Add instruction numbers to debugging output.
[oota-llvm.git] / lib / CodeGen / RegAllocLinearScan.cpp
1 //===-- RegAllocLinearScan.cpp - Linear Scan register allocator -----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a linear scan register allocator.
11 //
12 //===----------------------------------------------------------------------===//
13 #define DEBUG_TYPE "regalloc"
14 #include "llvm/Function.h"
15 #include "llvm/CodeGen/LiveIntervals.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineFrameInfo.h"
18 #include "llvm/CodeGen/MachineFunctionPass.h"
19 #include "llvm/CodeGen/MachineInstr.h"
20 #include "llvm/CodeGen/Passes.h"
21 #include "llvm/CodeGen/SSARegMap.h"
22 #include "llvm/Target/MRegisterInfo.h"
23 #include "llvm/Target/TargetInstrInfo.h"
24 #include "llvm/Target/TargetMachine.h"
25 #include "llvm/Target/TargetRegInfo.h"
26 #include "llvm/Support/CFG.h"
27 #include "Support/Debug.h"
28 #include "Support/DepthFirstIterator.h"
29 #include "Support/Statistic.h"
30 #include "Support/STLExtras.h"
31 #include <iostream>
32
33 using namespace llvm;
34
35 namespace {
36     Statistic<> numSpilled ("ra-linearscan", "Number of registers spilled");
37
38     class RA : public MachineFunctionPass {
39     public:
40         typedef std::vector<const LiveIntervals::Interval*> IntervalPtrs;
41
42     private:
43         MachineFunction* mf_;
44         const TargetMachine* tm_;
45         const MRegisterInfo* mri_;
46         MachineBasicBlock* currentMbb_;
47         MachineBasicBlock::iterator currentInstr_;
48         typedef LiveIntervals::Intervals Intervals;
49         const Intervals* li_;
50         IntervalPtrs active_, inactive_;
51
52         typedef std::vector<unsigned> Regs;
53         Regs tempUseOperands_;
54         Regs tempDefOperands_;
55
56         Regs reserved_;
57
58         typedef LiveIntervals::MachineBasicBlockPtrs MachineBasicBlockPtrs;
59         MachineBasicBlockPtrs mbbs_;
60
61         typedef std::vector<unsigned> Phys2VirtMap;
62         Phys2VirtMap p2vMap_;
63
64         typedef std::map<unsigned, unsigned> Virt2PhysMap;
65         Virt2PhysMap v2pMap_;
66
67         typedef std::map<unsigned, int> Virt2StackSlotMap;
68         Virt2StackSlotMap v2ssMap_;
69
70         int instrAdded_;
71
72     public:
73         virtual const char* getPassName() const {
74             return "Linear Scan Register Allocator";
75         }
76
77         virtual void getAnalysisUsage(AnalysisUsage &AU) const {
78             AU.addRequired<LiveVariables>();
79             AU.addRequired<LiveIntervals>();
80             MachineFunctionPass::getAnalysisUsage(AU);
81         }
82
83     private:
84         /// runOnMachineFunction - register allocate the whole function
85         bool runOnMachineFunction(MachineFunction&);
86
87         /// processActiveIntervals - expire old intervals and move
88         /// non-overlapping ones to the incative list
89         void processActiveIntervals(Intervals::const_iterator cur);
90
91         /// processInactiveIntervals - expire old intervals and move
92         /// overlapping ones to the active list
93         void processInactiveIntervals(Intervals::const_iterator cur);
94
95         /// assignStackSlotAtInterval - choose and spill
96         /// interval. Currently we spill the interval with the last
97         /// end point in the active and inactive lists and the current
98         /// interval
99         void assignStackSlotAtInterval(Intervals::const_iterator cur);
100
101         ///
102         /// register handling helpers
103         ///
104
105         /// reservePhysReg - reserves a physical register and spills
106         /// any value assigned to it if any
107         void reservePhysReg(unsigned reg);
108
109         /// clearReservedPhysReg - marks pysical register as free for
110         /// use
111         void clearReservedPhysReg(unsigned reg);
112
113         /// physRegAvailable - returns true if the specifed physical
114         /// register is available
115         bool physRegAvailable(unsigned physReg);
116
117         /// getFreePhysReg - return a free physical register for this
118         /// virtual register if we have one, otherwise return 0
119         unsigned getFreePhysReg(unsigned virtReg);
120
121
122         /// tempPhysRegAvailable - returns true if the specifed
123         /// temporary physical register is available
124         bool tempPhysRegAvailable(unsigned physReg);
125
126         /// getFreeTempPhysReg - return a free temprorary physical
127         /// register for this register class if we have one (should
128         /// never return 0)
129         unsigned getFreeTempPhysReg(const TargetRegisterClass* rc);
130
131         /// getFreeTempPhysReg - return a free temprorary physical
132         /// register for this virtual register if we have one (should
133         /// never return 0)
134         unsigned getFreeTempPhysReg(unsigned virtReg) {
135             const TargetRegisterClass* rc =
136                 mf_->getSSARegMap()->getRegClass(virtReg);
137             return getFreeTempPhysReg(rc);
138         }
139
140         /// assignVirt2PhysReg - assigns the free physical register to
141         /// the virtual register passed as arguments
142         void assignVirt2PhysReg(unsigned virtReg, unsigned physReg);
143
144         /// clearVirtReg - free the physical register associated with this
145         /// virtual register and disassociate virtual->physical and
146         /// physical->virtual mappings
147         void clearVirtReg(unsigned virtReg);
148
149         /// assignVirt2StackSlot - assigns this virtual register to a
150         /// stack slot
151         void assignVirt2StackSlot(unsigned virtReg);
152
153         /// getStackSlot - returns the offset of the specified
154         /// register on the stack
155         int getStackSlot(unsigned virtReg);
156
157         /// spillVirtReg - spills the virtual register
158         void spillVirtReg(unsigned virtReg);
159
160         /// loadPhysReg - loads to the physical register the value of
161         /// the virtual register specifed. Virtual register must have
162         /// an assigned stack slot
163         void loadVirt2PhysReg(unsigned virtReg, unsigned physReg);
164
165         void printVirt2PhysMap() const {
166             std::cerr << "allocated registers:\n";
167             for (Virt2PhysMap::const_iterator
168                      i = v2pMap_.begin(), e = v2pMap_.end(); i != e; ++i) {
169                 std::cerr << '[' << i->first << ','
170                           << mri_->getName(i->second) << "]\n";
171             }
172             std::cerr << '\n';
173         }
174         void printIntervals(const char* const str,
175                             RA::IntervalPtrs::const_iterator i,
176                             RA::IntervalPtrs::const_iterator e) const {
177             if (str) std::cerr << str << " intervals:\n";
178             for (; i != e; ++i) {
179                 std::cerr << "\t\t" << **i << " -> ";
180                 if ((*i)->reg < MRegisterInfo::FirstVirtualRegister) {
181                     std::cerr << mri_->getName((*i)->reg);
182                 }
183                 else {
184                     std::cerr << mri_->getName(v2pMap_.find((*i)->reg)->second);
185                 }
186                 std::cerr << '\n';
187             }
188         }
189     };
190 }
191
192 bool RA::runOnMachineFunction(MachineFunction &fn) {
193     mf_ = &fn;
194     tm_ = &fn.getTarget();
195     mri_ = tm_->getRegisterInfo();
196     li_ = &getAnalysis<LiveIntervals>().getIntervals();
197     active_.clear();
198     inactive_.clear();
199     mbbs_ = getAnalysis<LiveIntervals>().getOrderedMachineBasicBlockPtrs();
200     p2vMap_.resize(MRegisterInfo::FirstVirtualRegister-1);
201     p2vMap_.clear();
202     v2pMap_.clear();
203     v2ssMap_.clear();
204
205     DEBUG(
206         unsigned i = 0;
207         for (MachineBasicBlockPtrs::iterator
208                  mbbi = mbbs_.begin(), mbbe = mbbs_.end();
209              mbbi != mbbe; ++mbbi) {
210             MachineBasicBlock* mbb = *mbbi;
211             std::cerr << mbb->getBasicBlock()->getName() << '\n';
212             for (MachineBasicBlock::iterator
213                      ii = mbb->begin(), ie = mbb->end();
214                  ii != ie; ++ii) {
215                 MachineInstr* instr = *ii;
216                      
217                 std::cerr << i++ << "\t";
218                 instr->print(std::cerr, *tm_);
219             }
220         }
221         );
222
223     // FIXME: this will work only for the X86 backend. I need to
224     // device an algorthm to select the minimal (considering register
225     // aliasing) number of temp registers to reserve so that we have 2
226     // registers for each register class available.
227
228     // reserve R32: EDI, EBX,
229     //         R16:  DI,  BX,
230     //         R8:   DH,  BH,
231     //         RFP: FP5, FP6
232     reserved_.push_back(19); /* EDI */
233     reserved_.push_back(17); /* EBX */
234     reserved_.push_back(12); /*  DI */
235     reserved_.push_back( 7); /*  BX */
236     reserved_.push_back(11); /*  DH */
237     reserved_.push_back( 4); /*  BH */
238     reserved_.push_back(28); /* FP5 */
239     reserved_.push_back(29); /* FP6 */
240
241     // liner scan algorithm
242     for (Intervals::const_iterator
243              i = li_->begin(), e = li_->end(); i != e; ++i) {
244         DEBUG(std::cerr << "processing current interval: " << *i << '\n');
245
246         DEBUG(printIntervals("\tactive", active_.begin(), active_.end()));
247         DEBUG(printIntervals("\tinactive", inactive_.begin(), inactive_.end()));
248
249         processActiveIntervals(i);
250         // processInactiveIntervals(i);
251
252         // if this register is preallocated, look for an interval that
253         // overlaps with it and assign it to a memory location
254         if (i->reg < MRegisterInfo::FirstVirtualRegister) {
255             reservePhysReg(i->reg);
256             active_.push_back(&*i);
257         }
258         // otherwise we are allocating a virtual register. try to find
259         // a free physical register or spill an interval in order to
260         // assign it one (we could spill the current though).
261         else {
262             unsigned physReg = getFreePhysReg(i->reg);
263             if (!physReg) {
264                 assignStackSlotAtInterval(i);
265             }
266             else {
267                 assignVirt2PhysReg(i->reg, physReg);
268                 active_.push_back(&*i);
269             }
270         }
271     }
272     
273     DEBUG(std::cerr << "finished register allocation\n");
274     DEBUG(printVirt2PhysMap());
275
276     DEBUG(std::cerr << "Rewrite machine code:\n");
277     for (MachineBasicBlockPtrs::iterator
278              mbbi = mbbs_.begin(), mbbe = mbbs_.end(); mbbi != mbbe; ++mbbi) {
279         instrAdded_ = 0;
280         currentMbb_ = *mbbi;
281
282         for (currentInstr_ = currentMbb_->begin();
283              currentInstr_ != currentMbb_->end(); ++currentInstr_) {
284
285             DEBUG(std::cerr << "\tinstruction: ";
286                   (*currentInstr_)->print(std::cerr, *tm_););
287
288             // use our current mapping and actually replace and
289             // virtual register with its allocated physical registers
290             DEBUG(std::cerr << "\t\treplacing virtual registers with mapped "
291                   "physical registers:\n");
292             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
293                  i != e; ++i) {
294                 MachineOperand& op = (*currentInstr_)->getOperand(i);
295                 if (op.isVirtualRegister()) {
296                     unsigned virtReg = op.getAllocatedRegNum();
297                     unsigned physReg = v2pMap_[virtReg];
298                     // if this virtual registers lives on the stack,
299                     // load it to a temporary physical register
300                     if (physReg) {
301                         DEBUG(std::cerr << "\t\t\t%reg" << virtReg
302                               << " -> " << mri_->getName(physReg) << '\n');
303                         (*currentInstr_)->SetMachineOperandReg(i, physReg);
304                     }
305                 }
306             }
307
308             DEBUG(std::cerr << "\t\tloading temporarily used operands to "
309                   "registers:\n");
310             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
311                  i != e; ++i) {
312                 MachineOperand& op = (*currentInstr_)->getOperand(i);
313                 if (op.isVirtualRegister() && op.opIsUse()) {
314                     unsigned virtReg = op.getAllocatedRegNum();
315                     unsigned physReg = v2pMap_[virtReg];
316                     if (!physReg) {
317                         physReg = getFreeTempPhysReg(virtReg);
318                     }
319                     loadVirt2PhysReg(virtReg, physReg);
320                     tempUseOperands_.push_back(virtReg);
321                     (*currentInstr_)->SetMachineOperandReg(i, physReg);
322                 }
323             }
324
325             DEBUG(std::cerr << "\t\tclearing temporarily used operands:\n");
326             for (unsigned i = 0, e = tempUseOperands_.size(); i != e; ++i) {
327                 clearVirtReg(tempUseOperands_[i]);
328             }
329             tempUseOperands_.clear();
330
331             DEBUG(std::cerr << "\t\tassigning temporarily defined operands to "
332                   "registers:\n");
333             for (unsigned i = 0, e = (*currentInstr_)->getNumOperands();
334                  i != e; ++i) {
335                 MachineOperand& op = (*currentInstr_)->getOperand(i);
336                 if (op.isVirtualRegister() && !op.opIsUse()) {
337                     unsigned virtReg = op.getAllocatedRegNum();
338                     unsigned physReg = v2pMap_[virtReg];
339                     if (!physReg) {
340                         physReg = getFreeTempPhysReg(virtReg);
341                     }
342                     if (op.opIsDefAndUse()) {
343                         loadVirt2PhysReg(virtReg, physReg);
344                     }
345                     else {
346                         assignVirt2PhysReg(virtReg, physReg);
347                     }
348                     tempDefOperands_.push_back(virtReg);
349                     (*currentInstr_)->SetMachineOperandReg(i, physReg);
350                 }
351             }
352
353
354             // if the instruction is a two address instruction and the
355             // source operands are not identical we need to insert
356             // extra instructions.
357
358             unsigned opcode = (*currentInstr_)->getOpcode();
359             if (tm_->getInstrInfo().isTwoAddrInstr(opcode) &&
360                 (*currentInstr_)->getOperand(0).getAllocatedRegNum() !=
361                 (*currentInstr_)->getOperand(1).getAllocatedRegNum()) {
362                 assert((*currentInstr_)->getOperand(1).isRegister() &&
363                        (*currentInstr_)->getOperand(1).getAllocatedRegNum() &&
364                        (*currentInstr_)->getOperand(1).opIsUse() &&
365                        "Two address instruction invalid");
366
367                 unsigned regA =
368                     (*currentInstr_)->getOperand(0).getAllocatedRegNum();
369                 unsigned regB =
370                     (*currentInstr_)->getOperand(1).getAllocatedRegNum();
371                 unsigned regC =
372                     ((*currentInstr_)->getNumOperands() > 2 &&
373                      (*currentInstr_)->getOperand(2).isRegister()) ?
374                     (*currentInstr_)->getOperand(2).getAllocatedRegNum() :
375                     0;
376
377                 const TargetRegisterClass* rc = mri_->getRegClass(regA);
378
379                 // special case: "a = b op a". If b is a temporary
380                 // reserved register rewrite as: "b = b op a; a = b"
381                 // otherwise use a temporary reserved register t and
382                 // rewrite as: "t = b; t = t op a; a = t"
383                 if (regC && regA == regC) {
384                     // b is a temp reserved register
385                     if (find(reserved_.begin(), reserved_.end(),
386                              regB) != reserved_.end()) {
387                         (*currentInstr_)->SetMachineOperandReg(0, regB);
388                         ++currentInstr_;
389                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
390                                                           currentInstr_,
391                                                           regA,
392                                                           regB,
393                                                           rc);
394                         --currentInstr_;
395                     }
396                     // b is just a normal register
397                     else {
398                         unsigned tempReg = getFreeTempPhysReg(rc);
399                         assert (tempReg &&
400                                 "no free temp reserved physical register?");
401                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
402                                                           currentInstr_,
403                                                           tempReg,
404                                                           regB,
405                                                           rc);
406                         (*currentInstr_)->SetMachineOperandReg(0, tempReg);
407                         (*currentInstr_)->SetMachineOperandReg(1, tempReg);
408                         ++currentInstr_;
409                         instrAdded_ += mri_->copyRegToReg(*currentMbb_,
410                                                           currentInstr_,
411                                                           regA,
412                                                           tempReg,
413                                                           rc);
414                         --currentInstr_;
415                     }
416                 }
417                 // "a = b op c" gets rewritten to "a = b; a = a op c"
418                 else {
419                     instrAdded_ += mri_->copyRegToReg(*currentMbb_,
420                                                       currentInstr_,
421                                                       regA,
422                                                       regB,
423                                                       rc);
424                     (*currentInstr_)->SetMachineOperandReg(1, regA);
425                 }
426             }
427
428             DEBUG(std::cerr << "\t\tspilling temporarily defined operands "
429                   "of this instruction:\n");
430             ++currentInstr_; // we want to insert after this instruction
431             for (unsigned i = 0, e = tempDefOperands_.size(); i != e; ++i) {
432                 spillVirtReg(tempDefOperands_[i]);
433             }
434             --currentInstr_; // restore currentInstr_ iterator
435             tempDefOperands_.clear();
436         }
437
438         for (unsigned i = 0, e = p2vMap_.size(); i != e; ++i) {
439             assert(p2vMap_[i] != i &&
440                    "reserved physical registers at end of basic block?");
441         }
442     }
443
444     return true;
445 }
446
447 void RA::processActiveIntervals(Intervals::const_iterator cur)
448 {
449     DEBUG(std::cerr << "\tprocessing active intervals:\n");
450     for (IntervalPtrs::iterator i = active_.begin(); i != active_.end();) {
451         unsigned reg = (*i)->reg;
452         // remove expired intervals. we expire earlier because this if
453         // an interval expires this is going to be the last use. in
454         // this case we can reuse the register for a def in the same
455         // instruction
456         if ((*i)->expired(cur->start() + 1)) {
457             DEBUG(std::cerr << "\t\tinterval " << **i << " expired\n");
458             if (reg < MRegisterInfo::FirstVirtualRegister) {
459                 clearReservedPhysReg(reg);
460             }
461             else {
462                 p2vMap_[v2pMap_[reg]] = 0;
463             }
464             // remove interval from active
465             i = active_.erase(i);
466         }
467         // move not active intervals to inactive list
468 //         else if (!(*i)->overlaps(curIndex)) {
469 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " inactive\n");
470 //             unmarkReg(virtReg);
471 //             // add interval to inactive
472 //             inactive_.push_back(*i);
473 //             // remove interval from active
474 //             i = active_.erase(i);
475 //         }
476         else {
477             ++i;
478         }
479     }
480 }
481
482 void RA::processInactiveIntervals(Intervals::const_iterator cur)
483 {
484 //     DEBUG(std::cerr << "\tprocessing inactive intervals:\n");
485 //     for (IntervalPtrs::iterator i = inactive_.begin(); i != inactive_.end();) {
486 //         unsigned virtReg = (*i)->reg;
487 //         // remove expired intervals
488 //         if ((*i)->expired(curIndex)) {
489 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " expired\n");
490 //             freePhysReg(virtReg);
491 //             // remove from inactive
492 //             i = inactive_.erase(i);
493 //         }
494 //         // move re-activated intervals in active list
495 //         else if ((*i)->overlaps(curIndex)) {
496 //             DEBUG(std::cerr << "\t\t\tinterval " << **i << " active\n");
497 //             markReg(virtReg);
498 //             // add to active
499 //             active_.push_back(*i);
500 //             // remove from inactive
501 //             i = inactive_.erase(i);
502 //         }
503 //         else {
504 //             ++i;
505 //         }
506 //     }
507 }
508
509 void RA::assignStackSlotAtInterval(Intervals::const_iterator cur)
510 {
511     DEBUG(std::cerr << "\t\tassigning stack slot at interval "
512           << *cur << ":\n");
513     assert(!active_.empty() &&
514            "active set cannot be empty when choosing a register to spill");
515     const TargetRegisterClass* rcCur =
516         mf_->getSSARegMap()->getRegClass(cur->reg);
517
518     // find the interval for a virtual register that ends last in
519     // active and belongs to the same register class as the current
520     // interval
521     IntervalPtrs::iterator lastEndActive = active_.begin();
522     for (IntervalPtrs::iterator e = active_.end();
523          lastEndActive != e; ++lastEndActive) {
524         if ((*lastEndActive)->reg >= MRegisterInfo::FirstVirtualRegister) {
525             const TargetRegisterClass* rc =
526                 mri_->getRegClass(v2pMap_[(*lastEndActive)->reg]);
527             if (rcCur == rc) {
528                 break;
529             }
530         }
531     }
532     for (IntervalPtrs::iterator i = lastEndActive, e = active_.end();
533          i != e; ++i) {
534         if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
535             const TargetRegisterClass* rc =
536                 mri_->getRegClass(v2pMap_[(*i)->reg]);
537             if (rcCur == rc &&
538                 (*lastEndActive)->end() < (*i)->end()) {
539                 lastEndActive = i;
540             }
541         }
542     }
543
544     // find the interval for a virtual register that ends last in
545     // inactive and belongs to the same register class as the current
546     // interval
547     IntervalPtrs::iterator lastEndInactive = inactive_.begin();
548     for (IntervalPtrs::iterator e = inactive_.end();
549          lastEndInactive != e; ++lastEndInactive) {
550         if ((*lastEndInactive)->reg >= MRegisterInfo::FirstVirtualRegister) {
551             const TargetRegisterClass* rc =
552                 mri_->getRegClass(v2pMap_[(*lastEndInactive)->reg]);
553             if (rcCur == rc) {
554                 break;
555             }
556         }
557     }
558     for (IntervalPtrs::iterator i = lastEndInactive, e = inactive_.end();
559          i != e; ++i) {
560         if ((*i)->reg >= MRegisterInfo::FirstVirtualRegister) {
561             const TargetRegisterClass* rc =
562                 mri_->getRegClass(v2pMap_[(*i)->reg]);
563             if (rcCur == rc &&
564                 (*lastEndInactive)->end() < (*i)->end()) {
565                 lastEndInactive = i;
566             }
567         }
568     }
569
570     unsigned lastEndActiveInactive = 0;
571     if (lastEndActive != active_.end() &&
572         lastEndActiveInactive < (*lastEndActive)->end()) {
573         lastEndActiveInactive = (*lastEndActive)->end();
574     }
575     if (lastEndInactive != inactive_.end() &&
576         lastEndActiveInactive < (*lastEndInactive)->end()) {
577         lastEndActiveInactive = (*lastEndInactive)->end();
578     }
579
580     if (lastEndActiveInactive > cur->end()) {
581         if (lastEndInactive == inactive_.end() ||
582             (*lastEndActive)->end() > (*lastEndInactive)->end()) {
583             assignVirt2StackSlot((*lastEndActive)->reg);
584             active_.erase(lastEndActive);
585         }
586         else {
587             assignVirt2StackSlot((*lastEndInactive)->reg);
588             inactive_.erase(lastEndInactive);
589         }
590         unsigned physReg = getFreePhysReg(cur->reg);
591         assert(physReg && "no free physical register after spill?");
592         assignVirt2PhysReg(cur->reg, physReg);
593         active_.push_back(&*cur);
594     }
595     else {
596         assignVirt2StackSlot(cur->reg);
597     }
598 }
599
600 void RA::reservePhysReg(unsigned physReg)
601 {
602     DEBUG(std::cerr << "\t\t\treserving physical register: "
603           << mri_->getName(physReg) << '\n');
604     // if this register holds a value spill it
605     unsigned virtReg = p2vMap_[physReg];
606     if (virtReg != 0) {
607         assert(virtReg != physReg && "reserving an already reserved phus reg?");
608         // remove interval from active
609         for (IntervalPtrs::iterator i = active_.begin(), e = active_.end();
610              i != e; ++i) {
611             if ((*i)->reg == virtReg) {
612                 active_.erase(i);
613                 break;
614             }
615         }
616         assignVirt2StackSlot(virtReg);
617     }
618     p2vMap_[physReg] = physReg; // this denotes a reserved physical register
619 }
620
621 void RA::clearReservedPhysReg(unsigned physReg)
622 {
623     DEBUG(std::cerr << "\t\t\tclearing reserved physical register: "
624           << mri_->getName(physReg) << '\n');
625     assert(p2vMap_[physReg] == physReg &&
626            "attempt to clear a non reserved physical register");
627     p2vMap_[physReg] = 0;
628 }
629
630 bool RA::physRegAvailable(unsigned physReg)
631 {
632     if (p2vMap_[physReg]) {
633         return false;
634     }
635
636     // if it aliases other registers it is still not free
637     for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
638         if (p2vMap_[*as]) {
639             return false;
640         }
641     }
642
643     // if it is one of the reserved registers it is still not free
644     if (find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()) {
645         return false;
646     }
647
648     return true;
649 }
650
651 unsigned RA::getFreePhysReg(unsigned virtReg)
652 {
653     DEBUG(std::cerr << "\t\tgetting free physical register: ");
654     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
655     TargetRegisterClass::iterator reg = rc->allocation_order_begin(*mf_);
656     TargetRegisterClass::iterator regEnd = rc->allocation_order_end(*mf_);
657
658     for (; reg != regEnd; ++reg) {
659         if (physRegAvailable(*reg)) {
660             assert(*reg != 0 && "Cannot use register!");
661             DEBUG(std::cerr << mri_->getName(*reg) << '\n');
662             return *reg; // Found an unused register!
663         }
664     }
665
666     DEBUG(std::cerr << "no free register\n");
667     return 0;
668 }
669
670 bool RA::tempPhysRegAvailable(unsigned physReg)
671 {
672     assert(find(reserved_.begin(), reserved_.end(), physReg) != reserved_.end()
673            && "cannot call this method with a non reserved temp register");
674
675     if (p2vMap_[physReg]) {
676         return false;
677     }
678
679     // if it aliases other registers it is still not free
680     for (const unsigned* as = mri_->getAliasSet(physReg); *as; ++as) {
681         if (p2vMap_[*as]) {
682             return false;
683         }
684     }
685
686     return true;
687 }
688
689 unsigned RA::getFreeTempPhysReg(const TargetRegisterClass* rc)
690 {
691     DEBUG(std::cerr << "\t\tgetting free temporary physical register: ");
692
693     for (Regs::const_iterator
694              reg = reserved_.begin(), regEnd = reserved_.end();
695          reg != regEnd; ++reg) {
696         if (rc == mri_->getRegClass(*reg) && tempPhysRegAvailable(*reg)) {
697             assert(*reg != 0 && "Cannot use register!");
698             DEBUG(std::cerr << mri_->getName(*reg) << '\n');
699             return *reg; // Found an unused register!
700         }
701     }
702     assert(0 && "no free temporary physical register?");
703     return 0;
704 }
705
706 void RA::assignVirt2PhysReg(unsigned virtReg, unsigned physReg)
707 {
708     assert((physRegAvailable(physReg) ||
709             find(reserved_.begin(),
710                  reserved_.end(),
711                  physReg) != reserved_.end()) &&
712            "attempt to allocate to a not available physical register");
713     v2pMap_[virtReg] = physReg;
714     p2vMap_[physReg] = virtReg;
715 }
716
717 void RA::clearVirtReg(unsigned virtReg)
718 {
719     Virt2PhysMap::iterator it = v2pMap_.find(virtReg);
720     assert(it != v2pMap_.end() &&
721            "attempting to clear a not allocated virtual register");
722     unsigned physReg = it->second;
723     p2vMap_[physReg] = 0;
724     v2pMap_[virtReg] = 0; // this marks that this virtual register
725                           // lives on the stack
726     DEBUG(std::cerr << "\t\t\tcleared register " << mri_->getName(physReg)
727           << "\n");
728 }
729
730 void RA::assignVirt2StackSlot(unsigned virtReg)
731 {
732     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
733     int frameIndex = mf_->getFrameInfo()->CreateStackObject(rc);
734
735     bool inserted = v2ssMap_.insert(std::make_pair(virtReg, frameIndex)).second;
736     assert(inserted &&
737            "attempt to assign stack slot to already assigned register?");
738     // if the virtual register was previously assigned clear the mapping
739     // and free the virtual register
740     if (v2pMap_.find(virtReg) != v2pMap_.end()) {
741         clearVirtReg(virtReg);
742     }
743     else {
744         v2pMap_[virtReg] = 0; // this marks that this virtual register
745                               // lives on the stack
746     }
747 }
748
749 int RA::getStackSlot(unsigned virtReg)
750 {
751     // use lower_bound so that we can do a possibly O(1) insert later
752     // if necessary
753     Virt2StackSlotMap::iterator it = v2ssMap_.find(virtReg);
754     assert(it != v2ssMap_.end() &&
755            "attempt to get stack slot on register that does not live on the stack");
756     return it->second;
757 }
758
759 void RA::spillVirtReg(unsigned virtReg)
760 {
761     DEBUG(std::cerr << "\t\t\tspilling register: " << virtReg);
762     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
763     int frameIndex = getStackSlot(virtReg);
764     DEBUG(std::cerr << " to stack slot #" << frameIndex << '\n');
765     ++numSpilled;
766     instrAdded_ += mri_->storeRegToStackSlot(*currentMbb_, currentInstr_,
767                                              v2pMap_[virtReg], frameIndex, rc);
768     clearVirtReg(virtReg);
769 }
770
771 void RA::loadVirt2PhysReg(unsigned virtReg, unsigned physReg)
772 {
773     DEBUG(std::cerr << "\t\t\tloading register: " << virtReg);
774     const TargetRegisterClass* rc = mf_->getSSARegMap()->getRegClass(virtReg);
775     int frameIndex = getStackSlot(virtReg);
776     DEBUG(std::cerr << " from stack slot #" << frameIndex << '\n');
777     instrAdded_ += mri_->loadRegFromStackSlot(*currentMbb_, currentInstr_,
778                                               physReg, frameIndex, rc);
779     assignVirt2PhysReg(virtReg, physReg);
780 }
781
782 FunctionPass* llvm::createLinearScanRegisterAllocator() {
783     return new RA();
784 }