1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "misched"
17 #include "llvm/CodeGen/MachineScheduler.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegisterClassInfo.h"
27 #include "llvm/CodeGen/ScheduleDFS.h"
28 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/GraphWriter.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
40 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
41 cl::desc("Force top-down list scheduling"));
42 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
43 cl::desc("Force bottom-up list scheduling"));
47 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
48 cl::desc("Pop up a window to show MISched dags after they are processed"));
50 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
51 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
53 static bool ViewMISchedDAGs = false;
56 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
57 cl::desc("Enable register pressure scheduling."), cl::init(true));
59 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
60 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
62 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
63 cl::desc("Enable load clustering."), cl::init(true));
65 // Experimental heuristics
66 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
67 cl::desc("Enable scheduling for macro fusion."), cl::init(true));
69 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
70 cl::desc("Verify machine instrs before and after machine scheduling"));
72 // DAG subtrees must have at least this many nodes.
73 static const unsigned MinSubtreeSize = 8;
75 //===----------------------------------------------------------------------===//
76 // Machine Instruction Scheduling Pass and Registry
77 //===----------------------------------------------------------------------===//
79 MachineSchedContext::MachineSchedContext():
80 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
81 RegClassInfo = new RegisterClassInfo();
84 MachineSchedContext::~MachineSchedContext() {
89 /// MachineScheduler runs after coalescing and before register allocation.
90 class MachineScheduler : public MachineSchedContext,
91 public MachineFunctionPass {
95 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
97 virtual void releaseMemory() {}
99 virtual bool runOnMachineFunction(MachineFunction&);
101 virtual void print(raw_ostream &O, const Module* = 0) const;
103 static char ID; // Class identification, replacement for typeinfo
106 ScheduleDAGInstrs *createMachineScheduler();
110 char MachineScheduler::ID = 0;
112 char &llvm::MachineSchedulerID = MachineScheduler::ID;
114 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
115 "Machine Instruction Scheduler", false, false)
116 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
117 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
118 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
119 INITIALIZE_PASS_END(MachineScheduler, "misched",
120 "Machine Instruction Scheduler", false, false)
122 MachineScheduler::MachineScheduler()
123 : MachineFunctionPass(ID) {
124 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
127 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
128 AU.setPreservesCFG();
129 AU.addRequiredID(MachineDominatorsID);
130 AU.addRequired<MachineLoopInfo>();
131 AU.addRequired<AliasAnalysis>();
132 AU.addRequired<TargetPassConfig>();
133 AU.addRequired<SlotIndexes>();
134 AU.addPreserved<SlotIndexes>();
135 AU.addRequired<LiveIntervals>();
136 AU.addPreserved<LiveIntervals>();
137 MachineFunctionPass::getAnalysisUsage(AU);
140 MachinePassRegistry MachineSchedRegistry::Registry;
142 /// A dummy default scheduler factory indicates whether the scheduler
143 /// is overridden on the command line.
144 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
148 /// MachineSchedOpt allows command line selection of the scheduler.
149 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
150 RegisterPassParser<MachineSchedRegistry> >
151 MachineSchedOpt("misched",
152 cl::init(&useDefaultMachineSched), cl::Hidden,
153 cl::desc("Machine instruction scheduler to use"));
155 static MachineSchedRegistry
156 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
157 useDefaultMachineSched);
159 /// Forward declare the standard machine scheduler. This will be used as the
160 /// default scheduler if the target does not set a default.
161 static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C);
164 /// Decrement this iterator until reaching the top or a non-debug instr.
165 static MachineBasicBlock::const_iterator
166 priorNonDebug(MachineBasicBlock::const_iterator I,
167 MachineBasicBlock::const_iterator Beg) {
168 assert(I != Beg && "reached the top of the region, cannot decrement");
170 if (!I->isDebugValue())
176 /// Non-const version.
177 static MachineBasicBlock::iterator
178 priorNonDebug(MachineBasicBlock::iterator I,
179 MachineBasicBlock::const_iterator Beg) {
180 return const_cast<MachineInstr*>(
181 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
184 /// If this iterator is a debug value, increment until reaching the End or a
185 /// non-debug instruction.
186 static MachineBasicBlock::const_iterator
187 nextIfDebug(MachineBasicBlock::const_iterator I,
188 MachineBasicBlock::const_iterator End) {
189 for(; I != End; ++I) {
190 if (!I->isDebugValue())
196 /// Non-const version.
197 static MachineBasicBlock::iterator
198 nextIfDebug(MachineBasicBlock::iterator I,
199 MachineBasicBlock::const_iterator End) {
200 // Cast the return value to nonconst MachineInstr, then cast to an
201 // instr_iterator, which does not check for null, finally return a
203 return MachineBasicBlock::instr_iterator(
204 const_cast<MachineInstr*>(
205 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
208 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
209 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
210 // Select the scheduler, or set the default.
211 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
212 if (Ctor != useDefaultMachineSched)
215 // Get the default scheduler set by the target for this function.
216 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
220 // Default to GenericScheduler.
221 return createGenericSched(this);
224 /// Top-level MachineScheduler pass driver.
226 /// Visit blocks in function order. Divide each block into scheduling regions
227 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
228 /// consistent with the DAG builder, which traverses the interior of the
229 /// scheduling regions bottom-up.
231 /// This design avoids exposing scheduling boundaries to the DAG builder,
232 /// simplifying the DAG builder's support for "special" target instructions.
233 /// At the same time the design allows target schedulers to operate across
234 /// scheduling boundaries, for example to bundle the boudary instructions
235 /// without reordering them. This creates complexity, because the target
236 /// scheduler must update the RegionBegin and RegionEnd positions cached by
237 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
238 /// design would be to split blocks at scheduling boundaries, but LLVM has a
239 /// general bias against block splitting purely for implementation simplicity.
240 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
241 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
243 // Initialize the context of the pass.
245 MLI = &getAnalysis<MachineLoopInfo>();
246 MDT = &getAnalysis<MachineDominatorTree>();
247 PassConfig = &getAnalysis<TargetPassConfig>();
248 AA = &getAnalysis<AliasAnalysis>();
250 LIS = &getAnalysis<LiveIntervals>();
251 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
253 if (VerifyScheduling) {
255 MF->verify(this, "Before machine scheduling.");
257 RegClassInfo->runOnMachineFunction(*MF);
259 // Instantiate the selected scheduler for this target, function, and
260 // optimization level.
261 OwningPtr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
263 // Visit all machine basic blocks.
265 // TODO: Visit blocks in global postorder or postorder within the bottom-up
266 // loop tree. Then we can optionally compute global RegPressure.
267 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
268 MBB != MBBEnd; ++MBB) {
270 Scheduler->startBlock(MBB);
272 // Break the block into scheduling regions [I, RegionEnd), and schedule each
273 // region as soon as it is discovered. RegionEnd points the scheduling
274 // boundary at the bottom of the region. The DAG does not include RegionEnd,
275 // but the region does (i.e. the next RegionEnd is above the previous
276 // RegionBegin). If the current block has no terminator then RegionEnd ==
277 // MBB->end() for the bottom region.
279 // The Scheduler may insert instructions during either schedule() or
280 // exitRegion(), even for empty regions. So the local iterators 'I' and
281 // 'RegionEnd' are invalid across these calls.
282 unsigned RemainingInstrs = MBB->size();
283 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
284 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
286 // Avoid decrementing RegionEnd for blocks with no terminator.
287 if (RegionEnd != MBB->end()
288 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
290 // Count the boundary instruction.
294 // The next region starts above the previous region. Look backward in the
295 // instruction stream until we find the nearest boundary.
296 unsigned NumRegionInstrs = 0;
297 MachineBasicBlock::iterator I = RegionEnd;
298 for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
299 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
302 // Notify the scheduler of the region, even if we may skip scheduling
303 // it. Perhaps it still needs to be bundled.
304 Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
306 // Skip empty scheduling regions (0 or 1 schedulable instructions).
307 if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
308 // Close the current region. Bundle the terminator if needed.
309 // This invalidates 'RegionEnd' and 'I'.
310 Scheduler->exitRegion();
313 DEBUG(dbgs() << "********** MI Scheduling **********\n");
314 DEBUG(dbgs() << MF->getName()
315 << ":BB#" << MBB->getNumber() << " " << MBB->getName()
316 << "\n From: " << *I << " To: ";
317 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
318 else dbgs() << "End";
319 dbgs() << " RegionInstrs: " << NumRegionInstrs
320 << " Remaining: " << RemainingInstrs << "\n");
322 // Schedule a region: possibly reorder instructions.
323 // This invalidates 'RegionEnd' and 'I'.
324 Scheduler->schedule();
326 // Close the current region.
327 Scheduler->exitRegion();
329 // Scheduling has invalidated the current iterator 'I'. Ask the
330 // scheduler for the top of it's scheduled region.
331 RegionEnd = Scheduler->begin();
333 assert(RemainingInstrs == 0 && "Instruction count mismatch!");
334 Scheduler->finishBlock();
336 Scheduler->finalizeSchedule();
338 if (VerifyScheduling)
339 MF->verify(this, "After machine scheduling.");
343 void MachineScheduler::print(raw_ostream &O, const Module* m) const {
347 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
348 void ReadyQueue::dump() {
349 dbgs() << Name << ": ";
350 for (unsigned i = 0, e = Queue.size(); i < e; ++i)
351 dbgs() << Queue[i]->NodeNum << " ";
356 //===----------------------------------------------------------------------===//
357 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
359 //===----------------------------------------------------------------------===//
361 ScheduleDAGMI::~ScheduleDAGMI() {
363 DeleteContainerPointers(Mutations);
367 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
368 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
371 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
372 if (SuccSU != &ExitSU) {
373 // Do not use WillCreateCycle, it assumes SD scheduling.
374 // If Pred is reachable from Succ, then the edge creates a cycle.
375 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
377 Topo.AddPred(SuccSU, PredDep.getSUnit());
379 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
380 // Return true regardless of whether a new edge needed to be inserted.
384 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
385 /// NumPredsLeft reaches zero, release the successor node.
387 /// FIXME: Adjust SuccSU height based on MinLatency.
388 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
389 SUnit *SuccSU = SuccEdge->getSUnit();
391 if (SuccEdge->isWeak()) {
392 --SuccSU->WeakPredsLeft;
393 if (SuccEdge->isCluster())
394 NextClusterSucc = SuccSU;
398 if (SuccSU->NumPredsLeft == 0) {
399 dbgs() << "*** Scheduling failed! ***\n";
401 dbgs() << " has been released too many times!\n";
405 --SuccSU->NumPredsLeft;
406 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
407 SchedImpl->releaseTopNode(SuccSU);
410 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
411 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
412 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
414 releaseSucc(SU, &*I);
418 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
419 /// NumSuccsLeft reaches zero, release the predecessor node.
421 /// FIXME: Adjust PredSU height based on MinLatency.
422 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
423 SUnit *PredSU = PredEdge->getSUnit();
425 if (PredEdge->isWeak()) {
426 --PredSU->WeakSuccsLeft;
427 if (PredEdge->isCluster())
428 NextClusterPred = PredSU;
432 if (PredSU->NumSuccsLeft == 0) {
433 dbgs() << "*** Scheduling failed! ***\n";
435 dbgs() << " has been released too many times!\n";
439 --PredSU->NumSuccsLeft;
440 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
441 SchedImpl->releaseBottomNode(PredSU);
444 /// releasePredecessors - Call releasePred on each of SU's predecessors.
445 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
446 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
448 releasePred(SU, &*I);
452 /// This is normally called from the main scheduler loop but may also be invoked
453 /// by the scheduling strategy to perform additional code motion.
454 void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
455 MachineBasicBlock::iterator InsertPos) {
456 // Advance RegionBegin if the first instruction moves down.
457 if (&*RegionBegin == MI)
460 // Update the instruction stream.
461 BB->splice(InsertPos, BB, MI);
463 // Update LiveIntervals
464 LIS->handleMove(MI, /*UpdateFlags=*/true);
466 // Recede RegionBegin if an instruction moves above the first.
467 if (RegionBegin == InsertPos)
471 bool ScheduleDAGMI::checkSchedLimit() {
473 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
474 CurrentTop = CurrentBottom;
477 ++NumInstrsScheduled;
482 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
483 /// crossing a scheduling boundary. [begin, end) includes all instructions in
484 /// the region, including the boundary itself and single-instruction regions
485 /// that don't get scheduled.
486 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
487 MachineBasicBlock::iterator begin,
488 MachineBasicBlock::iterator end,
489 unsigned regioninstrs)
491 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
493 // For convenience remember the end of the liveness region.
495 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
497 SUPressureDiffs.clear();
499 SchedImpl->initPolicy(begin, end, regioninstrs);
501 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
504 // Setup the register pressure trackers for the top scheduled top and bottom
505 // scheduled regions.
506 void ScheduleDAGMI::initRegPressure() {
507 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
508 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
510 // Close the RPTracker to finalize live ins.
511 RPTracker.closeRegion();
513 DEBUG(RPTracker.dump());
515 // Initialize the live ins and live outs.
516 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
517 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
519 // Close one end of the tracker so we can call
520 // getMaxUpward/DownwardPressureDelta before advancing across any
521 // instructions. This converts currently live regs into live ins/outs.
522 TopRPTracker.closeTop();
523 BotRPTracker.closeBottom();
525 BotRPTracker.initLiveThru(RPTracker);
526 if (!BotRPTracker.getLiveThru().empty()) {
527 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
528 DEBUG(dbgs() << "Live Thru: ";
529 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
532 // For each live out vreg reduce the pressure change associated with other
533 // uses of the same vreg below the live-out reaching def.
534 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
536 // Account for liveness generated by the region boundary.
537 if (LiveRegionEnd != RegionEnd) {
538 SmallVector<unsigned, 8> LiveUses;
539 BotRPTracker.recede(&LiveUses);
540 updatePressureDiffs(LiveUses);
543 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
545 // Cache the list of excess pressure sets in this region. This will also track
546 // the max pressure in the scheduled code for these sets.
547 RegionCriticalPSets.clear();
548 const std::vector<unsigned> &RegionPressure =
549 RPTracker.getPressure().MaxSetPressure;
550 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
551 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
552 if (RegionPressure[i] > Limit) {
553 DEBUG(dbgs() << TRI->getRegPressureSetName(i)
554 << " Limit " << Limit
555 << " Actual " << RegionPressure[i] << "\n");
556 RegionCriticalPSets.push_back(PressureChange(i));
559 DEBUG(dbgs() << "Excess PSets: ";
560 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
561 dbgs() << TRI->getRegPressureSetName(
562 RegionCriticalPSets[i].getPSet()) << " ";
567 updateScheduledPressure(const SUnit *SU,
568 const std::vector<unsigned> &NewMaxPressure) {
569 const PressureDiff &PDiff = getPressureDiff(SU);
570 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
571 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
575 unsigned ID = I->getPSet();
576 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
578 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
579 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
580 && NewMaxPressure[ID] <= INT16_MAX)
581 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
583 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
584 if (NewMaxPressure[ID] >= Limit - 2) {
585 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
586 << NewMaxPressure[ID] << " > " << Limit << "(+ "
587 << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
592 /// Update the PressureDiff array for liveness after scheduling this
594 void ScheduleDAGMI::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
595 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
596 /// FIXME: Currently assuming single-use physregs.
597 unsigned Reg = LiveUses[LUIdx];
598 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
599 if (!TRI->isVirtualRegister(Reg))
602 // This may be called before CurrentBottom has been initialized. However,
603 // BotRPTracker must have a valid position. We want the value live into the
604 // instruction or live out of the block, so ask for the previous
605 // instruction's live-out.
606 const LiveInterval &LI = LIS->getInterval(Reg);
608 MachineBasicBlock::const_iterator I =
609 nextIfDebug(BotRPTracker.getPos(), BB->end());
611 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
613 LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(I));
616 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
617 assert(VNI && "No live value at use.");
618 for (VReg2UseMap::iterator
619 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
621 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
623 // If this use comes before the reaching def, it cannot be a last use, so
624 // descrease its pressure change.
625 if (!SU->isScheduled && SU != &ExitSU) {
626 LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(SU->getInstr()));
627 if (LRQ.valueIn() == VNI)
628 getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
634 /// schedule - Called back from MachineScheduler::runOnMachineFunction
635 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
636 /// only includes instructions that have DAG nodes, not scheduling boundaries.
638 /// This is a skeletal driver, with all the functionality pushed into helpers,
639 /// so that it can be easilly extended by experimental schedulers. Generally,
640 /// implementing MachineSchedStrategy should be sufficient to implement a new
641 /// scheduling algorithm. However, if a scheduler further subclasses
642 /// ScheduleDAGMI then it will want to override this virtual method in order to
643 /// update any specialized state.
644 void ScheduleDAGMI::schedule() {
645 buildDAGWithRegPressure();
647 Topo.InitDAGTopologicalSorting();
651 SmallVector<SUnit*, 8> TopRoots, BotRoots;
652 findRootsAndBiasEdges(TopRoots, BotRoots);
654 // Initialize the strategy before modifying the DAG.
655 // This may initialize a DFSResult to be used for queue priority.
656 SchedImpl->initialize(this);
658 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
659 SUnits[su].dumpAll(this));
660 if (ViewMISchedDAGs) viewGraph();
662 // Initialize ready queues now that the DAG and priority data are finalized.
663 initQueues(TopRoots, BotRoots);
665 bool IsTopNode = false;
666 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
667 assert(!SU->isScheduled && "Node already scheduled");
668 if (!checkSchedLimit())
671 scheduleMI(SU, IsTopNode);
673 updateQueues(SU, IsTopNode);
675 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
680 unsigned BBNum = begin()->getParent()->getNumber();
681 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
687 /// Build the DAG and setup three register pressure trackers.
688 void ScheduleDAGMI::buildDAGWithRegPressure() {
689 if (!ShouldTrackPressure) {
691 RegionCriticalPSets.clear();
696 // Initialize the register pressure tracker used by buildSchedGraph.
697 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
698 /*TrackUntiedDefs=*/true);
700 // Account for liveness generate by the region boundary.
701 if (LiveRegionEnd != RegionEnd)
704 // Build the DAG, and compute current register pressure.
705 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
707 // Initialize top/bottom trackers after computing region pressure.
711 /// Apply each ScheduleDAGMutation step in order.
712 void ScheduleDAGMI::postprocessDAG() {
713 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
714 Mutations[i]->apply(this);
718 void ScheduleDAGMI::computeDFSResult() {
720 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
722 ScheduledTrees.clear();
723 DFSResult->resize(SUnits.size());
724 DFSResult->compute(SUnits);
725 ScheduledTrees.resize(DFSResult->getNumSubtrees());
728 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
729 SmallVectorImpl<SUnit*> &BotRoots) {
730 for (std::vector<SUnit>::iterator
731 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
733 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
735 // Order predecessors so DFSResult follows the critical path.
736 SU->biasCriticalPath();
738 // A SUnit is ready to top schedule if it has no predecessors.
739 if (!I->NumPredsLeft)
740 TopRoots.push_back(SU);
741 // A SUnit is ready to bottom schedule if it has no successors.
742 if (!I->NumSuccsLeft)
743 BotRoots.push_back(SU);
745 ExitSU.biasCriticalPath();
748 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
749 /// only provides the critical path for single block loops. To handle loops that
750 /// span blocks, we could use the vreg path latencies provided by
751 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
752 /// available for use in the scheduler.
754 /// The cyclic path estimation identifies a def-use pair that crosses the back
755 /// edge and considers the depth and height of the nodes. For example, consider
756 /// the following instruction sequence where each instruction has unit latency
757 /// and defines an epomymous virtual register:
759 /// a->b(a,c)->c(b)->d(c)->exit
761 /// The cyclic critical path is a two cycles: b->c->b
762 /// The acyclic critical path is four cycles: a->b->c->d->exit
763 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
764 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
765 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
766 /// LiveInDepth = depth(b) = len(a->b) = 1
768 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
769 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
770 /// CyclicCriticalPath = min(2, 2) = 2
771 unsigned ScheduleDAGMI::computeCyclicCriticalPath() {
772 // This only applies to single block loop.
773 if (!BB->isSuccessor(BB))
776 unsigned MaxCyclicLatency = 0;
777 // Visit each live out vreg def to find def/use pairs that cross iterations.
778 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
779 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
782 if (!TRI->isVirtualRegister(Reg))
784 const LiveInterval &LI = LIS->getInterval(Reg);
785 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
789 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
790 const SUnit *DefSU = getSUnit(DefMI);
794 unsigned LiveOutHeight = DefSU->getHeight();
795 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
796 // Visit all local users of the vreg def.
797 for (VReg2UseMap::iterator
798 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
799 if (UI->SU == &ExitSU)
802 // Only consider uses of the phi.
803 LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(UI->SU->getInstr()));
804 if (!LRQ.valueIn()->isPHIDef())
807 // Assume that a path spanning two iterations is a cycle, which could
808 // overestimate in strange cases. This allows cyclic latency to be
809 // estimated as the minimum slack of the vreg's depth or height.
810 unsigned CyclicLatency = 0;
811 if (LiveOutDepth > UI->SU->getDepth())
812 CyclicLatency = LiveOutDepth - UI->SU->getDepth();
814 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
815 if (LiveInHeight > LiveOutHeight) {
816 if (LiveInHeight - LiveOutHeight < CyclicLatency)
817 CyclicLatency = LiveInHeight - LiveOutHeight;
822 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
823 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
824 if (CyclicLatency > MaxCyclicLatency)
825 MaxCyclicLatency = CyclicLatency;
828 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
829 return MaxCyclicLatency;
832 /// Identify DAG roots and setup scheduler queues.
833 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
834 ArrayRef<SUnit*> BotRoots) {
835 NextClusterSucc = NULL;
836 NextClusterPred = NULL;
838 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
840 // Nodes with unreleased weak edges can still be roots.
841 // Release top roots in forward order.
842 for (SmallVectorImpl<SUnit*>::const_iterator
843 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
844 SchedImpl->releaseTopNode(*I);
846 // Release bottom roots in reverse order so the higher priority nodes appear
847 // first. This is more natural and slightly more efficient.
848 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
849 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
850 SchedImpl->releaseBottomNode(*I);
853 releaseSuccessors(&EntrySU);
854 releasePredecessors(&ExitSU);
856 SchedImpl->registerRoots();
858 // Advance past initial DebugValues.
859 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
860 CurrentBottom = RegionEnd;
862 if (ShouldTrackPressure) {
863 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
864 TopRPTracker.setPos(CurrentTop);
868 /// Move an instruction and update register pressure.
869 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
870 // Move the instruction to its new location in the instruction stream.
871 MachineInstr *MI = SU->getInstr();
874 assert(SU->isTopReady() && "node still has unscheduled dependencies");
875 if (&*CurrentTop == MI)
876 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
878 moveInstruction(MI, CurrentTop);
879 TopRPTracker.setPos(MI);
882 if (ShouldTrackPressure) {
883 // Update top scheduled pressure.
884 TopRPTracker.advance();
885 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
886 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
890 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
891 MachineBasicBlock::iterator priorII =
892 priorNonDebug(CurrentBottom, CurrentTop);
894 CurrentBottom = priorII;
896 if (&*CurrentTop == MI) {
897 CurrentTop = nextIfDebug(++CurrentTop, priorII);
898 TopRPTracker.setPos(CurrentTop);
900 moveInstruction(MI, CurrentBottom);
903 if (ShouldTrackPressure) {
904 // Update bottom scheduled pressure.
905 SmallVector<unsigned, 8> LiveUses;
906 BotRPTracker.recede(&LiveUses);
907 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
908 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
909 updatePressureDiffs(LiveUses);
914 /// Update scheduler queues after scheduling an instruction.
915 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
916 // Release dependent instructions for scheduling.
918 releaseSuccessors(SU);
920 releasePredecessors(SU);
922 SU->isScheduled = true;
925 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
926 if (!ScheduledTrees.test(SubtreeID)) {
927 ScheduledTrees.set(SubtreeID);
928 DFSResult->scheduleTree(SubtreeID);
929 SchedImpl->scheduleTree(SubtreeID);
933 // Notify the scheduling strategy after updating the DAG.
934 SchedImpl->schedNode(SU, IsTopNode);
937 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
938 void ScheduleDAGMI::placeDebugValues() {
939 // If first instruction was a DBG_VALUE then put it back.
941 BB->splice(RegionBegin, BB, FirstDbgValue);
942 RegionBegin = FirstDbgValue;
945 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
946 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
947 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
948 MachineInstr *DbgValue = P.first;
949 MachineBasicBlock::iterator OrigPrevMI = P.second;
950 if (&*RegionBegin == DbgValue)
952 BB->splice(++OrigPrevMI, BB, DbgValue);
953 if (OrigPrevMI == llvm::prior(RegionEnd))
954 RegionEnd = DbgValue;
957 FirstDbgValue = NULL;
960 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
961 void ScheduleDAGMI::dumpSchedule() const {
962 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
963 if (SUnit *SU = getSUnit(&(*MI)))
966 dbgs() << "Missing SUnit\n";
971 //===----------------------------------------------------------------------===//
972 // LoadClusterMutation - DAG post-processing to cluster loads.
973 //===----------------------------------------------------------------------===//
976 /// \brief Post-process the DAG to create cluster edges between neighboring
978 class LoadClusterMutation : public ScheduleDAGMutation {
983 LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
984 : SU(su), BaseReg(reg), Offset(ofs) {}
986 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
987 const LoadClusterMutation::LoadInfo &RHS);
989 const TargetInstrInfo *TII;
990 const TargetRegisterInfo *TRI;
992 LoadClusterMutation(const TargetInstrInfo *tii,
993 const TargetRegisterInfo *tri)
994 : TII(tii), TRI(tri) {}
996 virtual void apply(ScheduleDAGMI *DAG);
998 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1002 bool LoadClusterMutation::LoadInfoLess(
1003 const LoadClusterMutation::LoadInfo &LHS,
1004 const LoadClusterMutation::LoadInfo &RHS) {
1005 if (LHS.BaseReg != RHS.BaseReg)
1006 return LHS.BaseReg < RHS.BaseReg;
1007 return LHS.Offset < RHS.Offset;
1010 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1011 ScheduleDAGMI *DAG) {
1012 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1013 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1014 SUnit *SU = Loads[Idx];
1017 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1018 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1020 if (LoadRecords.size() < 2)
1022 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
1023 unsigned ClusterLength = 1;
1024 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1025 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1030 SUnit *SUa = LoadRecords[Idx].SU;
1031 SUnit *SUb = LoadRecords[Idx+1].SU;
1032 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1033 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1035 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1036 << SUb->NodeNum << ")\n");
1037 // Copy successor edges from SUa to SUb. Interleaving computation
1038 // dependent on SUa can prevent load combining due to register reuse.
1039 // Predecessor edges do not need to be copied from SUb to SUa since nearby
1040 // loads should have effectively the same inputs.
1041 for (SUnit::const_succ_iterator
1042 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1043 if (SI->getSUnit() == SUb)
1045 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1046 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1055 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1056 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1057 // Map DAG NodeNum to store chain ID.
1058 DenseMap<unsigned, unsigned> StoreChainIDs;
1059 // Map each store chain to a set of dependent loads.
1060 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1061 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1062 SUnit *SU = &DAG->SUnits[Idx];
1063 if (!SU->getInstr()->mayLoad())
1065 unsigned ChainPredID = DAG->SUnits.size();
1066 for (SUnit::const_pred_iterator
1067 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1069 ChainPredID = PI->getSUnit()->NodeNum;
1073 // Check if this chain-like pred has been seen
1074 // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1075 unsigned NumChains = StoreChainDependents.size();
1076 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1077 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1079 StoreChainDependents.resize(NumChains + 1);
1080 StoreChainDependents[Result.first->second].push_back(SU);
1082 // Iterate over the store chains.
1083 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1084 clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1087 //===----------------------------------------------------------------------===//
1088 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1089 //===----------------------------------------------------------------------===//
1092 /// \brief Post-process the DAG to create cluster edges between instructions
1093 /// that may be fused by the processor into a single operation.
1094 class MacroFusion : public ScheduleDAGMutation {
1095 const TargetInstrInfo *TII;
1097 MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
1099 virtual void apply(ScheduleDAGMI *DAG);
1103 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1104 /// fused operations.
1105 void MacroFusion::apply(ScheduleDAGMI *DAG) {
1106 // For now, assume targets can only fuse with the branch.
1107 MachineInstr *Branch = DAG->ExitSU.getInstr();
1111 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
1112 SUnit *SU = &DAG->SUnits[--Idx];
1113 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
1116 // Create a single weak edge from SU to ExitSU. The only effect is to cause
1117 // bottom-up scheduling to heavily prioritize the clustered SU. There is no
1118 // need to copy predecessor edges from ExitSU to SU, since top-down
1119 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1120 // of SU, we could create an artificial edge from the deepest root, but it
1121 // hasn't been needed yet.
1122 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
1124 assert(Success && "No DAG nodes should be reachable from ExitSU");
1126 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
1131 //===----------------------------------------------------------------------===//
1132 // CopyConstrain - DAG post-processing to encourage copy elimination.
1133 //===----------------------------------------------------------------------===//
1136 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1137 /// the one use that defines the copy's source vreg, most likely an induction
1138 /// variable increment.
1139 class CopyConstrain : public ScheduleDAGMutation {
1141 SlotIndex RegionBeginIdx;
1142 // RegionEndIdx is the slot index of the last non-debug instruction in the
1143 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1144 SlotIndex RegionEndIdx;
1146 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1148 virtual void apply(ScheduleDAGMI *DAG);
1151 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG);
1155 /// constrainLocalCopy handles two possibilities:
1160 /// I3: dst = src (copy)
1161 /// (create pred->succ edges I0->I1, I2->I1)
1164 /// I0: dst = src (copy)
1168 /// (create pred->succ edges I1->I2, I3->I2)
1170 /// Although the MachineScheduler is currently constrained to single blocks,
1171 /// this algorithm should handle extended blocks. An EBB is a set of
1172 /// contiguously numbered blocks such that the previous block in the EBB is
1173 /// always the single predecessor.
1174 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) {
1175 LiveIntervals *LIS = DAG->getLIS();
1176 MachineInstr *Copy = CopySU->getInstr();
1178 // Check for pure vreg copies.
1179 unsigned SrcReg = Copy->getOperand(1).getReg();
1180 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1183 unsigned DstReg = Copy->getOperand(0).getReg();
1184 if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1187 // Check if either the dest or source is local. If it's live across a back
1188 // edge, it's not local. Note that if both vregs are live across the back
1189 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1190 unsigned LocalReg = DstReg;
1191 unsigned GlobalReg = SrcReg;
1192 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1193 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1196 LocalLI = &LIS->getInterval(LocalReg);
1197 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1200 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1202 // Find the global segment after the start of the local LI.
1203 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1204 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1205 // local live range. We could create edges from other global uses to the local
1206 // start, but the coalescer should have already eliminated these cases, so
1207 // don't bother dealing with it.
1208 if (GlobalSegment == GlobalLI->end())
1211 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1212 // returned the next global segment. But if GlobalSegment overlaps with
1213 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1214 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1215 if (GlobalSegment->contains(LocalLI->beginIndex()))
1218 if (GlobalSegment == GlobalLI->end())
1221 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1222 if (GlobalSegment != GlobalLI->begin()) {
1223 // Two address defs have no hole.
1224 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end,
1225 GlobalSegment->start)) {
1228 // If the prior global segment may be defined by the same two-address
1229 // instruction that also defines LocalLI, then can't make a hole here.
1230 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start,
1231 LocalLI->beginIndex())) {
1234 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1235 // it would be a disconnected component in the live range.
1236 assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() &&
1237 "Disconnected LRG within the scheduling region.");
1239 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1243 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1247 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1248 // constraining the uses of the last local def to precede GlobalDef.
1249 SmallVector<SUnit*,8> LocalUses;
1250 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1251 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1252 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1253 for (SUnit::const_succ_iterator
1254 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1256 if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1258 if (I->getSUnit() == GlobalSU)
1260 if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1262 LocalUses.push_back(I->getSUnit());
1264 // Open the top of the GlobalLI hole by constraining any earlier global uses
1265 // to precede the start of LocalLI.
1266 SmallVector<SUnit*,8> GlobalUses;
1267 MachineInstr *FirstLocalDef =
1268 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1269 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1270 for (SUnit::const_pred_iterator
1271 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1272 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1274 if (I->getSUnit() == FirstLocalSU)
1276 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1278 GlobalUses.push_back(I->getSUnit());
1280 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1281 // Add the weak edges.
1282 for (SmallVectorImpl<SUnit*>::const_iterator
1283 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1284 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1285 << GlobalSU->NodeNum << ")\n");
1286 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1288 for (SmallVectorImpl<SUnit*>::const_iterator
1289 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1290 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1291 << FirstLocalSU->NodeNum << ")\n");
1292 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1296 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1297 /// copy elimination.
1298 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1299 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1300 if (FirstPos == DAG->end())
1302 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1303 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1304 &*priorNonDebug(DAG->end(), DAG->begin()));
1306 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1307 SUnit *SU = &DAG->SUnits[Idx];
1308 if (!SU->getInstr()->isCopy())
1311 constrainLocalCopy(SU, DAG);
1315 //===----------------------------------------------------------------------===//
1316 // GenericScheduler - Implementation of the generic MachineSchedStrategy.
1317 //===----------------------------------------------------------------------===//
1320 /// GenericScheduler shrinks the unscheduled zone using heuristics to balance
1322 class GenericScheduler : public MachineSchedStrategy {
1324 /// Represent the type of SchedCandidate found within a single queue.
1325 /// pickNodeBidirectional depends on these listed by decreasing priority.
1327 NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax,
1328 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
1329 TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
1332 static const char *getReasonStr(GenericScheduler::CandReason Reason);
1335 /// Policy for scheduling the next instruction in the candidate's zone.
1338 unsigned ReduceResIdx;
1339 unsigned DemandResIdx;
1341 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
1344 /// Status of an instruction's critical resource consumption.
1345 struct SchedResourceDelta {
1346 // Count critical resources in the scheduled region required by SU.
1347 unsigned CritResources;
1349 // Count critical resources from another region consumed by SU.
1350 unsigned DemandedResources;
1352 SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
1354 bool operator==(const SchedResourceDelta &RHS) const {
1355 return CritResources == RHS.CritResources
1356 && DemandedResources == RHS.DemandedResources;
1358 bool operator!=(const SchedResourceDelta &RHS) const {
1359 return !operator==(RHS);
1363 /// Store the state used by GenericScheduler heuristics, required for the
1364 /// lifetime of one invocation of pickNode().
1365 struct SchedCandidate {
1368 // The best SUnit candidate.
1371 // The reason for this candidate.
1374 // Set of reasons that apply to multiple candidates.
1375 uint32_t RepeatReasonSet;
1377 // Register pressure values for the best candidate.
1378 RegPressureDelta RPDelta;
1380 // Critical resource consumption of the best candidate.
1381 SchedResourceDelta ResDelta;
1383 SchedCandidate(const CandPolicy &policy)
1384 : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {}
1386 bool isValid() const { return SU; }
1388 // Copy the status of another candidate without changing policy.
1389 void setBest(SchedCandidate &Best) {
1390 assert(Best.Reason != NoCand && "uninitialized Sched candidate");
1392 Reason = Best.Reason;
1393 RPDelta = Best.RPDelta;
1394 ResDelta = Best.ResDelta;
1397 bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
1398 void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
1400 void initResourceDelta(const ScheduleDAGMI *DAG,
1401 const TargetSchedModel *SchedModel);
1404 /// Summarize the unscheduled region.
1405 struct SchedRemainder {
1406 // Critical path through the DAG in expected latency.
1407 unsigned CriticalPath;
1408 unsigned CyclicCritPath;
1410 // Scaled count of micro-ops left to schedule.
1411 unsigned RemIssueCount;
1413 bool IsAcyclicLatencyLimited;
1415 // Unscheduled resources
1416 SmallVector<unsigned, 16> RemainingCounts;
1422 IsAcyclicLatencyLimited = false;
1423 RemainingCounts.clear();
1426 SchedRemainder() { reset(); }
1428 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
1431 /// Each Scheduling boundary is associated with ready queues. It tracks the
1432 /// current cycle in the direction of movement, and maintains the state
1433 /// of "hazards" and other interlocks at the current cycle.
1434 struct SchedBoundary {
1436 const TargetSchedModel *SchedModel;
1437 SchedRemainder *Rem;
1439 ReadyQueue Available;
1443 // For heuristics, keep a list of the nodes that immediately depend on the
1444 // most recently scheduled node.
1445 SmallPtrSet<const SUnit*, 8> NextSUs;
1447 ScheduleHazardRecognizer *HazardRec;
1449 /// Number of cycles it takes to issue the instructions scheduled in this
1450 /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
1451 /// See getStalls().
1454 /// Micro-ops issued in the current cycle
1457 /// MinReadyCycle - Cycle of the soonest available instruction.
1458 unsigned MinReadyCycle;
1460 // The expected latency of the critical path in this scheduled zone.
1461 unsigned ExpectedLatency;
1463 // The latency of dependence chains leading into this zone.
1464 // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
1465 // For each cycle scheduled: DLat -= 1.
1466 unsigned DependentLatency;
1468 /// Count the scheduled (issued) micro-ops that can be retired by
1469 /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
1470 unsigned RetiredMOps;
1472 // Count scheduled resources that have been executed. Resources are
1473 // considered executed if they become ready in the time that it takes to
1474 // saturate any resource including the one in question. Counts are scaled
1475 // for direct comparison with other resources. Counts can be compared with
1476 // MOps * getMicroOpFactor and Latency * getLatencyFactor.
1477 SmallVector<unsigned, 16> ExecutedResCounts;
1479 /// Cache the max count for a single resource.
1480 unsigned MaxExecutedResCount;
1482 // Cache the critical resources ID in this scheduled zone.
1483 unsigned ZoneCritResIdx;
1485 // Is the scheduled region resource limited vs. latency limited.
1486 bool IsResourceLimited;
1489 // Remember the greatest operand latency as an upper bound on the number of
1490 // times we should retry the pending queue because of a hazard.
1491 unsigned MaxObservedLatency;
1495 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1496 // Destroying and reconstructing it is very expensive though. So keep
1497 // invalid, placeholder HazardRecs.
1498 if (HazardRec && HazardRec->isEnabled()) {
1504 CheckPending = false;
1508 MinReadyCycle = UINT_MAX;
1509 ExpectedLatency = 0;
1510 DependentLatency = 0;
1512 MaxExecutedResCount = 0;
1514 IsResourceLimited = false;
1516 MaxObservedLatency = 0;
1518 // Reserve a zero-count for invalid CritResIdx.
1519 ExecutedResCounts.resize(1);
1520 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1523 /// Pending queues extend the ready queues with the same ID and the
1524 /// PendingFlag set.
1525 SchedBoundary(unsigned ID, const Twine &Name):
1526 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
1527 Pending(ID << GenericScheduler::LogMaxQID, Name+".P"),
1532 ~SchedBoundary() { delete HazardRec; }
1534 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
1535 SchedRemainder *rem);
1537 bool isTop() const {
1538 return Available.getID() == GenericScheduler::TopQID;
1542 const char *getResourceName(unsigned PIdx) {
1545 return SchedModel->getProcResource(PIdx)->Name;
1549 /// Get the number of latency cycles "covered" by the scheduled
1550 /// instructions. This is the larger of the critical path within the zone
1551 /// and the number of cycles required to issue the instructions.
1552 unsigned getScheduledLatency() const {
1553 return std::max(ExpectedLatency, CurrCycle);
1556 unsigned getUnscheduledLatency(SUnit *SU) const {
1557 return isTop() ? SU->getHeight() : SU->getDepth();
1560 unsigned getResourceCount(unsigned ResIdx) const {
1561 return ExecutedResCounts[ResIdx];
1564 /// Get the scaled count of scheduled micro-ops and resources, including
1565 /// executed resources.
1566 unsigned getCriticalCount() const {
1567 if (!ZoneCritResIdx)
1568 return RetiredMOps * SchedModel->getMicroOpFactor();
1569 return getResourceCount(ZoneCritResIdx);
1572 /// Get a scaled count for the minimum execution time of the scheduled
1573 /// micro-ops that are ready to execute by getExecutedCount. Notice the
1575 unsigned getExecutedCount() const {
1576 return std::max(CurrCycle * SchedModel->getLatencyFactor(),
1577 MaxExecutedResCount);
1580 bool checkHazard(SUnit *SU);
1582 unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
1584 unsigned getOtherResourceCount(unsigned &OtherCritIdx);
1586 void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone);
1588 void releaseNode(SUnit *SU, unsigned ReadyCycle);
1590 void bumpCycle(unsigned NextCycle);
1592 void incExecutedResources(unsigned PIdx, unsigned Count);
1594 unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
1596 void bumpNode(SUnit *SU);
1598 void releasePending();
1600 void removeReady(SUnit *SU);
1602 SUnit *pickOnlyChoice();
1605 void dumpScheduledState();
1610 const MachineSchedContext *Context;
1612 const TargetSchedModel *SchedModel;
1613 const TargetRegisterInfo *TRI;
1615 // State of the top and bottom scheduled instruction boundaries.
1620 MachineSchedPolicy RegionPolicy;
1622 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
1629 GenericScheduler(const MachineSchedContext *C):
1630 Context(C), DAG(0), SchedModel(0), TRI(0),
1631 Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
1633 virtual void initPolicy(MachineBasicBlock::iterator Begin,
1634 MachineBasicBlock::iterator End,
1635 unsigned NumRegionInstrs);
1637 bool shouldTrackPressure() const { return RegionPolicy.ShouldTrackPressure; }
1639 virtual void initialize(ScheduleDAGMI *dag);
1641 virtual SUnit *pickNode(bool &IsTopNode);
1643 virtual void schedNode(SUnit *SU, bool IsTopNode);
1645 virtual void releaseTopNode(SUnit *SU);
1647 virtual void releaseBottomNode(SUnit *SU);
1649 virtual void registerRoots();
1652 void checkAcyclicLatency();
1654 void tryCandidate(SchedCandidate &Cand,
1655 SchedCandidate &TryCand,
1656 SchedBoundary &Zone,
1657 const RegPressureTracker &RPTracker,
1658 RegPressureTracker &TempTracker);
1660 SUnit *pickNodeBidirectional(bool &IsTopNode);
1662 void pickNodeFromQueue(SchedBoundary &Zone,
1663 const RegPressureTracker &RPTracker,
1664 SchedCandidate &Candidate);
1666 void reschedulePhysRegCopies(SUnit *SU, bool isTop);
1669 void traceCandidate(const SchedCandidate &Cand);
1674 void GenericScheduler::SchedRemainder::
1675 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1677 if (!SchedModel->hasInstrSchedModel())
1679 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1680 for (std::vector<SUnit>::iterator
1681 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1682 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1683 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1684 * SchedModel->getMicroOpFactor();
1685 for (TargetSchedModel::ProcResIter
1686 PI = SchedModel->getWriteProcResBegin(SC),
1687 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1688 unsigned PIdx = PI->ProcResourceIdx;
1689 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1690 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1695 void GenericScheduler::SchedBoundary::
1696 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1699 SchedModel = smodel;
1701 if (SchedModel->hasInstrSchedModel())
1702 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1705 /// Initialize the per-region scheduling policy.
1706 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
1707 MachineBasicBlock::iterator End,
1708 unsigned NumRegionInstrs) {
1709 const TargetMachine &TM = Context->MF->getTarget();
1711 // Avoid setting up the register pressure tracker for small regions to save
1712 // compile time. As a rough heuristic, only track pressure when the number of
1713 // schedulable instructions exceeds half the integer register file.
1714 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
1715 TM.getTargetLowering()->getRegClassFor(MVT::i32));
1717 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
1719 // For generic targets, we default to bottom-up, because it's simpler and more
1720 // compile-time optimizations have been implemented in that direction.
1721 RegionPolicy.OnlyBottomUp = true;
1723 // Allow the subtarget to override default policy.
1724 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
1725 ST.overrideSchedPolicy(RegionPolicy, Begin, End, NumRegionInstrs);
1727 // After subtarget overrides, apply command line options.
1728 if (!EnableRegPressure)
1729 RegionPolicy.ShouldTrackPressure = false;
1731 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
1732 // e.g. -misched-bottomup=false allows scheduling in both directions.
1733 assert((!ForceTopDown || !ForceBottomUp) &&
1734 "-misched-topdown incompatible with -misched-bottomup");
1735 if (ForceBottomUp.getNumOccurrences() > 0) {
1736 RegionPolicy.OnlyBottomUp = ForceBottomUp;
1737 if (RegionPolicy.OnlyBottomUp)
1738 RegionPolicy.OnlyTopDown = false;
1740 if (ForceTopDown.getNumOccurrences() > 0) {
1741 RegionPolicy.OnlyTopDown = ForceTopDown;
1742 if (RegionPolicy.OnlyTopDown)
1743 RegionPolicy.OnlyBottomUp = false;
1747 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
1749 SchedModel = DAG->getSchedModel();
1752 Rem.init(DAG, SchedModel);
1753 Top.init(DAG, SchedModel, &Rem);
1754 Bot.init(DAG, SchedModel, &Rem);
1756 // Initialize resource counts.
1758 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
1759 // are disabled, then these HazardRecs will be disabled.
1760 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
1761 const TargetMachine &TM = DAG->MF.getTarget();
1762 if (!Top.HazardRec) {
1764 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1766 if (!Bot.HazardRec) {
1768 TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1772 void GenericScheduler::releaseTopNode(SUnit *SU) {
1773 if (SU->isScheduled)
1776 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1780 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
1781 unsigned Latency = I->getLatency();
1783 Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency);
1785 if (SU->TopReadyCycle < PredReadyCycle + Latency)
1786 SU->TopReadyCycle = PredReadyCycle + Latency;
1788 Top.releaseNode(SU, SU->TopReadyCycle);
1791 void GenericScheduler::releaseBottomNode(SUnit *SU) {
1792 if (SU->isScheduled)
1795 assert(SU->getInstr() && "Scheduled SUnit must have instr");
1797 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1801 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
1802 unsigned Latency = I->getLatency();
1804 Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency);
1806 if (SU->BotReadyCycle < SuccReadyCycle + Latency)
1807 SU->BotReadyCycle = SuccReadyCycle + Latency;
1809 Bot.releaseNode(SU, SU->BotReadyCycle);
1812 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
1813 /// critical path by more cycles than it takes to drain the instruction buffer.
1814 /// We estimate an upper bounds on in-flight instructions as:
1816 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
1817 /// InFlightIterations = AcyclicPath / CyclesPerIteration
1818 /// InFlightResources = InFlightIterations * LoopResources
1820 /// TODO: Check execution resources in addition to IssueCount.
1821 void GenericScheduler::checkAcyclicLatency() {
1822 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
1825 // Scaled number of cycles per loop iteration.
1826 unsigned IterCount =
1827 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
1829 // Scaled acyclic critical path.
1830 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
1831 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
1832 unsigned InFlightCount =
1833 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
1834 unsigned BufferLimit =
1835 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
1837 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
1839 DEBUG(dbgs() << "IssueCycles="
1840 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
1841 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
1842 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
1843 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
1844 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
1845 if (Rem.IsAcyclicLatencyLimited)
1846 dbgs() << " ACYCLIC LATENCY LIMIT\n");
1849 void GenericScheduler::registerRoots() {
1850 Rem.CriticalPath = DAG->ExitSU.getDepth();
1852 // Some roots may not feed into ExitSU. Check all of them in case.
1853 for (std::vector<SUnit*>::const_iterator
1854 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
1855 if ((*I)->getDepth() > Rem.CriticalPath)
1856 Rem.CriticalPath = (*I)->getDepth();
1858 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
1860 if (EnableCyclicPath) {
1861 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
1862 checkAcyclicLatency();
1866 /// Does this SU have a hazard within the current instruction group.
1868 /// The scheduler supports two modes of hazard recognition. The first is the
1869 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1870 /// supports highly complicated in-order reservation tables
1871 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1873 /// The second is a streamlined mechanism that checks for hazards based on
1874 /// simple counters that the scheduler itself maintains. It explicitly checks
1875 /// for instruction dispatch limitations, including the number of micro-ops that
1876 /// can dispatch per cycle.
1878 /// TODO: Also check whether the SU must start a new group.
1879 bool GenericScheduler::SchedBoundary::checkHazard(SUnit *SU) {
1880 if (HazardRec->isEnabled())
1881 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
1883 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1884 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1885 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
1886 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1892 // Find the unscheduled node in ReadySUs with the highest latency.
1893 unsigned GenericScheduler::SchedBoundary::
1894 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1896 unsigned RemLatency = 0;
1897 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1899 unsigned L = getUnscheduledLatency(*I);
1900 if (L > RemLatency) {
1906 DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1907 << LateSU->NodeNum << ") " << RemLatency << "c\n");
1912 // Count resources in this zone and the remaining unscheduled
1913 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1914 // resource index, or zero if the zone is issue limited.
1915 unsigned GenericScheduler::SchedBoundary::
1916 getOtherResourceCount(unsigned &OtherCritIdx) {
1918 if (!SchedModel->hasInstrSchedModel())
1921 unsigned OtherCritCount = Rem->RemIssueCount
1922 + (RetiredMOps * SchedModel->getMicroOpFactor());
1923 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
1924 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1925 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1926 PIdx != PEnd; ++PIdx) {
1927 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1928 if (OtherCount > OtherCritCount) {
1929 OtherCritCount = OtherCount;
1930 OtherCritIdx = PIdx;
1934 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: "
1935 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1936 << " " << getResourceName(OtherCritIdx) << "\n");
1938 return OtherCritCount;
1941 /// Set the CandPolicy for this zone given the current resources and latencies
1942 /// inside and outside the zone.
1943 void GenericScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
1944 SchedBoundary &OtherZone) {
1945 // Now that potential stalls have been considered, apply preemptive heuristics
1946 // based on the the total latency and resources inside and outside this
1949 // Compute remaining latency. We need this both to determine whether the
1950 // overall schedule has become latency-limited and whether the instructions
1951 // outside this zone are resource or latency limited.
1953 // The "dependent" latency is updated incrementally during scheduling as the
1954 // max height/depth of scheduled nodes minus the cycles since it was
1956 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
1958 // The "independent" latency is the max ready queue depth:
1959 // ILat = max N.depth for N in Available|Pending
1961 // RemainingLatency is the greater of independent and dependent latency.
1962 unsigned RemLatency = DependentLatency;
1963 RemLatency = std::max(RemLatency, findMaxLatency(Available.elements()));
1964 RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements()));
1966 // Compute the critical resource outside the zone.
1967 unsigned OtherCritIdx;
1968 unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx);
1970 bool OtherResLimited = false;
1971 if (SchedModel->hasInstrSchedModel()) {
1972 unsigned LFactor = SchedModel->getLatencyFactor();
1973 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
1975 if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) {
1976 Policy.ReduceLatency |= true;
1977 DEBUG(dbgs() << " " << Available.getName() << " RemainingLatency "
1978 << RemLatency << " + " << CurrCycle << "c > CritPath "
1979 << Rem->CriticalPath << "\n");
1981 // If the same resource is limiting inside and outside the zone, do nothing.
1982 if (ZoneCritResIdx == OtherCritIdx)
1986 if (IsResourceLimited) {
1987 dbgs() << " " << Available.getName() << " ResourceLimited: "
1988 << getResourceName(ZoneCritResIdx) << "\n";
1990 if (OtherResLimited)
1991 dbgs() << " RemainingLimit: " << getResourceName(OtherCritIdx) << "\n";
1992 if (!IsResourceLimited && !OtherResLimited)
1993 dbgs() << " Latency limited both directions.\n");
1995 if (IsResourceLimited && !Policy.ReduceResIdx)
1996 Policy.ReduceResIdx = ZoneCritResIdx;
1998 if (OtherResLimited)
1999 Policy.DemandResIdx = OtherCritIdx;
2002 void GenericScheduler::SchedBoundary::releaseNode(SUnit *SU,
2003 unsigned ReadyCycle) {
2004 if (ReadyCycle < MinReadyCycle)
2005 MinReadyCycle = ReadyCycle;
2007 // Check for interlocks first. For the purpose of other heuristics, an
2008 // instruction that cannot issue appears as if it's not in the ReadyQueue.
2009 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2010 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
2015 // Record this node as an immediate dependent of the scheduled node.
2019 /// Move the boundary of scheduled code by one cycle.
2020 void GenericScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
2021 if (SchedModel->getMicroOpBufferSize() == 0) {
2022 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
2023 if (MinReadyCycle > NextCycle)
2024 NextCycle = MinReadyCycle;
2026 // Update the current micro-ops, which will issue in the next cycle.
2027 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
2028 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
2030 // Decrement DependentLatency based on the next cycle.
2031 if ((NextCycle - CurrCycle) > DependentLatency)
2032 DependentLatency = 0;
2034 DependentLatency -= (NextCycle - CurrCycle);
2036 if (!HazardRec->isEnabled()) {
2037 // Bypass HazardRec virtual calls.
2038 CurrCycle = NextCycle;
2041 // Bypass getHazardType calls in case of long latency.
2042 for (; CurrCycle != NextCycle; ++CurrCycle) {
2044 HazardRec->AdvanceCycle();
2046 HazardRec->RecedeCycle();
2049 CheckPending = true;
2050 unsigned LFactor = SchedModel->getLatencyFactor();
2052 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2055 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
2058 void GenericScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
2060 ExecutedResCounts[PIdx] += Count;
2061 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
2062 MaxExecutedResCount = ExecutedResCounts[PIdx];
2065 /// Add the given processor resource to this scheduled zone.
2067 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
2068 /// during which this resource is consumed.
2070 /// \return the next cycle at which the instruction may execute without
2071 /// oversubscribing resources.
2072 unsigned GenericScheduler::SchedBoundary::
2073 countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
2074 unsigned Factor = SchedModel->getResourceFactor(PIdx);
2075 unsigned Count = Factor * Cycles;
2076 DEBUG(dbgs() << " " << getResourceName(PIdx)
2077 << " +" << Cycles << "x" << Factor << "u\n");
2079 // Update Executed resources counts.
2080 incExecutedResources(PIdx, Count);
2081 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2082 Rem->RemainingCounts[PIdx] -= Count;
2084 // Check if this resource exceeds the current critical resource. If so, it
2085 // becomes the critical resource.
2086 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2087 ZoneCritResIdx = PIdx;
2088 DEBUG(dbgs() << " *** Critical resource "
2089 << getResourceName(PIdx) << ": "
2090 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2092 // TODO: We don't yet model reserved resources. It's not hard though.
2096 /// Move the boundary of scheduled code by one SUnit.
2097 void GenericScheduler::SchedBoundary::bumpNode(SUnit *SU) {
2098 // Update the reservation table.
2099 if (HazardRec->isEnabled()) {
2100 if (!isTop() && SU->isCall) {
2101 // Calls are scheduled with their preceding instructions. For bottom-up
2102 // scheduling, clear the pipeline state before emitting.
2105 HazardRec->EmitInstruction(SU);
2107 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2108 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2109 CurrMOps += IncMOps;
2110 // checkHazard prevents scheduling multiple instructions per cycle that exceed
2111 // issue width. However, we commonly reach the maximum. In this case
2112 // opportunistically bump the cycle to avoid uselessly checking everything in
2113 // the readyQ. Furthermore, a single instruction may produce more than one
2114 // cycle's worth of micro-ops.
2116 // TODO: Also check if this SU must end a dispatch group.
2117 unsigned NextCycle = CurrCycle;
2118 if (CurrMOps >= SchedModel->getIssueWidth()) {
2120 DEBUG(dbgs() << " *** Max MOps " << CurrMOps
2121 << " at cycle " << CurrCycle << '\n');
2123 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2124 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
2126 switch (SchedModel->getMicroOpBufferSize()) {
2128 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2131 if (ReadyCycle > NextCycle) {
2132 NextCycle = ReadyCycle;
2133 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
2137 // We don't currently model the OOO reorder buffer, so consider all
2138 // scheduled MOps to be "retired".
2141 RetiredMOps += IncMOps;
2143 // Update resource counts and critical resource.
2144 if (SchedModel->hasInstrSchedModel()) {
2145 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2146 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2147 Rem->RemIssueCount -= DecRemIssue;
2148 if (ZoneCritResIdx) {
2149 // Scale scheduled micro-ops for comparing with the critical resource.
2150 unsigned ScaledMOps =
2151 RetiredMOps * SchedModel->getMicroOpFactor();
2153 // If scaled micro-ops are now more than the previous critical resource by
2154 // a full cycle, then micro-ops issue becomes critical.
2155 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2156 >= (int)SchedModel->getLatencyFactor()) {
2158 DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
2159 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2162 for (TargetSchedModel::ProcResIter
2163 PI = SchedModel->getWriteProcResBegin(SC),
2164 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2166 countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle);
2167 if (RCycle > NextCycle)
2171 // Update ExpectedLatency and DependentLatency.
2172 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2173 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2174 if (SU->getDepth() > TopLatency) {
2175 TopLatency = SU->getDepth();
2176 DEBUG(dbgs() << " " << Available.getName()
2177 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2179 if (SU->getHeight() > BotLatency) {
2180 BotLatency = SU->getHeight();
2181 DEBUG(dbgs() << " " << Available.getName()
2182 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2184 // If we stall for any reason, bump the cycle.
2185 if (NextCycle > CurrCycle) {
2186 bumpCycle(NextCycle);
2189 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2190 // resource limited. If a stall occured, bumpCycle does this.
2191 unsigned LFactor = SchedModel->getLatencyFactor();
2193 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2196 DEBUG(dumpScheduledState());
2199 /// Release pending ready nodes in to the available queue. This makes them
2200 /// visible to heuristics.
2201 void GenericScheduler::SchedBoundary::releasePending() {
2202 // If the available queue is empty, it is safe to reset MinReadyCycle.
2203 if (Available.empty())
2204 MinReadyCycle = UINT_MAX;
2206 // Check to see if any of the pending instructions are ready to issue. If
2207 // so, add them to the available queue.
2208 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2209 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2210 SUnit *SU = *(Pending.begin()+i);
2211 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2213 if (ReadyCycle < MinReadyCycle)
2214 MinReadyCycle = ReadyCycle;
2216 if (!IsBuffered && ReadyCycle > CurrCycle)
2219 if (checkHazard(SU))
2223 Pending.remove(Pending.begin()+i);
2226 DEBUG(if (!Pending.empty()) Pending.dump());
2227 CheckPending = false;
2230 /// Remove SU from the ready set for this boundary.
2231 void GenericScheduler::SchedBoundary::removeReady(SUnit *SU) {
2232 if (Available.isInQueue(SU))
2233 Available.remove(Available.find(SU));
2235 assert(Pending.isInQueue(SU) && "bad ready count");
2236 Pending.remove(Pending.find(SU));
2240 /// If this queue only has one ready candidate, return it. As a side effect,
2241 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2242 /// one node is ready. If multiple instructions are ready, return NULL.
2243 SUnit *GenericScheduler::SchedBoundary::pickOnlyChoice() {
2248 // Defer any ready instrs that now have a hazard.
2249 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2250 if (checkHazard(*I)) {
2252 I = Available.remove(I);
2258 for (unsigned i = 0; Available.empty(); ++i) {
2259 assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) &&
2260 "permanent hazard"); (void)i;
2261 bumpCycle(CurrCycle + 1);
2264 if (Available.size() == 1)
2265 return *Available.begin();
2270 // This is useful information to dump after bumpNode.
2271 // Note that the Queue contents are more useful before pickNodeFromQueue.
2272 void GenericScheduler::SchedBoundary::dumpScheduledState() {
2275 if (ZoneCritResIdx) {
2276 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2277 ResCount = getResourceCount(ZoneCritResIdx);
2280 ResFactor = SchedModel->getMicroOpFactor();
2281 ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2283 unsigned LFactor = SchedModel->getLatencyFactor();
2284 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2285 << " Retired: " << RetiredMOps;
2286 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2287 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2288 << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx)
2289 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2290 << (IsResourceLimited ? " - Resource" : " - Latency")
2295 void GenericScheduler::SchedCandidate::
2296 initResourceDelta(const ScheduleDAGMI *DAG,
2297 const TargetSchedModel *SchedModel) {
2298 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2301 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2302 for (TargetSchedModel::ProcResIter
2303 PI = SchedModel->getWriteProcResBegin(SC),
2304 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2305 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2306 ResDelta.CritResources += PI->Cycles;
2307 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2308 ResDelta.DemandedResources += PI->Cycles;
2313 /// Return true if this heuristic determines order.
2314 static bool tryLess(int TryVal, int CandVal,
2315 GenericScheduler::SchedCandidate &TryCand,
2316 GenericScheduler::SchedCandidate &Cand,
2317 GenericScheduler::CandReason Reason) {
2318 if (TryVal < CandVal) {
2319 TryCand.Reason = Reason;
2322 if (TryVal > CandVal) {
2323 if (Cand.Reason > Reason)
2324 Cand.Reason = Reason;
2327 Cand.setRepeat(Reason);
2331 static bool tryGreater(int TryVal, int CandVal,
2332 GenericScheduler::SchedCandidate &TryCand,
2333 GenericScheduler::SchedCandidate &Cand,
2334 GenericScheduler::CandReason Reason) {
2335 if (TryVal > CandVal) {
2336 TryCand.Reason = Reason;
2339 if (TryVal < CandVal) {
2340 if (Cand.Reason > Reason)
2341 Cand.Reason = Reason;
2344 Cand.setRepeat(Reason);
2348 static bool tryPressure(const PressureChange &TryP,
2349 const PressureChange &CandP,
2350 GenericScheduler::SchedCandidate &TryCand,
2351 GenericScheduler::SchedCandidate &Cand,
2352 GenericScheduler::CandReason Reason) {
2353 int TryRank = TryP.getPSetOrMax();
2354 int CandRank = CandP.getPSetOrMax();
2355 // If both candidates affect the same set, go with the smallest increase.
2356 if (TryRank == CandRank) {
2357 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2360 // If one candidate decreases and the other increases, go with it.
2361 // Invalid candidates have UnitInc==0.
2362 if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2366 // If the candidates are decreasing pressure, reverse priority.
2367 if (TryP.getUnitInc() < 0)
2368 std::swap(TryRank, CandRank);
2369 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2372 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2373 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2376 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2377 /// their physreg def/use.
2379 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2380 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2381 /// with the operation that produces or consumes the physreg. We'll do this when
2382 /// regalloc has support for parallel copies.
2383 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2384 const MachineInstr *MI = SU->getInstr();
2388 unsigned ScheduledOper = isTop ? 1 : 0;
2389 unsigned UnscheduledOper = isTop ? 0 : 1;
2390 // If we have already scheduled the physreg produce/consumer, immediately
2391 // schedule the copy.
2392 if (TargetRegisterInfo::isPhysicalRegister(
2393 MI->getOperand(ScheduledOper).getReg()))
2395 // If the physreg is at the boundary, defer it. Otherwise schedule it
2396 // immediately to free the dependent. We can hoist the copy later.
2397 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2398 if (TargetRegisterInfo::isPhysicalRegister(
2399 MI->getOperand(UnscheduledOper).getReg()))
2400 return AtBoundary ? -1 : 1;
2404 static bool tryLatency(GenericScheduler::SchedCandidate &TryCand,
2405 GenericScheduler::SchedCandidate &Cand,
2406 GenericScheduler::SchedBoundary &Zone) {
2408 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2409 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2410 TryCand, Cand, GenericScheduler::TopDepthReduce))
2413 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2414 TryCand, Cand, GenericScheduler::TopPathReduce))
2418 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2419 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2420 TryCand, Cand, GenericScheduler::BotHeightReduce))
2423 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2424 TryCand, Cand, GenericScheduler::BotPathReduce))
2430 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2431 /// hierarchical. This may be more efficient than a graduated cost model because
2432 /// we don't need to evaluate all aspects of the model for each node in the
2433 /// queue. But it's really done to make the heuristics easier to debug and
2434 /// statistically analyze.
2436 /// \param Cand provides the policy and current best candidate.
2437 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2438 /// \param Zone describes the scheduled zone that we are extending.
2439 /// \param RPTracker describes reg pressure within the scheduled zone.
2440 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
2441 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2442 SchedCandidate &TryCand,
2443 SchedBoundary &Zone,
2444 const RegPressureTracker &RPTracker,
2445 RegPressureTracker &TempTracker) {
2447 if (DAG->isTrackingPressure()) {
2448 // Always initialize TryCand's RPDelta.
2450 TempTracker.getMaxDownwardPressureDelta(
2451 TryCand.SU->getInstr(),
2453 DAG->getRegionCriticalPSets(),
2454 DAG->getRegPressure().MaxSetPressure);
2457 if (VerifyScheduling) {
2458 TempTracker.getMaxUpwardPressureDelta(
2459 TryCand.SU->getInstr(),
2460 &DAG->getPressureDiff(TryCand.SU),
2462 DAG->getRegionCriticalPSets(),
2463 DAG->getRegPressure().MaxSetPressure);
2466 RPTracker.getUpwardPressureDelta(
2467 TryCand.SU->getInstr(),
2468 DAG->getPressureDiff(TryCand.SU),
2470 DAG->getRegionCriticalPSets(),
2471 DAG->getRegPressure().MaxSetPressure);
2475 DEBUG(if (TryCand.RPDelta.Excess.isValid())
2476 dbgs() << " SU(" << TryCand.SU->NodeNum << ") "
2477 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2478 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2480 // Initialize the candidate if needed.
2481 if (!Cand.isValid()) {
2482 TryCand.Reason = NodeOrder;
2486 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2487 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2488 TryCand, Cand, PhysRegCopy))
2491 // Avoid exceeding the target's limit. If signed PSetID is negative, it is
2492 // invalid; convert it to INT_MAX to give it lowest priority.
2493 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2494 Cand.RPDelta.Excess,
2495 TryCand, Cand, RegExcess))
2498 // Avoid increasing the max critical pressure in the scheduled region.
2499 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2500 Cand.RPDelta.CriticalMax,
2501 TryCand, Cand, RegCritical))
2504 // For loops that are acyclic path limited, aggressively schedule for latency.
2505 // This can result in very long dependence chains scheduled in sequence, so
2506 // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2507 if (Rem.IsAcyclicLatencyLimited && !Zone.CurrMOps
2508 && tryLatency(TryCand, Cand, Zone))
2511 // Keep clustered nodes together to encourage downstream peephole
2512 // optimizations which may reduce resource requirements.
2514 // This is a best effort to set things up for a post-RA pass. Optimizations
2515 // like generating loads of multiple registers should ideally be done within
2516 // the scheduler pass by combining the loads during DAG postprocessing.
2517 const SUnit *NextClusterSU =
2518 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2519 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2520 TryCand, Cand, Cluster))
2523 // Weak edges are for clustering and other constraints.
2524 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2525 getWeakLeft(Cand.SU, Zone.isTop()),
2526 TryCand, Cand, Weak)) {
2529 // Avoid increasing the max pressure of the entire region.
2530 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2531 Cand.RPDelta.CurrentMax,
2532 TryCand, Cand, RegMax))
2535 // Avoid critical resource consumption and balance the schedule.
2536 TryCand.initResourceDelta(DAG, SchedModel);
2537 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2538 TryCand, Cand, ResourceReduce))
2540 if (tryGreater(TryCand.ResDelta.DemandedResources,
2541 Cand.ResDelta.DemandedResources,
2542 TryCand, Cand, ResourceDemand))
2545 // Avoid serializing long latency dependence chains.
2546 // For acyclic path limited loops, latency was already checked above.
2547 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
2548 && tryLatency(TryCand, Cand, Zone)) {
2552 // Prefer immediate defs/users of the last scheduled instruction. This is a
2553 // local pressure avoidance strategy that also makes the machine code
2555 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
2556 TryCand, Cand, NextDefUse))
2559 // Fall through to original instruction order.
2560 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2561 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2562 TryCand.Reason = NodeOrder;
2567 const char *GenericScheduler::getReasonStr(
2568 GenericScheduler::CandReason Reason) {
2570 case NoCand: return "NOCAND ";
2571 case PhysRegCopy: return "PREG-COPY";
2572 case RegExcess: return "REG-EXCESS";
2573 case RegCritical: return "REG-CRIT ";
2574 case Cluster: return "CLUSTER ";
2575 case Weak: return "WEAK ";
2576 case RegMax: return "REG-MAX ";
2577 case ResourceReduce: return "RES-REDUCE";
2578 case ResourceDemand: return "RES-DEMAND";
2579 case TopDepthReduce: return "TOP-DEPTH ";
2580 case TopPathReduce: return "TOP-PATH ";
2581 case BotHeightReduce:return "BOT-HEIGHT";
2582 case BotPathReduce: return "BOT-PATH ";
2583 case NextDefUse: return "DEF-USE ";
2584 case NodeOrder: return "ORDER ";
2586 llvm_unreachable("Unknown reason!");
2589 void GenericScheduler::traceCandidate(const SchedCandidate &Cand) {
2591 unsigned ResIdx = 0;
2592 unsigned Latency = 0;
2593 switch (Cand.Reason) {
2597 P = Cand.RPDelta.Excess;
2600 P = Cand.RPDelta.CriticalMax;
2603 P = Cand.RPDelta.CurrentMax;
2605 case ResourceReduce:
2606 ResIdx = Cand.Policy.ReduceResIdx;
2608 case ResourceDemand:
2609 ResIdx = Cand.Policy.DemandResIdx;
2611 case TopDepthReduce:
2612 Latency = Cand.SU->getDepth();
2615 Latency = Cand.SU->getHeight();
2617 case BotHeightReduce:
2618 Latency = Cand.SU->getHeight();
2621 Latency = Cand.SU->getDepth();
2624 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2626 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2627 << ":" << P.getUnitInc() << " ";
2631 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2635 dbgs() << " " << Latency << " cycles ";
2642 /// Pick the best candidate from the queue.
2644 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2645 /// DAG building. To adjust for the current scheduling location we need to
2646 /// maintain the number of vreg uses remaining to be top-scheduled.
2647 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2648 const RegPressureTracker &RPTracker,
2649 SchedCandidate &Cand) {
2650 ReadyQueue &Q = Zone.Available;
2654 // getMaxPressureDelta temporarily modifies the tracker.
2655 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2657 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2659 SchedCandidate TryCand(Cand.Policy);
2661 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2662 if (TryCand.Reason != NoCand) {
2663 // Initialize resource delta if needed in case future heuristics query it.
2664 if (TryCand.ResDelta == SchedResourceDelta())
2665 TryCand.initResourceDelta(DAG, SchedModel);
2666 Cand.setBest(TryCand);
2667 DEBUG(traceCandidate(Cand));
2672 static void tracePick(const GenericScheduler::SchedCandidate &Cand,
2674 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2675 << GenericScheduler::getReasonStr(Cand.Reason) << '\n');
2678 /// Pick the best candidate node from either the top or bottom queue.
2679 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2680 // Schedule as far as possible in the direction of no choice. This is most
2681 // efficient, but also provides the best heuristics for CriticalPSets.
2682 if (SUnit *SU = Bot.pickOnlyChoice()) {
2684 DEBUG(dbgs() << "Pick Bot NOCAND\n");
2687 if (SUnit *SU = Top.pickOnlyChoice()) {
2689 DEBUG(dbgs() << "Pick Top NOCAND\n");
2692 CandPolicy NoPolicy;
2693 SchedCandidate BotCand(NoPolicy);
2694 SchedCandidate TopCand(NoPolicy);
2695 Bot.setPolicy(BotCand.Policy, Top);
2696 Top.setPolicy(TopCand.Policy, Bot);
2698 // Prefer bottom scheduling when heuristics are silent.
2699 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2700 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2702 // If either Q has a single candidate that provides the least increase in
2703 // Excess pressure, we can immediately schedule from that Q.
2705 // RegionCriticalPSets summarizes the pressure within the scheduled region and
2706 // affects picking from either Q. If scheduling in one direction must
2707 // increase pressure for one of the excess PSets, then schedule in that
2708 // direction first to provide more freedom in the other direction.
2709 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2710 || (BotCand.Reason == RegCritical
2711 && !BotCand.isRepeat(RegCritical)))
2714 tracePick(BotCand, IsTopNode);
2717 // Check if the top Q has a better candidate.
2718 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2719 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2721 // Choose the queue with the most important (lowest enum) reason.
2722 if (TopCand.Reason < BotCand.Reason) {
2724 tracePick(TopCand, IsTopNode);
2727 // Otherwise prefer the bottom candidate, in node order if all else failed.
2729 tracePick(BotCand, IsTopNode);
2733 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2734 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2735 if (DAG->top() == DAG->bottom()) {
2736 assert(Top.Available.empty() && Top.Pending.empty() &&
2737 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2742 if (RegionPolicy.OnlyTopDown) {
2743 SU = Top.pickOnlyChoice();
2745 CandPolicy NoPolicy;
2746 SchedCandidate TopCand(NoPolicy);
2747 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2748 assert(TopCand.Reason != NoCand && "failed to find a candidate");
2749 tracePick(TopCand, true);
2754 else if (RegionPolicy.OnlyBottomUp) {
2755 SU = Bot.pickOnlyChoice();
2757 CandPolicy NoPolicy;
2758 SchedCandidate BotCand(NoPolicy);
2759 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2760 assert(BotCand.Reason != NoCand && "failed to find a candidate");
2761 tracePick(BotCand, false);
2767 SU = pickNodeBidirectional(IsTopNode);
2769 } while (SU->isScheduled);
2771 if (SU->isTopReady())
2772 Top.removeReady(SU);
2773 if (SU->isBottomReady())
2774 Bot.removeReady(SU);
2776 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2780 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2782 MachineBasicBlock::iterator InsertPos = SU->getInstr();
2785 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2787 // Find already scheduled copies with a single physreg dependence and move
2788 // them just above the scheduled instruction.
2789 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2791 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2793 SUnit *DepSU = I->getSUnit();
2794 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2796 MachineInstr *Copy = DepSU->getInstr();
2797 if (!Copy->isCopy())
2799 DEBUG(dbgs() << " Rescheduling physreg copy ";
2800 I->getSUnit()->dump(DAG));
2801 DAG->moveInstruction(Copy, InsertPos);
2805 /// Update the scheduler's state after scheduling a node. This is the same node
2806 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
2807 /// it's state based on the current cycle before MachineSchedStrategy does.
2809 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2810 /// them here. See comments in biasPhysRegCopy.
2811 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2813 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle);
2815 if (SU->hasPhysRegUses)
2816 reschedulePhysRegCopies(SU, true);
2819 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle);
2821 if (SU->hasPhysRegDefs)
2822 reschedulePhysRegCopies(SU, false);
2826 /// Create the standard converging machine scheduler. This will be used as the
2827 /// default scheduler if the target does not set a default.
2828 static ScheduleDAGInstrs *createGenericSched(MachineSchedContext *C) {
2829 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new GenericScheduler(C));
2830 // Register DAG post-processors.
2832 // FIXME: extend the mutation API to allow earlier mutations to instantiate
2833 // data and pass it to later mutations. Have a single mutation that gathers
2834 // the interesting nodes in one pass.
2835 DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
2836 if (EnableLoadCluster && DAG->TII->enableClusterLoads())
2837 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
2838 if (EnableMacroFusion)
2839 DAG->addMutation(new MacroFusion(DAG->TII));
2842 static MachineSchedRegistry
2843 GenericSchedRegistry("converge", "Standard converging scheduler.",
2844 createGenericSched);
2846 //===----------------------------------------------------------------------===//
2847 // ILP Scheduler. Currently for experimental analysis of heuristics.
2848 //===----------------------------------------------------------------------===//
2851 /// \brief Order nodes by the ILP metric.
2853 const SchedDFSResult *DFSResult;
2854 const BitVector *ScheduledTrees;
2857 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
2859 /// \brief Apply a less-than relation on node priority.
2861 /// (Return true if A comes after B in the Q.)
2862 bool operator()(const SUnit *A, const SUnit *B) const {
2863 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
2864 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
2865 if (SchedTreeA != SchedTreeB) {
2866 // Unscheduled trees have lower priority.
2867 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
2868 return ScheduledTrees->test(SchedTreeB);
2870 // Trees with shallower connections have have lower priority.
2871 if (DFSResult->getSubtreeLevel(SchedTreeA)
2872 != DFSResult->getSubtreeLevel(SchedTreeB)) {
2873 return DFSResult->getSubtreeLevel(SchedTreeA)
2874 < DFSResult->getSubtreeLevel(SchedTreeB);
2878 return DFSResult->getILP(A) < DFSResult->getILP(B);
2880 return DFSResult->getILP(A) > DFSResult->getILP(B);
2884 /// \brief Schedule based on the ILP metric.
2885 class ILPScheduler : public MachineSchedStrategy {
2889 std::vector<SUnit*> ReadyQ;
2891 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
2893 virtual void initialize(ScheduleDAGMI *dag) {
2895 DAG->computeDFSResult();
2896 Cmp.DFSResult = DAG->getDFSResult();
2897 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
2901 virtual void registerRoots() {
2902 // Restore the heap in ReadyQ with the updated DFS results.
2903 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2906 /// Implement MachineSchedStrategy interface.
2907 /// -----------------------------------------
2909 /// Callback to select the highest priority node from the ready Q.
2910 virtual SUnit *pickNode(bool &IsTopNode) {
2911 if (ReadyQ.empty()) return NULL;
2912 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2913 SUnit *SU = ReadyQ.back();
2916 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
2917 << " ILP: " << DAG->getDFSResult()->getILP(SU)
2918 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
2919 << DAG->getDFSResult()->getSubtreeLevel(
2920 DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
2921 << "Scheduling " << *SU->getInstr());
2925 /// \brief Scheduler callback to notify that a new subtree is scheduled.
2926 virtual void scheduleTree(unsigned SubtreeID) {
2927 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2930 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
2931 /// DFSResults, and resort the priority Q.
2932 virtual void schedNode(SUnit *SU, bool IsTopNode) {
2933 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
2936 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
2938 virtual void releaseBottomNode(SUnit *SU) {
2939 ReadyQ.push_back(SU);
2940 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2945 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
2946 return new ScheduleDAGMI(C, new ILPScheduler(true));
2948 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
2949 return new ScheduleDAGMI(C, new ILPScheduler(false));
2951 static MachineSchedRegistry ILPMaxRegistry(
2952 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
2953 static MachineSchedRegistry ILPMinRegistry(
2954 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
2956 //===----------------------------------------------------------------------===//
2957 // Machine Instruction Shuffler for Correctness Testing
2958 //===----------------------------------------------------------------------===//
2962 /// Apply a less-than relation on the node order, which corresponds to the
2963 /// instruction order prior to scheduling. IsReverse implements greater-than.
2964 template<bool IsReverse>
2966 bool operator()(SUnit *A, SUnit *B) const {
2968 return A->NodeNum > B->NodeNum;
2970 return A->NodeNum < B->NodeNum;
2974 /// Reorder instructions as much as possible.
2975 class InstructionShuffler : public MachineSchedStrategy {
2979 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
2980 // gives nodes with a higher number higher priority causing the latest
2981 // instructions to be scheduled first.
2982 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
2984 // When scheduling bottom-up, use greater-than as the queue priority.
2985 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
2988 InstructionShuffler(bool alternate, bool topdown)
2989 : IsAlternating(alternate), IsTopDown(topdown) {}
2991 virtual void initialize(ScheduleDAGMI *) {
2996 /// Implement MachineSchedStrategy interface.
2997 /// -----------------------------------------
2999 virtual SUnit *pickNode(bool &IsTopNode) {
3003 if (TopQ.empty()) return NULL;
3006 } while (SU->isScheduled);
3011 if (BottomQ.empty()) return NULL;
3014 } while (SU->isScheduled);
3018 IsTopDown = !IsTopDown;
3022 virtual void schedNode(SUnit *SU, bool IsTopNode) {}
3024 virtual void releaseTopNode(SUnit *SU) {
3027 virtual void releaseBottomNode(SUnit *SU) {
3033 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3034 bool Alternate = !ForceTopDown && !ForceBottomUp;
3035 bool TopDown = !ForceBottomUp;
3036 assert((TopDown || !ForceTopDown) &&
3037 "-misched-topdown incompatible with -misched-bottomup");
3038 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
3040 static MachineSchedRegistry ShufflerRegistry(
3041 "shuffle", "Shuffle machine instructions alternating directions",
3042 createInstructionShuffler);
3045 //===----------------------------------------------------------------------===//
3046 // GraphWriter support for ScheduleDAGMI.
3047 //===----------------------------------------------------------------------===//
3052 template<> struct GraphTraits<
3053 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3056 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3058 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3060 static std::string getGraphName(const ScheduleDAG *G) {
3061 return G->MF.getName();
3064 static bool renderGraphFromBottomUp() {
3068 static bool isNodeHidden(const SUnit *Node) {
3069 return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
3072 static bool hasNodeAddressLabel(const SUnit *Node,
3073 const ScheduleDAG *Graph) {
3077 /// If you want to override the dot attributes printed for a particular
3078 /// edge, override this method.
3079 static std::string getEdgeAttributes(const SUnit *Node,
3081 const ScheduleDAG *Graph) {
3082 if (EI.isArtificialDep())
3083 return "color=cyan,style=dashed";
3085 return "color=blue,style=dashed";
3089 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3091 raw_string_ostream SS(Str);
3092 const SchedDFSResult *DFS =
3093 static_cast<const ScheduleDAGMI*>(G)->getDFSResult();
3094 SS << "SU:" << SU->NodeNum;
3096 SS << " I:" << DFS->getNumInstrs(SU);
3099 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3100 return G->getGraphNodeLabel(SU);
3103 static std::string getNodeAttributes(const SUnit *N,
3104 const ScheduleDAG *Graph) {
3105 std::string Str("shape=Mrecord");
3106 const SchedDFSResult *DFS =
3107 static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
3109 Str += ",style=filled,fillcolor=\"#";
3110 Str += DOT::getColorString(DFS->getSubtreeID(N));
3119 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3120 /// rendered using 'dot'.
3122 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3124 ViewGraph(this, Name, false, Title);
3126 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3127 << "systems with Graphviz or gv!\n";
3131 /// Out-of-line implementation with no arguments is handy for gdb.
3132 void ScheduleDAGMI::viewGraph() {
3133 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());