_[index/InstrSlots::NUM] = fmi;
297 mi2iMap_[fmi] = index;
298 MI = MBB.insert(MBB.erase(MI), fmi);
300 // Folding the load/store can completely change the instruction in
301 // unpredictable ways, rescan it from the beginning.
304 // This is tricky. We need to add information in the interval about
305 // the spill code so we have to use our extra load/store slots.
307 // If we have a use we are going to have a load so we start the
308 // interval from the load slot onwards. Otherwise we start from the
310 unsigned start = (mop.isUse() ?
311 getLoadIndex(index) :
313 // If we have a def we are going to have a store right after it so
314 // we end the interval after the use of the next
315 // instruction. Otherwise we end after the use of this instruction.
316 unsigned end = 1 + (mop.isDef() ?
317 getStoreIndex(index) :
320 // create a new register for this spill
321 NewRegLiveIn = mf_->getSSARegMap()->createVirtualRegister(rc);
322 MI->getOperand(i).setReg(NewRegLiveIn);
324 vrm.assignVirt2StackSlot(NewRegLiveIn, slot);
325 LiveInterval& nI = getOrCreateInterval(NewRegLiveIn);
328 // the spill weight is now infinity as it
329 // cannot be spilled again
330 nI.weight = float(HUGE_VAL);
331 LiveRange LR(start, end, nI.getNextValue());
332 DEBUG(std::cerr << " +" << LR);
334 added.push_back(&nI);
336 // update live variables if it is available
338 lv_->addVirtualRegisterKilled(NewRegLiveIn, MI);
340 // If this is a live in, reuse it for subsequent live-ins. If it's
341 // a def, we can't do this.
342 if (!mop.isUse()) NewRegLiveIn = 0;
344 DEBUG(std::cerr << "\t\t\t\tadded new interval: " << nI << '\n');
354 void LiveIntervals::printRegName(unsigned reg) const
356 if (MRegisterInfo::isPhysicalRegister(reg))
357 std::cerr << mri_->getName(reg);
359 std::cerr << "%reg" << reg;
362 void LiveIntervals::handleVirtualRegisterDef(MachineBasicBlock* mbb,
363 MachineBasicBlock::iterator mi,
364 LiveInterval& interval)
366 DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
367 LiveVariables::VarInfo& vi = lv_->getVarInfo(interval.reg);
369 // Virtual registers may be defined multiple times (due to phi
370 // elimination and 2-addr elimination). Much of what we do only has to be
371 // done once for the vreg. We use an empty interval to detect the first
372 // time we see a vreg.
373 if (interval.empty()) {
374 // Get the Idx of the defining instructions.
375 unsigned defIndex = getDefIndex(getInstructionIndex(mi));
377 unsigned ValNum = interval.getNextValue();
378 assert(ValNum == 0 && "First value in interval is not 0?");
379 ValNum = 0; // Clue in the optimizer.
381 // Loop over all of the blocks that the vreg is defined in. There are
382 // two cases we have to handle here. The most common case is a vreg
383 // whose lifetime is contained within a basic block. In this case there
384 // will be a single kill, in MBB, which comes after the definition.
385 if (vi.Kills.size() == 1 && vi.Kills[0]->getParent() == mbb) {
386 // FIXME: what about dead vars?
388 if (vi.Kills[0] != mi)
389 killIdx = getUseIndex(getInstructionIndex(vi.Kills[0]))+1;
391 killIdx = defIndex+1;
393 // If the kill happens after the definition, we have an intra-block
395 if (killIdx > defIndex) {
396 assert(vi.AliveBlocks.empty() &&
397 "Shouldn't be alive across any blocks!");
398 LiveRange LR(defIndex, killIdx, ValNum);
399 interval.addRange(LR);
400 DEBUG(std::cerr << " +" << LR << "\n");
405 // The other case we handle is when a virtual register lives to the end
406 // of the defining block, potentially live across some blocks, then is
407 // live into some number of blocks, but gets killed. Start by adding a
408 // range that goes from this definition to the end of the defining block.
409 LiveRange NewLR(defIndex,
410 getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
412 DEBUG(std::cerr << " +" << NewLR);
413 interval.addRange(NewLR);
415 // Iterate over all of the blocks that the variable is completely
416 // live in, adding [insrtIndex(begin), instrIndex(end)+4) to the
418 for (unsigned i = 0, e = vi.AliveBlocks.size(); i != e; ++i) {
419 if (vi.AliveBlocks[i]) {
420 MachineBasicBlock* mbb = mf_->getBlockNumbered(i);
422 LiveRange LR(getInstructionIndex(&mbb->front()),
423 getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
425 interval.addRange(LR);
426 DEBUG(std::cerr << " +" << LR);
431 // Finally, this virtual register is live from the start of any killing
432 // block to the 'use' slot of the killing instruction.
433 for (unsigned i = 0, e = vi.Kills.size(); i != e; ++i) {
434 MachineInstr *Kill = vi.Kills[i];
435 LiveRange LR(getInstructionIndex(Kill->getParent()->begin()),
436 getUseIndex(getInstructionIndex(Kill))+1,
438 interval.addRange(LR);
439 DEBUG(std::cerr << " +" << LR);
443 // If this is the second time we see a virtual register definition, it
444 // must be due to phi elimination or two addr elimination. If this is
445 // the result of two address elimination, then the vreg is the first
446 // operand, and is a def-and-use.
447 if (mi->getOperand(0).isRegister() &&
448 mi->getOperand(0).getReg() == interval.reg &&
449 mi->getOperand(0).isDef() && mi->getOperand(0).isUse()) {
450 // If this is a two-address definition, then we have already processed
451 // the live range. The only problem is that we didn't realize there
452 // are actually two values in the live interval. Because of this we
453 // need to take the LiveRegion that defines this register and split it
455 unsigned DefIndex = getDefIndex(getInstructionIndex(vi.DefInst));
456 unsigned RedefIndex = getDefIndex(getInstructionIndex(mi));
458 // Delete the initial value, which should be short and continuous,
459 // becuase the 2-addr copy must be in the same MBB as the redef.
460 interval.removeRange(DefIndex, RedefIndex);
462 LiveRange LR(DefIndex, RedefIndex, interval.getNextValue());
463 DEBUG(std::cerr << " replace range with " << LR);
464 interval.addRange(LR);
466 // If this redefinition is dead, we need to add a dummy unit live
467 // range covering the def slot.
468 if (lv_->RegisterDefIsDead(mi, interval.reg))
469 interval.addRange(LiveRange(RedefIndex, RedefIndex+1, 0));
471 DEBUG(std::cerr << "RESULT: " << interval);
474 // Otherwise, this must be because of phi elimination. If this is the
475 // first redefinition of the vreg that we have seen, go back and change
476 // the live range in the PHI block to be a different value number.
477 if (interval.containsOneValue()) {
478 assert(vi.Kills.size() == 1 &&
479 "PHI elimination vreg should have one kill, the PHI itself!");
481 // Remove the old range that we now know has an incorrect number.
482 MachineInstr *Killer = vi.Kills[0];
483 unsigned Start = getInstructionIndex(Killer->getParent()->begin());
484 unsigned End = getUseIndex(getInstructionIndex(Killer))+1;
485 DEBUG(std::cerr << "Removing [" << Start << "," << End << "] from: "
486 << interval << "\n");
487 interval.removeRange(Start, End);
488 DEBUG(std::cerr << "RESULT: " << interval);
490 // Replace the interval with one of a NEW value number.
491 LiveRange LR(Start, End, interval.getNextValue());
492 DEBUG(std::cerr << " replace range with " << LR);
493 interval.addRange(LR);
494 DEBUG(std::cerr << "RESULT: " << interval);
497 // In the case of PHI elimination, each variable definition is only
498 // live until the end of the block. We've already taken care of the
499 // rest of the live range.
500 unsigned defIndex = getDefIndex(getInstructionIndex(mi));
501 LiveRange LR(defIndex,
502 getInstructionIndex(&mbb->back()) + InstrSlots::NUM,
503 interval.getNextValue());
504 interval.addRange(LR);
505 DEBUG(std::cerr << " +" << LR);
509 DEBUG(std::cerr << '\n');
512 void LiveIntervals::handlePhysicalRegisterDef(MachineBasicBlock *MBB,
513 MachineBasicBlock::iterator mi,
514 LiveInterval& interval,
515 unsigned SrcReg, unsigned DestReg,
518 // A physical register cannot be live across basic block, so its
519 // lifetime must end somewhere in its defining basic block.
520 DEBUG(std::cerr << "\t\tregister: "; printRegName(interval.reg));
521 typedef LiveVariables::killed_iterator KillIter;
523 unsigned baseIndex = getInstructionIndex(mi);
524 unsigned start = getDefIndex(baseIndex);
525 unsigned end = start;
527 // If it is not used after definition, it is considered dead at
528 // the instruction defining it. Hence its interval is:
529 // [defSlot(def), defSlot(def)+1)
530 if (lv_->RegisterDefIsDead(mi, interval.reg)) {
531 DEBUG(std::cerr << " dead");
532 end = getDefIndex(start) + 1;
536 // If it is not dead on definition, it must be killed by a
537 // subsequent instruction. Hence its interval is:
538 // [defSlot(def), useSlot(kill)+1)
539 while (++mi != MBB->end()) {
540 baseIndex += InstrSlots::NUM;
541 if (lv_->KillsRegister(mi, interval.reg)) {
542 DEBUG(std::cerr << " killed");
543 end = getUseIndex(baseIndex) + 1;
548 // The only case we should have a dead physreg here without a killing or
549 // instruction where we know it's dead is if it is live-in to the function
551 assert(isLiveIn && "physreg was not killed in defining block!");
552 end = getDefIndex(start) + 1; // It's dead.
555 assert(start < end && "did not find end of interval?");
557 // Finally, if this is defining a new range for the physical register, and if
558 // that physreg is just a copy from a vreg, and if THAT vreg was a copy from
559 // the physreg, then the new fragment has the same value as the one copied
561 if (interval.reg == DestReg && !interval.empty() &&
562 MRegisterInfo::isVirtualRegister(SrcReg)) {
564 // Get the live interval for the vreg, see if it is defined by a copy.
565 LiveInterval &SrcInterval = getOrCreateInterval(SrcReg);
567 if (SrcInterval.containsOneValue()) {
568 assert(!SrcInterval.empty() && "Can't contain a value and be empty!");
570 // Get the first index of the first range. Though the interval may have
571 // multiple liveranges in it, we only check the first.
572 unsigned StartIdx = SrcInterval.begin()->start;
573 MachineInstr *SrcDefMI = getInstructionFromIndex(StartIdx);
575 // Check to see if the vreg was defined by a copy instruction, and that
576 // the source was this physreg.
577 unsigned VRegSrcSrc, VRegSrcDest;
578 if (tii_->isMoveInstr(*SrcDefMI, VRegSrcSrc, VRegSrcDest) &&
579 SrcReg == VRegSrcDest && VRegSrcSrc == DestReg) {
580 // Okay, now we know that the vreg was defined by a copy from this
581 // physreg. Find the value number being copied and use it as the value
583 const LiveRange *DefRange = interval.getLiveRangeContaining(StartIdx-1);
585 LiveRange LR(start, end, DefRange->ValId);
586 interval.addRange(LR);
587 DEBUG(std::cerr << " +" << LR << '\n');
595 LiveRange LR(start, end, interval.getNextValue());
596 interval.addRange(LR);
597 DEBUG(std::cerr << " +" << LR << '\n');
600 void LiveIntervals::handleRegisterDef(MachineBasicBlock *MBB,
601 MachineBasicBlock::iterator MI,
603 if (MRegisterInfo::isVirtualRegister(reg))
604 handleVirtualRegisterDef(MBB, MI, getOrCreateInterval(reg));
605 else if (allocatableRegs_[reg]) {
606 unsigned SrcReg = 0, DestReg = 0;
607 if (!tii_->isMoveInstr(*MI, SrcReg, DestReg))
608 SrcReg = DestReg = 0;
610 handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(reg),
612 for (const unsigned* AS = mri_->getAliasSet(reg); *AS; ++AS)
613 handlePhysicalRegisterDef(MBB, MI, getOrCreateInterval(*AS),
618 /// computeIntervals - computes the live intervals for virtual
619 /// registers. for some ordering of the machine instructions [1,N] a
620 /// live interval is an interval [i, j) where 1 <= i <= j < N for
621 /// which a variable is live
622 void LiveIntervals::computeIntervals()
624 DEBUG(std::cerr << "********** COMPUTING LIVE INTERVALS **********\n");
625 DEBUG(std::cerr << "********** Function: "
626 << ((Value*)mf_->getFunction())->getName() << '\n');
627 bool IgnoreFirstInstr = mf_->livein_begin() != mf_->livein_end();
629 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
631 MachineBasicBlock* mbb = I;
632 DEBUG(std::cerr << ((Value*)mbb->getBasicBlock())->getName() << ":\n");
634 MachineBasicBlock::iterator mi = mbb->begin(), miEnd = mbb->end();
635 if (IgnoreFirstInstr) { ++mi; IgnoreFirstInstr = false; }
636 for (; mi != miEnd; ++mi) {
637 const TargetInstrDescriptor& tid =
638 tm_->getInstrInfo()->get(mi->getOpcode());
639 DEBUG(std::cerr << getInstructionIndex(mi) << "\t" << *mi);
641 // handle implicit defs
642 if (tid.ImplicitDefs) {
643 for (const unsigned* id = tid.ImplicitDefs; *id; ++id)
644 handleRegisterDef(mbb, mi, *id);
647 // handle explicit defs
648 for (int i = mi->getNumOperands() - 1; i >= 0; --i) {
649 MachineOperand& mop = mi->getOperand(i);
650 // handle register defs - build intervals
651 if (mop.isRegister() && mop.getReg() && mop.isDef())
652 handleRegisterDef(mbb, mi, mop.getReg());
658 /// IntA is defined as a copy from IntB and we know it only has one value
659 /// number. If all of the places that IntA and IntB overlap are defined by
660 /// copies from IntA to IntB, we know that these two ranges can really be
661 /// merged if we adjust the value numbers. If it is safe, adjust the value
662 /// numbers and return true, allowing coalescing to occur.
664 AdjustIfAllOverlappingRangesAreCopiesFrom(LiveInterval &IntA,
667 std::vector<LiveRange*> Ranges;
668 IntA.getOverlapingRanges(IntB, CopyIdx, Ranges);
670 assert(!Ranges.empty() && "Why didn't we do a simple join of this?");
672 unsigned IntBRep = rep(IntB.reg);
674 // Check to see if all of the overlaps (entries in Ranges) are defined by a
675 // copy from IntA. If not, exit.
676 for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
677 unsigned Idx = Ranges[i]->start;
678 MachineInstr *MI = getInstructionFromIndex(Idx);
679 unsigned SrcReg, DestReg;
680 if (!tii_->isMoveInstr(*MI, SrcReg, DestReg)) return false;
682 // If this copy isn't actually defining this range, it must be a live
683 // range spanning basic blocks or something.
684 if (rep(DestReg) != rep(IntA.reg)) return false;
686 // Check to see if this is coming from IntB. If not, bail out.
687 if (rep(SrcReg) != IntBRep) return false;
690 // Okay, we can change this one. Get the IntB value number that IntA is
692 unsigned ActualValNo = IntA.getLiveRangeContaining(CopyIdx-1)->ValId;
694 // Change all of the value numbers to the same as what we IntA is copied from.
695 for (unsigned i = 0, e = Ranges.size(); i != e; ++i)
696 Ranges[i]->ValId = ActualValNo;
701 void LiveIntervals::joinIntervalsInMachineBB(MachineBasicBlock *MBB) {
702 DEBUG(std::cerr << ((Value*)MBB->getBasicBlock())->getName() << ":\n");
704 for (MachineBasicBlock::iterator mi = MBB->begin(), mie = MBB->end();
706 DEBUG(std::cerr << getInstructionIndex(mi) << '\t' << *mi);
708 // we only join virtual registers with allocatable
709 // physical registers since we do not have liveness information
710 // on not allocatable physical registers
711 unsigned SrcReg, DestReg;
712 if (tii_->isMoveInstr(*mi, SrcReg, DestReg) &&
713 (MRegisterInfo::isVirtualRegister(SrcReg) || allocatableRegs_[SrcReg])&&
714 (MRegisterInfo::isVirtualRegister(DestReg)||allocatableRegs_[DestReg])){
716 // Get representative registers.
717 SrcReg = rep(SrcReg);
718 DestReg = rep(DestReg);
720 // If they are already joined we continue.
721 if (SrcReg == DestReg)
724 // If they are both physical registers, we cannot join them.
725 if (MRegisterInfo::isPhysicalRegister(SrcReg) &&
726 MRegisterInfo::isPhysicalRegister(DestReg))
729 // If they are not of the same register class, we cannot join them.
730 if (differingRegisterClasses(SrcReg, DestReg))
733 LiveInterval &SrcInt = getInterval(SrcReg);
734 LiveInterval &DestInt = getInterval(DestReg);
735 assert(SrcInt.reg == SrcReg && DestInt.reg == DestReg &&
736 "Register mapping is horribly broken!");
738 DEBUG(std::cerr << "\t\tInspecting " << SrcInt << " and " << DestInt
741 // If two intervals contain a single value and are joined by a copy, it
742 // does not matter if the intervals overlap, they can always be joined.
743 bool Joinable = SrcInt.containsOneValue() && DestInt.containsOneValue();
745 unsigned MIDefIdx = getDefIndex(getInstructionIndex(mi));
747 // If the intervals think that this is joinable, do so now.
748 if (!Joinable && DestInt.joinable(SrcInt, MIDefIdx))
751 // If DestInt is actually a copy from SrcInt (which we know) that is used
752 // to define another value of SrcInt, we can change the other range of
753 // SrcInt to be the value of the range that defines DestInt, allowing a
755 if (!Joinable && DestInt.containsOneValue() &&
756 AdjustIfAllOverlappingRangesAreCopiesFrom(SrcInt, DestInt, MIDefIdx))
759 if (!Joinable || overlapsAliases(&SrcInt, &DestInt)) {
760 DEBUG(std::cerr << "Interference!\n");
762 DestInt.join(SrcInt, MIDefIdx);
763 DEBUG(std::cerr << "Joined. Result = " << DestInt << "\n");
765 if (!MRegisterInfo::isPhysicalRegister(SrcReg)) {
766 r2iMap_.erase(SrcReg);
767 r2rMap_[SrcReg] = DestReg;
769 // Otherwise merge the data structures the other way so we don't lose
770 // the physreg information.
771 r2rMap_[DestReg] = SrcReg;
772 DestInt.reg = SrcReg;
773 SrcInt.swap(DestInt);
774 r2iMap_.erase(DestReg);
783 // DepthMBBCompare - Comparison predicate that sort first based on the loop
784 // depth of the basic block (the unsigned), and then on the MBB number.
785 struct DepthMBBCompare {
786 typedef std::pair<unsigned, MachineBasicBlock*> DepthMBBPair;
787 bool operator()(const DepthMBBPair &LHS, const DepthMBBPair &RHS) const {
788 if (LHS.first > RHS.first) return true; // Deeper loops first
789 return LHS.first == RHS.first &&
790 LHS.second->getNumber() < RHS.second->getNumber();
795 void LiveIntervals::joinIntervals() {
796 DEBUG(std::cerr << "********** JOINING INTERVALS ***********\n");
798 const LoopInfo &LI = getAnalysis<LoopInfo>();
799 if (LI.begin() == LI.end()) {
800 // If there are no loops in the function, join intervals in function order.
801 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
803 joinIntervalsInMachineBB(I);
805 // Otherwise, join intervals in inner loops before other intervals.
806 // Unfortunately we can't just iterate over loop hierarchy here because
807 // there may be more MBB's than BB's. Collect MBB's for sorting.
808 std::vector<std::pair<unsigned, MachineBasicBlock*> > MBBs;
809 for (MachineFunction::iterator I = mf_->begin(), E = mf_->end();
811 MBBs.push_back(std::make_pair(LI.getLoopDepth(I->getBasicBlock()), I));
813 // Sort by loop depth.
814 std::sort(MBBs.begin(), MBBs.end(), DepthMBBCompare());
816 // Finally, join intervals in loop nest order.
817 for (unsigned i = 0, e = MBBs.size(); i != e; ++i)
818 joinIntervalsInMachineBB(MBBs[i].second);
821 DEBUG(std::cerr << "*** Register mapping ***\n");
822 DEBUG(for (int i = 0, e = r2rMap_.size(); i != e; ++i)
824 std::cerr << " reg " << i << " -> ";
825 printRegName(r2rMap_[i]);
830 /// Return true if the two specified registers belong to different register
831 /// classes. The registers may be either phys or virt regs.
832 bool LiveIntervals::differingRegisterClasses(unsigned RegA,
833 unsigned RegB) const {
835 // Get the register classes for the first reg.
836 if (MRegisterInfo::isPhysicalRegister(RegA)) {
837 assert(MRegisterInfo::isVirtualRegister(RegB) &&
838 "Shouldn't consider two physregs!");
839 return !mf_->getSSARegMap()->getRegClass(RegB)->contains(RegA);
842 // Compare against the regclass for the second reg.
843 const TargetRegisterClass *RegClass = mf_->getSSARegMap()->getRegClass(RegA);
844 if (MRegisterInfo::isVirtualRegister(RegB))
845 return RegClass != mf_->getSSARegMap()->getRegClass(RegB);
847 return !RegClass->contains(RegB);
850 bool LiveIntervals::overlapsAliases(const LiveInterval *LHS,
851 const LiveInterval *RHS) const {
852 if (!MRegisterInfo::isPhysicalRegister(LHS->reg)) {
853 if (!MRegisterInfo::isPhysicalRegister(RHS->reg))
854 return false; // vreg-vreg merge has no aliases!
858 assert(MRegisterInfo::isPhysicalRegister(LHS->reg) &&
859 MRegisterInfo::isVirtualRegister(RHS->reg) &&
860 "first interval must describe a physical register");
862 for (const unsigned *AS = mri_->getAliasSet(LHS->reg); *AS; ++AS)
863 if (RHS->overlaps(getInterval(*AS)))
869 LiveInterval LiveIntervals::createInterval(unsigned reg) {
870 float Weight = MRegisterInfo::isPhysicalRegister(reg) ?
871 (float)HUGE_VAL :0.0F;
872 return LiveInterval(reg, Weight);