1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
36 #define DEBUG_TYPE "misched"
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40 cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42 cl::desc("Force bottom-up list scheduling"));
44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45 cl::desc("Print critical path length to stdout"));
49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50 cl::desc("Pop up a window to show MISched dags after they are processed"));
52 /// In some situations a few uninteresting nodes depend on nearly all other
53 /// nodes in the graph, provide a cutoff to hide them.
54 static cl::opt<unsigned> ViewMISchedCutoff("view-misched-cutoff", cl::Hidden,
55 cl::desc("Hide nodes with more predecessor/successor than cutoff"));
57 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
58 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
60 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
61 cl::desc("Only schedule this function"));
62 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
63 cl::desc("Only schedule this MBB#"));
65 static bool ViewMISchedDAGs = false;
68 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
69 cl::desc("Enable register pressure scheduling."), cl::init(true));
71 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
72 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
74 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
75 cl::desc("Enable load clustering."), cl::init(true));
77 // Experimental heuristics
78 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
79 cl::desc("Enable scheduling for macro fusion."), cl::init(true));
81 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
82 cl::desc("Verify machine instrs before and after machine scheduling"));
84 // DAG subtrees must have at least this many nodes.
85 static const unsigned MinSubtreeSize = 8;
87 // Pin the vtables to this file.
88 void MachineSchedStrategy::anchor() {}
89 void ScheduleDAGMutation::anchor() {}
91 //===----------------------------------------------------------------------===//
92 // Machine Instruction Scheduling Pass and Registry
93 //===----------------------------------------------------------------------===//
95 MachineSchedContext::MachineSchedContext():
96 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
97 RegClassInfo = new RegisterClassInfo();
100 MachineSchedContext::~MachineSchedContext() {
105 /// Base class for a machine scheduler class that can run at any point.
106 class MachineSchedulerBase : public MachineSchedContext,
107 public MachineFunctionPass {
109 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
111 void print(raw_ostream &O, const Module* = nullptr) const override;
114 void scheduleRegions(ScheduleDAGInstrs &Scheduler);
117 /// MachineScheduler runs after coalescing and before register allocation.
118 class MachineScheduler : public MachineSchedulerBase {
122 void getAnalysisUsage(AnalysisUsage &AU) const override;
124 bool runOnMachineFunction(MachineFunction&) override;
126 static char ID; // Class identification, replacement for typeinfo
129 ScheduleDAGInstrs *createMachineScheduler();
132 /// PostMachineScheduler runs after shortly before code emission.
133 class PostMachineScheduler : public MachineSchedulerBase {
135 PostMachineScheduler();
137 void getAnalysisUsage(AnalysisUsage &AU) const override;
139 bool runOnMachineFunction(MachineFunction&) override;
141 static char ID; // Class identification, replacement for typeinfo
144 ScheduleDAGInstrs *createPostMachineScheduler();
148 char MachineScheduler::ID = 0;
150 char &llvm::MachineSchedulerID = MachineScheduler::ID;
152 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
153 "Machine Instruction Scheduler", false, false)
154 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
155 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
156 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
157 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
158 "Machine Instruction Scheduler", false, false)
160 MachineScheduler::MachineScheduler()
161 : MachineSchedulerBase(ID) {
162 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
165 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
166 AU.setPreservesCFG();
167 AU.addRequiredID(MachineDominatorsID);
168 AU.addRequired<MachineLoopInfo>();
169 AU.addRequired<AAResultsWrapperPass>();
170 AU.addRequired<TargetPassConfig>();
171 AU.addRequired<SlotIndexes>();
172 AU.addPreserved<SlotIndexes>();
173 AU.addRequired<LiveIntervals>();
174 AU.addPreserved<LiveIntervals>();
175 MachineFunctionPass::getAnalysisUsage(AU);
178 char PostMachineScheduler::ID = 0;
180 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
182 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
183 "PostRA Machine Instruction Scheduler", false, false)
185 PostMachineScheduler::PostMachineScheduler()
186 : MachineSchedulerBase(ID) {
187 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
190 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
191 AU.setPreservesCFG();
192 AU.addRequiredID(MachineDominatorsID);
193 AU.addRequired<MachineLoopInfo>();
194 AU.addRequired<TargetPassConfig>();
195 MachineFunctionPass::getAnalysisUsage(AU);
198 MachinePassRegistry MachineSchedRegistry::Registry;
200 /// A dummy default scheduler factory indicates whether the scheduler
201 /// is overridden on the command line.
202 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
206 /// MachineSchedOpt allows command line selection of the scheduler.
207 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
208 RegisterPassParser<MachineSchedRegistry> >
209 MachineSchedOpt("misched",
210 cl::init(&useDefaultMachineSched), cl::Hidden,
211 cl::desc("Machine instruction scheduler to use"));
213 static MachineSchedRegistry
214 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
215 useDefaultMachineSched);
217 static cl::opt<bool> EnableMachineSched(
219 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
222 /// Forward declare the standard machine scheduler. This will be used as the
223 /// default scheduler if the target does not set a default.
224 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
225 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
227 /// Decrement this iterator until reaching the top or a non-debug instr.
228 static MachineBasicBlock::const_iterator
229 priorNonDebug(MachineBasicBlock::const_iterator I,
230 MachineBasicBlock::const_iterator Beg) {
231 assert(I != Beg && "reached the top of the region, cannot decrement");
233 if (!I->isDebugValue())
239 /// Non-const version.
240 static MachineBasicBlock::iterator
241 priorNonDebug(MachineBasicBlock::iterator I,
242 MachineBasicBlock::const_iterator Beg) {
243 return const_cast<MachineInstr*>(
244 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
247 /// If this iterator is a debug value, increment until reaching the End or a
248 /// non-debug instruction.
249 static MachineBasicBlock::const_iterator
250 nextIfDebug(MachineBasicBlock::const_iterator I,
251 MachineBasicBlock::const_iterator End) {
252 for(; I != End; ++I) {
253 if (!I->isDebugValue())
259 /// Non-const version.
260 static MachineBasicBlock::iterator
261 nextIfDebug(MachineBasicBlock::iterator I,
262 MachineBasicBlock::const_iterator End) {
263 // Cast the return value to nonconst MachineInstr, then cast to an
264 // instr_iterator, which does not check for null, finally return a
266 return MachineBasicBlock::instr_iterator(
267 const_cast<MachineInstr*>(
268 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
271 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
272 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
273 // Select the scheduler, or set the default.
274 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
275 if (Ctor != useDefaultMachineSched)
278 // Get the default scheduler set by the target for this function.
279 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
283 // Default to GenericScheduler.
284 return createGenericSchedLive(this);
287 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
288 /// the caller. We don't have a command line option to override the postRA
289 /// scheduler. The Target must configure it.
290 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
291 // Get the postRA scheduler set by the target for this function.
292 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
296 // Default to GenericScheduler.
297 return createGenericSchedPostRA(this);
300 /// Top-level MachineScheduler pass driver.
302 /// Visit blocks in function order. Divide each block into scheduling regions
303 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
304 /// consistent with the DAG builder, which traverses the interior of the
305 /// scheduling regions bottom-up.
307 /// This design avoids exposing scheduling boundaries to the DAG builder,
308 /// simplifying the DAG builder's support for "special" target instructions.
309 /// At the same time the design allows target schedulers to operate across
310 /// scheduling boundaries, for example to bundle the boudary instructions
311 /// without reordering them. This creates complexity, because the target
312 /// scheduler must update the RegionBegin and RegionEnd positions cached by
313 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
314 /// design would be to split blocks at scheduling boundaries, but LLVM has a
315 /// general bias against block splitting purely for implementation simplicity.
316 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
317 if (EnableMachineSched.getNumOccurrences()) {
318 if (!EnableMachineSched)
320 } else if (!mf.getSubtarget().enableMachineScheduler())
323 DEBUG(dbgs() << "Before MISched:\n"; mf.print(dbgs()));
325 // Initialize the context of the pass.
327 MLI = &getAnalysis<MachineLoopInfo>();
328 MDT = &getAnalysis<MachineDominatorTree>();
329 PassConfig = &getAnalysis<TargetPassConfig>();
330 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
332 LIS = &getAnalysis<LiveIntervals>();
334 if (VerifyScheduling) {
336 MF->verify(this, "Before machine scheduling.");
338 RegClassInfo->runOnMachineFunction(*MF);
340 // Instantiate the selected scheduler for this target, function, and
341 // optimization level.
342 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
343 scheduleRegions(*Scheduler);
346 if (VerifyScheduling)
347 MF->verify(this, "After machine scheduling.");
351 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
352 if (skipOptnoneFunction(*mf.getFunction()))
355 if (!mf.getSubtarget().enablePostRAScheduler()) {
356 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
359 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
361 // Initialize the context of the pass.
363 PassConfig = &getAnalysis<TargetPassConfig>();
365 if (VerifyScheduling)
366 MF->verify(this, "Before post machine scheduling.");
368 // Instantiate the selected scheduler for this target, function, and
369 // optimization level.
370 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
371 scheduleRegions(*Scheduler);
373 if (VerifyScheduling)
374 MF->verify(this, "After post machine scheduling.");
378 /// Return true of the given instruction should not be included in a scheduling
381 /// MachineScheduler does not currently support scheduling across calls. To
382 /// handle calls, the DAG builder needs to be modified to create register
383 /// anti/output dependencies on the registers clobbered by the call's regmask
384 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
385 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
386 /// the boundary, but there would be no benefit to postRA scheduling across
387 /// calls this late anyway.
388 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
389 MachineBasicBlock *MBB,
391 const TargetInstrInfo *TII,
393 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
396 /// Main driver for both MachineScheduler and PostMachineScheduler.
397 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
398 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
399 bool IsPostRA = Scheduler.isPostRA();
401 // Visit all machine basic blocks.
403 // TODO: Visit blocks in global postorder or postorder within the bottom-up
404 // loop tree. Then we can optionally compute global RegPressure.
405 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
406 MBB != MBBEnd; ++MBB) {
408 Scheduler.startBlock(&*MBB);
411 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
413 if (SchedOnlyBlock.getNumOccurrences()
414 && (int)SchedOnlyBlock != MBB->getNumber())
418 // Break the block into scheduling regions [I, RegionEnd), and schedule each
419 // region as soon as it is discovered. RegionEnd points the scheduling
420 // boundary at the bottom of the region. The DAG does not include RegionEnd,
421 // but the region does (i.e. the next RegionEnd is above the previous
422 // RegionBegin). If the current block has no terminator then RegionEnd ==
423 // MBB->end() for the bottom region.
425 // The Scheduler may insert instructions during either schedule() or
426 // exitRegion(), even for empty regions. So the local iterators 'I' and
427 // 'RegionEnd' are invalid across these calls.
429 // MBB::size() uses instr_iterator to count. Here we need a bundle to count
430 // as a single instruction.
431 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
432 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
433 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
435 // Avoid decrementing RegionEnd for blocks with no terminator.
436 if (RegionEnd != MBB->end() ||
437 isSchedBoundary(&*std::prev(RegionEnd), &*MBB, MF, TII, IsPostRA)) {
439 // Count the boundary instruction.
443 // The next region starts above the previous region. Look backward in the
444 // instruction stream until we find the nearest boundary.
445 unsigned NumRegionInstrs = 0;
446 MachineBasicBlock::iterator I = RegionEnd;
447 for(;I != MBB->begin(); --I, --RemainingInstrs) {
448 if (isSchedBoundary(&*std::prev(I), &*MBB, MF, TII, IsPostRA))
450 if (!I->isDebugValue())
453 // Notify the scheduler of the region, even if we may skip scheduling
454 // it. Perhaps it still needs to be bundled.
455 Scheduler.enterRegion(&*MBB, I, RegionEnd, NumRegionInstrs);
457 // Skip empty scheduling regions (0 or 1 schedulable instructions).
458 if (I == RegionEnd || I == std::prev(RegionEnd)) {
459 // Close the current region. Bundle the terminator if needed.
460 // This invalidates 'RegionEnd' and 'I'.
461 Scheduler.exitRegion();
464 DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "")
465 << "MI Scheduling **********\n");
466 DEBUG(dbgs() << MF->getName()
467 << ":BB#" << MBB->getNumber() << " " << MBB->getName()
468 << "\n From: " << *I << " To: ";
469 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
470 else dbgs() << "End";
471 dbgs() << " RegionInstrs: " << NumRegionInstrs
472 << " Remaining: " << RemainingInstrs << "\n");
473 if (DumpCriticalPathLength) {
474 errs() << MF->getName();
475 errs() << ":BB# " << MBB->getNumber();
476 errs() << " " << MBB->getName() << " \n";
479 // Schedule a region: possibly reorder instructions.
480 // This invalidates 'RegionEnd' and 'I'.
481 Scheduler.schedule();
483 // Close the current region.
484 Scheduler.exitRegion();
486 // Scheduling has invalidated the current iterator 'I'. Ask the
487 // scheduler for the top of it's scheduled region.
488 RegionEnd = Scheduler.begin();
490 assert(RemainingInstrs == 0 && "Instruction count mismatch!");
491 Scheduler.finishBlock();
492 if (Scheduler.isPostRA()) {
493 // FIXME: Ideally, no further passes should rely on kill flags. However,
494 // thumb2 size reduction is currently an exception.
495 Scheduler.fixupKills(&*MBB);
498 Scheduler.finalizeSchedule();
501 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
506 void ReadyQueue::dump() {
507 dbgs() << "Queue " << Name << ": ";
508 for (unsigned i = 0, e = Queue.size(); i < e; ++i)
509 dbgs() << Queue[i]->NodeNum << " ";
513 //===----------------------------------------------------------------------===//
514 // ScheduleDAGMI - Basic machine instruction scheduling. This is
515 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
516 // virtual registers.
517 // ===----------------------------------------------------------------------===/
519 // Provide a vtable anchor.
520 ScheduleDAGMI::~ScheduleDAGMI() {
523 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
524 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
527 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
528 if (SuccSU != &ExitSU) {
529 // Do not use WillCreateCycle, it assumes SD scheduling.
530 // If Pred is reachable from Succ, then the edge creates a cycle.
531 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
533 Topo.AddPred(SuccSU, PredDep.getSUnit());
535 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
536 // Return true regardless of whether a new edge needed to be inserted.
540 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
541 /// NumPredsLeft reaches zero, release the successor node.
543 /// FIXME: Adjust SuccSU height based on MinLatency.
544 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
545 SUnit *SuccSU = SuccEdge->getSUnit();
547 if (SuccEdge->isWeak()) {
548 --SuccSU->WeakPredsLeft;
549 if (SuccEdge->isCluster())
550 NextClusterSucc = SuccSU;
554 if (SuccSU->NumPredsLeft == 0) {
555 dbgs() << "*** Scheduling failed! ***\n";
557 dbgs() << " has been released too many times!\n";
558 llvm_unreachable(nullptr);
561 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
562 // CurrCycle may have advanced since then.
563 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
564 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
566 --SuccSU->NumPredsLeft;
567 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
568 SchedImpl->releaseTopNode(SuccSU);
571 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
572 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
573 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
575 releaseSucc(SU, &*I);
579 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
580 /// NumSuccsLeft reaches zero, release the predecessor node.
582 /// FIXME: Adjust PredSU height based on MinLatency.
583 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
584 SUnit *PredSU = PredEdge->getSUnit();
586 if (PredEdge->isWeak()) {
587 --PredSU->WeakSuccsLeft;
588 if (PredEdge->isCluster())
589 NextClusterPred = PredSU;
593 if (PredSU->NumSuccsLeft == 0) {
594 dbgs() << "*** Scheduling failed! ***\n";
596 dbgs() << " has been released too many times!\n";
597 llvm_unreachable(nullptr);
600 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
601 // CurrCycle may have advanced since then.
602 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
603 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
605 --PredSU->NumSuccsLeft;
606 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
607 SchedImpl->releaseBottomNode(PredSU);
610 /// releasePredecessors - Call releasePred on each of SU's predecessors.
611 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
612 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
614 releasePred(SU, &*I);
618 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
619 /// crossing a scheduling boundary. [begin, end) includes all instructions in
620 /// the region, including the boundary itself and single-instruction regions
621 /// that don't get scheduled.
622 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
623 MachineBasicBlock::iterator begin,
624 MachineBasicBlock::iterator end,
625 unsigned regioninstrs)
627 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
629 SchedImpl->initPolicy(begin, end, regioninstrs);
632 /// This is normally called from the main scheduler loop but may also be invoked
633 /// by the scheduling strategy to perform additional code motion.
634 void ScheduleDAGMI::moveInstruction(
635 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
636 // Advance RegionBegin if the first instruction moves down.
637 if (&*RegionBegin == MI)
640 // Update the instruction stream.
641 BB->splice(InsertPos, BB, MI);
643 // Update LiveIntervals
645 LIS->handleMove(MI, /*UpdateFlags=*/true);
647 // Recede RegionBegin if an instruction moves above the first.
648 if (RegionBegin == InsertPos)
652 bool ScheduleDAGMI::checkSchedLimit() {
654 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
655 CurrentTop = CurrentBottom;
658 ++NumInstrsScheduled;
663 /// Per-region scheduling driver, called back from
664 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
665 /// does not consider liveness or register pressure. It is useful for PostRA
666 /// scheduling and potentially other custom schedulers.
667 void ScheduleDAGMI::schedule() {
668 DEBUG(dbgs() << "ScheduleDAGMI::schedule starting\n");
669 DEBUG(SchedImpl->dumpPolicy());
674 Topo.InitDAGTopologicalSorting();
678 SmallVector<SUnit*, 8> TopRoots, BotRoots;
679 findRootsAndBiasEdges(TopRoots, BotRoots);
681 // Initialize the strategy before modifying the DAG.
682 // This may initialize a DFSResult to be used for queue priority.
683 SchedImpl->initialize(this);
685 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
686 SUnits[su].dumpAll(this));
687 if (ViewMISchedDAGs) viewGraph();
689 // Initialize ready queues now that the DAG and priority data are finalized.
690 initQueues(TopRoots, BotRoots);
692 bool IsTopNode = false;
694 DEBUG(dbgs() << "** ScheduleDAGMI::schedule picking next node\n");
695 SUnit *SU = SchedImpl->pickNode(IsTopNode);
698 assert(!SU->isScheduled && "Node already scheduled");
699 if (!checkSchedLimit())
702 MachineInstr *MI = SU->getInstr();
704 assert(SU->isTopReady() && "node still has unscheduled dependencies");
705 if (&*CurrentTop == MI)
706 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
708 moveInstruction(MI, CurrentTop);
711 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
712 MachineBasicBlock::iterator priorII =
713 priorNonDebug(CurrentBottom, CurrentTop);
715 CurrentBottom = priorII;
717 if (&*CurrentTop == MI)
718 CurrentTop = nextIfDebug(++CurrentTop, priorII);
719 moveInstruction(MI, CurrentBottom);
723 // Notify the scheduling strategy before updating the DAG.
724 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
725 // runs, it can then use the accurate ReadyCycle time to determine whether
726 // newly released nodes can move to the readyQ.
727 SchedImpl->schedNode(SU, IsTopNode);
729 updateQueues(SU, IsTopNode);
731 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
736 unsigned BBNum = begin()->getParent()->getNumber();
737 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
743 /// Apply each ScheduleDAGMutation step in order.
744 void ScheduleDAGMI::postprocessDAG() {
745 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
746 Mutations[i]->apply(this);
751 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
752 SmallVectorImpl<SUnit*> &BotRoots) {
753 for (std::vector<SUnit>::iterator
754 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
756 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
758 // Order predecessors so DFSResult follows the critical path.
759 SU->biasCriticalPath();
761 // A SUnit is ready to top schedule if it has no predecessors.
762 if (!I->NumPredsLeft)
763 TopRoots.push_back(SU);
764 // A SUnit is ready to bottom schedule if it has no successors.
765 if (!I->NumSuccsLeft)
766 BotRoots.push_back(SU);
768 ExitSU.biasCriticalPath();
771 /// Identify DAG roots and setup scheduler queues.
772 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
773 ArrayRef<SUnit*> BotRoots) {
774 NextClusterSucc = nullptr;
775 NextClusterPred = nullptr;
777 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
779 // Nodes with unreleased weak edges can still be roots.
780 // Release top roots in forward order.
781 for (SmallVectorImpl<SUnit*>::const_iterator
782 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
783 SchedImpl->releaseTopNode(*I);
785 // Release bottom roots in reverse order so the higher priority nodes appear
786 // first. This is more natural and slightly more efficient.
787 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
788 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
789 SchedImpl->releaseBottomNode(*I);
792 releaseSuccessors(&EntrySU);
793 releasePredecessors(&ExitSU);
795 SchedImpl->registerRoots();
797 // Advance past initial DebugValues.
798 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
799 CurrentBottom = RegionEnd;
802 /// Update scheduler queues after scheduling an instruction.
803 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
804 // Release dependent instructions for scheduling.
806 releaseSuccessors(SU);
808 releasePredecessors(SU);
810 SU->isScheduled = true;
813 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
814 void ScheduleDAGMI::placeDebugValues() {
815 // If first instruction was a DBG_VALUE then put it back.
817 BB->splice(RegionBegin, BB, FirstDbgValue);
818 RegionBegin = FirstDbgValue;
821 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
822 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
823 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
824 MachineInstr *DbgValue = P.first;
825 MachineBasicBlock::iterator OrigPrevMI = P.second;
826 if (&*RegionBegin == DbgValue)
828 BB->splice(++OrigPrevMI, BB, DbgValue);
829 if (OrigPrevMI == std::prev(RegionEnd))
830 RegionEnd = DbgValue;
833 FirstDbgValue = nullptr;
836 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
837 void ScheduleDAGMI::dumpSchedule() const {
838 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
839 if (SUnit *SU = getSUnit(&(*MI)))
842 dbgs() << "Missing SUnit\n";
847 //===----------------------------------------------------------------------===//
848 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
850 //===----------------------------------------------------------------------===//
852 ScheduleDAGMILive::~ScheduleDAGMILive() {
856 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
857 /// crossing a scheduling boundary. [begin, end) includes all instructions in
858 /// the region, including the boundary itself and single-instruction regions
859 /// that don't get scheduled.
860 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
861 MachineBasicBlock::iterator begin,
862 MachineBasicBlock::iterator end,
863 unsigned regioninstrs)
865 // ScheduleDAGMI initializes SchedImpl's per-region policy.
866 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
868 // For convenience remember the end of the liveness region.
869 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
871 SUPressureDiffs.clear();
873 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
876 // Setup the register pressure trackers for the top scheduled top and bottom
877 // scheduled regions.
878 void ScheduleDAGMILive::initRegPressure() {
879 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
880 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
882 // Close the RPTracker to finalize live ins.
883 RPTracker.closeRegion();
885 DEBUG(RPTracker.dump());
887 // Initialize the live ins and live outs.
888 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
889 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
891 // Close one end of the tracker so we can call
892 // getMaxUpward/DownwardPressureDelta before advancing across any
893 // instructions. This converts currently live regs into live ins/outs.
894 TopRPTracker.closeTop();
895 BotRPTracker.closeBottom();
897 BotRPTracker.initLiveThru(RPTracker);
898 if (!BotRPTracker.getLiveThru().empty()) {
899 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
900 DEBUG(dbgs() << "Live Thru: ";
901 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
904 // For each live out vreg reduce the pressure change associated with other
905 // uses of the same vreg below the live-out reaching def.
906 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
908 // Account for liveness generated by the region boundary.
909 if (LiveRegionEnd != RegionEnd) {
910 SmallVector<unsigned, 8> LiveUses;
911 BotRPTracker.recede(&LiveUses);
912 updatePressureDiffs(LiveUses);
915 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
917 // Cache the list of excess pressure sets in this region. This will also track
918 // the max pressure in the scheduled code for these sets.
919 RegionCriticalPSets.clear();
920 const std::vector<unsigned> &RegionPressure =
921 RPTracker.getPressure().MaxSetPressure;
922 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
923 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
924 if (RegionPressure[i] > Limit) {
925 DEBUG(dbgs() << TRI->getRegPressureSetName(i)
926 << " Limit " << Limit
927 << " Actual " << RegionPressure[i] << "\n");
928 RegionCriticalPSets.push_back(PressureChange(i));
931 DEBUG(dbgs() << "Excess PSets: ";
932 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
933 dbgs() << TRI->getRegPressureSetName(
934 RegionCriticalPSets[i].getPSet()) << " ";
938 void ScheduleDAGMILive::
939 updateScheduledPressure(const SUnit *SU,
940 const std::vector<unsigned> &NewMaxPressure) {
941 const PressureDiff &PDiff = getPressureDiff(SU);
942 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
943 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
947 unsigned ID = I->getPSet();
948 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
950 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
951 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
952 && NewMaxPressure[ID] <= INT16_MAX)
953 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
955 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
956 if (NewMaxPressure[ID] >= Limit - 2) {
957 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
958 << NewMaxPressure[ID]
959 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
960 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
965 /// Update the PressureDiff array for liveness after scheduling this
967 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
968 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
969 /// FIXME: Currently assuming single-use physregs.
970 unsigned Reg = LiveUses[LUIdx];
971 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
972 if (!TRI->isVirtualRegister(Reg))
975 // This may be called before CurrentBottom has been initialized. However,
976 // BotRPTracker must have a valid position. We want the value live into the
977 // instruction or live out of the block, so ask for the previous
978 // instruction's live-out.
979 const LiveInterval &LI = LIS->getInterval(Reg);
981 MachineBasicBlock::const_iterator I =
982 nextIfDebug(BotRPTracker.getPos(), BB->end());
984 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
986 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
989 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
990 assert(VNI && "No live value at use.");
991 for (const VReg2SUnit &V2SU
992 : make_range(VRegUses.find(Reg), VRegUses.end())) {
994 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
996 // If this use comes before the reaching def, it cannot be a last use, so
997 // descrease its pressure change.
998 if (!SU->isScheduled && SU != &ExitSU) {
1000 = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
1001 if (LRQ.valueIn() == VNI)
1002 getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
1008 /// schedule - Called back from MachineScheduler::runOnMachineFunction
1009 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
1010 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1012 /// This is a skeletal driver, with all the functionality pushed into helpers,
1013 /// so that it can be easily extended by experimental schedulers. Generally,
1014 /// implementing MachineSchedStrategy should be sufficient to implement a new
1015 /// scheduling algorithm. However, if a scheduler further subclasses
1016 /// ScheduleDAGMILive then it will want to override this virtual method in order
1017 /// to update any specialized state.
1018 void ScheduleDAGMILive::schedule() {
1019 DEBUG(dbgs() << "ScheduleDAGMILive::schedule starting\n");
1020 DEBUG(SchedImpl->dumpPolicy());
1021 buildDAGWithRegPressure();
1023 Topo.InitDAGTopologicalSorting();
1027 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1028 findRootsAndBiasEdges(TopRoots, BotRoots);
1030 // Initialize the strategy before modifying the DAG.
1031 // This may initialize a DFSResult to be used for queue priority.
1032 SchedImpl->initialize(this);
1034 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
1035 SUnits[su].dumpAll(this));
1036 if (ViewMISchedDAGs) viewGraph();
1038 // Initialize ready queues now that the DAG and priority data are finalized.
1039 initQueues(TopRoots, BotRoots);
1041 if (ShouldTrackPressure) {
1042 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1043 TopRPTracker.setPos(CurrentTop);
1046 bool IsTopNode = false;
1048 DEBUG(dbgs() << "** ScheduleDAGMILive::schedule picking next node\n");
1049 SUnit *SU = SchedImpl->pickNode(IsTopNode);
1052 assert(!SU->isScheduled && "Node already scheduled");
1053 if (!checkSchedLimit())
1056 scheduleMI(SU, IsTopNode);
1059 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1060 if (!ScheduledTrees.test(SubtreeID)) {
1061 ScheduledTrees.set(SubtreeID);
1062 DFSResult->scheduleTree(SubtreeID);
1063 SchedImpl->scheduleTree(SubtreeID);
1067 // Notify the scheduling strategy after updating the DAG.
1068 SchedImpl->schedNode(SU, IsTopNode);
1070 updateQueues(SU, IsTopNode);
1072 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1077 unsigned BBNum = begin()->getParent()->getNumber();
1078 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1084 /// Build the DAG and setup three register pressure trackers.
1085 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1086 if (!ShouldTrackPressure) {
1088 RegionCriticalPSets.clear();
1089 buildSchedGraph(AA);
1093 // Initialize the register pressure tracker used by buildSchedGraph.
1094 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1095 /*TrackUntiedDefs=*/true);
1097 // Account for liveness generate by the region boundary.
1098 if (LiveRegionEnd != RegionEnd)
1101 // Build the DAG, and compute current register pressure.
1102 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
1104 // Initialize top/bottom trackers after computing region pressure.
1108 void ScheduleDAGMILive::computeDFSResult() {
1110 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1112 ScheduledTrees.clear();
1113 DFSResult->resize(SUnits.size());
1114 DFSResult->compute(SUnits);
1115 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1118 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1119 /// only provides the critical path for single block loops. To handle loops that
1120 /// span blocks, we could use the vreg path latencies provided by
1121 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1122 /// available for use in the scheduler.
1124 /// The cyclic path estimation identifies a def-use pair that crosses the back
1125 /// edge and considers the depth and height of the nodes. For example, consider
1126 /// the following instruction sequence where each instruction has unit latency
1127 /// and defines an epomymous virtual register:
1129 /// a->b(a,c)->c(b)->d(c)->exit
1131 /// The cyclic critical path is a two cycles: b->c->b
1132 /// The acyclic critical path is four cycles: a->b->c->d->exit
1133 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1134 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1135 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1136 /// LiveInDepth = depth(b) = len(a->b) = 1
1138 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1139 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1140 /// CyclicCriticalPath = min(2, 2) = 2
1142 /// This could be relevant to PostRA scheduling, but is currently implemented
1143 /// assuming LiveIntervals.
1144 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1145 // This only applies to single block loop.
1146 if (!BB->isSuccessor(BB))
1149 unsigned MaxCyclicLatency = 0;
1150 // Visit each live out vreg def to find def/use pairs that cross iterations.
1151 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
1152 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
1155 if (!TRI->isVirtualRegister(Reg))
1157 const LiveInterval &LI = LIS->getInterval(Reg);
1158 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1162 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1163 const SUnit *DefSU = getSUnit(DefMI);
1167 unsigned LiveOutHeight = DefSU->getHeight();
1168 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1169 // Visit all local users of the vreg def.
1170 for (const VReg2SUnit &V2SU
1171 : make_range(VRegUses.find(Reg), VRegUses.end())) {
1172 SUnit *SU = V2SU.SU;
1176 // Only consider uses of the phi.
1177 LiveQueryResult LRQ =
1178 LI.Query(LIS->getInstructionIndex(SU->getInstr()));
1179 if (!LRQ.valueIn()->isPHIDef())
1182 // Assume that a path spanning two iterations is a cycle, which could
1183 // overestimate in strange cases. This allows cyclic latency to be
1184 // estimated as the minimum slack of the vreg's depth or height.
1185 unsigned CyclicLatency = 0;
1186 if (LiveOutDepth > SU->getDepth())
1187 CyclicLatency = LiveOutDepth - SU->getDepth();
1189 unsigned LiveInHeight = SU->getHeight() + DefSU->Latency;
1190 if (LiveInHeight > LiveOutHeight) {
1191 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1192 CyclicLatency = LiveInHeight - LiveOutHeight;
1197 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1198 << SU->NodeNum << ") = " << CyclicLatency << "c\n");
1199 if (CyclicLatency > MaxCyclicLatency)
1200 MaxCyclicLatency = CyclicLatency;
1203 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1204 return MaxCyclicLatency;
1207 /// Move an instruction and update register pressure.
1208 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1209 // Move the instruction to its new location in the instruction stream.
1210 MachineInstr *MI = SU->getInstr();
1213 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1214 if (&*CurrentTop == MI)
1215 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1217 moveInstruction(MI, CurrentTop);
1218 TopRPTracker.setPos(MI);
1221 if (ShouldTrackPressure) {
1222 // Update top scheduled pressure.
1223 TopRPTracker.advance();
1224 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1225 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1229 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1230 MachineBasicBlock::iterator priorII =
1231 priorNonDebug(CurrentBottom, CurrentTop);
1232 if (&*priorII == MI)
1233 CurrentBottom = priorII;
1235 if (&*CurrentTop == MI) {
1236 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1237 TopRPTracker.setPos(CurrentTop);
1239 moveInstruction(MI, CurrentBottom);
1242 if (ShouldTrackPressure) {
1243 // Update bottom scheduled pressure.
1244 SmallVector<unsigned, 8> LiveUses;
1245 BotRPTracker.recede(&LiveUses);
1246 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1247 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1248 updatePressureDiffs(LiveUses);
1253 //===----------------------------------------------------------------------===//
1254 // LoadClusterMutation - DAG post-processing to cluster loads.
1255 //===----------------------------------------------------------------------===//
1258 /// \brief Post-process the DAG to create cluster edges between neighboring
1260 class LoadClusterMutation : public ScheduleDAGMutation {
1265 LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
1266 : SU(su), BaseReg(reg), Offset(ofs) {}
1268 bool operator<(const LoadInfo &RHS) const {
1269 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1273 const TargetInstrInfo *TII;
1274 const TargetRegisterInfo *TRI;
1276 LoadClusterMutation(const TargetInstrInfo *tii,
1277 const TargetRegisterInfo *tri)
1278 : TII(tii), TRI(tri) {}
1280 void apply(ScheduleDAGMI *DAG) override;
1282 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1286 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1287 ScheduleDAGMI *DAG) {
1288 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1289 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1290 SUnit *SU = Loads[Idx];
1293 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1294 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1296 if (LoadRecords.size() < 2)
1298 std::sort(LoadRecords.begin(), LoadRecords.end());
1299 unsigned ClusterLength = 1;
1300 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1301 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1306 SUnit *SUa = LoadRecords[Idx].SU;
1307 SUnit *SUb = LoadRecords[Idx+1].SU;
1308 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1309 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1311 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1312 << SUb->NodeNum << ")\n");
1313 // Copy successor edges from SUa to SUb. Interleaving computation
1314 // dependent on SUa can prevent load combining due to register reuse.
1315 // Predecessor edges do not need to be copied from SUb to SUa since nearby
1316 // loads should have effectively the same inputs.
1317 for (SUnit::const_succ_iterator
1318 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1319 if (SI->getSUnit() == SUb)
1321 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1322 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1331 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1332 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1333 // Map DAG NodeNum to store chain ID.
1334 DenseMap<unsigned, unsigned> StoreChainIDs;
1335 // Map each store chain to a set of dependent loads.
1336 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1337 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1338 SUnit *SU = &DAG->SUnits[Idx];
1339 if (!SU->getInstr()->mayLoad())
1341 unsigned ChainPredID = DAG->SUnits.size();
1342 for (SUnit::const_pred_iterator
1343 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1345 ChainPredID = PI->getSUnit()->NodeNum;
1349 // Check if this chain-like pred has been seen
1350 // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1351 unsigned NumChains = StoreChainDependents.size();
1352 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1353 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1355 StoreChainDependents.resize(NumChains + 1);
1356 StoreChainDependents[Result.first->second].push_back(SU);
1358 // Iterate over the store chains.
1359 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1360 clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1363 //===----------------------------------------------------------------------===//
1364 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1365 //===----------------------------------------------------------------------===//
1368 /// \brief Post-process the DAG to create cluster edges between instructions
1369 /// that may be fused by the processor into a single operation.
1370 class MacroFusion : public ScheduleDAGMutation {
1371 const TargetInstrInfo &TII;
1372 const TargetRegisterInfo &TRI;
1374 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
1375 : TII(TII), TRI(TRI) {}
1377 void apply(ScheduleDAGMI *DAG) override;
1381 /// Returns true if \p MI reads a register written by \p Other.
1382 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
1383 const MachineInstr &Other) {
1384 for (const MachineOperand &MO : MI.uses()) {
1385 if (!MO.isReg() || !MO.readsReg())
1388 unsigned Reg = MO.getReg();
1389 if (Other.modifiesRegister(Reg, &TRI))
1395 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1396 /// fused operations.
1397 void MacroFusion::apply(ScheduleDAGMI *DAG) {
1398 // For now, assume targets can only fuse with the branch.
1399 SUnit &ExitSU = DAG->ExitSU;
1400 MachineInstr *Branch = ExitSU.getInstr();
1404 for (SUnit &SU : DAG->SUnits) {
1405 // SUnits with successors can't be schedule in front of the ExitSU.
1406 if (!SU.Succs.empty())
1408 // We only care if the node writes to a register that the branch reads.
1409 MachineInstr *Pred = SU.getInstr();
1410 if (!HasDataDep(TRI, *Branch, *Pred))
1413 if (!TII.shouldScheduleAdjacent(Pred, Branch))
1416 // Create a single weak edge from SU to ExitSU. The only effect is to cause
1417 // bottom-up scheduling to heavily prioritize the clustered SU. There is no
1418 // need to copy predecessor edges from ExitSU to SU, since top-down
1419 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1420 // of SU, we could create an artificial edge from the deepest root, but it
1421 // hasn't been needed yet.
1422 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
1424 assert(Success && "No DAG nodes should be reachable from ExitSU");
1426 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
1431 //===----------------------------------------------------------------------===//
1432 // CopyConstrain - DAG post-processing to encourage copy elimination.
1433 //===----------------------------------------------------------------------===//
1436 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1437 /// the one use that defines the copy's source vreg, most likely an induction
1438 /// variable increment.
1439 class CopyConstrain : public ScheduleDAGMutation {
1441 SlotIndex RegionBeginIdx;
1442 // RegionEndIdx is the slot index of the last non-debug instruction in the
1443 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1444 SlotIndex RegionEndIdx;
1446 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1448 void apply(ScheduleDAGMI *DAG) override;
1451 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1455 /// constrainLocalCopy handles two possibilities:
1460 /// I3: dst = src (copy)
1461 /// (create pred->succ edges I0->I1, I2->I1)
1464 /// I0: dst = src (copy)
1468 /// (create pred->succ edges I1->I2, I3->I2)
1470 /// Although the MachineScheduler is currently constrained to single blocks,
1471 /// this algorithm should handle extended blocks. An EBB is a set of
1472 /// contiguously numbered blocks such that the previous block in the EBB is
1473 /// always the single predecessor.
1474 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1475 LiveIntervals *LIS = DAG->getLIS();
1476 MachineInstr *Copy = CopySU->getInstr();
1478 // Check for pure vreg copies.
1479 unsigned SrcReg = Copy->getOperand(1).getReg();
1480 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1483 unsigned DstReg = Copy->getOperand(0).getReg();
1484 if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1487 // Check if either the dest or source is local. If it's live across a back
1488 // edge, it's not local. Note that if both vregs are live across the back
1489 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1490 // If both the copy's source and dest are local live intervals, then we
1491 // should treat the dest as the global for the purpose of adding
1492 // constraints. This adds edges from source's other uses to the copy.
1493 unsigned LocalReg = SrcReg;
1494 unsigned GlobalReg = DstReg;
1495 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1496 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1499 LocalLI = &LIS->getInterval(LocalReg);
1500 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1503 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1505 // Find the global segment after the start of the local LI.
1506 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1507 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1508 // local live range. We could create edges from other global uses to the local
1509 // start, but the coalescer should have already eliminated these cases, so
1510 // don't bother dealing with it.
1511 if (GlobalSegment == GlobalLI->end())
1514 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1515 // returned the next global segment. But if GlobalSegment overlaps with
1516 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1517 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1518 if (GlobalSegment->contains(LocalLI->beginIndex()))
1521 if (GlobalSegment == GlobalLI->end())
1524 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1525 if (GlobalSegment != GlobalLI->begin()) {
1526 // Two address defs have no hole.
1527 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1528 GlobalSegment->start)) {
1531 // If the prior global segment may be defined by the same two-address
1532 // instruction that also defines LocalLI, then can't make a hole here.
1533 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1534 LocalLI->beginIndex())) {
1537 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1538 // it would be a disconnected component in the live range.
1539 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1540 "Disconnected LRG within the scheduling region.");
1542 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1546 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1550 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1551 // constraining the uses of the last local def to precede GlobalDef.
1552 SmallVector<SUnit*,8> LocalUses;
1553 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1554 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1555 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1556 for (SUnit::const_succ_iterator
1557 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1559 if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1561 if (I->getSUnit() == GlobalSU)
1563 if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1565 LocalUses.push_back(I->getSUnit());
1567 // Open the top of the GlobalLI hole by constraining any earlier global uses
1568 // to precede the start of LocalLI.
1569 SmallVector<SUnit*,8> GlobalUses;
1570 MachineInstr *FirstLocalDef =
1571 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1572 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1573 for (SUnit::const_pred_iterator
1574 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1575 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1577 if (I->getSUnit() == FirstLocalSU)
1579 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1581 GlobalUses.push_back(I->getSUnit());
1583 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1584 // Add the weak edges.
1585 for (SmallVectorImpl<SUnit*>::const_iterator
1586 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1587 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1588 << GlobalSU->NodeNum << ")\n");
1589 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1591 for (SmallVectorImpl<SUnit*>::const_iterator
1592 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1593 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1594 << FirstLocalSU->NodeNum << ")\n");
1595 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1599 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1600 /// copy elimination.
1601 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1602 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1604 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1605 if (FirstPos == DAG->end())
1607 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1608 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1609 &*priorNonDebug(DAG->end(), DAG->begin()));
1611 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1612 SUnit *SU = &DAG->SUnits[Idx];
1613 if (!SU->getInstr()->isCopy())
1616 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1620 //===----------------------------------------------------------------------===//
1621 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1622 // and possibly other custom schedulers.
1623 //===----------------------------------------------------------------------===//
1625 static const unsigned InvalidCycle = ~0U;
1627 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1629 void SchedBoundary::reset() {
1630 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1631 // Destroying and reconstructing it is very expensive though. So keep
1632 // invalid, placeholder HazardRecs.
1633 if (HazardRec && HazardRec->isEnabled()) {
1635 HazardRec = nullptr;
1639 CheckPending = false;
1643 MinReadyCycle = UINT_MAX;
1644 ExpectedLatency = 0;
1645 DependentLatency = 0;
1647 MaxExecutedResCount = 0;
1649 IsResourceLimited = false;
1650 ReservedCycles.clear();
1652 // Track the maximum number of stall cycles that could arise either from the
1653 // latency of a DAG edge or the number of cycles that a processor resource is
1654 // reserved (SchedBoundary::ReservedCycles).
1655 MaxObservedStall = 0;
1657 // Reserve a zero-count for invalid CritResIdx.
1658 ExecutedResCounts.resize(1);
1659 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1662 void SchedRemainder::
1663 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1665 if (!SchedModel->hasInstrSchedModel())
1667 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1668 for (std::vector<SUnit>::iterator
1669 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1670 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1671 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1672 * SchedModel->getMicroOpFactor();
1673 for (TargetSchedModel::ProcResIter
1674 PI = SchedModel->getWriteProcResBegin(SC),
1675 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1676 unsigned PIdx = PI->ProcResourceIdx;
1677 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1678 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1683 void SchedBoundary::
1684 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1687 SchedModel = smodel;
1689 if (SchedModel->hasInstrSchedModel()) {
1690 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1691 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1695 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1696 /// these "soft stalls" differently than the hard stall cycles based on CPU
1697 /// resources and computed by checkHazard(). A fully in-order model
1698 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1699 /// available for scheduling until they are ready. However, a weaker in-order
1700 /// model may use this for heuristics. For example, if a processor has in-order
1701 /// behavior when reading certain resources, this may come into play.
1702 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1703 if (!SU->isUnbuffered)
1706 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1707 if (ReadyCycle > CurrCycle)
1708 return ReadyCycle - CurrCycle;
1712 /// Compute the next cycle at which the given processor resource can be
1714 unsigned SchedBoundary::
1715 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1716 unsigned NextUnreserved = ReservedCycles[PIdx];
1717 // If this resource has never been used, always return cycle zero.
1718 if (NextUnreserved == InvalidCycle)
1720 // For bottom-up scheduling add the cycles needed for the current operation.
1722 NextUnreserved += Cycles;
1723 return NextUnreserved;
1726 /// Does this SU have a hazard within the current instruction group.
1728 /// The scheduler supports two modes of hazard recognition. The first is the
1729 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1730 /// supports highly complicated in-order reservation tables
1731 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1733 /// The second is a streamlined mechanism that checks for hazards based on
1734 /// simple counters that the scheduler itself maintains. It explicitly checks
1735 /// for instruction dispatch limitations, including the number of micro-ops that
1736 /// can dispatch per cycle.
1738 /// TODO: Also check whether the SU must start a new group.
1739 bool SchedBoundary::checkHazard(SUnit *SU) {
1740 if (HazardRec->isEnabled()
1741 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1744 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1745 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1746 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
1747 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1750 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1751 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1752 for (TargetSchedModel::ProcResIter
1753 PI = SchedModel->getWriteProcResBegin(SC),
1754 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1755 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1756 if (NRCycle > CurrCycle) {
1758 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1760 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
1761 << SchedModel->getResourceName(PI->ProcResourceIdx)
1762 << "=" << NRCycle << "c\n");
1770 // Find the unscheduled node in ReadySUs with the highest latency.
1771 unsigned SchedBoundary::
1772 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1773 SUnit *LateSU = nullptr;
1774 unsigned RemLatency = 0;
1775 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1777 unsigned L = getUnscheduledLatency(*I);
1778 if (L > RemLatency) {
1784 DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1785 << LateSU->NodeNum << ") " << RemLatency << "c\n");
1790 // Count resources in this zone and the remaining unscheduled
1791 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1792 // resource index, or zero if the zone is issue limited.
1793 unsigned SchedBoundary::
1794 getOtherResourceCount(unsigned &OtherCritIdx) {
1796 if (!SchedModel->hasInstrSchedModel())
1799 unsigned OtherCritCount = Rem->RemIssueCount
1800 + (RetiredMOps * SchedModel->getMicroOpFactor());
1801 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
1802 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1803 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1804 PIdx != PEnd; ++PIdx) {
1805 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1806 if (OtherCount > OtherCritCount) {
1807 OtherCritCount = OtherCount;
1808 OtherCritIdx = PIdx;
1812 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: "
1813 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1814 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1816 return OtherCritCount;
1819 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1820 assert(SU->getInstr() && "Scheduled SUnit must have instr");
1823 // ReadyCycle was been bumped up to the CurrCycle when this node was
1824 // scheduled, but CurrCycle may have been eagerly advanced immediately after
1825 // scheduling, so may now be greater than ReadyCycle.
1826 if (ReadyCycle > CurrCycle)
1827 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1830 if (ReadyCycle < MinReadyCycle)
1831 MinReadyCycle = ReadyCycle;
1833 // Check for interlocks first. For the purpose of other heuristics, an
1834 // instruction that cannot issue appears as if it's not in the ReadyQueue.
1835 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1836 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1841 // Record this node as an immediate dependent of the scheduled node.
1845 void SchedBoundary::releaseTopNode(SUnit *SU) {
1846 if (SU->isScheduled)
1849 releaseNode(SU, SU->TopReadyCycle);
1852 void SchedBoundary::releaseBottomNode(SUnit *SU) {
1853 if (SU->isScheduled)
1856 releaseNode(SU, SU->BotReadyCycle);
1859 /// Move the boundary of scheduled code by one cycle.
1860 void SchedBoundary::bumpCycle(unsigned NextCycle) {
1861 if (SchedModel->getMicroOpBufferSize() == 0) {
1862 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1863 if (MinReadyCycle > NextCycle)
1864 NextCycle = MinReadyCycle;
1866 // Update the current micro-ops, which will issue in the next cycle.
1867 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1868 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1870 // Decrement DependentLatency based on the next cycle.
1871 if ((NextCycle - CurrCycle) > DependentLatency)
1872 DependentLatency = 0;
1874 DependentLatency -= (NextCycle - CurrCycle);
1876 if (!HazardRec->isEnabled()) {
1877 // Bypass HazardRec virtual calls.
1878 CurrCycle = NextCycle;
1881 // Bypass getHazardType calls in case of long latency.
1882 for (; CurrCycle != NextCycle; ++CurrCycle) {
1884 HazardRec->AdvanceCycle();
1886 HazardRec->RecedeCycle();
1889 CheckPending = true;
1890 unsigned LFactor = SchedModel->getLatencyFactor();
1892 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1895 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1898 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
1899 ExecutedResCounts[PIdx] += Count;
1900 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1901 MaxExecutedResCount = ExecutedResCounts[PIdx];
1904 /// Add the given processor resource to this scheduled zone.
1906 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1907 /// during which this resource is consumed.
1909 /// \return the next cycle at which the instruction may execute without
1910 /// oversubscribing resources.
1911 unsigned SchedBoundary::
1912 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
1913 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1914 unsigned Count = Factor * Cycles;
1915 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx)
1916 << " +" << Cycles << "x" << Factor << "u\n");
1918 // Update Executed resources counts.
1919 incExecutedResources(PIdx, Count);
1920 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1921 Rem->RemainingCounts[PIdx] -= Count;
1923 // Check if this resource exceeds the current critical resource. If so, it
1924 // becomes the critical resource.
1925 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
1926 ZoneCritResIdx = PIdx;
1927 DEBUG(dbgs() << " *** Critical resource "
1928 << SchedModel->getResourceName(PIdx) << ": "
1929 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1931 // For reserved resources, record the highest cycle using the resource.
1932 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
1933 if (NextAvailable > CurrCycle) {
1934 DEBUG(dbgs() << " Resource conflict: "
1935 << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
1936 << NextAvailable << "\n");
1938 return NextAvailable;
1941 /// Move the boundary of scheduled code by one SUnit.
1942 void SchedBoundary::bumpNode(SUnit *SU) {
1943 // Update the reservation table.
1944 if (HazardRec->isEnabled()) {
1945 if (!isTop() && SU->isCall) {
1946 // Calls are scheduled with their preceding instructions. For bottom-up
1947 // scheduling, clear the pipeline state before emitting.
1950 HazardRec->EmitInstruction(SU);
1952 // checkHazard should prevent scheduling multiple instructions per cycle that
1953 // exceed the issue width.
1954 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1955 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1957 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
1958 "Cannot schedule this instruction's MicroOps in the current cycle.");
1960 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1961 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
1963 unsigned NextCycle = CurrCycle;
1964 switch (SchedModel->getMicroOpBufferSize()) {
1966 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1969 if (ReadyCycle > NextCycle) {
1970 NextCycle = ReadyCycle;
1971 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
1975 // We don't currently model the OOO reorder buffer, so consider all
1976 // scheduled MOps to be "retired". We do loosely model in-order resource
1977 // latency. If this instruction uses an in-order resource, account for any
1978 // likely stall cycles.
1979 if (SU->isUnbuffered && ReadyCycle > NextCycle)
1980 NextCycle = ReadyCycle;
1983 RetiredMOps += IncMOps;
1985 // Update resource counts and critical resource.
1986 if (SchedModel->hasInstrSchedModel()) {
1987 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
1988 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
1989 Rem->RemIssueCount -= DecRemIssue;
1990 if (ZoneCritResIdx) {
1991 // Scale scheduled micro-ops for comparing with the critical resource.
1992 unsigned ScaledMOps =
1993 RetiredMOps * SchedModel->getMicroOpFactor();
1995 // If scaled micro-ops are now more than the previous critical resource by
1996 // a full cycle, then micro-ops issue becomes critical.
1997 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
1998 >= (int)SchedModel->getLatencyFactor()) {
2000 DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2001 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2004 for (TargetSchedModel::ProcResIter
2005 PI = SchedModel->getWriteProcResBegin(SC),
2006 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2008 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
2009 if (RCycle > NextCycle)
2012 if (SU->hasReservedResource) {
2013 // For reserved resources, record the highest cycle using the resource.
2014 // For top-down scheduling, this is the cycle in which we schedule this
2015 // instruction plus the number of cycles the operations reserves the
2016 // resource. For bottom-up is it simply the instruction's cycle.
2017 for (TargetSchedModel::ProcResIter
2018 PI = SchedModel->getWriteProcResBegin(SC),
2019 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2020 unsigned PIdx = PI->ProcResourceIdx;
2021 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2023 ReservedCycles[PIdx] =
2024 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2027 ReservedCycles[PIdx] = NextCycle;
2032 // Update ExpectedLatency and DependentLatency.
2033 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2034 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2035 if (SU->getDepth() > TopLatency) {
2036 TopLatency = SU->getDepth();
2037 DEBUG(dbgs() << " " << Available.getName()
2038 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2040 if (SU->getHeight() > BotLatency) {
2041 BotLatency = SU->getHeight();
2042 DEBUG(dbgs() << " " << Available.getName()
2043 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2045 // If we stall for any reason, bump the cycle.
2046 if (NextCycle > CurrCycle) {
2047 bumpCycle(NextCycle);
2050 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2051 // resource limited. If a stall occurred, bumpCycle does this.
2052 unsigned LFactor = SchedModel->getLatencyFactor();
2054 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2057 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2058 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2059 // one cycle. Since we commonly reach the max MOps here, opportunistically
2060 // bump the cycle to avoid uselessly checking everything in the readyQ.
2061 CurrMOps += IncMOps;
2062 while (CurrMOps >= SchedModel->getIssueWidth()) {
2063 DEBUG(dbgs() << " *** Max MOps " << CurrMOps
2064 << " at cycle " << CurrCycle << '\n');
2065 bumpCycle(++NextCycle);
2067 DEBUG(dumpScheduledState());
2070 /// Release pending ready nodes in to the available queue. This makes them
2071 /// visible to heuristics.
2072 void SchedBoundary::releasePending() {
2073 // If the available queue is empty, it is safe to reset MinReadyCycle.
2074 if (Available.empty())
2075 MinReadyCycle = UINT_MAX;
2077 // Check to see if any of the pending instructions are ready to issue. If
2078 // so, add them to the available queue.
2079 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2080 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2081 SUnit *SU = *(Pending.begin()+i);
2082 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2084 if (ReadyCycle < MinReadyCycle)
2085 MinReadyCycle = ReadyCycle;
2087 if (!IsBuffered && ReadyCycle > CurrCycle)
2090 if (checkHazard(SU))
2094 Pending.remove(Pending.begin()+i);
2097 DEBUG(if (!Pending.empty()) Pending.dump());
2098 CheckPending = false;
2101 /// Remove SU from the ready set for this boundary.
2102 void SchedBoundary::removeReady(SUnit *SU) {
2103 if (Available.isInQueue(SU))
2104 Available.remove(Available.find(SU));
2106 assert(Pending.isInQueue(SU) && "bad ready count");
2107 Pending.remove(Pending.find(SU));
2111 /// If this queue only has one ready candidate, return it. As a side effect,
2112 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2113 /// one node is ready. If multiple instructions are ready, return NULL.
2114 SUnit *SchedBoundary::pickOnlyChoice() {
2119 // Defer any ready instrs that now have a hazard.
2120 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2121 if (checkHazard(*I)) {
2123 I = Available.remove(I);
2129 for (unsigned i = 0; Available.empty(); ++i) {
2130 // FIXME: Re-enable assert once PR20057 is resolved.
2131 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2132 // "permanent hazard");
2134 bumpCycle(CurrCycle + 1);
2137 if (Available.size() == 1)
2138 return *Available.begin();
2143 // This is useful information to dump after bumpNode.
2144 // Note that the Queue contents are more useful before pickNodeFromQueue.
2145 void SchedBoundary::dumpScheduledState() {
2148 if (ZoneCritResIdx) {
2149 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2150 ResCount = getResourceCount(ZoneCritResIdx);
2153 ResFactor = SchedModel->getMicroOpFactor();
2154 ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2156 unsigned LFactor = SchedModel->getLatencyFactor();
2157 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2158 << " Retired: " << RetiredMOps;
2159 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2160 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2161 << ResCount / ResFactor << " "
2162 << SchedModel->getResourceName(ZoneCritResIdx)
2163 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2164 << (IsResourceLimited ? " - Resource" : " - Latency")
2169 //===----------------------------------------------------------------------===//
2170 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2171 //===----------------------------------------------------------------------===//
2173 void GenericSchedulerBase::SchedCandidate::
2174 initResourceDelta(const ScheduleDAGMI *DAG,
2175 const TargetSchedModel *SchedModel) {
2176 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2179 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2180 for (TargetSchedModel::ProcResIter
2181 PI = SchedModel->getWriteProcResBegin(SC),
2182 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2183 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2184 ResDelta.CritResources += PI->Cycles;
2185 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2186 ResDelta.DemandedResources += PI->Cycles;
2190 /// Set the CandPolicy given a scheduling zone given the current resources and
2191 /// latencies inside and outside the zone.
2192 void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2194 SchedBoundary &CurrZone,
2195 SchedBoundary *OtherZone) {
2196 // Apply preemptive heuristics based on the total latency and resources
2197 // inside and outside this zone. Potential stalls should be considered before
2198 // following this policy.
2200 // Compute remaining latency. We need this both to determine whether the
2201 // overall schedule has become latency-limited and whether the instructions
2202 // outside this zone are resource or latency limited.
2204 // The "dependent" latency is updated incrementally during scheduling as the
2205 // max height/depth of scheduled nodes minus the cycles since it was
2207 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2209 // The "independent" latency is the max ready queue depth:
2210 // ILat = max N.depth for N in Available|Pending
2212 // RemainingLatency is the greater of independent and dependent latency.
2213 unsigned RemLatency = CurrZone.getDependentLatency();
2214 RemLatency = std::max(RemLatency,
2215 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2216 RemLatency = std::max(RemLatency,
2217 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2219 // Compute the critical resource outside the zone.
2220 unsigned OtherCritIdx = 0;
2221 unsigned OtherCount =
2222 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2224 bool OtherResLimited = false;
2225 if (SchedModel->hasInstrSchedModel()) {
2226 unsigned LFactor = SchedModel->getLatencyFactor();
2227 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2229 // Schedule aggressively for latency in PostRA mode. We don't check for
2230 // acyclic latency during PostRA, and highly out-of-order processors will
2231 // skip PostRA scheduling.
2232 if (!OtherResLimited) {
2233 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2234 Policy.ReduceLatency |= true;
2235 DEBUG(dbgs() << " " << CurrZone.Available.getName()
2236 << " RemainingLatency " << RemLatency << " + "
2237 << CurrZone.getCurrCycle() << "c > CritPath "
2238 << Rem.CriticalPath << "\n");
2241 // If the same resource is limiting inside and outside the zone, do nothing.
2242 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2246 if (CurrZone.isResourceLimited()) {
2247 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
2248 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2251 if (OtherResLimited)
2252 dbgs() << " RemainingLimit: "
2253 << SchedModel->getResourceName(OtherCritIdx) << "\n";
2254 if (!CurrZone.isResourceLimited() && !OtherResLimited)
2255 dbgs() << " Latency limited both directions.\n");
2257 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2258 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2260 if (OtherResLimited)
2261 Policy.DemandResIdx = OtherCritIdx;
2265 const char *GenericSchedulerBase::getReasonStr(
2266 GenericSchedulerBase::CandReason Reason) {
2268 case NoCand: return "NOCAND ";
2269 case PhysRegCopy: return "PREG-COPY";
2270 case RegExcess: return "REG-EXCESS";
2271 case RegCritical: return "REG-CRIT ";
2272 case Stall: return "STALL ";
2273 case Cluster: return "CLUSTER ";
2274 case Weak: return "WEAK ";
2275 case RegMax: return "REG-MAX ";
2276 case ResourceReduce: return "RES-REDUCE";
2277 case ResourceDemand: return "RES-DEMAND";
2278 case TopDepthReduce: return "TOP-DEPTH ";
2279 case TopPathReduce: return "TOP-PATH ";
2280 case BotHeightReduce:return "BOT-HEIGHT";
2281 case BotPathReduce: return "BOT-PATH ";
2282 case NextDefUse: return "DEF-USE ";
2283 case NodeOrder: return "ORDER ";
2285 llvm_unreachable("Unknown reason!");
2288 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2290 unsigned ResIdx = 0;
2291 unsigned Latency = 0;
2292 switch (Cand.Reason) {
2296 P = Cand.RPDelta.Excess;
2299 P = Cand.RPDelta.CriticalMax;
2302 P = Cand.RPDelta.CurrentMax;
2304 case ResourceReduce:
2305 ResIdx = Cand.Policy.ReduceResIdx;
2307 case ResourceDemand:
2308 ResIdx = Cand.Policy.DemandResIdx;
2310 case TopDepthReduce:
2311 Latency = Cand.SU->getDepth();
2314 Latency = Cand.SU->getHeight();
2316 case BotHeightReduce:
2317 Latency = Cand.SU->getHeight();
2320 Latency = Cand.SU->getDepth();
2323 dbgs() << " Cand SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2325 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2326 << ":" << P.getUnitInc() << " ";
2330 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2334 dbgs() << " " << Latency << " cycles ";
2341 /// Return true if this heuristic determines order.
2342 static bool tryLess(int TryVal, int CandVal,
2343 GenericSchedulerBase::SchedCandidate &TryCand,
2344 GenericSchedulerBase::SchedCandidate &Cand,
2345 GenericSchedulerBase::CandReason Reason) {
2346 if (TryVal < CandVal) {
2347 TryCand.Reason = Reason;
2350 if (TryVal > CandVal) {
2351 if (Cand.Reason > Reason)
2352 Cand.Reason = Reason;
2355 Cand.setRepeat(Reason);
2359 static bool tryGreater(int TryVal, int CandVal,
2360 GenericSchedulerBase::SchedCandidate &TryCand,
2361 GenericSchedulerBase::SchedCandidate &Cand,
2362 GenericSchedulerBase::CandReason Reason) {
2363 if (TryVal > CandVal) {
2364 TryCand.Reason = Reason;
2367 if (TryVal < CandVal) {
2368 if (Cand.Reason > Reason)
2369 Cand.Reason = Reason;
2372 Cand.setRepeat(Reason);
2376 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2377 GenericSchedulerBase::SchedCandidate &Cand,
2378 SchedBoundary &Zone) {
2380 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2381 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2382 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2385 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2386 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2390 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2391 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2392 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2395 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2396 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2402 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2404 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2405 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2408 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2409 assert(dag->hasVRegLiveness() &&
2410 "(PreRA)GenericScheduler needs vreg liveness");
2411 DAG = static_cast<ScheduleDAGMILive*>(dag);
2412 SchedModel = DAG->getSchedModel();
2415 Rem.init(DAG, SchedModel);
2416 Top.init(DAG, SchedModel, &Rem);
2417 Bot.init(DAG, SchedModel, &Rem);
2419 // Initialize resource counts.
2421 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2422 // are disabled, then these HazardRecs will be disabled.
2423 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2424 if (!Top.HazardRec) {
2426 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2429 if (!Bot.HazardRec) {
2431 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2436 /// Initialize the per-region scheduling policy.
2437 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2438 MachineBasicBlock::iterator End,
2439 unsigned NumRegionInstrs) {
2440 const MachineFunction &MF = *Begin->getParent()->getParent();
2441 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2443 // Avoid setting up the register pressure tracker for small regions to save
2444 // compile time. As a rough heuristic, only track pressure when the number of
2445 // schedulable instructions exceeds half the integer register file.
2446 RegionPolicy.ShouldTrackPressure = true;
2447 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2448 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2449 if (TLI->isTypeLegal(LegalIntVT)) {
2450 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2451 TLI->getRegClassFor(LegalIntVT));
2452 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2456 // For generic targets, we default to bottom-up, because it's simpler and more
2457 // compile-time optimizations have been implemented in that direction.
2458 RegionPolicy.OnlyBottomUp = true;
2460 // Allow the subtarget to override default policy.
2461 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
2464 // After subtarget overrides, apply command line options.
2465 if (!EnableRegPressure)
2466 RegionPolicy.ShouldTrackPressure = false;
2468 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2469 // e.g. -misched-bottomup=false allows scheduling in both directions.
2470 assert((!ForceTopDown || !ForceBottomUp) &&
2471 "-misched-topdown incompatible with -misched-bottomup");
2472 if (ForceBottomUp.getNumOccurrences() > 0) {
2473 RegionPolicy.OnlyBottomUp = ForceBottomUp;
2474 if (RegionPolicy.OnlyBottomUp)
2475 RegionPolicy.OnlyTopDown = false;
2477 if (ForceTopDown.getNumOccurrences() > 0) {
2478 RegionPolicy.OnlyTopDown = ForceTopDown;
2479 if (RegionPolicy.OnlyTopDown)
2480 RegionPolicy.OnlyBottomUp = false;
2484 void GenericScheduler::dumpPolicy() {
2485 dbgs() << "GenericScheduler RegionPolicy: "
2486 << " ShouldTrackPressure=" << RegionPolicy.ShouldTrackPressure
2487 << " OnlyTopDown=" << RegionPolicy.OnlyTopDown
2488 << " OnlyBottomUp=" << RegionPolicy.OnlyBottomUp
2492 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2493 /// critical path by more cycles than it takes to drain the instruction buffer.
2494 /// We estimate an upper bounds on in-flight instructions as:
2496 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2497 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2498 /// InFlightResources = InFlightIterations * LoopResources
2500 /// TODO: Check execution resources in addition to IssueCount.
2501 void GenericScheduler::checkAcyclicLatency() {
2502 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2505 // Scaled number of cycles per loop iteration.
2506 unsigned IterCount =
2507 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2509 // Scaled acyclic critical path.
2510 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2511 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2512 unsigned InFlightCount =
2513 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2514 unsigned BufferLimit =
2515 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2517 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2519 DEBUG(dbgs() << "IssueCycles="
2520 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2521 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2522 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2523 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2524 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2525 if (Rem.IsAcyclicLatencyLimited)
2526 dbgs() << " ACYCLIC LATENCY LIMIT\n");
2529 void GenericScheduler::registerRoots() {
2530 Rem.CriticalPath = DAG->ExitSU.getDepth();
2532 // Some roots may not feed into ExitSU. Check all of them in case.
2533 for (std::vector<SUnit*>::const_iterator
2534 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2535 if ((*I)->getDepth() > Rem.CriticalPath)
2536 Rem.CriticalPath = (*I)->getDepth();
2538 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2539 if (DumpCriticalPathLength) {
2540 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2543 if (EnableCyclicPath) {
2544 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2545 checkAcyclicLatency();
2549 static bool tryPressure(const PressureChange &TryP,
2550 const PressureChange &CandP,
2551 GenericSchedulerBase::SchedCandidate &TryCand,
2552 GenericSchedulerBase::SchedCandidate &Cand,
2553 GenericSchedulerBase::CandReason Reason) {
2554 int TryRank = TryP.getPSetOrMax();
2555 int CandRank = CandP.getPSetOrMax();
2556 // If both candidates affect the same set, go with the smallest increase.
2557 if (TryRank == CandRank) {
2558 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2561 // If one candidate decreases and the other increases, go with it.
2562 // Invalid candidates have UnitInc==0.
2563 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2567 // If the candidates are decreasing pressure, reverse priority.
2568 if (TryP.getUnitInc() < 0)
2569 std::swap(TryRank, CandRank);
2570 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2573 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2574 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2577 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2578 /// their physreg def/use.
2580 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2581 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2582 /// with the operation that produces or consumes the physreg. We'll do this when
2583 /// regalloc has support for parallel copies.
2584 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2585 const MachineInstr *MI = SU->getInstr();
2589 unsigned ScheduledOper = isTop ? 1 : 0;
2590 unsigned UnscheduledOper = isTop ? 0 : 1;
2591 // If we have already scheduled the physreg produce/consumer, immediately
2592 // schedule the copy.
2593 if (TargetRegisterInfo::isPhysicalRegister(
2594 MI->getOperand(ScheduledOper).getReg()))
2596 // If the physreg is at the boundary, defer it. Otherwise schedule it
2597 // immediately to free the dependent. We can hoist the copy later.
2598 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2599 if (TargetRegisterInfo::isPhysicalRegister(
2600 MI->getOperand(UnscheduledOper).getReg()))
2601 return AtBoundary ? -1 : 1;
2605 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2606 /// hierarchical. This may be more efficient than a graduated cost model because
2607 /// we don't need to evaluate all aspects of the model for each node in the
2608 /// queue. But it's really done to make the heuristics easier to debug and
2609 /// statistically analyze.
2611 /// \param Cand provides the policy and current best candidate.
2612 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2613 /// \param Zone describes the scheduled zone that we are extending.
2614 /// \param RPTracker describes reg pressure within the scheduled zone.
2615 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
2616 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2617 SchedCandidate &TryCand,
2618 SchedBoundary &Zone,
2619 const RegPressureTracker &RPTracker,
2620 RegPressureTracker &TempTracker) {
2622 if (DAG->isTrackingPressure()) {
2623 // Always initialize TryCand's RPDelta.
2625 TempTracker.getMaxDownwardPressureDelta(
2626 TryCand.SU->getInstr(),
2628 DAG->getRegionCriticalPSets(),
2629 DAG->getRegPressure().MaxSetPressure);
2632 if (VerifyScheduling) {
2633 TempTracker.getMaxUpwardPressureDelta(
2634 TryCand.SU->getInstr(),
2635 &DAG->getPressureDiff(TryCand.SU),
2637 DAG->getRegionCriticalPSets(),
2638 DAG->getRegPressure().MaxSetPressure);
2641 RPTracker.getUpwardPressureDelta(
2642 TryCand.SU->getInstr(),
2643 DAG->getPressureDiff(TryCand.SU),
2645 DAG->getRegionCriticalPSets(),
2646 DAG->getRegPressure().MaxSetPressure);
2650 DEBUG(if (TryCand.RPDelta.Excess.isValid())
2651 dbgs() << " Try SU(" << TryCand.SU->NodeNum << ") "
2652 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2653 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2655 // Initialize the candidate if needed.
2656 if (!Cand.isValid()) {
2657 TryCand.Reason = NodeOrder;
2661 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2662 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2663 TryCand, Cand, PhysRegCopy))
2666 // Avoid exceeding the target's limit.
2667 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2668 Cand.RPDelta.Excess,
2669 TryCand, Cand, RegExcess))
2672 // Avoid increasing the max critical pressure in the scheduled region.
2673 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2674 Cand.RPDelta.CriticalMax,
2675 TryCand, Cand, RegCritical))
2678 // For loops that are acyclic path limited, aggressively schedule for latency.
2679 // This can result in very long dependence chains scheduled in sequence, so
2680 // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2681 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2682 && tryLatency(TryCand, Cand, Zone))
2685 // Prioritize instructions that read unbuffered resources by stall cycles.
2686 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2687 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2690 // Keep clustered nodes together to encourage downstream peephole
2691 // optimizations which may reduce resource requirements.
2693 // This is a best effort to set things up for a post-RA pass. Optimizations
2694 // like generating loads of multiple registers should ideally be done within
2695 // the scheduler pass by combining the loads during DAG postprocessing.
2696 const SUnit *NextClusterSU =
2697 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2698 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2699 TryCand, Cand, Cluster))
2702 // Weak edges are for clustering and other constraints.
2703 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2704 getWeakLeft(Cand.SU, Zone.isTop()),
2705 TryCand, Cand, Weak)) {
2708 // Avoid increasing the max pressure of the entire region.
2709 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2710 Cand.RPDelta.CurrentMax,
2711 TryCand, Cand, RegMax))
2714 // Avoid critical resource consumption and balance the schedule.
2715 TryCand.initResourceDelta(DAG, SchedModel);
2716 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2717 TryCand, Cand, ResourceReduce))
2719 if (tryGreater(TryCand.ResDelta.DemandedResources,
2720 Cand.ResDelta.DemandedResources,
2721 TryCand, Cand, ResourceDemand))
2724 // Avoid serializing long latency dependence chains.
2725 // For acyclic path limited loops, latency was already checked above.
2726 if (!RegionPolicy.DisableLatencyHeuristic && Cand.Policy.ReduceLatency &&
2727 !Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone)) {
2731 // Prefer immediate defs/users of the last scheduled instruction. This is a
2732 // local pressure avoidance strategy that also makes the machine code
2734 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2735 TryCand, Cand, NextDefUse))
2738 // Fall through to original instruction order.
2739 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2740 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2741 TryCand.Reason = NodeOrder;
2745 /// Pick the best candidate from the queue.
2747 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2748 /// DAG building. To adjust for the current scheduling location we need to
2749 /// maintain the number of vreg uses remaining to be top-scheduled.
2750 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2751 const RegPressureTracker &RPTracker,
2752 SchedCandidate &Cand) {
2753 ReadyQueue &Q = Zone.Available;
2757 // getMaxPressureDelta temporarily modifies the tracker.
2758 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2760 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2762 SchedCandidate TryCand(Cand.Policy);
2764 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2765 if (TryCand.Reason != NoCand) {
2766 // Initialize resource delta if needed in case future heuristics query it.
2767 if (TryCand.ResDelta == SchedResourceDelta())
2768 TryCand.initResourceDelta(DAG, SchedModel);
2769 Cand.setBest(TryCand);
2770 DEBUG(traceCandidate(Cand));
2775 /// Pick the best candidate node from either the top or bottom queue.
2776 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2777 // Schedule as far as possible in the direction of no choice. This is most
2778 // efficient, but also provides the best heuristics for CriticalPSets.
2779 if (SUnit *SU = Bot.pickOnlyChoice()) {
2781 DEBUG(dbgs() << "Pick Bot NOCAND\n");
2784 if (SUnit *SU = Top.pickOnlyChoice()) {
2786 DEBUG(dbgs() << "Pick Top NOCAND\n");
2789 CandPolicy NoPolicy;
2790 SchedCandidate BotCand(NoPolicy);
2791 SchedCandidate TopCand(NoPolicy);
2792 // Set the bottom-up policy based on the state of the current bottom zone and
2793 // the instructions outside the zone, including the top zone.
2794 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2795 // Set the top-down policy based on the state of the current top zone and
2796 // the instructions outside the zone, including the bottom zone.
2797 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2799 // Prefer bottom scheduling when heuristics are silent.
2800 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2801 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2803 // If either Q has a single candidate that provides the least increase in
2804 // Excess pressure, we can immediately schedule from that Q.
2806 // RegionCriticalPSets summarizes the pressure within the scheduled region and
2807 // affects picking from either Q. If scheduling in one direction must
2808 // increase pressure for one of the excess PSets, then schedule in that
2809 // direction first to provide more freedom in the other direction.
2810 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2811 || (BotCand.Reason == RegCritical
2812 && !BotCand.isRepeat(RegCritical)))
2815 tracePick(BotCand, IsTopNode);
2818 // Check if the top Q has a better candidate.
2819 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2820 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2822 // Choose the queue with the most important (lowest enum) reason.
2823 if (TopCand.Reason < BotCand.Reason) {
2825 tracePick(TopCand, IsTopNode);
2828 // Otherwise prefer the bottom candidate, in node order if all else failed.
2830 tracePick(BotCand, IsTopNode);
2834 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2835 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2836 if (DAG->top() == DAG->bottom()) {
2837 assert(Top.Available.empty() && Top.Pending.empty() &&
2838 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2843 if (RegionPolicy.OnlyTopDown) {
2844 SU = Top.pickOnlyChoice();
2846 CandPolicy NoPolicy;
2847 SchedCandidate TopCand(NoPolicy);
2848 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2849 assert(TopCand.Reason != NoCand && "failed to find a candidate");
2850 tracePick(TopCand, true);
2855 else if (RegionPolicy.OnlyBottomUp) {
2856 SU = Bot.pickOnlyChoice();
2858 CandPolicy NoPolicy;
2859 SchedCandidate BotCand(NoPolicy);
2860 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2861 assert(BotCand.Reason != NoCand && "failed to find a candidate");
2862 tracePick(BotCand, false);
2868 SU = pickNodeBidirectional(IsTopNode);
2870 } while (SU->isScheduled);
2872 if (SU->isTopReady())
2873 Top.removeReady(SU);
2874 if (SU->isBottomReady())
2875 Bot.removeReady(SU);
2877 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2881 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2883 MachineBasicBlock::iterator InsertPos = SU->getInstr();
2886 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2888 // Find already scheduled copies with a single physreg dependence and move
2889 // them just above the scheduled instruction.
2890 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2892 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2894 SUnit *DepSU = I->getSUnit();
2895 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2897 MachineInstr *Copy = DepSU->getInstr();
2898 if (!Copy->isCopy())
2900 DEBUG(dbgs() << " Rescheduling physreg copy ";
2901 I->getSUnit()->dump(DAG));
2902 DAG->moveInstruction(Copy, InsertPos);
2906 /// Update the scheduler's state after scheduling a node. This is the same node
2907 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
2908 /// update it's state based on the current cycle before MachineSchedStrategy
2911 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2912 /// them here. See comments in biasPhysRegCopy.
2913 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2915 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
2917 if (SU->hasPhysRegUses)
2918 reschedulePhysRegCopies(SU, true);
2921 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
2923 if (SU->hasPhysRegDefs)
2924 reschedulePhysRegCopies(SU, false);
2928 /// Create the standard converging machine scheduler. This will be used as the
2929 /// default scheduler if the target does not set a default.
2930 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
2931 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
2932 // Register DAG post-processors.
2934 // FIXME: extend the mutation API to allow earlier mutations to instantiate
2935 // data and pass it to later mutations. Have a single mutation that gathers
2936 // the interesting nodes in one pass.
2937 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
2938 if (EnableLoadCluster && DAG->TII->enableClusterLoads())
2939 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
2940 if (EnableMacroFusion)
2941 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
2945 static MachineSchedRegistry
2946 GenericSchedRegistry("converge", "Standard converging scheduler.",
2947 createGenericSchedLive);
2949 //===----------------------------------------------------------------------===//
2950 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
2951 //===----------------------------------------------------------------------===//
2953 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
2955 SchedModel = DAG->getSchedModel();
2958 Rem.init(DAG, SchedModel);
2959 Top.init(DAG, SchedModel, &Rem);
2962 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
2963 // or are disabled, then these HazardRecs will be disabled.
2964 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2965 if (!Top.HazardRec) {
2967 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2973 void PostGenericScheduler::registerRoots() {
2974 Rem.CriticalPath = DAG->ExitSU.getDepth();
2976 // Some roots may not feed into ExitSU. Check all of them in case.
2977 for (SmallVectorImpl<SUnit*>::const_iterator
2978 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
2979 if ((*I)->getDepth() > Rem.CriticalPath)
2980 Rem.CriticalPath = (*I)->getDepth();
2982 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
2983 if (DumpCriticalPathLength) {
2984 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
2988 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
2990 /// \param Cand provides the policy and current best candidate.
2991 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2992 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
2993 SchedCandidate &TryCand) {
2995 // Initialize the candidate if needed.
2996 if (!Cand.isValid()) {
2997 TryCand.Reason = NodeOrder;
3001 // Prioritize instructions that read unbuffered resources by stall cycles.
3002 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
3003 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
3006 // Avoid critical resource consumption and balance the schedule.
3007 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
3008 TryCand, Cand, ResourceReduce))
3010 if (tryGreater(TryCand.ResDelta.DemandedResources,
3011 Cand.ResDelta.DemandedResources,
3012 TryCand, Cand, ResourceDemand))
3015 // Avoid serializing long latency dependence chains.
3016 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
3020 // Fall through to original instruction order.
3021 if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
3022 TryCand.Reason = NodeOrder;
3025 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
3026 ReadyQueue &Q = Top.Available;
3030 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3031 SchedCandidate TryCand(Cand.Policy);
3033 TryCand.initResourceDelta(DAG, SchedModel);
3034 tryCandidate(Cand, TryCand);
3035 if (TryCand.Reason != NoCand) {
3036 Cand.setBest(TryCand);
3037 DEBUG(traceCandidate(Cand));
3042 /// Pick the next node to schedule.
3043 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3044 if (DAG->top() == DAG->bottom()) {
3045 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3050 SU = Top.pickOnlyChoice();
3052 CandPolicy NoPolicy;
3053 SchedCandidate TopCand(NoPolicy);
3054 // Set the top-down policy based on the state of the current top zone and
3055 // the instructions outside the zone, including the bottom zone.
3056 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3057 pickNodeFromQueue(TopCand);
3058 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3059 tracePick(TopCand, true);
3062 } while (SU->isScheduled);
3065 Top.removeReady(SU);
3067 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3071 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3072 /// scheduled/remaining flags in the DAG nodes.
3073 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3074 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3078 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
3079 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3080 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3083 //===----------------------------------------------------------------------===//
3084 // ILP Scheduler. Currently for experimental analysis of heuristics.
3085 //===----------------------------------------------------------------------===//
3088 /// \brief Order nodes by the ILP metric.
3090 const SchedDFSResult *DFSResult;
3091 const BitVector *ScheduledTrees;
3094 ILPOrder(bool MaxILP)
3095 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3097 /// \brief Apply a less-than relation on node priority.
3099 /// (Return true if A comes after B in the Q.)
3100 bool operator()(const SUnit *A, const SUnit *B) const {
3101 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3102 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3103 if (SchedTreeA != SchedTreeB) {
3104 // Unscheduled trees have lower priority.
3105 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3106 return ScheduledTrees->test(SchedTreeB);
3108 // Trees with shallower connections have have lower priority.
3109 if (DFSResult->getSubtreeLevel(SchedTreeA)
3110 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3111 return DFSResult->getSubtreeLevel(SchedTreeA)
3112 < DFSResult->getSubtreeLevel(SchedTreeB);
3116 return DFSResult->getILP(A) < DFSResult->getILP(B);
3118 return DFSResult->getILP(A) > DFSResult->getILP(B);
3122 /// \brief Schedule based on the ILP metric.
3123 class ILPScheduler : public MachineSchedStrategy {
3124 ScheduleDAGMILive *DAG;
3127 std::vector<SUnit*> ReadyQ;
3129 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3131 void initialize(ScheduleDAGMI *dag) override {
3132 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3133 DAG = static_cast<ScheduleDAGMILive*>(dag);
3134 DAG->computeDFSResult();
3135 Cmp.DFSResult = DAG->getDFSResult();
3136 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3140 void registerRoots() override {
3141 // Restore the heap in ReadyQ with the updated DFS results.
3142 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3145 /// Implement MachineSchedStrategy interface.
3146 /// -----------------------------------------
3148 /// Callback to select the highest priority node from the ready Q.
3149 SUnit *pickNode(bool &IsTopNode) override {
3150 if (ReadyQ.empty()) return nullptr;
3151 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3152 SUnit *SU = ReadyQ.back();
3155 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3156 << " ILP: " << DAG->getDFSResult()->getILP(SU)
3157 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3158 << DAG->getDFSResult()->getSubtreeLevel(
3159 DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3160 << "Scheduling " << *SU->getInstr());
3164 /// \brief Scheduler callback to notify that a new subtree is scheduled.
3165 void scheduleTree(unsigned SubtreeID) override {
3166 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3169 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3170 /// DFSResults, and resort the priority Q.
3171 void schedNode(SUnit *SU, bool IsTopNode) override {
3172 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3175 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3177 void releaseBottomNode(SUnit *SU) override {
3178 ReadyQ.push_back(SU);
3179 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3184 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3185 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3187 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3188 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3190 static MachineSchedRegistry ILPMaxRegistry(
3191 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3192 static MachineSchedRegistry ILPMinRegistry(
3193 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3195 //===----------------------------------------------------------------------===//
3196 // Machine Instruction Shuffler for Correctness Testing
3197 //===----------------------------------------------------------------------===//
3201 /// Apply a less-than relation on the node order, which corresponds to the
3202 /// instruction order prior to scheduling. IsReverse implements greater-than.
3203 template<bool IsReverse>
3205 bool operator()(SUnit *A, SUnit *B) const {
3207 return A->NodeNum > B->NodeNum;
3209 return A->NodeNum < B->NodeNum;
3213 /// Reorder instructions as much as possible.
3214 class InstructionShuffler : public MachineSchedStrategy {
3218 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3219 // gives nodes with a higher number higher priority causing the latest
3220 // instructions to be scheduled first.
3221 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3223 // When scheduling bottom-up, use greater-than as the queue priority.
3224 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3227 InstructionShuffler(bool alternate, bool topdown)
3228 : IsAlternating(alternate), IsTopDown(topdown) {}
3230 void initialize(ScheduleDAGMI*) override {
3235 /// Implement MachineSchedStrategy interface.
3236 /// -----------------------------------------
3238 SUnit *pickNode(bool &IsTopNode) override {
3242 if (TopQ.empty()) return nullptr;
3245 } while (SU->isScheduled);
3250 if (BottomQ.empty()) return nullptr;
3253 } while (SU->isScheduled);
3257 IsTopDown = !IsTopDown;
3261 void schedNode(SUnit *SU, bool IsTopNode) override {}
3263 void releaseTopNode(SUnit *SU) override {
3266 void releaseBottomNode(SUnit *SU) override {
3272 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3273 bool Alternate = !ForceTopDown && !ForceBottomUp;
3274 bool TopDown = !ForceBottomUp;
3275 assert((TopDown || !ForceTopDown) &&
3276 "-misched-topdown incompatible with -misched-bottomup");
3277 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3279 static MachineSchedRegistry ShufflerRegistry(
3280 "shuffle", "Shuffle machine instructions alternating directions",
3281 createInstructionShuffler);
3284 //===----------------------------------------------------------------------===//
3285 // GraphWriter support for ScheduleDAGMILive.
3286 //===----------------------------------------------------------------------===//
3291 template<> struct GraphTraits<
3292 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3295 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3297 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3299 static std::string getGraphName(const ScheduleDAG *G) {
3300 return G->MF.getName();
3303 static bool renderGraphFromBottomUp() {
3307 static bool isNodeHidden(const SUnit *Node) {
3308 if (ViewMISchedCutoff == 0)
3310 return (Node->Preds.size() > ViewMISchedCutoff
3311 || Node->Succs.size() > ViewMISchedCutoff);
3314 /// If you want to override the dot attributes printed for a particular
3315 /// edge, override this method.
3316 static std::string getEdgeAttributes(const SUnit *Node,
3318 const ScheduleDAG *Graph) {
3319 if (EI.isArtificialDep())
3320 return "color=cyan,style=dashed";
3322 return "color=blue,style=dashed";
3326 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3328 raw_string_ostream SS(Str);
3329 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3330 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3331 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3332 SS << "SU:" << SU->NodeNum;
3334 SS << " I:" << DFS->getNumInstrs(SU);
3337 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3338 return G->getGraphNodeLabel(SU);
3341 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3342 std::string Str("shape=Mrecord");
3343 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3344 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3345 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3347 Str += ",style=filled,fillcolor=\"#";
3348 Str += DOT::getColorString(DFS->getSubtreeID(N));
3357 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3358 /// rendered using 'dot'.
3360 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3362 ViewGraph(this, Name, false, Title);
3364 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3365 << "systems with Graphviz or gv!\n";
3369 /// Out-of-line implementation with no arguments is handy for gdb.
3370 void ScheduleDAGMI::viewGraph() {
3371 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());