1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/CodeGen/MachineScheduler.h"
16 #include "llvm/ADT/PriorityQueue.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineLoopInfo.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/RegisterClassInfo.h"
24 #include "llvm/CodeGen/ScheduleDFS.h"
25 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/GraphWriter.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
36 #define DEBUG_TYPE "misched"
39 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
40 cl::desc("Force top-down list scheduling"));
41 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
42 cl::desc("Force bottom-up list scheduling"));
44 DumpCriticalPathLength("misched-dcpl", cl::Hidden,
45 cl::desc("Print critical path length to stdout"));
49 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
50 cl::desc("Pop up a window to show MISched dags after they are processed"));
52 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
53 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
55 static cl::opt<std::string> SchedOnlyFunc("misched-only-func", cl::Hidden,
56 cl::desc("Only schedule this function"));
57 static cl::opt<unsigned> SchedOnlyBlock("misched-only-block", cl::Hidden,
58 cl::desc("Only schedule this MBB#"));
60 static bool ViewMISchedDAGs = false;
63 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
64 cl::desc("Enable register pressure scheduling."), cl::init(true));
66 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
67 cl::desc("Enable cyclic critical path analysis."), cl::init(true));
69 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
70 cl::desc("Enable load clustering."), cl::init(true));
72 // Experimental heuristics
73 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
74 cl::desc("Enable scheduling for macro fusion."), cl::init(true));
76 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
77 cl::desc("Verify machine instrs before and after machine scheduling"));
79 // DAG subtrees must have at least this many nodes.
80 static const unsigned MinSubtreeSize = 8;
82 // Pin the vtables to this file.
83 void MachineSchedStrategy::anchor() {}
84 void ScheduleDAGMutation::anchor() {}
86 //===----------------------------------------------------------------------===//
87 // Machine Instruction Scheduling Pass and Registry
88 //===----------------------------------------------------------------------===//
90 MachineSchedContext::MachineSchedContext():
91 MF(nullptr), MLI(nullptr), MDT(nullptr), PassConfig(nullptr), AA(nullptr), LIS(nullptr) {
92 RegClassInfo = new RegisterClassInfo();
95 MachineSchedContext::~MachineSchedContext() {
100 /// Base class for a machine scheduler class that can run at any point.
101 class MachineSchedulerBase : public MachineSchedContext,
102 public MachineFunctionPass {
104 MachineSchedulerBase(char &ID): MachineFunctionPass(ID) {}
106 void print(raw_ostream &O, const Module* = nullptr) const override;
109 void scheduleRegions(ScheduleDAGInstrs &Scheduler);
112 /// MachineScheduler runs after coalescing and before register allocation.
113 class MachineScheduler : public MachineSchedulerBase {
117 void getAnalysisUsage(AnalysisUsage &AU) const override;
119 bool runOnMachineFunction(MachineFunction&) override;
121 static char ID; // Class identification, replacement for typeinfo
124 ScheduleDAGInstrs *createMachineScheduler();
127 /// PostMachineScheduler runs after shortly before code emission.
128 class PostMachineScheduler : public MachineSchedulerBase {
130 PostMachineScheduler();
132 void getAnalysisUsage(AnalysisUsage &AU) const override;
134 bool runOnMachineFunction(MachineFunction&) override;
136 static char ID; // Class identification, replacement for typeinfo
139 ScheduleDAGInstrs *createPostMachineScheduler();
143 char MachineScheduler::ID = 0;
145 char &llvm::MachineSchedulerID = MachineScheduler::ID;
147 INITIALIZE_PASS_BEGIN(MachineScheduler, "machine-scheduler",
148 "Machine Instruction Scheduler", false, false)
149 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
150 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
151 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
152 INITIALIZE_PASS_END(MachineScheduler, "machine-scheduler",
153 "Machine Instruction Scheduler", false, false)
155 MachineScheduler::MachineScheduler()
156 : MachineSchedulerBase(ID) {
157 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
160 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
161 AU.setPreservesCFG();
162 AU.addRequiredID(MachineDominatorsID);
163 AU.addRequired<MachineLoopInfo>();
164 AU.addRequired<AliasAnalysis>();
165 AU.addRequired<TargetPassConfig>();
166 AU.addRequired<SlotIndexes>();
167 AU.addPreserved<SlotIndexes>();
168 AU.addRequired<LiveIntervals>();
169 AU.addPreserved<LiveIntervals>();
170 MachineFunctionPass::getAnalysisUsage(AU);
173 char PostMachineScheduler::ID = 0;
175 char &llvm::PostMachineSchedulerID = PostMachineScheduler::ID;
177 INITIALIZE_PASS(PostMachineScheduler, "postmisched",
178 "PostRA Machine Instruction Scheduler", false, false)
180 PostMachineScheduler::PostMachineScheduler()
181 : MachineSchedulerBase(ID) {
182 initializePostMachineSchedulerPass(*PassRegistry::getPassRegistry());
185 void PostMachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
186 AU.setPreservesCFG();
187 AU.addRequiredID(MachineDominatorsID);
188 AU.addRequired<MachineLoopInfo>();
189 AU.addRequired<TargetPassConfig>();
190 MachineFunctionPass::getAnalysisUsage(AU);
193 MachinePassRegistry MachineSchedRegistry::Registry;
195 /// A dummy default scheduler factory indicates whether the scheduler
196 /// is overridden on the command line.
197 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
201 /// MachineSchedOpt allows command line selection of the scheduler.
202 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
203 RegisterPassParser<MachineSchedRegistry> >
204 MachineSchedOpt("misched",
205 cl::init(&useDefaultMachineSched), cl::Hidden,
206 cl::desc("Machine instruction scheduler to use"));
208 static MachineSchedRegistry
209 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
210 useDefaultMachineSched);
212 static cl::opt<bool> EnableMachineSched(
214 cl::desc("Enable the machine instruction scheduling pass."), cl::init(true),
217 /// Forward declare the standard machine scheduler. This will be used as the
218 /// default scheduler if the target does not set a default.
219 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C);
220 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C);
222 /// Decrement this iterator until reaching the top or a non-debug instr.
223 static MachineBasicBlock::const_iterator
224 priorNonDebug(MachineBasicBlock::const_iterator I,
225 MachineBasicBlock::const_iterator Beg) {
226 assert(I != Beg && "reached the top of the region, cannot decrement");
228 if (!I->isDebugValue())
234 /// Non-const version.
235 static MachineBasicBlock::iterator
236 priorNonDebug(MachineBasicBlock::iterator I,
237 MachineBasicBlock::const_iterator Beg) {
238 return const_cast<MachineInstr*>(
239 &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
242 /// If this iterator is a debug value, increment until reaching the End or a
243 /// non-debug instruction.
244 static MachineBasicBlock::const_iterator
245 nextIfDebug(MachineBasicBlock::const_iterator I,
246 MachineBasicBlock::const_iterator End) {
247 for(; I != End; ++I) {
248 if (!I->isDebugValue())
254 /// Non-const version.
255 static MachineBasicBlock::iterator
256 nextIfDebug(MachineBasicBlock::iterator I,
257 MachineBasicBlock::const_iterator End) {
258 // Cast the return value to nonconst MachineInstr, then cast to an
259 // instr_iterator, which does not check for null, finally return a
261 return MachineBasicBlock::instr_iterator(
262 const_cast<MachineInstr*>(
263 &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
266 /// Instantiate a ScheduleDAGInstrs that will be owned by the caller.
267 ScheduleDAGInstrs *MachineScheduler::createMachineScheduler() {
268 // Select the scheduler, or set the default.
269 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
270 if (Ctor != useDefaultMachineSched)
273 // Get the default scheduler set by the target for this function.
274 ScheduleDAGInstrs *Scheduler = PassConfig->createMachineScheduler(this);
278 // Default to GenericScheduler.
279 return createGenericSchedLive(this);
282 /// Instantiate a ScheduleDAGInstrs for PostRA scheduling that will be owned by
283 /// the caller. We don't have a command line option to override the postRA
284 /// scheduler. The Target must configure it.
285 ScheduleDAGInstrs *PostMachineScheduler::createPostMachineScheduler() {
286 // Get the postRA scheduler set by the target for this function.
287 ScheduleDAGInstrs *Scheduler = PassConfig->createPostMachineScheduler(this);
291 // Default to GenericScheduler.
292 return createGenericSchedPostRA(this);
295 /// Top-level MachineScheduler pass driver.
297 /// Visit blocks in function order. Divide each block into scheduling regions
298 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
299 /// consistent with the DAG builder, which traverses the interior of the
300 /// scheduling regions bottom-up.
302 /// This design avoids exposing scheduling boundaries to the DAG builder,
303 /// simplifying the DAG builder's support for "special" target instructions.
304 /// At the same time the design allows target schedulers to operate across
305 /// scheduling boundaries, for example to bundle the boudary instructions
306 /// without reordering them. This creates complexity, because the target
307 /// scheduler must update the RegionBegin and RegionEnd positions cached by
308 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
309 /// design would be to split blocks at scheduling boundaries, but LLVM has a
310 /// general bias against block splitting purely for implementation simplicity.
311 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
312 if (EnableMachineSched.getNumOccurrences()) {
313 if (!EnableMachineSched)
315 } else if (!mf.getSubtarget().enableMachineScheduler())
318 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
320 // Initialize the context of the pass.
322 MLI = &getAnalysis<MachineLoopInfo>();
323 MDT = &getAnalysis<MachineDominatorTree>();
324 PassConfig = &getAnalysis<TargetPassConfig>();
325 AA = &getAnalysis<AliasAnalysis>();
327 LIS = &getAnalysis<LiveIntervals>();
329 if (VerifyScheduling) {
331 MF->verify(this, "Before machine scheduling.");
333 RegClassInfo->runOnMachineFunction(*MF);
335 // Instantiate the selected scheduler for this target, function, and
336 // optimization level.
337 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createMachineScheduler());
338 scheduleRegions(*Scheduler);
341 if (VerifyScheduling)
342 MF->verify(this, "After machine scheduling.");
346 bool PostMachineScheduler::runOnMachineFunction(MachineFunction &mf) {
347 if (skipOptnoneFunction(*mf.getFunction()))
350 if (!mf.getSubtarget().enablePostRAScheduler()) {
351 DEBUG(dbgs() << "Subtarget disables post-MI-sched.\n");
354 DEBUG(dbgs() << "Before post-MI-sched:\n"; mf.print(dbgs()));
356 // Initialize the context of the pass.
358 PassConfig = &getAnalysis<TargetPassConfig>();
360 if (VerifyScheduling)
361 MF->verify(this, "Before post machine scheduling.");
363 // Instantiate the selected scheduler for this target, function, and
364 // optimization level.
365 std::unique_ptr<ScheduleDAGInstrs> Scheduler(createPostMachineScheduler());
366 scheduleRegions(*Scheduler);
368 if (VerifyScheduling)
369 MF->verify(this, "After post machine scheduling.");
373 /// Return true of the given instruction should not be included in a scheduling
376 /// MachineScheduler does not currently support scheduling across calls. To
377 /// handle calls, the DAG builder needs to be modified to create register
378 /// anti/output dependencies on the registers clobbered by the call's regmask
379 /// operand. In PreRA scheduling, the stack pointer adjustment already prevents
380 /// scheduling across calls. In PostRA scheduling, we need the isCall to enforce
381 /// the boundary, but there would be no benefit to postRA scheduling across
382 /// calls this late anyway.
383 static bool isSchedBoundary(MachineBasicBlock::iterator MI,
384 MachineBasicBlock *MBB,
386 const TargetInstrInfo *TII,
388 return MI->isCall() || TII->isSchedulingBoundary(MI, MBB, *MF);
391 /// Main driver for both MachineScheduler and PostMachineScheduler.
392 void MachineSchedulerBase::scheduleRegions(ScheduleDAGInstrs &Scheduler) {
393 const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
394 bool IsPostRA = Scheduler.isPostRA();
396 // Visit all machine basic blocks.
398 // TODO: Visit blocks in global postorder or postorder within the bottom-up
399 // loop tree. Then we can optionally compute global RegPressure.
400 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
401 MBB != MBBEnd; ++MBB) {
403 Scheduler.startBlock(MBB);
406 if (SchedOnlyFunc.getNumOccurrences() && SchedOnlyFunc != MF->getName())
408 if (SchedOnlyBlock.getNumOccurrences()
409 && (int)SchedOnlyBlock != MBB->getNumber())
413 // Break the block into scheduling regions [I, RegionEnd), and schedule each
414 // region as soon as it is discovered. RegionEnd points the scheduling
415 // boundary at the bottom of the region. The DAG does not include RegionEnd,
416 // but the region does (i.e. the next RegionEnd is above the previous
417 // RegionBegin). If the current block has no terminator then RegionEnd ==
418 // MBB->end() for the bottom region.
420 // The Scheduler may insert instructions during either schedule() or
421 // exitRegion(), even for empty regions. So the local iterators 'I' and
422 // 'RegionEnd' are invalid across these calls.
424 // MBB::size() uses instr_iterator to count. Here we need a bundle to count
425 // as a single instruction.
426 unsigned RemainingInstrs = std::distance(MBB->begin(), MBB->end());
427 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
428 RegionEnd != MBB->begin(); RegionEnd = Scheduler.begin()) {
430 // Avoid decrementing RegionEnd for blocks with no terminator.
431 if (RegionEnd != MBB->end() ||
432 isSchedBoundary(std::prev(RegionEnd), MBB, MF, TII, IsPostRA)) {
434 // Count the boundary instruction.
438 // The next region starts above the previous region. Look backward in the
439 // instruction stream until we find the nearest boundary.
440 unsigned NumRegionInstrs = 0;
441 MachineBasicBlock::iterator I = RegionEnd;
442 for(;I != MBB->begin(); --I, --RemainingInstrs) {
443 if (isSchedBoundary(std::prev(I), MBB, MF, TII, IsPostRA))
445 if (!I->isDebugValue())
448 // Notify the scheduler of the region, even if we may skip scheduling
449 // it. Perhaps it still needs to be bundled.
450 Scheduler.enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
452 // Skip empty scheduling regions (0 or 1 schedulable instructions).
453 if (I == RegionEnd || I == std::prev(RegionEnd)) {
454 // Close the current region. Bundle the terminator if needed.
455 // This invalidates 'RegionEnd' and 'I'.
456 Scheduler.exitRegion();
459 DEBUG(dbgs() << "********** " << ((Scheduler.isPostRA()) ? "PostRA " : "")
460 << "MI Scheduling **********\n");
461 DEBUG(dbgs() << MF->getName()
462 << ":BB#" << MBB->getNumber() << " " << MBB->getName()
463 << "\n From: " << *I << " To: ";
464 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
465 else dbgs() << "End";
466 dbgs() << " RegionInstrs: " << NumRegionInstrs
467 << " Remaining: " << RemainingInstrs << "\n");
468 if (DumpCriticalPathLength) {
469 errs() << MF->getName();
470 errs() << ":BB# " << MBB->getNumber();
471 errs() << " " << MBB->getName() << " \n";
474 // Schedule a region: possibly reorder instructions.
475 // This invalidates 'RegionEnd' and 'I'.
476 Scheduler.schedule();
478 // Close the current region.
479 Scheduler.exitRegion();
481 // Scheduling has invalidated the current iterator 'I'. Ask the
482 // scheduler for the top of it's scheduled region.
483 RegionEnd = Scheduler.begin();
485 assert(RemainingInstrs == 0 && "Instruction count mismatch!");
486 Scheduler.finishBlock();
487 if (Scheduler.isPostRA()) {
488 // FIXME: Ideally, no further passes should rely on kill flags. However,
489 // thumb2 size reduction is currently an exception.
490 Scheduler.fixupKills(MBB);
493 Scheduler.finalizeSchedule();
496 void MachineSchedulerBase::print(raw_ostream &O, const Module* m) const {
501 void ReadyQueue::dump() {
502 dbgs() << Name << ": ";
503 for (unsigned i = 0, e = Queue.size(); i < e; ++i)
504 dbgs() << Queue[i]->NodeNum << " ";
508 //===----------------------------------------------------------------------===//
509 // ScheduleDAGMI - Basic machine instruction scheduling. This is
510 // independent of PreRA/PostRA scheduling and involves no extra book-keeping for
511 // virtual registers.
512 // ===----------------------------------------------------------------------===/
514 // Provide a vtable anchor.
515 ScheduleDAGMI::~ScheduleDAGMI() {
518 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
519 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
522 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
523 if (SuccSU != &ExitSU) {
524 // Do not use WillCreateCycle, it assumes SD scheduling.
525 // If Pred is reachable from Succ, then the edge creates a cycle.
526 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
528 Topo.AddPred(SuccSU, PredDep.getSUnit());
530 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
531 // Return true regardless of whether a new edge needed to be inserted.
535 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
536 /// NumPredsLeft reaches zero, release the successor node.
538 /// FIXME: Adjust SuccSU height based on MinLatency.
539 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
540 SUnit *SuccSU = SuccEdge->getSUnit();
542 if (SuccEdge->isWeak()) {
543 --SuccSU->WeakPredsLeft;
544 if (SuccEdge->isCluster())
545 NextClusterSucc = SuccSU;
549 if (SuccSU->NumPredsLeft == 0) {
550 dbgs() << "*** Scheduling failed! ***\n";
552 dbgs() << " has been released too many times!\n";
553 llvm_unreachable(nullptr);
556 // SU->TopReadyCycle was set to CurrCycle when it was scheduled. However,
557 // CurrCycle may have advanced since then.
558 if (SuccSU->TopReadyCycle < SU->TopReadyCycle + SuccEdge->getLatency())
559 SuccSU->TopReadyCycle = SU->TopReadyCycle + SuccEdge->getLatency();
561 --SuccSU->NumPredsLeft;
562 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
563 SchedImpl->releaseTopNode(SuccSU);
566 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
567 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
568 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
570 releaseSucc(SU, &*I);
574 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
575 /// NumSuccsLeft reaches zero, release the predecessor node.
577 /// FIXME: Adjust PredSU height based on MinLatency.
578 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
579 SUnit *PredSU = PredEdge->getSUnit();
581 if (PredEdge->isWeak()) {
582 --PredSU->WeakSuccsLeft;
583 if (PredEdge->isCluster())
584 NextClusterPred = PredSU;
588 if (PredSU->NumSuccsLeft == 0) {
589 dbgs() << "*** Scheduling failed! ***\n";
591 dbgs() << " has been released too many times!\n";
592 llvm_unreachable(nullptr);
595 // SU->BotReadyCycle was set to CurrCycle when it was scheduled. However,
596 // CurrCycle may have advanced since then.
597 if (PredSU->BotReadyCycle < SU->BotReadyCycle + PredEdge->getLatency())
598 PredSU->BotReadyCycle = SU->BotReadyCycle + PredEdge->getLatency();
600 --PredSU->NumSuccsLeft;
601 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
602 SchedImpl->releaseBottomNode(PredSU);
605 /// releasePredecessors - Call releasePred on each of SU's predecessors.
606 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
607 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
609 releasePred(SU, &*I);
613 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
614 /// crossing a scheduling boundary. [begin, end) includes all instructions in
615 /// the region, including the boundary itself and single-instruction regions
616 /// that don't get scheduled.
617 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
618 MachineBasicBlock::iterator begin,
619 MachineBasicBlock::iterator end,
620 unsigned regioninstrs)
622 ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
624 SchedImpl->initPolicy(begin, end, regioninstrs);
627 /// This is normally called from the main scheduler loop but may also be invoked
628 /// by the scheduling strategy to perform additional code motion.
629 void ScheduleDAGMI::moveInstruction(
630 MachineInstr *MI, MachineBasicBlock::iterator InsertPos) {
631 // Advance RegionBegin if the first instruction moves down.
632 if (&*RegionBegin == MI)
635 // Update the instruction stream.
636 BB->splice(InsertPos, BB, MI);
638 // Update LiveIntervals
640 LIS->handleMove(MI, /*UpdateFlags=*/true);
642 // Recede RegionBegin if an instruction moves above the first.
643 if (RegionBegin == InsertPos)
647 bool ScheduleDAGMI::checkSchedLimit() {
649 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
650 CurrentTop = CurrentBottom;
653 ++NumInstrsScheduled;
658 /// Per-region scheduling driver, called back from
659 /// MachineScheduler::runOnMachineFunction. This is a simplified driver that
660 /// does not consider liveness or register pressure. It is useful for PostRA
661 /// scheduling and potentially other custom schedulers.
662 void ScheduleDAGMI::schedule() {
666 Topo.InitDAGTopologicalSorting();
670 SmallVector<SUnit*, 8> TopRoots, BotRoots;
671 findRootsAndBiasEdges(TopRoots, BotRoots);
673 // Initialize the strategy before modifying the DAG.
674 // This may initialize a DFSResult to be used for queue priority.
675 SchedImpl->initialize(this);
677 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
678 SUnits[su].dumpAll(this));
679 if (ViewMISchedDAGs) viewGraph();
681 // Initialize ready queues now that the DAG and priority data are finalized.
682 initQueues(TopRoots, BotRoots);
684 bool IsTopNode = false;
685 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
686 assert(!SU->isScheduled && "Node already scheduled");
687 if (!checkSchedLimit())
690 MachineInstr *MI = SU->getInstr();
692 assert(SU->isTopReady() && "node still has unscheduled dependencies");
693 if (&*CurrentTop == MI)
694 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
696 moveInstruction(MI, CurrentTop);
699 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
700 MachineBasicBlock::iterator priorII =
701 priorNonDebug(CurrentBottom, CurrentTop);
703 CurrentBottom = priorII;
705 if (&*CurrentTop == MI)
706 CurrentTop = nextIfDebug(++CurrentTop, priorII);
707 moveInstruction(MI, CurrentBottom);
711 // Notify the scheduling strategy before updating the DAG.
712 // This sets the scheduled node's ReadyCycle to CurrCycle. When updateQueues
713 // runs, it can then use the accurate ReadyCycle time to determine whether
714 // newly released nodes can move to the readyQ.
715 SchedImpl->schedNode(SU, IsTopNode);
717 updateQueues(SU, IsTopNode);
719 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
724 unsigned BBNum = begin()->getParent()->getNumber();
725 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
731 /// Apply each ScheduleDAGMutation step in order.
732 void ScheduleDAGMI::postprocessDAG() {
733 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
734 Mutations[i]->apply(this);
739 findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
740 SmallVectorImpl<SUnit*> &BotRoots) {
741 for (std::vector<SUnit>::iterator
742 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
744 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
746 // Order predecessors so DFSResult follows the critical path.
747 SU->biasCriticalPath();
749 // A SUnit is ready to top schedule if it has no predecessors.
750 if (!I->NumPredsLeft)
751 TopRoots.push_back(SU);
752 // A SUnit is ready to bottom schedule if it has no successors.
753 if (!I->NumSuccsLeft)
754 BotRoots.push_back(SU);
756 ExitSU.biasCriticalPath();
759 /// Identify DAG roots and setup scheduler queues.
760 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
761 ArrayRef<SUnit*> BotRoots) {
762 NextClusterSucc = nullptr;
763 NextClusterPred = nullptr;
765 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
767 // Nodes with unreleased weak edges can still be roots.
768 // Release top roots in forward order.
769 for (SmallVectorImpl<SUnit*>::const_iterator
770 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
771 SchedImpl->releaseTopNode(*I);
773 // Release bottom roots in reverse order so the higher priority nodes appear
774 // first. This is more natural and slightly more efficient.
775 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
776 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
777 SchedImpl->releaseBottomNode(*I);
780 releaseSuccessors(&EntrySU);
781 releasePredecessors(&ExitSU);
783 SchedImpl->registerRoots();
785 // Advance past initial DebugValues.
786 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
787 CurrentBottom = RegionEnd;
790 /// Update scheduler queues after scheduling an instruction.
791 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
792 // Release dependent instructions for scheduling.
794 releaseSuccessors(SU);
796 releasePredecessors(SU);
798 SU->isScheduled = true;
801 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
802 void ScheduleDAGMI::placeDebugValues() {
803 // If first instruction was a DBG_VALUE then put it back.
805 BB->splice(RegionBegin, BB, FirstDbgValue);
806 RegionBegin = FirstDbgValue;
809 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
810 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
811 std::pair<MachineInstr *, MachineInstr *> P = *std::prev(DI);
812 MachineInstr *DbgValue = P.first;
813 MachineBasicBlock::iterator OrigPrevMI = P.second;
814 if (&*RegionBegin == DbgValue)
816 BB->splice(++OrigPrevMI, BB, DbgValue);
817 if (OrigPrevMI == std::prev(RegionEnd))
818 RegionEnd = DbgValue;
821 FirstDbgValue = nullptr;
824 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
825 void ScheduleDAGMI::dumpSchedule() const {
826 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
827 if (SUnit *SU = getSUnit(&(*MI)))
830 dbgs() << "Missing SUnit\n";
835 //===----------------------------------------------------------------------===//
836 // ScheduleDAGMILive - Base class for MachineInstr scheduling with LiveIntervals
838 //===----------------------------------------------------------------------===//
840 ScheduleDAGMILive::~ScheduleDAGMILive() {
844 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
845 /// crossing a scheduling boundary. [begin, end) includes all instructions in
846 /// the region, including the boundary itself and single-instruction regions
847 /// that don't get scheduled.
848 void ScheduleDAGMILive::enterRegion(MachineBasicBlock *bb,
849 MachineBasicBlock::iterator begin,
850 MachineBasicBlock::iterator end,
851 unsigned regioninstrs)
853 // ScheduleDAGMI initializes SchedImpl's per-region policy.
854 ScheduleDAGMI::enterRegion(bb, begin, end, regioninstrs);
856 // For convenience remember the end of the liveness region.
857 LiveRegionEnd = (RegionEnd == bb->end()) ? RegionEnd : std::next(RegionEnd);
859 SUPressureDiffs.clear();
861 ShouldTrackPressure = SchedImpl->shouldTrackPressure();
864 // Setup the register pressure trackers for the top scheduled top and bottom
865 // scheduled regions.
866 void ScheduleDAGMILive::initRegPressure() {
867 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
868 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
870 // Close the RPTracker to finalize live ins.
871 RPTracker.closeRegion();
873 DEBUG(RPTracker.dump());
875 // Initialize the live ins and live outs.
876 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
877 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
879 // Close one end of the tracker so we can call
880 // getMaxUpward/DownwardPressureDelta before advancing across any
881 // instructions. This converts currently live regs into live ins/outs.
882 TopRPTracker.closeTop();
883 BotRPTracker.closeBottom();
885 BotRPTracker.initLiveThru(RPTracker);
886 if (!BotRPTracker.getLiveThru().empty()) {
887 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
888 DEBUG(dbgs() << "Live Thru: ";
889 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
892 // For each live out vreg reduce the pressure change associated with other
893 // uses of the same vreg below the live-out reaching def.
894 updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
896 // Account for liveness generated by the region boundary.
897 if (LiveRegionEnd != RegionEnd) {
898 SmallVector<unsigned, 8> LiveUses;
899 BotRPTracker.recede(&LiveUses);
900 updatePressureDiffs(LiveUses);
903 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
905 // Cache the list of excess pressure sets in this region. This will also track
906 // the max pressure in the scheduled code for these sets.
907 RegionCriticalPSets.clear();
908 const std::vector<unsigned> &RegionPressure =
909 RPTracker.getPressure().MaxSetPressure;
910 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
911 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
912 if (RegionPressure[i] > Limit) {
913 DEBUG(dbgs() << TRI->getRegPressureSetName(i)
914 << " Limit " << Limit
915 << " Actual " << RegionPressure[i] << "\n");
916 RegionCriticalPSets.push_back(PressureChange(i));
919 DEBUG(dbgs() << "Excess PSets: ";
920 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
921 dbgs() << TRI->getRegPressureSetName(
922 RegionCriticalPSets[i].getPSet()) << " ";
926 void ScheduleDAGMILive::
927 updateScheduledPressure(const SUnit *SU,
928 const std::vector<unsigned> &NewMaxPressure) {
929 const PressureDiff &PDiff = getPressureDiff(SU);
930 unsigned CritIdx = 0, CritEnd = RegionCriticalPSets.size();
931 for (PressureDiff::const_iterator I = PDiff.begin(), E = PDiff.end();
935 unsigned ID = I->getPSet();
936 while (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() < ID)
938 if (CritIdx != CritEnd && RegionCriticalPSets[CritIdx].getPSet() == ID) {
939 if ((int)NewMaxPressure[ID] > RegionCriticalPSets[CritIdx].getUnitInc()
940 && NewMaxPressure[ID] <= INT16_MAX)
941 RegionCriticalPSets[CritIdx].setUnitInc(NewMaxPressure[ID]);
943 unsigned Limit = RegClassInfo->getRegPressureSetLimit(ID);
944 if (NewMaxPressure[ID] >= Limit - 2) {
945 DEBUG(dbgs() << " " << TRI->getRegPressureSetName(ID) << ": "
946 << NewMaxPressure[ID]
947 << ((NewMaxPressure[ID] > Limit) ? " > " : " <= ") << Limit
948 << "(+ " << BotRPTracker.getLiveThru()[ID] << " livethru)\n");
953 /// Update the PressureDiff array for liveness after scheduling this
955 void ScheduleDAGMILive::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
956 for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
957 /// FIXME: Currently assuming single-use physregs.
958 unsigned Reg = LiveUses[LUIdx];
959 DEBUG(dbgs() << " LiveReg: " << PrintVRegOrUnit(Reg, TRI) << "\n");
960 if (!TRI->isVirtualRegister(Reg))
963 // This may be called before CurrentBottom has been initialized. However,
964 // BotRPTracker must have a valid position. We want the value live into the
965 // instruction or live out of the block, so ask for the previous
966 // instruction's live-out.
967 const LiveInterval &LI = LIS->getInterval(Reg);
969 MachineBasicBlock::const_iterator I =
970 nextIfDebug(BotRPTracker.getPos(), BB->end());
972 VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
974 LiveQueryResult LRQ = LI.Query(LIS->getInstructionIndex(I));
977 // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
978 assert(VNI && "No live value at use.");
979 for (VReg2UseMap::iterator
980 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
982 DEBUG(dbgs() << " UpdateRegP: SU(" << SU->NodeNum << ") "
984 // If this use comes before the reaching def, it cannot be a last use, so
985 // descrease its pressure change.
986 if (!SU->isScheduled && SU != &ExitSU) {
988 = LI.Query(LIS->getInstructionIndex(SU->getInstr()));
989 if (LRQ.valueIn() == VNI)
990 getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
996 /// schedule - Called back from MachineScheduler::runOnMachineFunction
997 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
998 /// only includes instructions that have DAG nodes, not scheduling boundaries.
1000 /// This is a skeletal driver, with all the functionality pushed into helpers,
1001 /// so that it can be easilly extended by experimental schedulers. Generally,
1002 /// implementing MachineSchedStrategy should be sufficient to implement a new
1003 /// scheduling algorithm. However, if a scheduler further subclasses
1004 /// ScheduleDAGMILive then it will want to override this virtual method in order
1005 /// to update any specialized state.
1006 void ScheduleDAGMILive::schedule() {
1007 buildDAGWithRegPressure();
1009 Topo.InitDAGTopologicalSorting();
1013 SmallVector<SUnit*, 8> TopRoots, BotRoots;
1014 findRootsAndBiasEdges(TopRoots, BotRoots);
1016 // Initialize the strategy before modifying the DAG.
1017 // This may initialize a DFSResult to be used for queue priority.
1018 SchedImpl->initialize(this);
1020 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
1021 SUnits[su].dumpAll(this));
1022 if (ViewMISchedDAGs) viewGraph();
1024 // Initialize ready queues now that the DAG and priority data are finalized.
1025 initQueues(TopRoots, BotRoots);
1027 if (ShouldTrackPressure) {
1028 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
1029 TopRPTracker.setPos(CurrentTop);
1032 bool IsTopNode = false;
1033 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
1034 assert(!SU->isScheduled && "Node already scheduled");
1035 if (!checkSchedLimit())
1038 scheduleMI(SU, IsTopNode);
1041 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
1042 if (!ScheduledTrees.test(SubtreeID)) {
1043 ScheduledTrees.set(SubtreeID);
1044 DFSResult->scheduleTree(SubtreeID);
1045 SchedImpl->scheduleTree(SubtreeID);
1049 // Notify the scheduling strategy after updating the DAG.
1050 SchedImpl->schedNode(SU, IsTopNode);
1052 updateQueues(SU, IsTopNode);
1054 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
1059 unsigned BBNum = begin()->getParent()->getNumber();
1060 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
1066 /// Build the DAG and setup three register pressure trackers.
1067 void ScheduleDAGMILive::buildDAGWithRegPressure() {
1068 if (!ShouldTrackPressure) {
1070 RegionCriticalPSets.clear();
1071 buildSchedGraph(AA);
1075 // Initialize the register pressure tracker used by buildSchedGraph.
1076 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
1077 /*TrackUntiedDefs=*/true);
1079 // Account for liveness generate by the region boundary.
1080 if (LiveRegionEnd != RegionEnd)
1083 // Build the DAG, and compute current register pressure.
1084 buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
1086 // Initialize top/bottom trackers after computing region pressure.
1090 void ScheduleDAGMILive::computeDFSResult() {
1092 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
1094 ScheduledTrees.clear();
1095 DFSResult->resize(SUnits.size());
1096 DFSResult->compute(SUnits);
1097 ScheduledTrees.resize(DFSResult->getNumSubtrees());
1100 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
1101 /// only provides the critical path for single block loops. To handle loops that
1102 /// span blocks, we could use the vreg path latencies provided by
1103 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
1104 /// available for use in the scheduler.
1106 /// The cyclic path estimation identifies a def-use pair that crosses the back
1107 /// edge and considers the depth and height of the nodes. For example, consider
1108 /// the following instruction sequence where each instruction has unit latency
1109 /// and defines an epomymous virtual register:
1111 /// a->b(a,c)->c(b)->d(c)->exit
1113 /// The cyclic critical path is a two cycles: b->c->b
1114 /// The acyclic critical path is four cycles: a->b->c->d->exit
1115 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
1116 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
1117 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
1118 /// LiveInDepth = depth(b) = len(a->b) = 1
1120 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
1121 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
1122 /// CyclicCriticalPath = min(2, 2) = 2
1124 /// This could be relevant to PostRA scheduling, but is currently implemented
1125 /// assuming LiveIntervals.
1126 unsigned ScheduleDAGMILive::computeCyclicCriticalPath() {
1127 // This only applies to single block loop.
1128 if (!BB->isSuccessor(BB))
1131 unsigned MaxCyclicLatency = 0;
1132 // Visit each live out vreg def to find def/use pairs that cross iterations.
1133 ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
1134 for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
1137 if (!TRI->isVirtualRegister(Reg))
1139 const LiveInterval &LI = LIS->getInterval(Reg);
1140 const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
1144 MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
1145 const SUnit *DefSU = getSUnit(DefMI);
1149 unsigned LiveOutHeight = DefSU->getHeight();
1150 unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
1151 // Visit all local users of the vreg def.
1152 for (VReg2UseMap::iterator
1153 UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
1154 if (UI->SU == &ExitSU)
1157 // Only consider uses of the phi.
1158 LiveQueryResult LRQ =
1159 LI.Query(LIS->getInstructionIndex(UI->SU->getInstr()));
1160 if (!LRQ.valueIn()->isPHIDef())
1163 // Assume that a path spanning two iterations is a cycle, which could
1164 // overestimate in strange cases. This allows cyclic latency to be
1165 // estimated as the minimum slack of the vreg's depth or height.
1166 unsigned CyclicLatency = 0;
1167 if (LiveOutDepth > UI->SU->getDepth())
1168 CyclicLatency = LiveOutDepth - UI->SU->getDepth();
1170 unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
1171 if (LiveInHeight > LiveOutHeight) {
1172 if (LiveInHeight - LiveOutHeight < CyclicLatency)
1173 CyclicLatency = LiveInHeight - LiveOutHeight;
1178 DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
1179 << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
1180 if (CyclicLatency > MaxCyclicLatency)
1181 MaxCyclicLatency = CyclicLatency;
1184 DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
1185 return MaxCyclicLatency;
1188 /// Move an instruction and update register pressure.
1189 void ScheduleDAGMILive::scheduleMI(SUnit *SU, bool IsTopNode) {
1190 // Move the instruction to its new location in the instruction stream.
1191 MachineInstr *MI = SU->getInstr();
1194 assert(SU->isTopReady() && "node still has unscheduled dependencies");
1195 if (&*CurrentTop == MI)
1196 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
1198 moveInstruction(MI, CurrentTop);
1199 TopRPTracker.setPos(MI);
1202 if (ShouldTrackPressure) {
1203 // Update top scheduled pressure.
1204 TopRPTracker.advance();
1205 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
1206 updateScheduledPressure(SU, TopRPTracker.getPressure().MaxSetPressure);
1210 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
1211 MachineBasicBlock::iterator priorII =
1212 priorNonDebug(CurrentBottom, CurrentTop);
1213 if (&*priorII == MI)
1214 CurrentBottom = priorII;
1216 if (&*CurrentTop == MI) {
1217 CurrentTop = nextIfDebug(++CurrentTop, priorII);
1218 TopRPTracker.setPos(CurrentTop);
1220 moveInstruction(MI, CurrentBottom);
1223 if (ShouldTrackPressure) {
1224 // Update bottom scheduled pressure.
1225 SmallVector<unsigned, 8> LiveUses;
1226 BotRPTracker.recede(&LiveUses);
1227 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
1228 updateScheduledPressure(SU, BotRPTracker.getPressure().MaxSetPressure);
1229 updatePressureDiffs(LiveUses);
1234 //===----------------------------------------------------------------------===//
1235 // LoadClusterMutation - DAG post-processing to cluster loads.
1236 //===----------------------------------------------------------------------===//
1239 /// \brief Post-process the DAG to create cluster edges between neighboring
1241 class LoadClusterMutation : public ScheduleDAGMutation {
1246 LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
1247 : SU(su), BaseReg(reg), Offset(ofs) {}
1249 bool operator<(const LoadInfo &RHS) const {
1250 return std::tie(BaseReg, Offset) < std::tie(RHS.BaseReg, RHS.Offset);
1254 const TargetInstrInfo *TII;
1255 const TargetRegisterInfo *TRI;
1257 LoadClusterMutation(const TargetInstrInfo *tii,
1258 const TargetRegisterInfo *tri)
1259 : TII(tii), TRI(tri) {}
1261 void apply(ScheduleDAGMI *DAG) override;
1263 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
1267 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
1268 ScheduleDAGMI *DAG) {
1269 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
1270 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
1271 SUnit *SU = Loads[Idx];
1274 if (TII->getMemOpBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
1275 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
1277 if (LoadRecords.size() < 2)
1279 std::sort(LoadRecords.begin(), LoadRecords.end());
1280 unsigned ClusterLength = 1;
1281 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1282 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1287 SUnit *SUa = LoadRecords[Idx].SU;
1288 SUnit *SUb = LoadRecords[Idx+1].SU;
1289 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1290 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1292 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1293 << SUb->NodeNum << ")\n");
1294 // Copy successor edges from SUa to SUb. Interleaving computation
1295 // dependent on SUa can prevent load combining due to register reuse.
1296 // Predecessor edges do not need to be copied from SUb to SUa since nearby
1297 // loads should have effectively the same inputs.
1298 for (SUnit::const_succ_iterator
1299 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1300 if (SI->getSUnit() == SUb)
1302 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1303 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1312 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1313 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1314 // Map DAG NodeNum to store chain ID.
1315 DenseMap<unsigned, unsigned> StoreChainIDs;
1316 // Map each store chain to a set of dependent loads.
1317 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1318 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1319 SUnit *SU = &DAG->SUnits[Idx];
1320 if (!SU->getInstr()->mayLoad())
1322 unsigned ChainPredID = DAG->SUnits.size();
1323 for (SUnit::const_pred_iterator
1324 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1326 ChainPredID = PI->getSUnit()->NodeNum;
1330 // Check if this chain-like pred has been seen
1331 // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1332 unsigned NumChains = StoreChainDependents.size();
1333 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1334 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1336 StoreChainDependents.resize(NumChains + 1);
1337 StoreChainDependents[Result.first->second].push_back(SU);
1339 // Iterate over the store chains.
1340 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1341 clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1344 //===----------------------------------------------------------------------===//
1345 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1346 //===----------------------------------------------------------------------===//
1349 /// \brief Post-process the DAG to create cluster edges between instructions
1350 /// that may be fused by the processor into a single operation.
1351 class MacroFusion : public ScheduleDAGMutation {
1352 const TargetInstrInfo &TII;
1353 const TargetRegisterInfo &TRI;
1355 MacroFusion(const TargetInstrInfo &TII, const TargetRegisterInfo &TRI)
1356 : TII(TII), TRI(TRI) {}
1358 void apply(ScheduleDAGMI *DAG) override;
1362 /// Returns true if \p MI reads a register written by \p Other.
1363 static bool HasDataDep(const TargetRegisterInfo &TRI, const MachineInstr &MI,
1364 const MachineInstr &Other) {
1365 for (const MachineOperand &MO : MI.uses()) {
1366 if (!MO.isReg() || !MO.readsReg())
1369 unsigned Reg = MO.getReg();
1370 if (Other.modifiesRegister(Reg, &TRI))
1376 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1377 /// fused operations.
1378 void MacroFusion::apply(ScheduleDAGMI *DAG) {
1379 // For now, assume targets can only fuse with the branch.
1380 SUnit &ExitSU = DAG->ExitSU;
1381 MachineInstr *Branch = ExitSU.getInstr();
1385 for (SUnit &SU : DAG->SUnits) {
1386 // SUnits with successors can't be schedule in front of the ExitSU.
1387 if (!SU.Succs.empty())
1389 // We only care if the node writes to a register that the branch reads.
1390 MachineInstr *Pred = SU.getInstr();
1391 if (!HasDataDep(TRI, *Branch, *Pred))
1394 if (!TII.shouldScheduleAdjacent(Pred, Branch))
1397 // Create a single weak edge from SU to ExitSU. The only effect is to cause
1398 // bottom-up scheduling to heavily prioritize the clustered SU. There is no
1399 // need to copy predecessor edges from ExitSU to SU, since top-down
1400 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1401 // of SU, we could create an artificial edge from the deepest root, but it
1402 // hasn't been needed yet.
1403 bool Success = DAG->addEdge(&ExitSU, SDep(&SU, SDep::Cluster));
1405 assert(Success && "No DAG nodes should be reachable from ExitSU");
1407 DEBUG(dbgs() << "Macro Fuse SU(" << SU.NodeNum << ")\n");
1412 //===----------------------------------------------------------------------===//
1413 // CopyConstrain - DAG post-processing to encourage copy elimination.
1414 //===----------------------------------------------------------------------===//
1417 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1418 /// the one use that defines the copy's source vreg, most likely an induction
1419 /// variable increment.
1420 class CopyConstrain : public ScheduleDAGMutation {
1422 SlotIndex RegionBeginIdx;
1423 // RegionEndIdx is the slot index of the last non-debug instruction in the
1424 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1425 SlotIndex RegionEndIdx;
1427 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1429 void apply(ScheduleDAGMI *DAG) override;
1432 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG);
1436 /// constrainLocalCopy handles two possibilities:
1441 /// I3: dst = src (copy)
1442 /// (create pred->succ edges I0->I1, I2->I1)
1445 /// I0: dst = src (copy)
1449 /// (create pred->succ edges I1->I2, I3->I2)
1451 /// Although the MachineScheduler is currently constrained to single blocks,
1452 /// this algorithm should handle extended blocks. An EBB is a set of
1453 /// contiguously numbered blocks such that the previous block in the EBB is
1454 /// always the single predecessor.
1455 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMILive *DAG) {
1456 LiveIntervals *LIS = DAG->getLIS();
1457 MachineInstr *Copy = CopySU->getInstr();
1459 // Check for pure vreg copies.
1460 unsigned SrcReg = Copy->getOperand(1).getReg();
1461 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1464 unsigned DstReg = Copy->getOperand(0).getReg();
1465 if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1468 // Check if either the dest or source is local. If it's live across a back
1469 // edge, it's not local. Note that if both vregs are live across the back
1470 // edge, we cannot successfully contrain the copy without cyclic scheduling.
1471 // If both the copy's source and dest are local live intervals, then we
1472 // should treat the dest as the global for the purpose of adding
1473 // constraints. This adds edges from source's other uses to the copy.
1474 unsigned LocalReg = SrcReg;
1475 unsigned GlobalReg = DstReg;
1476 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1477 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1480 LocalLI = &LIS->getInterval(LocalReg);
1481 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1484 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1486 // Find the global segment after the start of the local LI.
1487 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1488 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1489 // local live range. We could create edges from other global uses to the local
1490 // start, but the coalescer should have already eliminated these cases, so
1491 // don't bother dealing with it.
1492 if (GlobalSegment == GlobalLI->end())
1495 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1496 // returned the next global segment. But if GlobalSegment overlaps with
1497 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1498 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1499 if (GlobalSegment->contains(LocalLI->beginIndex()))
1502 if (GlobalSegment == GlobalLI->end())
1505 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1506 if (GlobalSegment != GlobalLI->begin()) {
1507 // Two address defs have no hole.
1508 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->end,
1509 GlobalSegment->start)) {
1512 // If the prior global segment may be defined by the same two-address
1513 // instruction that also defines LocalLI, then can't make a hole here.
1514 if (SlotIndex::isSameInstr(std::prev(GlobalSegment)->start,
1515 LocalLI->beginIndex())) {
1518 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1519 // it would be a disconnected component in the live range.
1520 assert(std::prev(GlobalSegment)->start < LocalLI->beginIndex() &&
1521 "Disconnected LRG within the scheduling region.");
1523 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1527 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1531 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1532 // constraining the uses of the last local def to precede GlobalDef.
1533 SmallVector<SUnit*,8> LocalUses;
1534 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1535 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1536 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1537 for (SUnit::const_succ_iterator
1538 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1540 if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1542 if (I->getSUnit() == GlobalSU)
1544 if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1546 LocalUses.push_back(I->getSUnit());
1548 // Open the top of the GlobalLI hole by constraining any earlier global uses
1549 // to precede the start of LocalLI.
1550 SmallVector<SUnit*,8> GlobalUses;
1551 MachineInstr *FirstLocalDef =
1552 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1553 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1554 for (SUnit::const_pred_iterator
1555 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1556 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1558 if (I->getSUnit() == FirstLocalSU)
1560 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1562 GlobalUses.push_back(I->getSUnit());
1564 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1565 // Add the weak edges.
1566 for (SmallVectorImpl<SUnit*>::const_iterator
1567 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1568 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1569 << GlobalSU->NodeNum << ")\n");
1570 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1572 for (SmallVectorImpl<SUnit*>::const_iterator
1573 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1574 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1575 << FirstLocalSU->NodeNum << ")\n");
1576 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1580 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1581 /// copy elimination.
1582 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1583 assert(DAG->hasVRegLiveness() && "Expect VRegs with LiveIntervals");
1585 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1586 if (FirstPos == DAG->end())
1588 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1589 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1590 &*priorNonDebug(DAG->end(), DAG->begin()));
1592 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1593 SUnit *SU = &DAG->SUnits[Idx];
1594 if (!SU->getInstr()->isCopy())
1597 constrainLocalCopy(SU, static_cast<ScheduleDAGMILive*>(DAG));
1601 //===----------------------------------------------------------------------===//
1602 // MachineSchedStrategy helpers used by GenericScheduler, GenericPostScheduler
1603 // and possibly other custom schedulers.
1604 //===----------------------------------------------------------------------===//
1606 static const unsigned InvalidCycle = ~0U;
1608 SchedBoundary::~SchedBoundary() { delete HazardRec; }
1610 void SchedBoundary::reset() {
1611 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1612 // Destroying and reconstructing it is very expensive though. So keep
1613 // invalid, placeholder HazardRecs.
1614 if (HazardRec && HazardRec->isEnabled()) {
1616 HazardRec = nullptr;
1620 CheckPending = false;
1624 MinReadyCycle = UINT_MAX;
1625 ExpectedLatency = 0;
1626 DependentLatency = 0;
1628 MaxExecutedResCount = 0;
1630 IsResourceLimited = false;
1631 ReservedCycles.clear();
1633 // Track the maximum number of stall cycles that could arise either from the
1634 // latency of a DAG edge or the number of cycles that a processor resource is
1635 // reserved (SchedBoundary::ReservedCycles).
1636 MaxObservedStall = 0;
1638 // Reserve a zero-count for invalid CritResIdx.
1639 ExecutedResCounts.resize(1);
1640 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1643 void SchedRemainder::
1644 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1646 if (!SchedModel->hasInstrSchedModel())
1648 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1649 for (std::vector<SUnit>::iterator
1650 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1651 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1652 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1653 * SchedModel->getMicroOpFactor();
1654 for (TargetSchedModel::ProcResIter
1655 PI = SchedModel->getWriteProcResBegin(SC),
1656 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1657 unsigned PIdx = PI->ProcResourceIdx;
1658 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1659 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1664 void SchedBoundary::
1665 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1668 SchedModel = smodel;
1670 if (SchedModel->hasInstrSchedModel()) {
1671 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1672 ReservedCycles.resize(SchedModel->getNumProcResourceKinds(), InvalidCycle);
1676 /// Compute the stall cycles based on this SUnit's ready time. Heuristics treat
1677 /// these "soft stalls" differently than the hard stall cycles based on CPU
1678 /// resources and computed by checkHazard(). A fully in-order model
1679 /// (MicroOpBufferSize==0) will not make use of this since instructions are not
1680 /// available for scheduling until they are ready. However, a weaker in-order
1681 /// model may use this for heuristics. For example, if a processor has in-order
1682 /// behavior when reading certain resources, this may come into play.
1683 unsigned SchedBoundary::getLatencyStallCycles(SUnit *SU) {
1684 if (!SU->isUnbuffered)
1687 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1688 if (ReadyCycle > CurrCycle)
1689 return ReadyCycle - CurrCycle;
1693 /// Compute the next cycle at which the given processor resource can be
1695 unsigned SchedBoundary::
1696 getNextResourceCycle(unsigned PIdx, unsigned Cycles) {
1697 unsigned NextUnreserved = ReservedCycles[PIdx];
1698 // If this resource has never been used, always return cycle zero.
1699 if (NextUnreserved == InvalidCycle)
1701 // For bottom-up scheduling add the cycles needed for the current operation.
1703 NextUnreserved += Cycles;
1704 return NextUnreserved;
1707 /// Does this SU have a hazard within the current instruction group.
1709 /// The scheduler supports two modes of hazard recognition. The first is the
1710 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1711 /// supports highly complicated in-order reservation tables
1712 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1714 /// The second is a streamlined mechanism that checks for hazards based on
1715 /// simple counters that the scheduler itself maintains. It explicitly checks
1716 /// for instruction dispatch limitations, including the number of micro-ops that
1717 /// can dispatch per cycle.
1719 /// TODO: Also check whether the SU must start a new group.
1720 bool SchedBoundary::checkHazard(SUnit *SU) {
1721 if (HazardRec->isEnabled()
1722 && HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard) {
1725 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1726 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1727 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
1728 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1731 if (SchedModel->hasInstrSchedModel() && SU->hasReservedResource) {
1732 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1733 for (TargetSchedModel::ProcResIter
1734 PI = SchedModel->getWriteProcResBegin(SC),
1735 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1736 unsigned NRCycle = getNextResourceCycle(PI->ProcResourceIdx, PI->Cycles);
1737 if (NRCycle > CurrCycle) {
1739 MaxObservedStall = std::max(PI->Cycles, MaxObservedStall);
1741 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") "
1742 << SchedModel->getResourceName(PI->ProcResourceIdx)
1743 << "=" << NRCycle << "c\n");
1751 // Find the unscheduled node in ReadySUs with the highest latency.
1752 unsigned SchedBoundary::
1753 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1754 SUnit *LateSU = nullptr;
1755 unsigned RemLatency = 0;
1756 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1758 unsigned L = getUnscheduledLatency(*I);
1759 if (L > RemLatency) {
1765 DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1766 << LateSU->NodeNum << ") " << RemLatency << "c\n");
1771 // Count resources in this zone and the remaining unscheduled
1772 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1773 // resource index, or zero if the zone is issue limited.
1774 unsigned SchedBoundary::
1775 getOtherResourceCount(unsigned &OtherCritIdx) {
1777 if (!SchedModel->hasInstrSchedModel())
1780 unsigned OtherCritCount = Rem->RemIssueCount
1781 + (RetiredMOps * SchedModel->getMicroOpFactor());
1782 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
1783 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1784 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1785 PIdx != PEnd; ++PIdx) {
1786 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1787 if (OtherCount > OtherCritCount) {
1788 OtherCritCount = OtherCount;
1789 OtherCritIdx = PIdx;
1793 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: "
1794 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1795 << " " << SchedModel->getResourceName(OtherCritIdx) << "\n");
1797 return OtherCritCount;
1800 void SchedBoundary::releaseNode(SUnit *SU, unsigned ReadyCycle) {
1801 assert(SU->getInstr() && "Scheduled SUnit must have instr");
1804 // ReadyCycle was been bumped up to the CurrCycle when this node was
1805 // scheduled, but CurrCycle may have been eagerly advanced immediately after
1806 // scheduling, so may now be greater than ReadyCycle.
1807 if (ReadyCycle > CurrCycle)
1808 MaxObservedStall = std::max(ReadyCycle - CurrCycle, MaxObservedStall);
1811 if (ReadyCycle < MinReadyCycle)
1812 MinReadyCycle = ReadyCycle;
1814 // Check for interlocks first. For the purpose of other heuristics, an
1815 // instruction that cannot issue appears as if it's not in the ReadyQueue.
1816 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1817 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1822 // Record this node as an immediate dependent of the scheduled node.
1826 void SchedBoundary::releaseTopNode(SUnit *SU) {
1827 if (SU->isScheduled)
1830 releaseNode(SU, SU->TopReadyCycle);
1833 void SchedBoundary::releaseBottomNode(SUnit *SU) {
1834 if (SU->isScheduled)
1837 releaseNode(SU, SU->BotReadyCycle);
1840 /// Move the boundary of scheduled code by one cycle.
1841 void SchedBoundary::bumpCycle(unsigned NextCycle) {
1842 if (SchedModel->getMicroOpBufferSize() == 0) {
1843 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1844 if (MinReadyCycle > NextCycle)
1845 NextCycle = MinReadyCycle;
1847 // Update the current micro-ops, which will issue in the next cycle.
1848 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1849 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1851 // Decrement DependentLatency based on the next cycle.
1852 if ((NextCycle - CurrCycle) > DependentLatency)
1853 DependentLatency = 0;
1855 DependentLatency -= (NextCycle - CurrCycle);
1857 if (!HazardRec->isEnabled()) {
1858 // Bypass HazardRec virtual calls.
1859 CurrCycle = NextCycle;
1862 // Bypass getHazardType calls in case of long latency.
1863 for (; CurrCycle != NextCycle; ++CurrCycle) {
1865 HazardRec->AdvanceCycle();
1867 HazardRec->RecedeCycle();
1870 CheckPending = true;
1871 unsigned LFactor = SchedModel->getLatencyFactor();
1873 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1876 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1879 void SchedBoundary::incExecutedResources(unsigned PIdx, unsigned Count) {
1880 ExecutedResCounts[PIdx] += Count;
1881 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1882 MaxExecutedResCount = ExecutedResCounts[PIdx];
1885 /// Add the given processor resource to this scheduled zone.
1887 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1888 /// during which this resource is consumed.
1890 /// \return the next cycle at which the instruction may execute without
1891 /// oversubscribing resources.
1892 unsigned SchedBoundary::
1893 countResource(unsigned PIdx, unsigned Cycles, unsigned NextCycle) {
1894 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1895 unsigned Count = Factor * Cycles;
1896 DEBUG(dbgs() << " " << SchedModel->getResourceName(PIdx)
1897 << " +" << Cycles << "x" << Factor << "u\n");
1899 // Update Executed resources counts.
1900 incExecutedResources(PIdx, Count);
1901 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1902 Rem->RemainingCounts[PIdx] -= Count;
1904 // Check if this resource exceeds the current critical resource. If so, it
1905 // becomes the critical resource.
1906 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
1907 ZoneCritResIdx = PIdx;
1908 DEBUG(dbgs() << " *** Critical resource "
1909 << SchedModel->getResourceName(PIdx) << ": "
1910 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1912 // For reserved resources, record the highest cycle using the resource.
1913 unsigned NextAvailable = getNextResourceCycle(PIdx, Cycles);
1914 if (NextAvailable > CurrCycle) {
1915 DEBUG(dbgs() << " Resource conflict: "
1916 << SchedModel->getProcResource(PIdx)->Name << " reserved until @"
1917 << NextAvailable << "\n");
1919 return NextAvailable;
1922 /// Move the boundary of scheduled code by one SUnit.
1923 void SchedBoundary::bumpNode(SUnit *SU) {
1924 // Update the reservation table.
1925 if (HazardRec->isEnabled()) {
1926 if (!isTop() && SU->isCall) {
1927 // Calls are scheduled with their preceding instructions. For bottom-up
1928 // scheduling, clear the pipeline state before emitting.
1931 HazardRec->EmitInstruction(SU);
1933 // checkHazard should prevent scheduling multiple instructions per cycle that
1934 // exceed the issue width.
1935 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1936 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1938 (CurrMOps == 0 || (CurrMOps + IncMOps) <= SchedModel->getIssueWidth()) &&
1939 "Cannot schedule this instruction's MicroOps in the current cycle.");
1941 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1942 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
1944 unsigned NextCycle = CurrCycle;
1945 switch (SchedModel->getMicroOpBufferSize()) {
1947 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1950 if (ReadyCycle > NextCycle) {
1951 NextCycle = ReadyCycle;
1952 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
1956 // We don't currently model the OOO reorder buffer, so consider all
1957 // scheduled MOps to be "retired". We do loosely model in-order resource
1958 // latency. If this instruction uses an in-order resource, account for any
1959 // likely stall cycles.
1960 if (SU->isUnbuffered && ReadyCycle > NextCycle)
1961 NextCycle = ReadyCycle;
1964 RetiredMOps += IncMOps;
1966 // Update resource counts and critical resource.
1967 if (SchedModel->hasInstrSchedModel()) {
1968 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
1969 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
1970 Rem->RemIssueCount -= DecRemIssue;
1971 if (ZoneCritResIdx) {
1972 // Scale scheduled micro-ops for comparing with the critical resource.
1973 unsigned ScaledMOps =
1974 RetiredMOps * SchedModel->getMicroOpFactor();
1976 // If scaled micro-ops are now more than the previous critical resource by
1977 // a full cycle, then micro-ops issue becomes critical.
1978 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
1979 >= (int)SchedModel->getLatencyFactor()) {
1981 DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
1982 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
1985 for (TargetSchedModel::ProcResIter
1986 PI = SchedModel->getWriteProcResBegin(SC),
1987 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1989 countResource(PI->ProcResourceIdx, PI->Cycles, NextCycle);
1990 if (RCycle > NextCycle)
1993 if (SU->hasReservedResource) {
1994 // For reserved resources, record the highest cycle using the resource.
1995 // For top-down scheduling, this is the cycle in which we schedule this
1996 // instruction plus the number of cycles the operations reserves the
1997 // resource. For bottom-up is it simply the instruction's cycle.
1998 for (TargetSchedModel::ProcResIter
1999 PI = SchedModel->getWriteProcResBegin(SC),
2000 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2001 unsigned PIdx = PI->ProcResourceIdx;
2002 if (SchedModel->getProcResource(PIdx)->BufferSize == 0) {
2004 ReservedCycles[PIdx] =
2005 std::max(getNextResourceCycle(PIdx, 0), NextCycle + PI->Cycles);
2008 ReservedCycles[PIdx] = NextCycle;
2013 // Update ExpectedLatency and DependentLatency.
2014 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2015 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2016 if (SU->getDepth() > TopLatency) {
2017 TopLatency = SU->getDepth();
2018 DEBUG(dbgs() << " " << Available.getName()
2019 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2021 if (SU->getHeight() > BotLatency) {
2022 BotLatency = SU->getHeight();
2023 DEBUG(dbgs() << " " << Available.getName()
2024 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2026 // If we stall for any reason, bump the cycle.
2027 if (NextCycle > CurrCycle) {
2028 bumpCycle(NextCycle);
2031 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2032 // resource limited. If a stall occurred, bumpCycle does this.
2033 unsigned LFactor = SchedModel->getLatencyFactor();
2035 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2038 // Update CurrMOps after calling bumpCycle to handle stalls, since bumpCycle
2039 // resets CurrMOps. Loop to handle instructions with more MOps than issue in
2040 // one cycle. Since we commonly reach the max MOps here, opportunistically
2041 // bump the cycle to avoid uselessly checking everything in the readyQ.
2042 CurrMOps += IncMOps;
2043 while (CurrMOps >= SchedModel->getIssueWidth()) {
2044 DEBUG(dbgs() << " *** Max MOps " << CurrMOps
2045 << " at cycle " << CurrCycle << '\n');
2046 bumpCycle(++NextCycle);
2048 DEBUG(dumpScheduledState());
2051 /// Release pending ready nodes in to the available queue. This makes them
2052 /// visible to heuristics.
2053 void SchedBoundary::releasePending() {
2054 // If the available queue is empty, it is safe to reset MinReadyCycle.
2055 if (Available.empty())
2056 MinReadyCycle = UINT_MAX;
2058 // Check to see if any of the pending instructions are ready to issue. If
2059 // so, add them to the available queue.
2060 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2061 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2062 SUnit *SU = *(Pending.begin()+i);
2063 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2065 if (ReadyCycle < MinReadyCycle)
2066 MinReadyCycle = ReadyCycle;
2068 if (!IsBuffered && ReadyCycle > CurrCycle)
2071 if (checkHazard(SU))
2075 Pending.remove(Pending.begin()+i);
2078 DEBUG(if (!Pending.empty()) Pending.dump());
2079 CheckPending = false;
2082 /// Remove SU from the ready set for this boundary.
2083 void SchedBoundary::removeReady(SUnit *SU) {
2084 if (Available.isInQueue(SU))
2085 Available.remove(Available.find(SU));
2087 assert(Pending.isInQueue(SU) && "bad ready count");
2088 Pending.remove(Pending.find(SU));
2092 /// If this queue only has one ready candidate, return it. As a side effect,
2093 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2094 /// one node is ready. If multiple instructions are ready, return NULL.
2095 SUnit *SchedBoundary::pickOnlyChoice() {
2100 // Defer any ready instrs that now have a hazard.
2101 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2102 if (checkHazard(*I)) {
2104 I = Available.remove(I);
2110 for (unsigned i = 0; Available.empty(); ++i) {
2111 // FIXME: Re-enable assert once PR20057 is resolved.
2112 // assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedStall) &&
2113 // "permanent hazard");
2115 bumpCycle(CurrCycle + 1);
2118 if (Available.size() == 1)
2119 return *Available.begin();
2124 // This is useful information to dump after bumpNode.
2125 // Note that the Queue contents are more useful before pickNodeFromQueue.
2126 void SchedBoundary::dumpScheduledState() {
2129 if (ZoneCritResIdx) {
2130 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2131 ResCount = getResourceCount(ZoneCritResIdx);
2134 ResFactor = SchedModel->getMicroOpFactor();
2135 ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2137 unsigned LFactor = SchedModel->getLatencyFactor();
2138 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2139 << " Retired: " << RetiredMOps;
2140 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
2141 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
2142 << ResCount / ResFactor << " "
2143 << SchedModel->getResourceName(ZoneCritResIdx)
2144 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
2145 << (IsResourceLimited ? " - Resource" : " - Latency")
2150 //===----------------------------------------------------------------------===//
2151 // GenericScheduler - Generic implementation of MachineSchedStrategy.
2152 //===----------------------------------------------------------------------===//
2154 void GenericSchedulerBase::SchedCandidate::
2155 initResourceDelta(const ScheduleDAGMI *DAG,
2156 const TargetSchedModel *SchedModel) {
2157 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2160 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2161 for (TargetSchedModel::ProcResIter
2162 PI = SchedModel->getWriteProcResBegin(SC),
2163 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2164 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2165 ResDelta.CritResources += PI->Cycles;
2166 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2167 ResDelta.DemandedResources += PI->Cycles;
2171 /// Set the CandPolicy given a scheduling zone given the current resources and
2172 /// latencies inside and outside the zone.
2173 void GenericSchedulerBase::setPolicy(CandPolicy &Policy,
2175 SchedBoundary &CurrZone,
2176 SchedBoundary *OtherZone) {
2177 // Apply preemptive heuristics based on the total latency and resources
2178 // inside and outside this zone. Potential stalls should be considered before
2179 // following this policy.
2181 // Compute remaining latency. We need this both to determine whether the
2182 // overall schedule has become latency-limited and whether the instructions
2183 // outside this zone are resource or latency limited.
2185 // The "dependent" latency is updated incrementally during scheduling as the
2186 // max height/depth of scheduled nodes minus the cycles since it was
2188 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
2190 // The "independent" latency is the max ready queue depth:
2191 // ILat = max N.depth for N in Available|Pending
2193 // RemainingLatency is the greater of independent and dependent latency.
2194 unsigned RemLatency = CurrZone.getDependentLatency();
2195 RemLatency = std::max(RemLatency,
2196 CurrZone.findMaxLatency(CurrZone.Available.elements()));
2197 RemLatency = std::max(RemLatency,
2198 CurrZone.findMaxLatency(CurrZone.Pending.elements()));
2200 // Compute the critical resource outside the zone.
2201 unsigned OtherCritIdx = 0;
2202 unsigned OtherCount =
2203 OtherZone ? OtherZone->getOtherResourceCount(OtherCritIdx) : 0;
2205 bool OtherResLimited = false;
2206 if (SchedModel->hasInstrSchedModel()) {
2207 unsigned LFactor = SchedModel->getLatencyFactor();
2208 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
2210 // Schedule aggressively for latency in PostRA mode. We don't check for
2211 // acyclic latency during PostRA, and highly out-of-order processors will
2212 // skip PostRA scheduling.
2213 if (!OtherResLimited) {
2214 if (IsPostRA || (RemLatency + CurrZone.getCurrCycle() > Rem.CriticalPath)) {
2215 Policy.ReduceLatency |= true;
2216 DEBUG(dbgs() << " " << CurrZone.Available.getName()
2217 << " RemainingLatency " << RemLatency << " + "
2218 << CurrZone.getCurrCycle() << "c > CritPath "
2219 << Rem.CriticalPath << "\n");
2222 // If the same resource is limiting inside and outside the zone, do nothing.
2223 if (CurrZone.getZoneCritResIdx() == OtherCritIdx)
2227 if (CurrZone.isResourceLimited()) {
2228 dbgs() << " " << CurrZone.Available.getName() << " ResourceLimited: "
2229 << SchedModel->getResourceName(CurrZone.getZoneCritResIdx())
2232 if (OtherResLimited)
2233 dbgs() << " RemainingLimit: "
2234 << SchedModel->getResourceName(OtherCritIdx) << "\n";
2235 if (!CurrZone.isResourceLimited() && !OtherResLimited)
2236 dbgs() << " Latency limited both directions.\n");
2238 if (CurrZone.isResourceLimited() && !Policy.ReduceResIdx)
2239 Policy.ReduceResIdx = CurrZone.getZoneCritResIdx();
2241 if (OtherResLimited)
2242 Policy.DemandResIdx = OtherCritIdx;
2246 const char *GenericSchedulerBase::getReasonStr(
2247 GenericSchedulerBase::CandReason Reason) {
2249 case NoCand: return "NOCAND ";
2250 case PhysRegCopy: return "PREG-COPY";
2251 case RegExcess: return "REG-EXCESS";
2252 case RegCritical: return "REG-CRIT ";
2253 case Stall: return "STALL ";
2254 case Cluster: return "CLUSTER ";
2255 case Weak: return "WEAK ";
2256 case RegMax: return "REG-MAX ";
2257 case ResourceReduce: return "RES-REDUCE";
2258 case ResourceDemand: return "RES-DEMAND";
2259 case TopDepthReduce: return "TOP-DEPTH ";
2260 case TopPathReduce: return "TOP-PATH ";
2261 case BotHeightReduce:return "BOT-HEIGHT";
2262 case BotPathReduce: return "BOT-PATH ";
2263 case NextDefUse: return "DEF-USE ";
2264 case NodeOrder: return "ORDER ";
2266 llvm_unreachable("Unknown reason!");
2269 void GenericSchedulerBase::traceCandidate(const SchedCandidate &Cand) {
2271 unsigned ResIdx = 0;
2272 unsigned Latency = 0;
2273 switch (Cand.Reason) {
2277 P = Cand.RPDelta.Excess;
2280 P = Cand.RPDelta.CriticalMax;
2283 P = Cand.RPDelta.CurrentMax;
2285 case ResourceReduce:
2286 ResIdx = Cand.Policy.ReduceResIdx;
2288 case ResourceDemand:
2289 ResIdx = Cand.Policy.DemandResIdx;
2291 case TopDepthReduce:
2292 Latency = Cand.SU->getDepth();
2295 Latency = Cand.SU->getHeight();
2297 case BotHeightReduce:
2298 Latency = Cand.SU->getHeight();
2301 Latency = Cand.SU->getDepth();
2304 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2306 dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2307 << ":" << P.getUnitInc() << " ";
2311 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2315 dbgs() << " " << Latency << " cycles ";
2322 /// Return true if this heuristic determines order.
2323 static bool tryLess(int TryVal, int CandVal,
2324 GenericSchedulerBase::SchedCandidate &TryCand,
2325 GenericSchedulerBase::SchedCandidate &Cand,
2326 GenericSchedulerBase::CandReason Reason) {
2327 if (TryVal < CandVal) {
2328 TryCand.Reason = Reason;
2331 if (TryVal > CandVal) {
2332 if (Cand.Reason > Reason)
2333 Cand.Reason = Reason;
2336 Cand.setRepeat(Reason);
2340 static bool tryGreater(int TryVal, int CandVal,
2341 GenericSchedulerBase::SchedCandidate &TryCand,
2342 GenericSchedulerBase::SchedCandidate &Cand,
2343 GenericSchedulerBase::CandReason Reason) {
2344 if (TryVal > CandVal) {
2345 TryCand.Reason = Reason;
2348 if (TryVal < CandVal) {
2349 if (Cand.Reason > Reason)
2350 Cand.Reason = Reason;
2353 Cand.setRepeat(Reason);
2357 static bool tryLatency(GenericSchedulerBase::SchedCandidate &TryCand,
2358 GenericSchedulerBase::SchedCandidate &Cand,
2359 SchedBoundary &Zone) {
2361 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2362 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2363 TryCand, Cand, GenericSchedulerBase::TopDepthReduce))
2366 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2367 TryCand, Cand, GenericSchedulerBase::TopPathReduce))
2371 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2372 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2373 TryCand, Cand, GenericSchedulerBase::BotHeightReduce))
2376 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2377 TryCand, Cand, GenericSchedulerBase::BotPathReduce))
2383 static void tracePick(const GenericSchedulerBase::SchedCandidate &Cand,
2385 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2386 << GenericSchedulerBase::getReasonStr(Cand.Reason) << '\n');
2389 void GenericScheduler::initialize(ScheduleDAGMI *dag) {
2390 assert(dag->hasVRegLiveness() &&
2391 "(PreRA)GenericScheduler needs vreg liveness");
2392 DAG = static_cast<ScheduleDAGMILive*>(dag);
2393 SchedModel = DAG->getSchedModel();
2396 Rem.init(DAG, SchedModel);
2397 Top.init(DAG, SchedModel, &Rem);
2398 Bot.init(DAG, SchedModel, &Rem);
2400 // Initialize resource counts.
2402 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
2403 // are disabled, then these HazardRecs will be disabled.
2404 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2405 if (!Top.HazardRec) {
2407 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2410 if (!Bot.HazardRec) {
2412 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2417 /// Initialize the per-region scheduling policy.
2418 void GenericScheduler::initPolicy(MachineBasicBlock::iterator Begin,
2419 MachineBasicBlock::iterator End,
2420 unsigned NumRegionInstrs) {
2421 const MachineFunction &MF = *Begin->getParent()->getParent();
2422 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
2424 // Avoid setting up the register pressure tracker for small regions to save
2425 // compile time. As a rough heuristic, only track pressure when the number of
2426 // schedulable instructions exceeds half the integer register file.
2427 RegionPolicy.ShouldTrackPressure = true;
2428 for (unsigned VT = MVT::i32; VT > (unsigned)MVT::i1; --VT) {
2429 MVT::SimpleValueType LegalIntVT = (MVT::SimpleValueType)VT;
2430 if (TLI->isTypeLegal(LegalIntVT)) {
2431 unsigned NIntRegs = Context->RegClassInfo->getNumAllocatableRegs(
2432 TLI->getRegClassFor(LegalIntVT));
2433 RegionPolicy.ShouldTrackPressure = NumRegionInstrs > (NIntRegs / 2);
2437 // For generic targets, we default to bottom-up, because it's simpler and more
2438 // compile-time optimizations have been implemented in that direction.
2439 RegionPolicy.OnlyBottomUp = true;
2441 // Allow the subtarget to override default policy.
2442 MF.getSubtarget().overrideSchedPolicy(RegionPolicy, Begin, End,
2445 // After subtarget overrides, apply command line options.
2446 if (!EnableRegPressure)
2447 RegionPolicy.ShouldTrackPressure = false;
2449 // Check -misched-topdown/bottomup can force or unforce scheduling direction.
2450 // e.g. -misched-bottomup=false allows scheduling in both directions.
2451 assert((!ForceTopDown || !ForceBottomUp) &&
2452 "-misched-topdown incompatible with -misched-bottomup");
2453 if (ForceBottomUp.getNumOccurrences() > 0) {
2454 RegionPolicy.OnlyBottomUp = ForceBottomUp;
2455 if (RegionPolicy.OnlyBottomUp)
2456 RegionPolicy.OnlyTopDown = false;
2458 if (ForceTopDown.getNumOccurrences() > 0) {
2459 RegionPolicy.OnlyTopDown = ForceTopDown;
2460 if (RegionPolicy.OnlyTopDown)
2461 RegionPolicy.OnlyBottomUp = false;
2465 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
2466 /// critical path by more cycles than it takes to drain the instruction buffer.
2467 /// We estimate an upper bounds on in-flight instructions as:
2469 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
2470 /// InFlightIterations = AcyclicPath / CyclesPerIteration
2471 /// InFlightResources = InFlightIterations * LoopResources
2473 /// TODO: Check execution resources in addition to IssueCount.
2474 void GenericScheduler::checkAcyclicLatency() {
2475 if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
2478 // Scaled number of cycles per loop iteration.
2479 unsigned IterCount =
2480 std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
2482 // Scaled acyclic critical path.
2483 unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
2484 // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
2485 unsigned InFlightCount =
2486 (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
2487 unsigned BufferLimit =
2488 SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
2490 Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
2492 DEBUG(dbgs() << "IssueCycles="
2493 << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
2494 << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
2495 << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
2496 << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
2497 << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
2498 if (Rem.IsAcyclicLatencyLimited)
2499 dbgs() << " ACYCLIC LATENCY LIMIT\n");
2502 void GenericScheduler::registerRoots() {
2503 Rem.CriticalPath = DAG->ExitSU.getDepth();
2505 // Some roots may not feed into ExitSU. Check all of them in case.
2506 for (std::vector<SUnit*>::const_iterator
2507 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
2508 if ((*I)->getDepth() > Rem.CriticalPath)
2509 Rem.CriticalPath = (*I)->getDepth();
2511 DEBUG(dbgs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << '\n');
2512 if (DumpCriticalPathLength) {
2513 errs() << "Critical Path(GS-RR ): " << Rem.CriticalPath << " \n";
2516 if (EnableCyclicPath) {
2517 Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
2518 checkAcyclicLatency();
2522 static bool tryPressure(const PressureChange &TryP,
2523 const PressureChange &CandP,
2524 GenericSchedulerBase::SchedCandidate &TryCand,
2525 GenericSchedulerBase::SchedCandidate &Cand,
2526 GenericSchedulerBase::CandReason Reason) {
2527 int TryRank = TryP.getPSetOrMax();
2528 int CandRank = CandP.getPSetOrMax();
2529 // If both candidates affect the same set, go with the smallest increase.
2530 if (TryRank == CandRank) {
2531 return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2534 // If one candidate decreases and the other increases, go with it.
2535 // Invalid candidates have UnitInc==0.
2536 if (tryGreater(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2540 // If the candidates are decreasing pressure, reverse priority.
2541 if (TryP.getUnitInc() < 0)
2542 std::swap(TryRank, CandRank);
2543 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2546 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2547 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2550 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2551 /// their physreg def/use.
2553 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2554 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2555 /// with the operation that produces or consumes the physreg. We'll do this when
2556 /// regalloc has support for parallel copies.
2557 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2558 const MachineInstr *MI = SU->getInstr();
2562 unsigned ScheduledOper = isTop ? 1 : 0;
2563 unsigned UnscheduledOper = isTop ? 0 : 1;
2564 // If we have already scheduled the physreg produce/consumer, immediately
2565 // schedule the copy.
2566 if (TargetRegisterInfo::isPhysicalRegister(
2567 MI->getOperand(ScheduledOper).getReg()))
2569 // If the physreg is at the boundary, defer it. Otherwise schedule it
2570 // immediately to free the dependent. We can hoist the copy later.
2571 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2572 if (TargetRegisterInfo::isPhysicalRegister(
2573 MI->getOperand(UnscheduledOper).getReg()))
2574 return AtBoundary ? -1 : 1;
2578 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2579 /// hierarchical. This may be more efficient than a graduated cost model because
2580 /// we don't need to evaluate all aspects of the model for each node in the
2581 /// queue. But it's really done to make the heuristics easier to debug and
2582 /// statistically analyze.
2584 /// \param Cand provides the policy and current best candidate.
2585 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2586 /// \param Zone describes the scheduled zone that we are extending.
2587 /// \param RPTracker describes reg pressure within the scheduled zone.
2588 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
2589 void GenericScheduler::tryCandidate(SchedCandidate &Cand,
2590 SchedCandidate &TryCand,
2591 SchedBoundary &Zone,
2592 const RegPressureTracker &RPTracker,
2593 RegPressureTracker &TempTracker) {
2595 if (DAG->isTrackingPressure()) {
2596 // Always initialize TryCand's RPDelta.
2598 TempTracker.getMaxDownwardPressureDelta(
2599 TryCand.SU->getInstr(),
2601 DAG->getRegionCriticalPSets(),
2602 DAG->getRegPressure().MaxSetPressure);
2605 if (VerifyScheduling) {
2606 TempTracker.getMaxUpwardPressureDelta(
2607 TryCand.SU->getInstr(),
2608 &DAG->getPressureDiff(TryCand.SU),
2610 DAG->getRegionCriticalPSets(),
2611 DAG->getRegPressure().MaxSetPressure);
2614 RPTracker.getUpwardPressureDelta(
2615 TryCand.SU->getInstr(),
2616 DAG->getPressureDiff(TryCand.SU),
2618 DAG->getRegionCriticalPSets(),
2619 DAG->getRegPressure().MaxSetPressure);
2623 DEBUG(if (TryCand.RPDelta.Excess.isValid())
2624 dbgs() << " SU(" << TryCand.SU->NodeNum << ") "
2625 << TRI->getRegPressureSetName(TryCand.RPDelta.Excess.getPSet())
2626 << ":" << TryCand.RPDelta.Excess.getUnitInc() << "\n");
2628 // Initialize the candidate if needed.
2629 if (!Cand.isValid()) {
2630 TryCand.Reason = NodeOrder;
2634 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2635 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2636 TryCand, Cand, PhysRegCopy))
2639 // Avoid exceeding the target's limit.
2640 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.Excess,
2641 Cand.RPDelta.Excess,
2642 TryCand, Cand, RegExcess))
2645 // Avoid increasing the max critical pressure in the scheduled region.
2646 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2647 Cand.RPDelta.CriticalMax,
2648 TryCand, Cand, RegCritical))
2651 // For loops that are acyclic path limited, aggressively schedule for latency.
2652 // This can result in very long dependence chains scheduled in sequence, so
2653 // once every cycle (when CurrMOps == 0), switch to normal heuristics.
2654 if (Rem.IsAcyclicLatencyLimited && !Zone.getCurrMOps()
2655 && tryLatency(TryCand, Cand, Zone))
2658 // Prioritize instructions that read unbuffered resources by stall cycles.
2659 if (tryLess(Zone.getLatencyStallCycles(TryCand.SU),
2660 Zone.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2663 // Keep clustered nodes together to encourage downstream peephole
2664 // optimizations which may reduce resource requirements.
2666 // This is a best effort to set things up for a post-RA pass. Optimizations
2667 // like generating loads of multiple registers should ideally be done within
2668 // the scheduler pass by combining the loads during DAG postprocessing.
2669 const SUnit *NextClusterSU =
2670 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2671 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2672 TryCand, Cand, Cluster))
2675 // Weak edges are for clustering and other constraints.
2676 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2677 getWeakLeft(Cand.SU, Zone.isTop()),
2678 TryCand, Cand, Weak)) {
2681 // Avoid increasing the max pressure of the entire region.
2682 if (DAG->isTrackingPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2683 Cand.RPDelta.CurrentMax,
2684 TryCand, Cand, RegMax))
2687 // Avoid critical resource consumption and balance the schedule.
2688 TryCand.initResourceDelta(DAG, SchedModel);
2689 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2690 TryCand, Cand, ResourceReduce))
2692 if (tryGreater(TryCand.ResDelta.DemandedResources,
2693 Cand.ResDelta.DemandedResources,
2694 TryCand, Cand, ResourceDemand))
2697 // Avoid serializing long latency dependence chains.
2698 // For acyclic path limited loops, latency was already checked above.
2699 if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
2700 && tryLatency(TryCand, Cand, Zone)) {
2704 // Prefer immediate defs/users of the last scheduled instruction. This is a
2705 // local pressure avoidance strategy that also makes the machine code
2707 if (tryGreater(Zone.isNextSU(TryCand.SU), Zone.isNextSU(Cand.SU),
2708 TryCand, Cand, NextDefUse))
2711 // Fall through to original instruction order.
2712 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2713 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2714 TryCand.Reason = NodeOrder;
2718 /// Pick the best candidate from the queue.
2720 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2721 /// DAG building. To adjust for the current scheduling location we need to
2722 /// maintain the number of vreg uses remaining to be top-scheduled.
2723 void GenericScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2724 const RegPressureTracker &RPTracker,
2725 SchedCandidate &Cand) {
2726 ReadyQueue &Q = Zone.Available;
2730 // getMaxPressureDelta temporarily modifies the tracker.
2731 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2733 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2735 SchedCandidate TryCand(Cand.Policy);
2737 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2738 if (TryCand.Reason != NoCand) {
2739 // Initialize resource delta if needed in case future heuristics query it.
2740 if (TryCand.ResDelta == SchedResourceDelta())
2741 TryCand.initResourceDelta(DAG, SchedModel);
2742 Cand.setBest(TryCand);
2743 DEBUG(traceCandidate(Cand));
2748 /// Pick the best candidate node from either the top or bottom queue.
2749 SUnit *GenericScheduler::pickNodeBidirectional(bool &IsTopNode) {
2750 // Schedule as far as possible in the direction of no choice. This is most
2751 // efficient, but also provides the best heuristics for CriticalPSets.
2752 if (SUnit *SU = Bot.pickOnlyChoice()) {
2754 DEBUG(dbgs() << "Pick Bot NOCAND\n");
2757 if (SUnit *SU = Top.pickOnlyChoice()) {
2759 DEBUG(dbgs() << "Pick Top NOCAND\n");
2762 CandPolicy NoPolicy;
2763 SchedCandidate BotCand(NoPolicy);
2764 SchedCandidate TopCand(NoPolicy);
2765 // Set the bottom-up policy based on the state of the current bottom zone and
2766 // the instructions outside the zone, including the top zone.
2767 setPolicy(BotCand.Policy, /*IsPostRA=*/false, Bot, &Top);
2768 // Set the top-down policy based on the state of the current top zone and
2769 // the instructions outside the zone, including the bottom zone.
2770 setPolicy(TopCand.Policy, /*IsPostRA=*/false, Top, &Bot);
2772 // Prefer bottom scheduling when heuristics are silent.
2773 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2774 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2776 // If either Q has a single candidate that provides the least increase in
2777 // Excess pressure, we can immediately schedule from that Q.
2779 // RegionCriticalPSets summarizes the pressure within the scheduled region and
2780 // affects picking from either Q. If scheduling in one direction must
2781 // increase pressure for one of the excess PSets, then schedule in that
2782 // direction first to provide more freedom in the other direction.
2783 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2784 || (BotCand.Reason == RegCritical
2785 && !BotCand.isRepeat(RegCritical)))
2788 tracePick(BotCand, IsTopNode);
2791 // Check if the top Q has a better candidate.
2792 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2793 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2795 // Choose the queue with the most important (lowest enum) reason.
2796 if (TopCand.Reason < BotCand.Reason) {
2798 tracePick(TopCand, IsTopNode);
2801 // Otherwise prefer the bottom candidate, in node order if all else failed.
2803 tracePick(BotCand, IsTopNode);
2807 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2808 SUnit *GenericScheduler::pickNode(bool &IsTopNode) {
2809 if (DAG->top() == DAG->bottom()) {
2810 assert(Top.Available.empty() && Top.Pending.empty() &&
2811 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2816 if (RegionPolicy.OnlyTopDown) {
2817 SU = Top.pickOnlyChoice();
2819 CandPolicy NoPolicy;
2820 SchedCandidate TopCand(NoPolicy);
2821 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2822 assert(TopCand.Reason != NoCand && "failed to find a candidate");
2823 tracePick(TopCand, true);
2828 else if (RegionPolicy.OnlyBottomUp) {
2829 SU = Bot.pickOnlyChoice();
2831 CandPolicy NoPolicy;
2832 SchedCandidate BotCand(NoPolicy);
2833 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2834 assert(BotCand.Reason != NoCand && "failed to find a candidate");
2835 tracePick(BotCand, false);
2841 SU = pickNodeBidirectional(IsTopNode);
2843 } while (SU->isScheduled);
2845 if (SU->isTopReady())
2846 Top.removeReady(SU);
2847 if (SU->isBottomReady())
2848 Bot.removeReady(SU);
2850 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2854 void GenericScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2856 MachineBasicBlock::iterator InsertPos = SU->getInstr();
2859 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2861 // Find already scheduled copies with a single physreg dependence and move
2862 // them just above the scheduled instruction.
2863 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2865 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2867 SUnit *DepSU = I->getSUnit();
2868 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2870 MachineInstr *Copy = DepSU->getInstr();
2871 if (!Copy->isCopy())
2873 DEBUG(dbgs() << " Rescheduling physreg copy ";
2874 I->getSUnit()->dump(DAG));
2875 DAG->moveInstruction(Copy, InsertPos);
2879 /// Update the scheduler's state after scheduling a node. This is the same node
2880 /// that was just returned by pickNode(). However, ScheduleDAGMILive needs to
2881 /// update it's state based on the current cycle before MachineSchedStrategy
2884 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2885 /// them here. See comments in biasPhysRegCopy.
2886 void GenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2888 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
2890 if (SU->hasPhysRegUses)
2891 reschedulePhysRegCopies(SU, true);
2894 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.getCurrCycle());
2896 if (SU->hasPhysRegDefs)
2897 reschedulePhysRegCopies(SU, false);
2901 /// Create the standard converging machine scheduler. This will be used as the
2902 /// default scheduler if the target does not set a default.
2903 static ScheduleDAGInstrs *createGenericSchedLive(MachineSchedContext *C) {
2904 ScheduleDAGMILive *DAG = new ScheduleDAGMILive(C, make_unique<GenericScheduler>(C));
2905 // Register DAG post-processors.
2907 // FIXME: extend the mutation API to allow earlier mutations to instantiate
2908 // data and pass it to later mutations. Have a single mutation that gathers
2909 // the interesting nodes in one pass.
2910 DAG->addMutation(make_unique<CopyConstrain>(DAG->TII, DAG->TRI));
2911 if (EnableLoadCluster && DAG->TII->enableClusterLoads())
2912 DAG->addMutation(make_unique<LoadClusterMutation>(DAG->TII, DAG->TRI));
2913 if (EnableMacroFusion)
2914 DAG->addMutation(make_unique<MacroFusion>(*DAG->TII, *DAG->TRI));
2918 static MachineSchedRegistry
2919 GenericSchedRegistry("converge", "Standard converging scheduler.",
2920 createGenericSchedLive);
2922 //===----------------------------------------------------------------------===//
2923 // PostGenericScheduler - Generic PostRA implementation of MachineSchedStrategy.
2924 //===----------------------------------------------------------------------===//
2926 void PostGenericScheduler::initialize(ScheduleDAGMI *Dag) {
2928 SchedModel = DAG->getSchedModel();
2931 Rem.init(DAG, SchedModel);
2932 Top.init(DAG, SchedModel, &Rem);
2935 // Initialize the HazardRecognizers. If itineraries don't exist, are empty,
2936 // or are disabled, then these HazardRecs will be disabled.
2937 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
2938 if (!Top.HazardRec) {
2940 DAG->MF.getSubtarget().getInstrInfo()->CreateTargetMIHazardRecognizer(
2946 void PostGenericScheduler::registerRoots() {
2947 Rem.CriticalPath = DAG->ExitSU.getDepth();
2949 // Some roots may not feed into ExitSU. Check all of them in case.
2950 for (SmallVectorImpl<SUnit*>::const_iterator
2951 I = BotRoots.begin(), E = BotRoots.end(); I != E; ++I) {
2952 if ((*I)->getDepth() > Rem.CriticalPath)
2953 Rem.CriticalPath = (*I)->getDepth();
2955 DEBUG(dbgs() << "Critical Path: (PGS-RR) " << Rem.CriticalPath << '\n');
2956 if (DumpCriticalPathLength) {
2957 errs() << "Critical Path(PGS-RR ): " << Rem.CriticalPath << " \n";
2961 /// Apply a set of heursitics to a new candidate for PostRA scheduling.
2963 /// \param Cand provides the policy and current best candidate.
2964 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2965 void PostGenericScheduler::tryCandidate(SchedCandidate &Cand,
2966 SchedCandidate &TryCand) {
2968 // Initialize the candidate if needed.
2969 if (!Cand.isValid()) {
2970 TryCand.Reason = NodeOrder;
2974 // Prioritize instructions that read unbuffered resources by stall cycles.
2975 if (tryLess(Top.getLatencyStallCycles(TryCand.SU),
2976 Top.getLatencyStallCycles(Cand.SU), TryCand, Cand, Stall))
2979 // Avoid critical resource consumption and balance the schedule.
2980 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2981 TryCand, Cand, ResourceReduce))
2983 if (tryGreater(TryCand.ResDelta.DemandedResources,
2984 Cand.ResDelta.DemandedResources,
2985 TryCand, Cand, ResourceDemand))
2988 // Avoid serializing long latency dependence chains.
2989 if (Cand.Policy.ReduceLatency && tryLatency(TryCand, Cand, Top)) {
2993 // Fall through to original instruction order.
2994 if (TryCand.SU->NodeNum < Cand.SU->NodeNum)
2995 TryCand.Reason = NodeOrder;
2998 void PostGenericScheduler::pickNodeFromQueue(SchedCandidate &Cand) {
2999 ReadyQueue &Q = Top.Available;
3003 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
3004 SchedCandidate TryCand(Cand.Policy);
3006 TryCand.initResourceDelta(DAG, SchedModel);
3007 tryCandidate(Cand, TryCand);
3008 if (TryCand.Reason != NoCand) {
3009 Cand.setBest(TryCand);
3010 DEBUG(traceCandidate(Cand));
3015 /// Pick the next node to schedule.
3016 SUnit *PostGenericScheduler::pickNode(bool &IsTopNode) {
3017 if (DAG->top() == DAG->bottom()) {
3018 assert(Top.Available.empty() && Top.Pending.empty() && "ReadyQ garbage");
3023 SU = Top.pickOnlyChoice();
3025 CandPolicy NoPolicy;
3026 SchedCandidate TopCand(NoPolicy);
3027 // Set the top-down policy based on the state of the current top zone and
3028 // the instructions outside the zone, including the bottom zone.
3029 setPolicy(TopCand.Policy, /*IsPostRA=*/true, Top, nullptr);
3030 pickNodeFromQueue(TopCand);
3031 assert(TopCand.Reason != NoCand && "failed to find a candidate");
3032 tracePick(TopCand, true);
3035 } while (SU->isScheduled);
3038 Top.removeReady(SU);
3040 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
3044 /// Called after ScheduleDAGMI has scheduled an instruction and updated
3045 /// scheduled/remaining flags in the DAG nodes.
3046 void PostGenericScheduler::schedNode(SUnit *SU, bool IsTopNode) {
3047 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.getCurrCycle());
3051 /// Create a generic scheduler with no vreg liveness or DAG mutation passes.
3052 static ScheduleDAGInstrs *createGenericSchedPostRA(MachineSchedContext *C) {
3053 return new ScheduleDAGMI(C, make_unique<PostGenericScheduler>(C), /*IsPostRA=*/true);
3056 //===----------------------------------------------------------------------===//
3057 // ILP Scheduler. Currently for experimental analysis of heuristics.
3058 //===----------------------------------------------------------------------===//
3061 /// \brief Order nodes by the ILP metric.
3063 const SchedDFSResult *DFSResult;
3064 const BitVector *ScheduledTrees;
3067 ILPOrder(bool MaxILP)
3068 : DFSResult(nullptr), ScheduledTrees(nullptr), MaximizeILP(MaxILP) {}
3070 /// \brief Apply a less-than relation on node priority.
3072 /// (Return true if A comes after B in the Q.)
3073 bool operator()(const SUnit *A, const SUnit *B) const {
3074 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
3075 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
3076 if (SchedTreeA != SchedTreeB) {
3077 // Unscheduled trees have lower priority.
3078 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
3079 return ScheduledTrees->test(SchedTreeB);
3081 // Trees with shallower connections have have lower priority.
3082 if (DFSResult->getSubtreeLevel(SchedTreeA)
3083 != DFSResult->getSubtreeLevel(SchedTreeB)) {
3084 return DFSResult->getSubtreeLevel(SchedTreeA)
3085 < DFSResult->getSubtreeLevel(SchedTreeB);
3089 return DFSResult->getILP(A) < DFSResult->getILP(B);
3091 return DFSResult->getILP(A) > DFSResult->getILP(B);
3095 /// \brief Schedule based on the ILP metric.
3096 class ILPScheduler : public MachineSchedStrategy {
3097 ScheduleDAGMILive *DAG;
3100 std::vector<SUnit*> ReadyQ;
3102 ILPScheduler(bool MaximizeILP): DAG(nullptr), Cmp(MaximizeILP) {}
3104 void initialize(ScheduleDAGMI *dag) override {
3105 assert(dag->hasVRegLiveness() && "ILPScheduler needs vreg liveness");
3106 DAG = static_cast<ScheduleDAGMILive*>(dag);
3107 DAG->computeDFSResult();
3108 Cmp.DFSResult = DAG->getDFSResult();
3109 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
3113 void registerRoots() override {
3114 // Restore the heap in ReadyQ with the updated DFS results.
3115 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3118 /// Implement MachineSchedStrategy interface.
3119 /// -----------------------------------------
3121 /// Callback to select the highest priority node from the ready Q.
3122 SUnit *pickNode(bool &IsTopNode) override {
3123 if (ReadyQ.empty()) return nullptr;
3124 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3125 SUnit *SU = ReadyQ.back();
3128 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
3129 << " ILP: " << DAG->getDFSResult()->getILP(SU)
3130 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
3131 << DAG->getDFSResult()->getSubtreeLevel(
3132 DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
3133 << "Scheduling " << *SU->getInstr());
3137 /// \brief Scheduler callback to notify that a new subtree is scheduled.
3138 void scheduleTree(unsigned SubtreeID) override {
3139 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3142 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
3143 /// DFSResults, and resort the priority Q.
3144 void schedNode(SUnit *SU, bool IsTopNode) override {
3145 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
3148 void releaseTopNode(SUnit *) override { /*only called for top roots*/ }
3150 void releaseBottomNode(SUnit *SU) override {
3151 ReadyQ.push_back(SU);
3152 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
3157 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
3158 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(true));
3160 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
3161 return new ScheduleDAGMILive(C, make_unique<ILPScheduler>(false));
3163 static MachineSchedRegistry ILPMaxRegistry(
3164 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
3165 static MachineSchedRegistry ILPMinRegistry(
3166 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
3168 //===----------------------------------------------------------------------===//
3169 // Machine Instruction Shuffler for Correctness Testing
3170 //===----------------------------------------------------------------------===//
3174 /// Apply a less-than relation on the node order, which corresponds to the
3175 /// instruction order prior to scheduling. IsReverse implements greater-than.
3176 template<bool IsReverse>
3178 bool operator()(SUnit *A, SUnit *B) const {
3180 return A->NodeNum > B->NodeNum;
3182 return A->NodeNum < B->NodeNum;
3186 /// Reorder instructions as much as possible.
3187 class InstructionShuffler : public MachineSchedStrategy {
3191 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
3192 // gives nodes with a higher number higher priority causing the latest
3193 // instructions to be scheduled first.
3194 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
3196 // When scheduling bottom-up, use greater-than as the queue priority.
3197 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
3200 InstructionShuffler(bool alternate, bool topdown)
3201 : IsAlternating(alternate), IsTopDown(topdown) {}
3203 void initialize(ScheduleDAGMI*) override {
3208 /// Implement MachineSchedStrategy interface.
3209 /// -----------------------------------------
3211 SUnit *pickNode(bool &IsTopNode) override {
3215 if (TopQ.empty()) return nullptr;
3218 } while (SU->isScheduled);
3223 if (BottomQ.empty()) return nullptr;
3226 } while (SU->isScheduled);
3230 IsTopDown = !IsTopDown;
3234 void schedNode(SUnit *SU, bool IsTopNode) override {}
3236 void releaseTopNode(SUnit *SU) override {
3239 void releaseBottomNode(SUnit *SU) override {
3245 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
3246 bool Alternate = !ForceTopDown && !ForceBottomUp;
3247 bool TopDown = !ForceBottomUp;
3248 assert((TopDown || !ForceTopDown) &&
3249 "-misched-topdown incompatible with -misched-bottomup");
3250 return new ScheduleDAGMILive(C, make_unique<InstructionShuffler>(Alternate, TopDown));
3252 static MachineSchedRegistry ShufflerRegistry(
3253 "shuffle", "Shuffle machine instructions alternating directions",
3254 createInstructionShuffler);
3257 //===----------------------------------------------------------------------===//
3258 // GraphWriter support for ScheduleDAGMILive.
3259 //===----------------------------------------------------------------------===//
3264 template<> struct GraphTraits<
3265 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
3268 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
3270 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
3272 static std::string getGraphName(const ScheduleDAG *G) {
3273 return G->MF.getName();
3276 static bool renderGraphFromBottomUp() {
3280 static bool isNodeHidden(const SUnit *Node) {
3281 return (Node->Preds.size() > 10 || Node->Succs.size() > 10);
3284 static bool hasNodeAddressLabel(const SUnit *Node,
3285 const ScheduleDAG *Graph) {
3289 /// If you want to override the dot attributes printed for a particular
3290 /// edge, override this method.
3291 static std::string getEdgeAttributes(const SUnit *Node,
3293 const ScheduleDAG *Graph) {
3294 if (EI.isArtificialDep())
3295 return "color=cyan,style=dashed";
3297 return "color=blue,style=dashed";
3301 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3303 raw_string_ostream SS(Str);
3304 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3305 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3306 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3307 SS << "SU:" << SU->NodeNum;
3309 SS << " I:" << DFS->getNumInstrs(SU);
3312 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3313 return G->getGraphNodeLabel(SU);
3316 static std::string getNodeAttributes(const SUnit *N, const ScheduleDAG *G) {
3317 std::string Str("shape=Mrecord");
3318 const ScheduleDAGMI *DAG = static_cast<const ScheduleDAGMI*>(G);
3319 const SchedDFSResult *DFS = DAG->hasVRegLiveness() ?
3320 static_cast<const ScheduleDAGMILive*>(G)->getDFSResult() : nullptr;
3322 Str += ",style=filled,fillcolor=\"#";
3323 Str += DOT::getColorString(DFS->getSubtreeID(N));
3332 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3333 /// rendered using 'dot'.
3335 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3337 ViewGraph(this, Name, false, Title);
3339 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3340 << "systems with Graphviz or gv!\n";
3344 /// Out-of-line implementation with no arguments is handy for gdb.
3345 void ScheduleDAGMI::viewGraph() {
3346 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());