1 //===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This pass eliminates machine instruction PHI nodes by inserting copy
11 // instructions. This destroys SSA information, but is the desired input for
12 // some register allocators.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "phielim"
17 #include "llvm/CodeGen/LiveVariables.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineInstr.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Support/Compiler.h"
31 STATISTIC(NumAtomic, "Number of atomic phis lowered");
32 //STATISTIC(NumSimple, "Number of simple phis lowered");
35 struct VISIBILITY_HIDDEN PNE : public MachineFunctionPass {
36 static char ID; // Pass identification, replacement for typeid
37 PNE() : MachineFunctionPass((intptr_t)&ID) {}
39 bool runOnMachineFunction(MachineFunction &Fn) {
44 // Eliminate PHI instructions by inserting copies into predecessor blocks.
45 for (MachineFunction::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
46 Changed |= EliminatePHINodes(Fn, *I);
48 VRegPHIUseCount.clear();
52 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
53 AU.addPreserved<LiveVariables>();
54 AU.addPreservedID(MachineLoopInfoID);
55 AU.addPreservedID(MachineDominatorsID);
56 MachineFunctionPass::getAnalysisUsage(AU);
60 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
61 /// in predecessor basic blocks.
63 bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
64 void LowerAtomicPHINode(MachineBasicBlock &MBB,
65 MachineBasicBlock::iterator AfterPHIsIt);
67 /// analyzePHINodes - Gather information about the PHI nodes in
68 /// here. In particular, we want to map the number of uses of a virtual
69 /// register which is used in a PHI node. We map that to the BB the
70 /// vreg is coming from. This is used later to determine when the vreg
71 /// is killed in the BB.
73 void analyzePHINodes(const MachineFunction& Fn);
75 typedef std::pair<const MachineBasicBlock*, unsigned> BBVRegPair;
76 typedef std::map<BBVRegPair, unsigned> VRegPHIUse;
78 VRegPHIUse VRegPHIUseCount;
82 RegisterPass<PNE> X("phi-node-elimination",
83 "Eliminate PHI nodes for register allocation");
86 const PassInfo *llvm::PHIEliminationID = X.getPassInfo();
88 /// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
89 /// predecessor basic blocks.
91 bool PNE::EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB) {
92 if (MBB.empty() || MBB.front().getOpcode() != TargetInstrInfo::PHI)
93 return false; // Quick exit for basic blocks without PHIs.
95 // Get an iterator to the first instruction after the last PHI node (this may
96 // also be the end of the basic block).
97 MachineBasicBlock::iterator AfterPHIsIt = MBB.begin();
98 while (AfterPHIsIt != MBB.end() &&
99 AfterPHIsIt->getOpcode() == TargetInstrInfo::PHI)
100 ++AfterPHIsIt; // Skip over all of the PHI nodes...
102 while (MBB.front().getOpcode() == TargetInstrInfo::PHI)
103 LowerAtomicPHINode(MBB, AfterPHIsIt);
108 /// InstructionUsesRegister - Return true if the specified machine instr has a
109 /// use of the specified register.
110 static bool InstructionUsesRegister(MachineInstr *MI, unsigned SrcReg) {
111 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i)
112 if (MI->getOperand(i).isRegister() &&
113 MI->getOperand(i).getReg() == SrcReg &&
114 MI->getOperand(i).isUse())
119 /// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
120 /// under the assuption that it needs to be lowered in a way that supports
121 /// atomic execution of PHIs. This lowering method is always correct all of the
123 void PNE::LowerAtomicPHINode(MachineBasicBlock &MBB,
124 MachineBasicBlock::iterator AfterPHIsIt) {
125 // Unlink the PHI node from the basic block, but don't delete the PHI yet.
126 MachineInstr *MPhi = MBB.remove(MBB.begin());
128 unsigned DestReg = MPhi->getOperand(0).getReg();
130 // Create a new register for the incoming PHI arguments.
131 MachineFunction &MF = *MBB.getParent();
132 const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
133 unsigned IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
135 // Insert a register to register copy in the top of the current block (but
136 // after any remaining phi nodes) which copies the new incoming register
137 // into the phi node destination.
139 const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
140 TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
142 // Update live variable information if there is any...
143 LiveVariables *LV = getAnalysisToUpdate<LiveVariables>();
145 MachineInstr *PHICopy = prior(AfterPHIsIt);
147 // Increment use count of the newly created virtual register.
148 LV->getVarInfo(IncomingReg).NumUses++;
150 // Add information to LiveVariables to know that the incoming value is
151 // killed. Note that because the value is defined in several places (once
152 // each for each incoming block), the "def" block and instruction fields
153 // for the VarInfo is not filled in.
155 LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
157 // Since we are going to be deleting the PHI node, if it is the last use
158 // of any registers, or if the value itself is dead, we need to move this
159 // information over to the new copy we just inserted.
161 LV->removeVirtualRegistersKilled(MPhi);
163 // If the result is dead, update LV.
164 if (LV->RegisterDefIsDead(MPhi, DestReg)) {
165 LV->addVirtualRegisterDead(DestReg, PHICopy);
166 LV->removeVirtualRegistersDead(MPhi);
169 // Realize that the destination register is defined by the PHI copy now, not
171 LV->getVarInfo(DestReg).DefInst = PHICopy;
173 LV->getVarInfo(IncomingReg).UsedBlocks[MBB.getNumber()] = true;
176 // Adjust the VRegPHIUseCount map to account for the removal of this PHI
178 for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
179 --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
180 MPhi->getOperand(i).getReg())];
182 // Now loop over all of the incoming arguments, changing them to copy into
183 // the IncomingReg register in the corresponding predecessor basic block.
185 std::set<MachineBasicBlock*> MBBsInsertedInto;
186 for (int i = MPhi->getNumOperands() - 1; i >= 2; i-=2) {
187 unsigned SrcReg = MPhi->getOperand(i-1).getReg();
188 assert(MRegisterInfo::isVirtualRegister(SrcReg) &&
189 "Machine PHI Operands must all be virtual registers!");
191 // Get the MachineBasicBlock equivalent of the BasicBlock that is the
192 // source path the PHI.
193 MachineBasicBlock &opBlock = *MPhi->getOperand(i).getMBB();
195 // Check to make sure we haven't already emitted the copy for this block.
196 // This can happen because PHI nodes may have multiple entries for the
198 if (!MBBsInsertedInto.insert(&opBlock).second)
199 continue; // If the copy has already been emitted, we're done.
201 // Get an iterator pointing to the first terminator in the block (or end()).
202 // This is the point where we can insert a copy if we'd like to.
203 MachineBasicBlock::iterator I = opBlock.getFirstTerminator();
206 TII->copyRegToReg(opBlock, I, IncomingReg, SrcReg, RC, RC);
208 // Now update live variable information if we have it. Otherwise we're done
211 // We want to be able to insert a kill of the register if this PHI
212 // (aka, the copy we just inserted) is the last use of the source
213 // value. Live variable analysis conservatively handles this by
214 // saying that the value is live until the end of the block the PHI
215 // entry lives in. If the value really is dead at the PHI copy, there
216 // will be no successor blocks which have the value live-in.
218 // Check to see if the copy is the last use, and if so, update the
219 // live variables information so that it knows the copy source
220 // instruction kills the incoming value.
222 LiveVariables::VarInfo &InRegVI = LV->getVarInfo(SrcReg);
223 InRegVI.UsedBlocks[opBlock.getNumber()] = true;
225 // Loop over all of the successors of the basic block, checking to see
226 // if the value is either live in the block, or if it is killed in the
227 // block. Also check to see if this register is in use by another PHI
228 // node which has not yet been eliminated. If so, it will be killed
229 // at an appropriate point later.
232 // Is it used by any PHI instructions in this block?
233 bool ValueIsLive = VRegPHIUseCount[BBVRegPair(&opBlock, SrcReg)] != 0;
235 std::vector<MachineBasicBlock*> OpSuccBlocks;
237 // Otherwise, scan successors, including the BB the PHI node lives in.
238 for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
239 E = opBlock.succ_end(); SI != E && !ValueIsLive; ++SI) {
240 MachineBasicBlock *SuccMBB = *SI;
242 // Is it alive in this successor?
243 unsigned SuccIdx = SuccMBB->getNumber();
244 if (SuccIdx < InRegVI.AliveBlocks.size() &&
245 InRegVI.AliveBlocks[SuccIdx]) {
250 OpSuccBlocks.push_back(SuccMBB);
253 // Check to see if this value is live because there is a use in a successor
256 switch (OpSuccBlocks.size()) {
258 MachineBasicBlock *MBB = OpSuccBlocks[0];
259 for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
260 if (InRegVI.Kills[i]->getParent() == MBB) {
267 MachineBasicBlock *MBB1 = OpSuccBlocks[0], *MBB2 = OpSuccBlocks[1];
268 for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
269 if (InRegVI.Kills[i]->getParent() == MBB1 ||
270 InRegVI.Kills[i]->getParent() == MBB2) {
277 std::sort(OpSuccBlocks.begin(), OpSuccBlocks.end());
278 for (unsigned i = 0, e = InRegVI.Kills.size(); i != e; ++i)
279 if (std::binary_search(OpSuccBlocks.begin(), OpSuccBlocks.end(),
280 InRegVI.Kills[i]->getParent())) {
287 // Okay, if we now know that the value is not live out of the block,
288 // we can add a kill marker in this block saying that it kills the incoming
291 // In our final twist, we have to decide which instruction kills the
292 // register. In most cases this is the copy, however, the first
293 // terminator instruction at the end of the block may also use the value.
294 // In this case, we should mark *it* as being the killing block, not the
296 bool FirstTerminatorUsesValue = false;
297 if (I != opBlock.end()) {
298 FirstTerminatorUsesValue = InstructionUsesRegister(I, SrcReg);
300 // Check that no other terminators use values.
302 for (MachineBasicBlock::iterator TI = next(I); TI != opBlock.end();
304 assert(!InstructionUsesRegister(TI, SrcReg) &&
305 "Terminator instructions cannot use virtual registers unless"
306 "they are the first terminator in a block!");
311 MachineBasicBlock::iterator KillInst;
312 if (!FirstTerminatorUsesValue)
317 // Finally, mark it killed.
318 LV->addVirtualRegisterKilled(SrcReg, KillInst);
320 // This vreg no longer lives all of the way through opBlock.
321 unsigned opBlockNum = opBlock.getNumber();
322 if (opBlockNum < InRegVI.AliveBlocks.size())
323 InRegVI.AliveBlocks[opBlockNum] = false;
327 // Really delete the PHI instruction now!
332 /// analyzePHINodes - Gather information about the PHI nodes in here. In
333 /// particular, we want to map the number of uses of a virtual register which is
334 /// used in a PHI node. We map that to the BB the vreg is coming from. This is
335 /// used later to determine when the vreg is killed in the BB.
337 void PNE::analyzePHINodes(const MachineFunction& Fn) {
338 for (MachineFunction::const_iterator I = Fn.begin(), E = Fn.end();
340 for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
341 BBI != BBE && BBI->getOpcode() == TargetInstrInfo::PHI; ++BBI)
342 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
343 ++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i + 1).getMBB(),
344 BBI->getOperand(i).getReg())];