1 //===- RegAllocBigBlock.cpp - A register allocator for large basic blocks -===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the RABigBlock class
12 //===----------------------------------------------------------------------===//
14 // This register allocator is derived from RegAllocLocal.cpp. Like it, this
15 // allocator works on one basic block at a time, oblivious to others.
16 // However, the algorithm used here is suited for long blocks of
17 // instructions - registers are spilled by greedily choosing those holding
18 // values that will not be needed for the longest amount of time. This works
19 // particularly well for blocks with 10 or more times as many instructions
20 // as machine registers, but can be used for general code.
22 //===----------------------------------------------------------------------===//
24 // TODO: - automagically invoke linearscan for (groups of) small BBs?
25 // - break ties when picking regs? (probably not worth it in a
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "regalloc"
31 #include "llvm/BasicBlock.h"
32 #include "llvm/CodeGen/Passes.h"
33 #include "llvm/CodeGen/MachineFunctionPass.h"
34 #include "llvm/CodeGen/MachineInstr.h"
35 #include "llvm/CodeGen/MachineFrameInfo.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/LiveVariables.h"
38 #include "llvm/CodeGen/RegAllocRegistry.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/Compiler.h"
44 #include "llvm/ADT/IndexedMap.h"
45 #include "llvm/ADT/DenseMap.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/SmallPtrSet.h"
48 #include "llvm/ADT/Statistic.h"
52 STATISTIC(NumStores, "Number of stores added");
53 STATISTIC(NumLoads , "Number of loads added");
54 STATISTIC(NumFolded, "Number of loads/stores folded into instructions");
57 static RegisterRegAlloc
58 bigBlockRegAlloc("bigblock", " Big-block register allocator",
59 createBigBlockRegisterAllocator);
61 /// VRegKeyInfo - Defines magic values required to use VirtRegs as DenseMap
64 static inline unsigned getEmptyKey() { return -1U; }
65 static inline unsigned getTombstoneKey() { return -2U; }
66 static bool isEqual(unsigned LHS, unsigned RHS) { return LHS == RHS; }
67 static unsigned getHashValue(const unsigned &Key) { return Key; }
71 /// This register allocator is derived from RegAllocLocal.cpp. Like it, this
72 /// allocator works on one basic block at a time, oblivious to others.
73 /// However, the algorithm used here is suited for long blocks of
74 /// instructions - registers are spilled by greedily choosing those holding
75 /// values that will not be needed for the longest amount of time. This works
76 /// particularly well for blocks with 10 or more times as many instructions
77 /// as machine registers, but can be used for general code.
79 /// TODO: - automagically invoke linearscan for (groups of) small BBs?
80 /// - break ties when picking regs? (probably not worth it in a
83 class VISIBILITY_HIDDEN RABigBlock : public MachineFunctionPass {
86 RABigBlock() : MachineFunctionPass((intptr_t)&ID) {}
88 /// TM - For getting at TargetMachine info
90 const TargetMachine *TM;
92 /// MF - Our generic MachineFunction pointer
96 /// RegInfo - For dealing with machine register info (aliases, folds
98 const MRegisterInfo *RegInfo;
100 /// LV - Our generic LiveVariables pointer
104 typedef SmallVector<unsigned, 2> VRegTimes;
106 /// VRegReadTable - maps VRegs in a BB to the set of times they are read
108 DenseMap<unsigned, VRegTimes*, VRegKeyInfo> VRegReadTable;
110 /// VRegReadIdx - keeps track of the "current time" in terms of
111 /// positions in VRegReadTable
112 DenseMap<unsigned, unsigned , VRegKeyInfo> VRegReadIdx;
114 /// StackSlotForVirtReg - Maps virtual regs to the frame index where these
115 /// values are spilled.
116 IndexedMap<unsigned, VirtReg2IndexFunctor> StackSlotForVirtReg;
118 /// Virt2PhysRegMap - This map contains entries for each virtual register
119 /// that is currently available in a physical register.
120 IndexedMap<unsigned, VirtReg2IndexFunctor> Virt2PhysRegMap;
122 /// PhysRegsUsed - This array is effectively a map, containing entries for
123 /// each physical register that currently has a value (ie, it is in
124 /// Virt2PhysRegMap). The value mapped to is the virtual register
125 /// corresponding to the physical register (the inverse of the
126 /// Virt2PhysRegMap), or 0. The value is set to 0 if this register is pinned
127 /// because it is used by a future instruction, and to -2 if it is not
128 /// allocatable. If the entry for a physical register is -1, then the
129 /// physical register is "not in the map".
131 std::vector<int> PhysRegsUsed;
133 /// VirtRegModified - This bitset contains information about which virtual
134 /// registers need to be spilled back to memory when their registers are
135 /// scavenged. If a virtual register has simply been rematerialized, there
136 /// is no reason to spill it to memory when we need the register back.
138 std::vector<int> VirtRegModified;
140 /// MBBLastInsnTime - the number of the the last instruction in MBB
144 /// MBBCurTime - the number of the the instruction being currently processed
148 unsigned &getVirt2PhysRegMapSlot(unsigned VirtReg) {
149 return Virt2PhysRegMap[VirtReg];
152 unsigned &getVirt2StackSlot(unsigned VirtReg) {
153 return StackSlotForVirtReg[VirtReg];
156 /// markVirtRegModified - Lets us flip bits in the VirtRegModified bitset
158 void markVirtRegModified(unsigned Reg, bool Val = true) {
159 assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
160 Reg -= MRegisterInfo::FirstVirtualRegister;
161 if (VirtRegModified.size() <= Reg)
162 VirtRegModified.resize(Reg+1);
163 VirtRegModified[Reg] = Val;
166 /// isVirtRegModified - Lets us query the VirtRegModified bitset
168 bool isVirtRegModified(unsigned Reg) const {
169 assert(MRegisterInfo::isVirtualRegister(Reg) && "Illegal VirtReg!");
170 assert(Reg - MRegisterInfo::FirstVirtualRegister < VirtRegModified.size()
171 && "Illegal virtual register!");
172 return VirtRegModified[Reg - MRegisterInfo::FirstVirtualRegister];
176 /// getPassName - returns the BigBlock allocator's name
178 virtual const char *getPassName() const {
179 return "BigBlock Register Allocator";
182 /// getAnalaysisUsage - declares the required analyses
184 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
185 AU.addRequired<LiveVariables>();
186 AU.addRequiredID(PHIEliminationID);
187 AU.addRequiredID(TwoAddressInstructionPassID);
188 MachineFunctionPass::getAnalysisUsage(AU);
192 /// runOnMachineFunction - Register allocate the whole function
194 bool runOnMachineFunction(MachineFunction &Fn);
196 /// AllocateBasicBlock - Register allocate the specified basic block.
198 void AllocateBasicBlock(MachineBasicBlock &MBB);
200 /// FillVRegReadTable - Fill out the table of vreg read times given a BB
202 void FillVRegReadTable(MachineBasicBlock &MBB);
204 /// areRegsEqual - This method returns true if the specified registers are
205 /// related to each other. To do this, it checks to see if they are equal
206 /// or if the first register is in the alias set of the second register.
208 bool areRegsEqual(unsigned R1, unsigned R2) const {
209 if (R1 == R2) return true;
210 for (const unsigned *AliasSet = RegInfo->getAliasSet(R2);
211 *AliasSet; ++AliasSet) {
212 if (*AliasSet == R1) return true;
217 /// getStackSpaceFor - This returns the frame index of the specified virtual
218 /// register on the stack, allocating space if necessary.
219 int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
221 /// removePhysReg - This method marks the specified physical register as no
222 /// longer being in use.
224 void removePhysReg(unsigned PhysReg);
226 /// spillVirtReg - This method spills the value specified by PhysReg into
227 /// the virtual register slot specified by VirtReg. It then updates the RA
228 /// data structures to indicate the fact that PhysReg is now available.
230 void spillVirtReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
231 unsigned VirtReg, unsigned PhysReg);
233 /// spillPhysReg - This method spills the specified physical register into
234 /// the virtual register slot associated with it. If OnlyVirtRegs is set to
235 /// true, then the request is ignored if the physical register does not
236 /// contain a virtual register.
238 void spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
239 unsigned PhysReg, bool OnlyVirtRegs = false);
241 /// assignVirtToPhysReg - This method updates local state so that we know
242 /// that PhysReg is the proper container for VirtReg now. The physical
243 /// register must not be used for anything else when this is called.
245 void assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg);
247 /// isPhysRegAvailable - Return true if the specified physical register is
248 /// free and available for use. This also includes checking to see if
249 /// aliased registers are all free...
251 bool isPhysRegAvailable(unsigned PhysReg) const;
253 /// getFreeReg - Look to see if there is a free register available in the
254 /// specified register class. If not, return 0.
256 unsigned getFreeReg(const TargetRegisterClass *RC);
258 /// chooseReg - Pick a physical register to hold the specified
259 /// virtual register by choosing the one which will be read furthest
262 unsigned chooseReg(MachineBasicBlock &MBB, MachineInstr *MI,
265 /// reloadVirtReg - This method transforms the specified specified virtual
266 /// register use to refer to a physical register. This method may do this
267 /// in one of several ways: if the register is available in a physical
268 /// register already, it uses that physical register. If the value is not
269 /// in a physical register, and if there are physical registers available,
270 /// it loads it into a register. If register pressure is high, and it is
271 /// possible, it tries to fold the load of the virtual register into the
272 /// instruction itself. It avoids doing this if register pressure is low to
273 /// improve the chance that subsequent instructions can use the reloaded
274 /// value. This method returns the modified instruction.
276 MachineInstr *reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
280 char RABigBlock::ID = 0;
283 /// getStackSpaceFor - This allocates space for the specified virtual register
284 /// to be held on the stack.
285 int RABigBlock::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
286 // Find the location Reg would belong...
287 int FrameIdx = getVirt2StackSlot(VirtReg);
290 return FrameIdx - 1; // Already has space allocated?
292 // Allocate a new stack object for this spill location...
293 FrameIdx = MF->getFrameInfo()->CreateStackObject(RC->getSize(),
296 // Assign the slot...
297 getVirt2StackSlot(VirtReg) = FrameIdx + 1;
302 /// removePhysReg - This method marks the specified physical register as no
303 /// longer being in use.
305 void RABigBlock::removePhysReg(unsigned PhysReg) {
306 PhysRegsUsed[PhysReg] = -1; // PhyReg no longer used
310 /// spillVirtReg - This method spills the value specified by PhysReg into the
311 /// virtual register slot specified by VirtReg. It then updates the RA data
312 /// structures to indicate the fact that PhysReg is now available.
314 void RABigBlock::spillVirtReg(MachineBasicBlock &MBB,
315 MachineBasicBlock::iterator I,
316 unsigned VirtReg, unsigned PhysReg) {
317 assert(VirtReg && "Spilling a physical register is illegal!"
318 " Must not have appropriate kill for the register or use exists beyond"
319 " the intended one.");
320 DOUT << " Spilling register " << RegInfo->getName(PhysReg)
321 << " containing %reg" << VirtReg;
323 const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
325 if (!isVirtRegModified(VirtReg))
326 DOUT << " which has not been modified, so no store necessary!";
328 // Otherwise, there is a virtual register corresponding to this physical
329 // register. We only need to spill it into its stack slot if it has been
331 if (isVirtRegModified(VirtReg)) {
332 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
333 int FrameIndex = getStackSpaceFor(VirtReg, RC);
334 DOUT << " to stack slot #" << FrameIndex;
335 TII->storeRegToStackSlot(MBB, I, PhysReg, true, FrameIndex, RC);
336 ++NumStores; // Update statistics
339 getVirt2PhysRegMapSlot(VirtReg) = 0; // VirtReg no longer available
342 removePhysReg(PhysReg);
346 /// spillPhysReg - This method spills the specified physical register into the
347 /// virtual register slot associated with it. If OnlyVirtRegs is set to true,
348 /// then the request is ignored if the physical register does not contain a
349 /// virtual register.
351 void RABigBlock::spillPhysReg(MachineBasicBlock &MBB, MachineInstr *I,
352 unsigned PhysReg, bool OnlyVirtRegs) {
353 if (PhysRegsUsed[PhysReg] != -1) { // Only spill it if it's used!
354 assert(PhysRegsUsed[PhysReg] != -2 && "Non allocable reg used!");
355 if (PhysRegsUsed[PhysReg] || !OnlyVirtRegs)
356 spillVirtReg(MBB, I, PhysRegsUsed[PhysReg], PhysReg);
358 // If the selected register aliases any other registers, we must make
359 // sure that one of the aliases isn't alive.
360 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
361 *AliasSet; ++AliasSet)
362 if (PhysRegsUsed[*AliasSet] != -1 && // Spill aliased register.
363 PhysRegsUsed[*AliasSet] != -2) // If allocatable.
364 if (PhysRegsUsed[*AliasSet])
365 spillVirtReg(MBB, I, PhysRegsUsed[*AliasSet], *AliasSet);
370 /// assignVirtToPhysReg - This method updates local state so that we know
371 /// that PhysReg is the proper container for VirtReg now. The physical
372 /// register must not be used for anything else when this is called.
374 void RABigBlock::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
375 assert(PhysRegsUsed[PhysReg] == -1 && "Phys reg already assigned!");
376 // Update information to note the fact that this register was just used, and
378 PhysRegsUsed[PhysReg] = VirtReg;
379 getVirt2PhysRegMapSlot(VirtReg) = PhysReg;
383 /// isPhysRegAvailable - Return true if the specified physical register is free
384 /// and available for use. This also includes checking to see if aliased
385 /// registers are all free...
387 bool RABigBlock::isPhysRegAvailable(unsigned PhysReg) const {
388 if (PhysRegsUsed[PhysReg] != -1) return false;
390 // If the selected register aliases any other allocated registers, it is
392 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
393 *AliasSet; ++AliasSet)
394 if (PhysRegsUsed[*AliasSet] != -1) // Aliased register in use?
395 return false; // Can't use this reg then.
400 /// getFreeReg - Look to see if there is a free register available in the
401 /// specified register class. If not, return 0.
403 unsigned RABigBlock::getFreeReg(const TargetRegisterClass *RC) {
404 // Get iterators defining the range of registers that are valid to allocate in
405 // this class, which also specifies the preferred allocation order.
406 TargetRegisterClass::iterator RI = RC->allocation_order_begin(*MF);
407 TargetRegisterClass::iterator RE = RC->allocation_order_end(*MF);
409 for (; RI != RE; ++RI)
410 if (isPhysRegAvailable(*RI)) { // Is reg unused?
411 assert(*RI != 0 && "Cannot use register!");
412 return *RI; // Found an unused register!
418 /// chooseReg - Pick a physical register to hold the specified
419 /// virtual register by choosing the one whose value will be read
420 /// furthest in the future.
422 unsigned RABigBlock::chooseReg(MachineBasicBlock &MBB, MachineInstr *I,
424 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
425 // First check to see if we have a free register of the requested type...
426 unsigned PhysReg = getFreeReg(RC);
428 // If we didn't find an unused register, find the one which will be
429 // read at the most distant point in time.
431 unsigned delay=0, longest_delay=0;
432 VRegTimes* ReadTimes;
434 unsigned curTime = MBBCurTime;
436 // for all physical regs in the RC,
437 for(TargetRegisterClass::iterator pReg = RC->begin();
438 pReg != RC->end(); ++pReg) {
439 // how long until they're read?
440 if(PhysRegsUsed[*pReg]>0) { // ignore non-allocatable regs
441 ReadTimes = VRegReadTable[PhysRegsUsed[*pReg]];
442 if(ReadTimes && !ReadTimes->empty()) {
443 unsigned& pt = VRegReadIdx[PhysRegsUsed[*pReg]];
444 while(pt < ReadTimes->size() && (*ReadTimes)[pt] < curTime) {
448 if(pt < ReadTimes->size())
449 delay = (*ReadTimes)[pt] - curTime;
451 delay = MBBLastInsnTime + 1 - curTime;
453 // This register is only defined, but never
454 // read in this MBB. Therefore the next read
455 // happens after the end of this MBB
456 delay = MBBLastInsnTime + 1 - curTime;
460 if(delay > longest_delay) {
461 longest_delay = delay;
467 if(PhysReg == 0) { // ok, now we're desperate. We couldn't choose
468 // a register to spill by looking through the
469 // read timetable, so now we just spill the
470 // first allocatable register we find.
472 // for all physical regs in the RC,
473 for(TargetRegisterClass::iterator pReg = RC->begin();
474 pReg != RC->end(); ++pReg) {
475 // if we find a register we can spill
476 if(PhysRegsUsed[*pReg]>=-1)
477 PhysReg = *pReg; // choose it to be spilled
481 assert(PhysReg && "couldn't choose a register to spill :( ");
482 // TODO: assert that RC->contains(PhysReg) / handle aliased registers?
484 // since we needed to look in the table we need to spill this register.
485 spillPhysReg(MBB, I, PhysReg);
488 // assign the vreg to our chosen physical register
489 assignVirtToPhysReg(VirtReg, PhysReg);
490 return PhysReg; // and return it
494 /// reloadVirtReg - This method transforms an instruction with a virtual
495 /// register use to one that references a physical register. It does this as
498 /// 1) If the register is already in a physical register, it uses it.
499 /// 2) Otherwise, if there is a free physical register, it uses that.
500 /// 3) Otherwise, it calls chooseReg() to get the physical register
501 /// holding the most distantly needed value, generating a spill in
504 /// This method returns the modified instruction.
505 MachineInstr *RABigBlock::reloadVirtReg(MachineBasicBlock &MBB, MachineInstr *MI,
507 unsigned VirtReg = MI->getOperand(OpNum).getReg();
509 // If the virtual register is already available in a physical register,
510 // just update the instruction and return.
511 if (unsigned PR = getVirt2PhysRegMapSlot(VirtReg)) {
512 MI->getOperand(OpNum).setReg(PR);
516 // Otherwise, if we have free physical registers available to hold the
518 const TargetRegisterClass *RC = MF->getRegInfo().getRegClass(VirtReg);
519 unsigned PhysReg = getFreeReg(RC);
520 int FrameIndex = getStackSpaceFor(VirtReg, RC);
522 if (PhysReg) { // we have a free register, so use it.
523 assignVirtToPhysReg(VirtReg, PhysReg);
524 } else { // no free registers available.
525 // try to fold the spill into the instruction
526 SmallVector<unsigned, 2> Ops;
527 Ops.push_back(OpNum);
528 if(MachineInstr* FMI = RegInfo->foldMemoryOperand(MI, Ops, FrameIndex)) {
530 // Since we changed the address of MI, make sure to update live variables
531 // to know that the new instruction has the properties of the old one.
532 LV->instructionChanged(MI, FMI);
533 return MBB.insert(MBB.erase(MI), FMI);
536 // determine which of the physical registers we'll kill off, since we
538 PhysReg = chooseReg(MBB, MI, VirtReg);
541 // this virtual register is now unmodified (since we just reloaded it)
542 markVirtRegModified(VirtReg, false);
544 DOUT << " Reloading %reg" << VirtReg << " into "
545 << RegInfo->getName(PhysReg) << "\n";
547 // Add move instruction(s)
548 const TargetInstrInfo* TII = MBB.getParent()->getTarget().getInstrInfo();
549 TII->loadRegFromStackSlot(MBB, MI, PhysReg, FrameIndex, RC);
550 ++NumLoads; // Update statistics
552 MF->getRegInfo().setPhysRegUsed(PhysReg);
553 MI->getOperand(OpNum).setReg(PhysReg); // Assign the input register
557 /// Fill out the vreg read timetable. Since ReadTime increases
558 /// monotonically, the individual readtime sets will be sorted
559 /// in ascending order.
560 void RABigBlock::FillVRegReadTable(MachineBasicBlock &MBB) {
561 // loop over each instruction
562 MachineBasicBlock::iterator MII;
565 for(ReadTime=0, MII = MBB.begin(); MII != MBB.end(); ++ReadTime, ++MII) {
566 MachineInstr *MI = MII;
568 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
569 MachineOperand& MO = MI->getOperand(i);
570 // look for vreg reads..
571 if (MO.isRegister() && !MO.isDef() && MO.getReg() &&
572 MRegisterInfo::isVirtualRegister(MO.getReg())) {
573 // ..and add them to the read table.
574 VRegTimes* &Times = VRegReadTable[MO.getReg()];
575 if(!VRegReadTable[MO.getReg()]) {
576 Times = new VRegTimes;
577 VRegReadIdx[MO.getReg()] = 0;
579 Times->push_back(ReadTime);
585 MBBLastInsnTime = ReadTime;
587 for(DenseMap<unsigned, VRegTimes*, VRegKeyInfo>::iterator Reads = VRegReadTable.begin();
588 Reads != VRegReadTable.end(); ++Reads) {
590 DOUT << "Reads[" << Reads->first << "]=" << Reads->second->size() << "\n";
595 /// isReadModWriteImplicitKill - True if this is an implicit kill for a
596 /// read/mod/write register, i.e. update partial register.
597 static bool isReadModWriteImplicitKill(MachineInstr *MI, unsigned Reg) {
598 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
599 MachineOperand& MO = MI->getOperand(i);
600 if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() &&
601 MO.isDef() && !MO.isDead())
607 /// isReadModWriteImplicitDef - True if this is an implicit def for a
608 /// read/mod/write register, i.e. update partial register.
609 static bool isReadModWriteImplicitDef(MachineInstr *MI, unsigned Reg) {
610 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
611 MachineOperand& MO = MI->getOperand(i);
612 if (MO.isRegister() && MO.getReg() == Reg && MO.isImplicit() &&
613 !MO.isDef() && MO.isKill())
620 void RABigBlock::AllocateBasicBlock(MachineBasicBlock &MBB) {
621 // loop over each instruction
622 MachineBasicBlock::iterator MII = MBB.begin();
623 const TargetInstrInfo &TII = *TM->getInstrInfo();
625 DEBUG(const BasicBlock *LBB = MBB.getBasicBlock();
626 if (LBB) DOUT << "\nStarting RegAlloc of BB: " << LBB->getName());
628 // If this is the first basic block in the machine function, add live-in
629 // registers as active.
630 if (&MBB == &*MF->begin()) {
631 for (MachineRegisterInfo::livein_iterator
632 I = MF->getRegInfo().livein_begin(),
633 E = MF->getRegInfo().livein_end(); I != E; ++I) {
634 unsigned Reg = I->first;
635 MF->getRegInfo().setPhysRegUsed(Reg);
636 PhysRegsUsed[Reg] = 0; // It is free and reserved now
637 for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
638 *AliasSet; ++AliasSet) {
639 if (PhysRegsUsed[*AliasSet] != -2) {
640 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
641 MF->getRegInfo().setPhysRegUsed(*AliasSet);
647 // Otherwise, sequentially allocate each instruction in the MBB.
649 while (MII != MBB.end()) {
650 MachineInstr *MI = MII++;
652 const TargetInstrDescriptor &TID = TII.get(MI->getOpcode());
653 DEBUG(DOUT << "\nTime=" << MBBCurTime << " Starting RegAlloc of: " << *MI;
654 DOUT << " Regs have values: ";
655 for (unsigned i = 0; i != RegInfo->getNumRegs(); ++i)
656 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
657 DOUT << "[" << RegInfo->getName(i)
658 << ",%reg" << PhysRegsUsed[i] << "] ";
661 SmallVector<unsigned, 8> Kills;
662 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
663 MachineOperand& MO = MI->getOperand(i);
664 if (MO.isRegister() && MO.isKill()) {
665 if (!MO.isImplicit())
666 Kills.push_back(MO.getReg());
667 else if (!isReadModWriteImplicitKill(MI, MO.getReg()))
668 // These are extra physical register kills when a sub-register
669 // is defined (def of a sub-register is a read/mod/write of the
670 // larger registers). Ignore.
671 Kills.push_back(MO.getReg());
675 // Get the used operands into registers. This has the potential to spill
676 // incoming values if we are out of registers. Note that we completely
677 // ignore physical register uses here. We assume that if an explicit
678 // physical register is referenced by the instruction, that it is guaranteed
679 // to be live-in, or the input is badly hosed.
681 for (unsigned i = 0; i != MI->getNumOperands(); ++i) {
682 MachineOperand& MO = MI->getOperand(i);
683 // here we are looking for only used operands (never def&use)
684 if (MO.isRegister() && !MO.isDef() && MO.getReg() && !MO.isImplicit() &&
685 MRegisterInfo::isVirtualRegister(MO.getReg()))
686 MI = reloadVirtReg(MBB, MI, i);
689 // If this instruction is the last user of this register, kill the
690 // value, freeing the register being used, so it doesn't need to be
691 // spilled to memory.
693 for (unsigned i = 0, e = Kills.size(); i != e; ++i) {
694 unsigned VirtReg = Kills[i];
695 unsigned PhysReg = VirtReg;
696 if (MRegisterInfo::isVirtualRegister(VirtReg)) {
697 // If the virtual register was never materialized into a register, it
698 // might not be in the map, but it won't hurt to zero it out anyway.
699 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
700 PhysReg = PhysRegSlot;
702 } else if (PhysRegsUsed[PhysReg] == -2) {
703 // Unallocatable register dead, ignore.
706 assert(!PhysRegsUsed[PhysReg] || PhysRegsUsed[PhysReg] == -1 &&
707 "Silently clearing a virtual register?");
711 DOUT << " Last use of " << RegInfo->getName(PhysReg)
712 << "[%reg" << VirtReg <<"], removing it from live set\n";
713 removePhysReg(PhysReg);
714 for (const unsigned *AliasSet = RegInfo->getSubRegisters(PhysReg);
715 *AliasSet; ++AliasSet) {
716 if (PhysRegsUsed[*AliasSet] != -2) {
717 DOUT << " Last use of "
718 << RegInfo->getName(*AliasSet)
719 << "[%reg" << VirtReg <<"], removing it from live set\n";
720 removePhysReg(*AliasSet);
726 // Loop over all of the operands of the instruction, spilling registers that
727 // are defined, and marking explicit destinations in the PhysRegsUsed map.
728 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
729 MachineOperand& MO = MI->getOperand(i);
730 if (MO.isRegister() && MO.isDef() && !MO.isImplicit() && MO.getReg() &&
731 MRegisterInfo::isPhysicalRegister(MO.getReg())) {
732 unsigned Reg = MO.getReg();
733 if (PhysRegsUsed[Reg] == -2) continue; // Something like ESP.
734 // These are extra physical register defs when a sub-register
735 // is defined (def of a sub-register is a read/mod/write of the
736 // larger registers). Ignore.
737 if (isReadModWriteImplicitDef(MI, MO.getReg())) continue;
739 MF->getRegInfo().setPhysRegUsed(Reg);
740 spillPhysReg(MBB, MI, Reg, true); // Spill any existing value in reg
741 PhysRegsUsed[Reg] = 0; // It is free and reserved now
742 for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
743 *AliasSet; ++AliasSet) {
744 if (PhysRegsUsed[*AliasSet] != -2) {
745 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
746 MF->getRegInfo().setPhysRegUsed(*AliasSet);
752 // Loop over the implicit defs, spilling them as well.
753 if (TID.ImplicitDefs) {
754 for (const unsigned *ImplicitDefs = TID.ImplicitDefs;
755 *ImplicitDefs; ++ImplicitDefs) {
756 unsigned Reg = *ImplicitDefs;
757 if (PhysRegsUsed[Reg] != -2) {
758 spillPhysReg(MBB, MI, Reg, true);
759 PhysRegsUsed[Reg] = 0; // It is free and reserved now
761 MF->getRegInfo().setPhysRegUsed(Reg);
762 for (const unsigned *AliasSet = RegInfo->getSubRegisters(Reg);
763 *AliasSet; ++AliasSet) {
764 if (PhysRegsUsed[*AliasSet] != -2) {
765 PhysRegsUsed[*AliasSet] = 0; // It is free and reserved now
766 MF->getRegInfo().setPhysRegUsed(*AliasSet);
772 SmallVector<unsigned, 8> DeadDefs;
773 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
774 MachineOperand& MO = MI->getOperand(i);
775 if (MO.isRegister() && MO.isDead())
776 DeadDefs.push_back(MO.getReg());
779 // Okay, we have allocated all of the source operands and spilled any values
780 // that would be destroyed by defs of this instruction. Loop over the
781 // explicit defs and assign them to a register, spilling incoming values if
782 // we need to scavenge a register.
784 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
785 MachineOperand& MO = MI->getOperand(i);
786 if (MO.isRegister() && MO.isDef() && MO.getReg() &&
787 MRegisterInfo::isVirtualRegister(MO.getReg())) {
788 unsigned DestVirtReg = MO.getReg();
789 unsigned DestPhysReg;
791 // If DestVirtReg already has a value, use it.
792 if (!(DestPhysReg = getVirt2PhysRegMapSlot(DestVirtReg)))
793 DestPhysReg = chooseReg(MBB, MI, DestVirtReg);
794 MF->getRegInfo().setPhysRegUsed(DestPhysReg);
795 markVirtRegModified(DestVirtReg);
796 MI->getOperand(i).setReg(DestPhysReg); // Assign the output register
800 // If this instruction defines any registers that are immediately dead,
803 for (unsigned i = 0, e = DeadDefs.size(); i != e; ++i) {
804 unsigned VirtReg = DeadDefs[i];
805 unsigned PhysReg = VirtReg;
806 if (MRegisterInfo::isVirtualRegister(VirtReg)) {
807 unsigned &PhysRegSlot = getVirt2PhysRegMapSlot(VirtReg);
808 PhysReg = PhysRegSlot;
809 assert(PhysReg != 0);
811 } else if (PhysRegsUsed[PhysReg] == -2) {
812 // Unallocatable register dead, ignore.
817 DOUT << " Register " << RegInfo->getName(PhysReg)
818 << " [%reg" << VirtReg
819 << "] is never used, removing it frame live list\n";
820 removePhysReg(PhysReg);
821 for (const unsigned *AliasSet = RegInfo->getAliasSet(PhysReg);
822 *AliasSet; ++AliasSet) {
823 if (PhysRegsUsed[*AliasSet] != -2) {
824 DOUT << " Register " << RegInfo->getName(*AliasSet)
825 << " [%reg" << *AliasSet
826 << "] is never used, removing it frame live list\n";
827 removePhysReg(*AliasSet);
833 // Finally, if this is a noop copy instruction, zap it.
834 unsigned SrcReg, DstReg;
835 if (TII.isMoveInstr(*MI, SrcReg, DstReg) && SrcReg == DstReg) {
836 LV->removeVirtualRegistersKilled(MI);
837 LV->removeVirtualRegistersDead(MI);
842 MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
844 // Spill all physical registers holding virtual registers now.
845 for (unsigned i = 0, e = RegInfo->getNumRegs(); i != e; ++i)
846 if (PhysRegsUsed[i] != -1 && PhysRegsUsed[i] != -2)
847 if (unsigned VirtReg = PhysRegsUsed[i])
848 spillVirtReg(MBB, MI, VirtReg, i);
853 /// runOnMachineFunction - Register allocate the whole function
855 bool RABigBlock::runOnMachineFunction(MachineFunction &Fn) {
856 DOUT << "Machine Function " << "\n";
858 TM = &Fn.getTarget();
859 RegInfo = TM->getRegisterInfo();
860 LV = &getAnalysis<LiveVariables>();
862 PhysRegsUsed.assign(RegInfo->getNumRegs(), -1);
864 // At various places we want to efficiently check to see whether a register
865 // is allocatable. To handle this, we mark all unallocatable registers as
866 // being pinned down, permanently.
868 BitVector Allocable = RegInfo->getAllocatableSet(Fn);
869 for (unsigned i = 0, e = Allocable.size(); i != e; ++i)
871 PhysRegsUsed[i] = -2; // Mark the reg unallocable.
874 // initialize the virtual->physical register map to have a 'null'
875 // mapping for all virtual registers
876 Virt2PhysRegMap.grow(MF->getRegInfo().getLastVirtReg());
877 StackSlotForVirtReg.grow(MF->getRegInfo().getLastVirtReg());
878 VirtRegModified.resize(MF->getRegInfo().getLastVirtReg() -
879 MRegisterInfo::FirstVirtualRegister + 1, 0);
881 // Loop over all of the basic blocks, eliminating virtual register references
882 for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end();
883 MBB != MBBe; ++MBB) {
884 // fill out the read timetable
885 FillVRegReadTable(*MBB);
886 // use it to allocate the BB
887 AllocateBasicBlock(*MBB);
889 VRegReadTable.clear();
892 StackSlotForVirtReg.clear();
893 PhysRegsUsed.clear();
894 VirtRegModified.clear();
895 Virt2PhysRegMap.clear();
899 FunctionPass *llvm::createBigBlockRegisterAllocator() {
900 return new RABigBlock();