MC: Add an MCLoggingStreamer, for use in debugging integrated-as mismatches.
[oota-llvm.git] / lib / CodeGen / MachineInstr.cpp
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/Metadata.h"
19 #include "llvm/Type.h"
20 #include "llvm/Value.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/CodeGen/MachineConstantPool.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/PseudoSourceValue.h"
27 #include "llvm/MC/MCSymbol.h"
28 #include "llvm/Target/TargetMachine.h"
29 #include "llvm/Target/TargetInstrInfo.h"
30 #include "llvm/Target/TargetInstrDesc.h"
31 #include "llvm/Target/TargetRegisterInfo.h"
32 #include "llvm/Analysis/AliasAnalysis.h"
33 #include "llvm/Analysis/DebugInfo.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ErrorHandling.h"
36 #include "llvm/Support/LeakDetector.h"
37 #include "llvm/Support/MathExtras.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include "llvm/ADT/FoldingSet.h"
40 using namespace llvm;
41
42 //===----------------------------------------------------------------------===//
43 // MachineOperand Implementation
44 //===----------------------------------------------------------------------===//
45
46 /// AddRegOperandToRegInfo - Add this register operand to the specified
47 /// MachineRegisterInfo.  If it is null, then the next/prev fields should be
48 /// explicitly nulled out.
49 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
50   assert(isReg() && "Can only add reg operand to use lists");
51   
52   // If the reginfo pointer is null, just explicitly null out or next/prev
53   // pointers, to ensure they are not garbage.
54   if (RegInfo == 0) {
55     Contents.Reg.Prev = 0;
56     Contents.Reg.Next = 0;
57     return;
58   }
59   
60   // Otherwise, add this operand to the head of the registers use/def list.
61   MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
62   
63   // For SSA values, we prefer to keep the definition at the start of the list.
64   // we do this by skipping over the definition if it is at the head of the
65   // list.
66   if (*Head && (*Head)->isDef())
67     Head = &(*Head)->Contents.Reg.Next;
68   
69   Contents.Reg.Next = *Head;
70   if (Contents.Reg.Next) {
71     assert(getReg() == Contents.Reg.Next->getReg() &&
72            "Different regs on the same list!");
73     Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
74   }
75   
76   Contents.Reg.Prev = Head;
77   *Head = this;
78 }
79
80 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
81 /// MachineRegisterInfo it is linked with.
82 void MachineOperand::RemoveRegOperandFromRegInfo() {
83   assert(isOnRegUseList() && "Reg operand is not on a use list");
84   // Unlink this from the doubly linked list of operands.
85   MachineOperand *NextOp = Contents.Reg.Next;
86   *Contents.Reg.Prev = NextOp; 
87   if (NextOp) {
88     assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
89     NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
90   }
91   Contents.Reg.Prev = 0;
92   Contents.Reg.Next = 0;
93 }
94
95 void MachineOperand::setReg(unsigned Reg) {
96   if (getReg() == Reg) return; // No change.
97   
98   // Otherwise, we have to change the register.  If this operand is embedded
99   // into a machine function, we need to update the old and new register's
100   // use/def lists.
101   if (MachineInstr *MI = getParent())
102     if (MachineBasicBlock *MBB = MI->getParent())
103       if (MachineFunction *MF = MBB->getParent()) {
104         RemoveRegOperandFromRegInfo();
105         Contents.Reg.RegNo = Reg;
106         AddRegOperandToRegInfo(&MF->getRegInfo());
107         return;
108       }
109         
110   // Otherwise, just change the register, no problem.  :)
111   Contents.Reg.RegNo = Reg;
112 }
113
114 /// ChangeToImmediate - Replace this operand with a new immediate operand of
115 /// the specified value.  If an operand is known to be an immediate already,
116 /// the setImm method should be used.
117 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
118   // If this operand is currently a register operand, and if this is in a
119   // function, deregister the operand from the register's use/def list.
120   if (isReg() && getParent() && getParent()->getParent() &&
121       getParent()->getParent()->getParent())
122     RemoveRegOperandFromRegInfo();
123   
124   OpKind = MO_Immediate;
125   Contents.ImmVal = ImmVal;
126 }
127
128 /// ChangeToRegister - Replace this operand with a new register operand of
129 /// the specified value.  If an operand is known to be an register already,
130 /// the setReg method should be used.
131 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
132                                       bool isKill, bool isDead, bool isUndef,
133                                       bool isDebug) {
134   // If this operand is already a register operand, use setReg to update the 
135   // register's use/def lists.
136   if (isReg()) {
137     assert(!isEarlyClobber());
138     setReg(Reg);
139   } else {
140     // Otherwise, change this to a register and set the reg#.
141     OpKind = MO_Register;
142     Contents.Reg.RegNo = Reg;
143
144     // If this operand is embedded in a function, add the operand to the
145     // register's use/def list.
146     if (MachineInstr *MI = getParent())
147       if (MachineBasicBlock *MBB = MI->getParent())
148         if (MachineFunction *MF = MBB->getParent())
149           AddRegOperandToRegInfo(&MF->getRegInfo());
150   }
151
152   IsDef = isDef;
153   IsImp = isImp;
154   IsKill = isKill;
155   IsDead = isDead;
156   IsUndef = isUndef;
157   IsEarlyClobber = false;
158   IsDebug = isDebug;
159   SubReg = 0;
160 }
161
162 /// isIdenticalTo - Return true if this operand is identical to the specified
163 /// operand.
164 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
165   if (getType() != Other.getType() ||
166       getTargetFlags() != Other.getTargetFlags())
167     return false;
168   
169   switch (getType()) {
170   default: llvm_unreachable("Unrecognized operand type");
171   case MachineOperand::MO_Register:
172     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
173            getSubReg() == Other.getSubReg();
174   case MachineOperand::MO_Immediate:
175     return getImm() == Other.getImm();
176   case MachineOperand::MO_FPImmediate:
177     return getFPImm() == Other.getFPImm();
178   case MachineOperand::MO_MachineBasicBlock:
179     return getMBB() == Other.getMBB();
180   case MachineOperand::MO_FrameIndex:
181     return getIndex() == Other.getIndex();
182   case MachineOperand::MO_ConstantPoolIndex:
183     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
184   case MachineOperand::MO_JumpTableIndex:
185     return getIndex() == Other.getIndex();
186   case MachineOperand::MO_GlobalAddress:
187     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
188   case MachineOperand::MO_ExternalSymbol:
189     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
190            getOffset() == Other.getOffset();
191   case MachineOperand::MO_BlockAddress:
192     return getBlockAddress() == Other.getBlockAddress();
193   case MachineOperand::MO_MCSymbol:
194     return getMCSymbol() == Other.getMCSymbol();
195   case MachineOperand::MO_Metadata:
196     return getMetadata() == Other.getMetadata();
197   }
198 }
199
200 /// print - Print the specified machine operand.
201 ///
202 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
203   // If the instruction is embedded into a basic block, we can find the
204   // target info for the instruction.
205   if (!TM)
206     if (const MachineInstr *MI = getParent())
207       if (const MachineBasicBlock *MBB = MI->getParent())
208         if (const MachineFunction *MF = MBB->getParent())
209           TM = &MF->getTarget();
210
211   switch (getType()) {
212   case MachineOperand::MO_Register:
213     if (getReg() == 0 || TargetRegisterInfo::isVirtualRegister(getReg())) {
214       OS << "%reg" << getReg();
215     } else {
216       if (TM)
217         OS << "%" << TM->getRegisterInfo()->get(getReg()).Name;
218       else
219         OS << "%physreg" << getReg();
220     }
221
222     if (getSubReg() != 0)
223       OS << ':' << getSubReg();
224
225     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
226         isEarlyClobber()) {
227       OS << '<';
228       bool NeedComma = false;
229       if (isDef()) {
230         if (NeedComma) OS << ',';
231         if (isEarlyClobber())
232           OS << "earlyclobber,";
233         if (isImplicit())
234           OS << "imp-";
235         OS << "def";
236         NeedComma = true;
237       } else if (isImplicit()) {
238           OS << "imp-use";
239           NeedComma = true;
240       }
241
242       if (isKill() || isDead() || isUndef()) {
243         if (NeedComma) OS << ',';
244         if (isKill())  OS << "kill";
245         if (isDead())  OS << "dead";
246         if (isUndef()) {
247           if (isKill() || isDead())
248             OS << ',';
249           OS << "undef";
250         }
251       }
252       OS << '>';
253     }
254     break;
255   case MachineOperand::MO_Immediate:
256     OS << getImm();
257     break;
258   case MachineOperand::MO_FPImmediate:
259     if (getFPImm()->getType()->isFloatTy())
260       OS << getFPImm()->getValueAPF().convertToFloat();
261     else
262       OS << getFPImm()->getValueAPF().convertToDouble();
263     break;
264   case MachineOperand::MO_MachineBasicBlock:
265     OS << "<BB#" << getMBB()->getNumber() << ">";
266     break;
267   case MachineOperand::MO_FrameIndex:
268     OS << "<fi#" << getIndex() << '>';
269     break;
270   case MachineOperand::MO_ConstantPoolIndex:
271     OS << "<cp#" << getIndex();
272     if (getOffset()) OS << "+" << getOffset();
273     OS << '>';
274     break;
275   case MachineOperand::MO_JumpTableIndex:
276     OS << "<jt#" << getIndex() << '>';
277     break;
278   case MachineOperand::MO_GlobalAddress:
279     OS << "<ga:";
280     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
281     if (getOffset()) OS << "+" << getOffset();
282     OS << '>';
283     break;
284   case MachineOperand::MO_ExternalSymbol:
285     OS << "<es:" << getSymbolName();
286     if (getOffset()) OS << "+" << getOffset();
287     OS << '>';
288     break;
289   case MachineOperand::MO_BlockAddress:
290     OS << '<';
291     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
292     OS << '>';
293     break;
294   case MachineOperand::MO_Metadata:
295     OS << '<';
296     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
297     OS << '>';
298     break;
299   case MachineOperand::MO_MCSymbol:
300     OS << "<MCSym=" << *getMCSymbol() << '>';
301     break;
302   default:
303     llvm_unreachable("Unrecognized operand type");
304   }
305   
306   if (unsigned TF = getTargetFlags())
307     OS << "[TF=" << TF << ']';
308 }
309
310 //===----------------------------------------------------------------------===//
311 // MachineMemOperand Implementation
312 //===----------------------------------------------------------------------===//
313
314 MachineMemOperand::MachineMemOperand(const Value *v, unsigned int f,
315                                      int64_t o, uint64_t s, unsigned int a)
316   : Offset(o), Size(s), V(v),
317     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)) {
318   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
319   assert((isLoad() || isStore()) && "Not a load/store!");
320 }
321
322 /// Profile - Gather unique data for the object.
323 ///
324 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
325   ID.AddInteger(Offset);
326   ID.AddInteger(Size);
327   ID.AddPointer(V);
328   ID.AddInteger(Flags);
329 }
330
331 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
332   // The Value and Offset may differ due to CSE. But the flags and size
333   // should be the same.
334   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
335   assert(MMO->getSize() == getSize() && "Size mismatch!");
336
337   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
338     // Update the alignment value.
339     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
340       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
341     // Also update the base and offset, because the new alignment may
342     // not be applicable with the old ones.
343     V = MMO->getValue();
344     Offset = MMO->getOffset();
345   }
346 }
347
348 /// getAlignment - Return the minimum known alignment in bytes of the
349 /// actual memory reference.
350 uint64_t MachineMemOperand::getAlignment() const {
351   return MinAlign(getBaseAlignment(), getOffset());
352 }
353
354 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
355   assert((MMO.isLoad() || MMO.isStore()) &&
356          "SV has to be a load, store or both.");
357   
358   if (MMO.isVolatile())
359     OS << "Volatile ";
360
361   if (MMO.isLoad())
362     OS << "LD";
363   if (MMO.isStore())
364     OS << "ST";
365   OS << MMO.getSize();
366   
367   // Print the address information.
368   OS << "[";
369   if (!MMO.getValue())
370     OS << "<unknown>";
371   else
372     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
373
374   // If the alignment of the memory reference itself differs from the alignment
375   // of the base pointer, print the base alignment explicitly, next to the base
376   // pointer.
377   if (MMO.getBaseAlignment() != MMO.getAlignment())
378     OS << "(align=" << MMO.getBaseAlignment() << ")";
379
380   if (MMO.getOffset() != 0)
381     OS << "+" << MMO.getOffset();
382   OS << "]";
383
384   // Print the alignment of the reference.
385   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
386       MMO.getBaseAlignment() != MMO.getSize())
387     OS << "(align=" << MMO.getAlignment() << ")";
388
389   return OS;
390 }
391
392 //===----------------------------------------------------------------------===//
393 // MachineInstr Implementation
394 //===----------------------------------------------------------------------===//
395
396 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
397 /// TID NULL and no operands.
398 MachineInstr::MachineInstr()
399   : TID(0), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
400     Parent(0) {
401   // Make sure that we get added to a machine basicblock
402   LeakDetector::addGarbageObject(this);
403 }
404
405 void MachineInstr::addImplicitDefUseOperands() {
406   if (TID->ImplicitDefs)
407     for (const unsigned *ImpDefs = TID->ImplicitDefs; *ImpDefs; ++ImpDefs)
408       addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
409   if (TID->ImplicitUses)
410     for (const unsigned *ImpUses = TID->ImplicitUses; *ImpUses; ++ImpUses)
411       addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
412 }
413
414 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
415 /// implicit operands. It reserves space for the number of operands specified by
416 /// the TargetInstrDesc.
417 MachineInstr::MachineInstr(const TargetInstrDesc &tid, bool NoImp)
418   : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
419     MemRefs(0), MemRefsEnd(0), Parent(0) {
420   if (!NoImp)
421     NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
422   Operands.reserve(NumImplicitOps + TID->getNumOperands());
423   if (!NoImp)
424     addImplicitDefUseOperands();
425   // Make sure that we get added to a machine basicblock
426   LeakDetector::addGarbageObject(this);
427 }
428
429 /// MachineInstr ctor - As above, but with a DebugLoc.
430 MachineInstr::MachineInstr(const TargetInstrDesc &tid, const DebugLoc dl,
431                            bool NoImp)
432   : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
433     Parent(0), debugLoc(dl) {
434   if (!NoImp)
435     NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
436   Operands.reserve(NumImplicitOps + TID->getNumOperands());
437   if (!NoImp)
438     addImplicitDefUseOperands();
439   // Make sure that we get added to a machine basicblock
440   LeakDetector::addGarbageObject(this);
441 }
442
443 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
444 /// that the MachineInstr is created and added to the end of the specified 
445 /// basic block.
446 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const TargetInstrDesc &tid)
447   : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0),
448     MemRefs(0), MemRefsEnd(0), Parent(0) {
449   assert(MBB && "Cannot use inserting ctor with null basic block!");
450   NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
451   Operands.reserve(NumImplicitOps + TID->getNumOperands());
452   addImplicitDefUseOperands();
453   // Make sure that we get added to a machine basicblock
454   LeakDetector::addGarbageObject(this);
455   MBB->push_back(this);  // Add instruction to end of basic block!
456 }
457
458 /// MachineInstr ctor - As above, but with a DebugLoc.
459 ///
460 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
461                            const TargetInstrDesc &tid)
462   : TID(&tid), NumImplicitOps(0), AsmPrinterFlags(0), MemRefs(0), MemRefsEnd(0),
463     Parent(0), debugLoc(dl) {
464   assert(MBB && "Cannot use inserting ctor with null basic block!");
465   NumImplicitOps = TID->getNumImplicitDefs() + TID->getNumImplicitUses();
466   Operands.reserve(NumImplicitOps + TID->getNumOperands());
467   addImplicitDefUseOperands();
468   // Make sure that we get added to a machine basicblock
469   LeakDetector::addGarbageObject(this);
470   MBB->push_back(this);  // Add instruction to end of basic block!
471 }
472
473 /// MachineInstr ctor - Copies MachineInstr arg exactly
474 ///
475 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
476   : TID(&MI.getDesc()), NumImplicitOps(0), AsmPrinterFlags(0),
477     MemRefs(MI.MemRefs), MemRefsEnd(MI.MemRefsEnd),
478     Parent(0), debugLoc(MI.getDebugLoc()) {
479   Operands.reserve(MI.getNumOperands());
480
481   // Add operands
482   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
483     addOperand(MI.getOperand(i));
484   NumImplicitOps = MI.NumImplicitOps;
485
486   // Set parent to null.
487   Parent = 0;
488
489   LeakDetector::addGarbageObject(this);
490 }
491
492 MachineInstr::~MachineInstr() {
493   LeakDetector::removeGarbageObject(this);
494 #ifndef NDEBUG
495   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
496     assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
497     assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
498            "Reg operand def/use list corrupted");
499   }
500 #endif
501 }
502
503 /// getRegInfo - If this instruction is embedded into a MachineFunction,
504 /// return the MachineRegisterInfo object for the current function, otherwise
505 /// return null.
506 MachineRegisterInfo *MachineInstr::getRegInfo() {
507   if (MachineBasicBlock *MBB = getParent())
508     return &MBB->getParent()->getRegInfo();
509   return 0;
510 }
511
512 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
513 /// this instruction from their respective use lists.  This requires that the
514 /// operands already be on their use lists.
515 void MachineInstr::RemoveRegOperandsFromUseLists() {
516   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
517     if (Operands[i].isReg())
518       Operands[i].RemoveRegOperandFromRegInfo();
519   }
520 }
521
522 /// AddRegOperandsToUseLists - Add all of the register operands in
523 /// this instruction from their respective use lists.  This requires that the
524 /// operands not be on their use lists yet.
525 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
526   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
527     if (Operands[i].isReg())
528       Operands[i].AddRegOperandToRegInfo(&RegInfo);
529   }
530 }
531
532
533 /// addOperand - Add the specified operand to the instruction.  If it is an
534 /// implicit operand, it is added to the end of the operand list.  If it is
535 /// an explicit operand it is added at the end of the explicit operand list
536 /// (before the first implicit operand). 
537 void MachineInstr::addOperand(const MachineOperand &Op) {
538   bool isImpReg = Op.isReg() && Op.isImplicit();
539   assert((isImpReg || !OperandsComplete()) &&
540          "Trying to add an operand to a machine instr that is already done!");
541
542   MachineRegisterInfo *RegInfo = getRegInfo();
543
544   // If we are adding the operand to the end of the list, our job is simpler.
545   // This is true most of the time, so this is a reasonable optimization.
546   if (isImpReg || NumImplicitOps == 0) {
547     // We can only do this optimization if we know that the operand list won't
548     // reallocate.
549     if (Operands.empty() || Operands.size()+1 <= Operands.capacity()) {
550       Operands.push_back(Op);
551     
552       // Set the parent of the operand.
553       Operands.back().ParentMI = this;
554   
555       // If the operand is a register, update the operand's use list.
556       if (Op.isReg()) {
557         Operands.back().AddRegOperandToRegInfo(RegInfo);
558         // If the register operand is flagged as early, mark the operand as such
559         unsigned OpNo = Operands.size() - 1;
560         if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
561           Operands[OpNo].setIsEarlyClobber(true);
562       }
563       return;
564     }
565   }
566   
567   // Otherwise, we have to insert a real operand before any implicit ones.
568   unsigned OpNo = Operands.size()-NumImplicitOps;
569
570   // If this instruction isn't embedded into a function, then we don't need to
571   // update any operand lists.
572   if (RegInfo == 0) {
573     // Simple insertion, no reginfo update needed for other register operands.
574     Operands.insert(Operands.begin()+OpNo, Op);
575     Operands[OpNo].ParentMI = this;
576
577     // Do explicitly set the reginfo for this operand though, to ensure the
578     // next/prev fields are properly nulled out.
579     if (Operands[OpNo].isReg()) {
580       Operands[OpNo].AddRegOperandToRegInfo(0);
581       // If the register operand is flagged as early, mark the operand as such
582       if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
583         Operands[OpNo].setIsEarlyClobber(true);
584     }
585
586   } else if (Operands.size()+1 <= Operands.capacity()) {
587     // Otherwise, we have to remove register operands from their register use
588     // list, add the operand, then add the register operands back to their use
589     // list.  This also must handle the case when the operand list reallocates
590     // to somewhere else.
591   
592     // If insertion of this operand won't cause reallocation of the operand
593     // list, just remove the implicit operands, add the operand, then re-add all
594     // the rest of the operands.
595     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
596       assert(Operands[i].isReg() && "Should only be an implicit reg!");
597       Operands[i].RemoveRegOperandFromRegInfo();
598     }
599     
600     // Add the operand.  If it is a register, add it to the reg list.
601     Operands.insert(Operands.begin()+OpNo, Op);
602     Operands[OpNo].ParentMI = this;
603
604     if (Operands[OpNo].isReg()) {
605       Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
606       // If the register operand is flagged as early, mark the operand as such
607       if (TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
608         Operands[OpNo].setIsEarlyClobber(true);
609     }
610     
611     // Re-add all the implicit ops.
612     for (unsigned i = OpNo+1, e = Operands.size(); i != e; ++i) {
613       assert(Operands[i].isReg() && "Should only be an implicit reg!");
614       Operands[i].AddRegOperandToRegInfo(RegInfo);
615     }
616   } else {
617     // Otherwise, we will be reallocating the operand list.  Remove all reg
618     // operands from their list, then readd them after the operand list is
619     // reallocated.
620     RemoveRegOperandsFromUseLists();
621     
622     Operands.insert(Operands.begin()+OpNo, Op);
623     Operands[OpNo].ParentMI = this;
624   
625     // Re-add all the operands.
626     AddRegOperandsToUseLists(*RegInfo);
627
628       // If the register operand is flagged as early, mark the operand as such
629     if (Operands[OpNo].isReg()
630         && TID->getOperandConstraint(OpNo, TOI::EARLY_CLOBBER) != -1)
631       Operands[OpNo].setIsEarlyClobber(true);
632   }
633 }
634
635 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
636 /// fewer operand than it started with.
637 ///
638 void MachineInstr::RemoveOperand(unsigned OpNo) {
639   assert(OpNo < Operands.size() && "Invalid operand number");
640   
641   // Special case removing the last one.
642   if (OpNo == Operands.size()-1) {
643     // If needed, remove from the reg def/use list.
644     if (Operands.back().isReg() && Operands.back().isOnRegUseList())
645       Operands.back().RemoveRegOperandFromRegInfo();
646     
647     Operands.pop_back();
648     return;
649   }
650
651   // Otherwise, we are removing an interior operand.  If we have reginfo to
652   // update, remove all operands that will be shifted down from their reg lists,
653   // move everything down, then re-add them.
654   MachineRegisterInfo *RegInfo = getRegInfo();
655   if (RegInfo) {
656     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
657       if (Operands[i].isReg())
658         Operands[i].RemoveRegOperandFromRegInfo();
659     }
660   }
661   
662   Operands.erase(Operands.begin()+OpNo);
663
664   if (RegInfo) {
665     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
666       if (Operands[i].isReg())
667         Operands[i].AddRegOperandToRegInfo(RegInfo);
668     }
669   }
670 }
671
672 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
673 /// This function should be used only occasionally. The setMemRefs function
674 /// is the primary method for setting up a MachineInstr's MemRefs list.
675 void MachineInstr::addMemOperand(MachineFunction &MF,
676                                  MachineMemOperand *MO) {
677   mmo_iterator OldMemRefs = MemRefs;
678   mmo_iterator OldMemRefsEnd = MemRefsEnd;
679
680   size_t NewNum = (MemRefsEnd - MemRefs) + 1;
681   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
682   mmo_iterator NewMemRefsEnd = NewMemRefs + NewNum;
683
684   std::copy(OldMemRefs, OldMemRefsEnd, NewMemRefs);
685   NewMemRefs[NewNum - 1] = MO;
686
687   MemRefs = NewMemRefs;
688   MemRefsEnd = NewMemRefsEnd;
689 }
690
691 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
692                                  MICheckType Check) const {
693   // If opcodes or number of operands are not the same then the two
694   // instructions are obviously not identical.
695   if (Other->getOpcode() != getOpcode() ||
696       Other->getNumOperands() != getNumOperands())
697     return false;
698
699   // Check operands to make sure they match.
700   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
701     const MachineOperand &MO = getOperand(i);
702     const MachineOperand &OMO = Other->getOperand(i);
703     // Clients may or may not want to ignore defs when testing for equality.
704     // For example, machine CSE pass only cares about finding common
705     // subexpressions, so it's safe to ignore virtual register defs.
706     if (Check != CheckDefs && MO.isReg() && MO.isDef()) {
707       if (Check == IgnoreDefs)
708         continue;
709       // Check == IgnoreVRegDefs
710       if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
711           TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
712         if (MO.getReg() != OMO.getReg())
713           return false;
714     } else if (!MO.isIdenticalTo(OMO))
715       return false;
716   }
717   return true;
718 }
719
720 /// removeFromParent - This method unlinks 'this' from the containing basic
721 /// block, and returns it, but does not delete it.
722 MachineInstr *MachineInstr::removeFromParent() {
723   assert(getParent() && "Not embedded in a basic block!");
724   getParent()->remove(this);
725   return this;
726 }
727
728
729 /// eraseFromParent - This method unlinks 'this' from the containing basic
730 /// block, and deletes it.
731 void MachineInstr::eraseFromParent() {
732   assert(getParent() && "Not embedded in a basic block!");
733   getParent()->erase(this);
734 }
735
736
737 /// OperandComplete - Return true if it's illegal to add a new operand
738 ///
739 bool MachineInstr::OperandsComplete() const {
740   unsigned short NumOperands = TID->getNumOperands();
741   if (!TID->isVariadic() && getNumOperands()-NumImplicitOps >= NumOperands)
742     return true;  // Broken: we have all the operands of this instruction!
743   return false;
744 }
745
746 /// getNumExplicitOperands - Returns the number of non-implicit operands.
747 ///
748 unsigned MachineInstr::getNumExplicitOperands() const {
749   unsigned NumOperands = TID->getNumOperands();
750   if (!TID->isVariadic())
751     return NumOperands;
752
753   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
754     const MachineOperand &MO = getOperand(i);
755     if (!MO.isReg() || !MO.isImplicit())
756       NumOperands++;
757   }
758   return NumOperands;
759 }
760
761
762 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
763 /// the specific register or -1 if it is not found. It further tightens
764 /// the search criteria to a use that kills the register if isKill is true.
765 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
766                                           const TargetRegisterInfo *TRI) const {
767   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
768     const MachineOperand &MO = getOperand(i);
769     if (!MO.isReg() || !MO.isUse())
770       continue;
771     unsigned MOReg = MO.getReg();
772     if (!MOReg)
773       continue;
774     if (MOReg == Reg ||
775         (TRI &&
776          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
777          TargetRegisterInfo::isPhysicalRegister(Reg) &&
778          TRI->isSubRegister(MOReg, Reg)))
779       if (!isKill || MO.isKill())
780         return i;
781   }
782   return -1;
783 }
784
785 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
786 /// indicating if this instruction reads or writes Reg. This also considers
787 /// partial defines.
788 std::pair<bool,bool>
789 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
790                                          SmallVectorImpl<unsigned> *Ops) const {
791   bool PartDef = false; // Partial redefine.
792   bool FullDef = false; // Full define.
793   bool Use = false;
794
795   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
796     const MachineOperand &MO = getOperand(i);
797     if (!MO.isReg() || MO.getReg() != Reg)
798       continue;
799     if (Ops)
800       Ops->push_back(i);
801     if (MO.isUse())
802       Use |= !MO.isUndef();
803     else if (MO.getSubReg())
804       PartDef = true;
805     else
806       FullDef = true;
807   }
808   // A partial redefine uses Reg unless there is also a full define.
809   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
810 }
811
812 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
813 /// the specified register or -1 if it is not found. If isDead is true, defs
814 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
815 /// also checks if there is a def of a super-register.
816 int
817 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
818                                         const TargetRegisterInfo *TRI) const {
819   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
820   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
821     const MachineOperand &MO = getOperand(i);
822     if (!MO.isReg() || !MO.isDef())
823       continue;
824     unsigned MOReg = MO.getReg();
825     bool Found = (MOReg == Reg);
826     if (!Found && TRI && isPhys &&
827         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
828       if (Overlap)
829         Found = TRI->regsOverlap(MOReg, Reg);
830       else
831         Found = TRI->isSubRegister(MOReg, Reg);
832     }
833     if (Found && (!isDead || MO.isDead()))
834       return i;
835   }
836   return -1;
837 }
838
839 /// findFirstPredOperandIdx() - Find the index of the first operand in the
840 /// operand list that is used to represent the predicate. It returns -1 if
841 /// none is found.
842 int MachineInstr::findFirstPredOperandIdx() const {
843   const TargetInstrDesc &TID = getDesc();
844   if (TID.isPredicable()) {
845     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
846       if (TID.OpInfo[i].isPredicate())
847         return i;
848   }
849
850   return -1;
851 }
852   
853 /// isRegTiedToUseOperand - Given the index of a register def operand,
854 /// check if the register def is tied to a source operand, due to either
855 /// two-address elimination or inline assembly constraints. Returns the
856 /// first tied use operand index by reference is UseOpIdx is not null.
857 bool MachineInstr::
858 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
859   if (isInlineAsm()) {
860     assert(DefOpIdx >= 2);
861     const MachineOperand &MO = getOperand(DefOpIdx);
862     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
863       return false;
864     // Determine the actual operand index that corresponds to this index.
865     unsigned DefNo = 0;
866     unsigned DefPart = 0;
867     for (unsigned i = 1, e = getNumOperands(); i < e; ) {
868       const MachineOperand &FMO = getOperand(i);
869       // After the normal asm operands there may be additional imp-def regs.
870       if (!FMO.isImm())
871         return false;
872       // Skip over this def.
873       unsigned NumOps = InlineAsm::getNumOperandRegisters(FMO.getImm());
874       unsigned PrevDef = i + 1;
875       i = PrevDef + NumOps;
876       if (i > DefOpIdx) {
877         DefPart = DefOpIdx - PrevDef;
878         break;
879       }
880       ++DefNo;
881     }
882     for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
883       const MachineOperand &FMO = getOperand(i);
884       if (!FMO.isImm())
885         continue;
886       if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
887         continue;
888       unsigned Idx;
889       if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
890           Idx == DefNo) {
891         if (UseOpIdx)
892           *UseOpIdx = (unsigned)i + 1 + DefPart;
893         return true;
894       }
895     }
896     return false;
897   }
898
899   assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
900   const TargetInstrDesc &TID = getDesc();
901   for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
902     const MachineOperand &MO = getOperand(i);
903     if (MO.isReg() && MO.isUse() &&
904         TID.getOperandConstraint(i, TOI::TIED_TO) == (int)DefOpIdx) {
905       if (UseOpIdx)
906         *UseOpIdx = (unsigned)i;
907       return true;
908     }
909   }
910   return false;
911 }
912
913 /// isRegTiedToDefOperand - Return true if the operand of the specified index
914 /// is a register use and it is tied to an def operand. It also returns the def
915 /// operand index by reference.
916 bool MachineInstr::
917 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
918   if (isInlineAsm()) {
919     const MachineOperand &MO = getOperand(UseOpIdx);
920     if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
921       return false;
922
923     // Find the flag operand corresponding to UseOpIdx
924     unsigned FlagIdx, NumOps=0;
925     for (FlagIdx = 1; FlagIdx < UseOpIdx; FlagIdx += NumOps+1) {
926       const MachineOperand &UFMO = getOperand(FlagIdx);
927       // After the normal asm operands there may be additional imp-def regs.
928       if (!UFMO.isImm())
929         return false;
930       NumOps = InlineAsm::getNumOperandRegisters(UFMO.getImm());
931       assert(NumOps < getNumOperands() && "Invalid inline asm flag");
932       if (UseOpIdx < FlagIdx+NumOps+1)
933         break;
934     }
935     if (FlagIdx >= UseOpIdx)
936       return false;
937     const MachineOperand &UFMO = getOperand(FlagIdx);
938     unsigned DefNo;
939     if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
940       if (!DefOpIdx)
941         return true;
942
943       unsigned DefIdx = 1;
944       // Remember to adjust the index. First operand is asm string, then there
945       // is a flag for each.
946       while (DefNo) {
947         const MachineOperand &FMO = getOperand(DefIdx);
948         assert(FMO.isImm());
949         // Skip over this def.
950         DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
951         --DefNo;
952       }
953       *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
954       return true;
955     }
956     return false;
957   }
958
959   const TargetInstrDesc &TID = getDesc();
960   if (UseOpIdx >= TID.getNumOperands())
961     return false;
962   const MachineOperand &MO = getOperand(UseOpIdx);
963   if (!MO.isReg() || !MO.isUse())
964     return false;
965   int DefIdx = TID.getOperandConstraint(UseOpIdx, TOI::TIED_TO);
966   if (DefIdx == -1)
967     return false;
968   if (DefOpIdx)
969     *DefOpIdx = (unsigned)DefIdx;
970   return true;
971 }
972
973 /// clearKillInfo - Clears kill flags on all operands.
974 ///
975 void MachineInstr::clearKillInfo() {
976   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
977     MachineOperand &MO = getOperand(i);
978     if (MO.isReg() && MO.isUse())
979       MO.setIsKill(false);
980   }
981 }
982
983 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
984 ///
985 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
986   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
987     const MachineOperand &MO = MI->getOperand(i);
988     if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
989       continue;
990     for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
991       MachineOperand &MOp = getOperand(j);
992       if (!MOp.isIdenticalTo(MO))
993         continue;
994       if (MO.isKill())
995         MOp.setIsKill();
996       else
997         MOp.setIsDead();
998       break;
999     }
1000   }
1001 }
1002
1003 /// copyPredicates - Copies predicate operand(s) from MI.
1004 void MachineInstr::copyPredicates(const MachineInstr *MI) {
1005   const TargetInstrDesc &TID = MI->getDesc();
1006   if (!TID.isPredicable())
1007     return;
1008   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1009     if (TID.OpInfo[i].isPredicate()) {
1010       // Predicated operands must be last operands.
1011       addOperand(MI->getOperand(i));
1012     }
1013   }
1014 }
1015
1016 /// isSafeToMove - Return true if it is safe to move this instruction. If
1017 /// SawStore is set to true, it means that there is a store (or call) between
1018 /// the instruction's location and its intended destination.
1019 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1020                                 AliasAnalysis *AA,
1021                                 bool &SawStore) const {
1022   // Ignore stuff that we obviously can't move.
1023   if (TID->mayStore() || TID->isCall()) {
1024     SawStore = true;
1025     return false;
1026   }
1027   if (TID->isTerminator() || TID->hasUnmodeledSideEffects())
1028     return false;
1029
1030   // See if this instruction does a load.  If so, we have to guarantee that the
1031   // loaded value doesn't change between the load and the its intended
1032   // destination. The check for isInvariantLoad gives the targe the chance to
1033   // classify the load as always returning a constant, e.g. a constant pool
1034   // load.
1035   if (TID->mayLoad() && !isInvariantLoad(AA))
1036     // Otherwise, this is a real load.  If there is a store between the load and
1037     // end of block, or if the load is volatile, we can't move it.
1038     return !SawStore && !hasVolatileMemoryRef();
1039
1040   return true;
1041 }
1042
1043 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1044 /// instruction which defined the specified register instead of copying it.
1045 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1046                                  AliasAnalysis *AA,
1047                                  unsigned DstReg) const {
1048   bool SawStore = false;
1049   if (!TII->isTriviallyReMaterializable(this, AA) ||
1050       !isSafeToMove(TII, AA, SawStore))
1051     return false;
1052   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1053     const MachineOperand &MO = getOperand(i);
1054     if (!MO.isReg())
1055       continue;
1056     // FIXME: For now, do not remat any instruction with register operands.
1057     // Later on, we can loosen the restriction is the register operands have
1058     // not been modified between the def and use. Note, this is different from
1059     // MachineSink because the code is no longer in two-address form (at least
1060     // partially).
1061     if (MO.isUse())
1062       return false;
1063     else if (!MO.isDead() && MO.getReg() != DstReg)
1064       return false;
1065   }
1066   return true;
1067 }
1068
1069 /// hasVolatileMemoryRef - Return true if this instruction may have a
1070 /// volatile memory reference, or if the information describing the
1071 /// memory reference is not available. Return false if it is known to
1072 /// have no volatile memory references.
1073 bool MachineInstr::hasVolatileMemoryRef() const {
1074   // An instruction known never to access memory won't have a volatile access.
1075   if (!TID->mayStore() &&
1076       !TID->mayLoad() &&
1077       !TID->isCall() &&
1078       !TID->hasUnmodeledSideEffects())
1079     return false;
1080
1081   // Otherwise, if the instruction has no memory reference information,
1082   // conservatively assume it wasn't preserved.
1083   if (memoperands_empty())
1084     return true;
1085   
1086   // Check the memory reference information for volatile references.
1087   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1088     if ((*I)->isVolatile())
1089       return true;
1090
1091   return false;
1092 }
1093
1094 /// isInvariantLoad - Return true if this instruction is loading from a
1095 /// location whose value is invariant across the function.  For example,
1096 /// loading a value from the constant pool or from the argument area
1097 /// of a function if it does not change.  This should only return true of
1098 /// *all* loads the instruction does are invariant (if it does multiple loads).
1099 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1100   // If the instruction doesn't load at all, it isn't an invariant load.
1101   if (!TID->mayLoad())
1102     return false;
1103
1104   // If the instruction has lost its memoperands, conservatively assume that
1105   // it may not be an invariant load.
1106   if (memoperands_empty())
1107     return false;
1108
1109   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1110
1111   for (mmo_iterator I = memoperands_begin(),
1112        E = memoperands_end(); I != E; ++I) {
1113     if ((*I)->isVolatile()) return false;
1114     if ((*I)->isStore()) return false;
1115
1116     if (const Value *V = (*I)->getValue()) {
1117       // A load from a constant PseudoSourceValue is invariant.
1118       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1119         if (PSV->isConstant(MFI))
1120           continue;
1121       // If we have an AliasAnalysis, ask it whether the memory is constant.
1122       if (AA && AA->pointsToConstantMemory(V))
1123         continue;
1124     }
1125
1126     // Otherwise assume conservatively.
1127     return false;
1128   }
1129
1130   // Everything checks out.
1131   return true;
1132 }
1133
1134 /// isConstantValuePHI - If the specified instruction is a PHI that always
1135 /// merges together the same virtual register, return the register, otherwise
1136 /// return 0.
1137 unsigned MachineInstr::isConstantValuePHI() const {
1138   if (!isPHI())
1139     return 0;
1140   assert(getNumOperands() >= 3 &&
1141          "It's illegal to have a PHI without source operands");
1142
1143   unsigned Reg = getOperand(1).getReg();
1144   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1145     if (getOperand(i).getReg() != Reg)
1146       return 0;
1147   return Reg;
1148 }
1149
1150 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1151 ///
1152 bool MachineInstr::allDefsAreDead() const {
1153   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1154     const MachineOperand &MO = getOperand(i);
1155     if (!MO.isReg() || MO.isUse())
1156       continue;
1157     if (!MO.isDead())
1158       return false;
1159   }
1160   return true;
1161 }
1162
1163 void MachineInstr::dump() const {
1164   dbgs() << "  " << *this;
1165 }
1166
1167 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1168   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1169   const MachineFunction *MF = 0;
1170   if (const MachineBasicBlock *MBB = getParent()) {
1171     MF = MBB->getParent();
1172     if (!TM && MF)
1173       TM = &MF->getTarget();
1174   }
1175
1176   // Print explicitly defined operands on the left of an assignment syntax.
1177   unsigned StartOp = 0, e = getNumOperands();
1178   for (; StartOp < e && getOperand(StartOp).isReg() &&
1179          getOperand(StartOp).isDef() &&
1180          !getOperand(StartOp).isImplicit();
1181        ++StartOp) {
1182     if (StartOp != 0) OS << ", ";
1183     getOperand(StartOp).print(OS, TM);
1184   }
1185
1186   if (StartOp != 0)
1187     OS << " = ";
1188
1189   // Print the opcode name.
1190   OS << getDesc().getName();
1191
1192   // Print the rest of the operands.
1193   bool OmittedAnyCallClobbers = false;
1194   bool FirstOp = true;
1195   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1196     const MachineOperand &MO = getOperand(i);
1197
1198     // Omit call-clobbered registers which aren't used anywhere. This makes
1199     // call instructions much less noisy on targets where calls clobber lots
1200     // of registers. Don't rely on MO.isDead() because we may be called before
1201     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1202     if (MF && getDesc().isCall() &&
1203         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1204       unsigned Reg = MO.getReg();
1205       if (Reg != 0 && TargetRegisterInfo::isPhysicalRegister(Reg)) {
1206         const MachineRegisterInfo &MRI = MF->getRegInfo();
1207         if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1208           bool HasAliasLive = false;
1209           for (const unsigned *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1210                unsigned AliasReg = *Alias; ++Alias)
1211             if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1212               HasAliasLive = true;
1213               break;
1214             }
1215           if (!HasAliasLive) {
1216             OmittedAnyCallClobbers = true;
1217             continue;
1218           }
1219         }
1220       }
1221     }
1222
1223     if (FirstOp) FirstOp = false; else OS << ",";
1224     OS << " ";
1225     if (i < getDesc().NumOperands) {
1226       const TargetOperandInfo &TOI = getDesc().OpInfo[i];
1227       if (TOI.isPredicate())
1228         OS << "pred:";
1229       if (TOI.isOptionalDef())
1230         OS << "opt:";
1231     }
1232     if (isDebugValue() && MO.isMetadata()) {
1233       // Pretty print DBG_VALUE instructions.
1234       const MDNode *MD = MO.getMetadata();
1235       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1236         OS << "!\"" << MDS->getString() << '\"';
1237       else
1238         MO.print(OS, TM);
1239     } else
1240       MO.print(OS, TM);
1241   }
1242
1243   // Briefly indicate whether any call clobbers were omitted.
1244   if (OmittedAnyCallClobbers) {
1245     if (!FirstOp) OS << ",";
1246     OS << " ...";
1247   }
1248
1249   bool HaveSemi = false;
1250   if (!memoperands_empty()) {
1251     if (!HaveSemi) OS << ";"; HaveSemi = true;
1252
1253     OS << " mem:";
1254     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1255          i != e; ++i) {
1256       OS << **i;
1257       if (next(i) != e)
1258         OS << " ";
1259     }
1260   }
1261
1262   if (!debugLoc.isUnknown() && MF) {
1263     if (!HaveSemi) OS << ";";
1264
1265     // TODO: print InlinedAtLoc information
1266
1267     DIScope Scope(debugLoc.getScope(MF->getFunction()->getContext()));
1268     OS << " dbg:";
1269     // Omit the directory, since it's usually long and uninteresting.
1270     if (Scope.Verify())
1271       OS << Scope.getFilename();
1272     else
1273       OS << "<unknown>";
1274     OS << ':' << debugLoc.getLine();
1275     if (debugLoc.getCol() != 0)
1276       OS << ':' << debugLoc.getCol();
1277   }
1278
1279   OS << "\n";
1280 }
1281
1282 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1283                                      const TargetRegisterInfo *RegInfo,
1284                                      bool AddIfNotFound) {
1285   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1286   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1287   bool Found = false;
1288   SmallVector<unsigned,4> DeadOps;
1289   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1290     MachineOperand &MO = getOperand(i);
1291     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1292       continue;
1293     unsigned Reg = MO.getReg();
1294     if (!Reg)
1295       continue;
1296
1297     if (Reg == IncomingReg) {
1298       if (!Found) {
1299         if (MO.isKill())
1300           // The register is already marked kill.
1301           return true;
1302         if (isPhysReg && isRegTiedToDefOperand(i))
1303           // Two-address uses of physregs must not be marked kill.
1304           return true;
1305         MO.setIsKill();
1306         Found = true;
1307       }
1308     } else if (hasAliases && MO.isKill() &&
1309                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1310       // A super-register kill already exists.
1311       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1312         return true;
1313       if (RegInfo->isSubRegister(IncomingReg, Reg))
1314         DeadOps.push_back(i);
1315     }
1316   }
1317
1318   // Trim unneeded kill operands.
1319   while (!DeadOps.empty()) {
1320     unsigned OpIdx = DeadOps.back();
1321     if (getOperand(OpIdx).isImplicit())
1322       RemoveOperand(OpIdx);
1323     else
1324       getOperand(OpIdx).setIsKill(false);
1325     DeadOps.pop_back();
1326   }
1327
1328   // If not found, this means an alias of one of the operands is killed. Add a
1329   // new implicit operand if required.
1330   if (!Found && AddIfNotFound) {
1331     addOperand(MachineOperand::CreateReg(IncomingReg,
1332                                          false /*IsDef*/,
1333                                          true  /*IsImp*/,
1334                                          true  /*IsKill*/));
1335     return true;
1336   }
1337   return Found;
1338 }
1339
1340 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1341                                    const TargetRegisterInfo *RegInfo,
1342                                    bool AddIfNotFound) {
1343   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1344   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1345   bool Found = false;
1346   SmallVector<unsigned,4> DeadOps;
1347   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1348     MachineOperand &MO = getOperand(i);
1349     if (!MO.isReg() || !MO.isDef())
1350       continue;
1351     unsigned Reg = MO.getReg();
1352     if (!Reg)
1353       continue;
1354
1355     if (Reg == IncomingReg) {
1356       if (!Found) {
1357         if (MO.isDead())
1358           // The register is already marked dead.
1359           return true;
1360         MO.setIsDead();
1361         Found = true;
1362       }
1363     } else if (hasAliases && MO.isDead() &&
1364                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1365       // There exists a super-register that's marked dead.
1366       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1367         return true;
1368       if (RegInfo->getSubRegisters(IncomingReg) &&
1369           RegInfo->getSuperRegisters(Reg) &&
1370           RegInfo->isSubRegister(IncomingReg, Reg))
1371         DeadOps.push_back(i);
1372     }
1373   }
1374
1375   // Trim unneeded dead operands.
1376   while (!DeadOps.empty()) {
1377     unsigned OpIdx = DeadOps.back();
1378     if (getOperand(OpIdx).isImplicit())
1379       RemoveOperand(OpIdx);
1380     else
1381       getOperand(OpIdx).setIsDead(false);
1382     DeadOps.pop_back();
1383   }
1384
1385   // If not found, this means an alias of one of the operands is dead. Add a
1386   // new implicit operand if required.
1387   if (Found || !AddIfNotFound)
1388     return Found;
1389     
1390   addOperand(MachineOperand::CreateReg(IncomingReg,
1391                                        true  /*IsDef*/,
1392                                        true  /*IsImp*/,
1393                                        false /*IsKill*/,
1394                                        true  /*IsDead*/));
1395   return true;
1396 }
1397
1398 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1399                                       const TargetRegisterInfo *RegInfo) {
1400   if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1401     MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1402     if (MO)
1403       return;
1404   } else {
1405     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1406       const MachineOperand &MO = getOperand(i);
1407       if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1408           MO.getSubReg() == 0)
1409         return;
1410     }
1411   }
1412   addOperand(MachineOperand::CreateReg(IncomingReg,
1413                                        true  /*IsDef*/,
1414                                        true  /*IsImp*/));
1415 }
1416
1417 unsigned
1418 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1419   unsigned Hash = MI->getOpcode() * 37;
1420   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1421     const MachineOperand &MO = MI->getOperand(i);
1422     uint64_t Key = (uint64_t)MO.getType() << 32;
1423     switch (MO.getType()) {
1424     default: break;
1425     case MachineOperand::MO_Register:
1426       if (MO.isDef() && MO.getReg() &&
1427           TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1428         continue;  // Skip virtual register defs.
1429       Key |= MO.getReg();
1430       break;
1431     case MachineOperand::MO_Immediate:
1432       Key |= MO.getImm();
1433       break;
1434     case MachineOperand::MO_FrameIndex:
1435     case MachineOperand::MO_ConstantPoolIndex:
1436     case MachineOperand::MO_JumpTableIndex:
1437       Key |= MO.getIndex();
1438       break;
1439     case MachineOperand::MO_MachineBasicBlock:
1440       Key |= DenseMapInfo<void*>::getHashValue(MO.getMBB());
1441       break;
1442     case MachineOperand::MO_GlobalAddress:
1443       Key |= DenseMapInfo<void*>::getHashValue(MO.getGlobal());
1444       break;
1445     case MachineOperand::MO_BlockAddress:
1446       Key |= DenseMapInfo<void*>::getHashValue(MO.getBlockAddress());
1447       break;
1448     case MachineOperand::MO_MCSymbol:
1449       Key |= DenseMapInfo<void*>::getHashValue(MO.getMCSymbol());
1450       break;
1451     }
1452     Key += ~(Key << 32);
1453     Key ^= (Key >> 22);
1454     Key += ~(Key << 13);
1455     Key ^= (Key >> 8);
1456     Key += (Key << 3);
1457     Key ^= (Key >> 15);
1458     Key += ~(Key << 27);
1459     Key ^= (Key >> 31);
1460     Hash = (unsigned)Key + Hash * 37;
1461   }
1462   return Hash;
1463 }