[PM/AA] Run clang-format over TBAA code to normalize the formatting
[oota-llvm.git] / lib / CodeGen / ScheduleDAG.cpp
1 //===---- ScheduleDAG.cpp - Implement the ScheduleDAG class ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the ScheduleDAG class, which is a base class used by
11 // scheduling implementation classes.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/ScheduleDAG.h"
16 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
17 #include "llvm/CodeGen/SelectionDAGNodes.h"
18 #include "llvm/Support/CommandLine.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/Target/TargetInstrInfo.h"
22 #include "llvm/Target/TargetMachine.h"
23 #include "llvm/Target/TargetRegisterInfo.h"
24 #include "llvm/Target/TargetSubtargetInfo.h"
25 #include <climits>
26 using namespace llvm;
27
28 #define DEBUG_TYPE "pre-RA-sched"
29
30 #ifndef NDEBUG
31 static cl::opt<bool> StressSchedOpt(
32   "stress-sched", cl::Hidden, cl::init(false),
33   cl::desc("Stress test instruction scheduling"));
34 #endif
35
36 void SchedulingPriorityQueue::anchor() { }
37
38 ScheduleDAG::ScheduleDAG(MachineFunction &mf)
39     : TM(mf.getTarget()), TII(mf.getSubtarget().getInstrInfo()),
40       TRI(mf.getSubtarget().getRegisterInfo()), MF(mf),
41       MRI(mf.getRegInfo()), EntrySU(), ExitSU() {
42 #ifndef NDEBUG
43   StressSched = StressSchedOpt;
44 #endif
45 }
46
47 ScheduleDAG::~ScheduleDAG() {}
48
49 /// Clear the DAG state (e.g. between scheduling regions).
50 void ScheduleDAG::clearDAG() {
51   SUnits.clear();
52   EntrySU = SUnit();
53   ExitSU = SUnit();
54 }
55
56 /// getInstrDesc helper to handle SDNodes.
57 const MCInstrDesc *ScheduleDAG::getNodeDesc(const SDNode *Node) const {
58   if (!Node || !Node->isMachineOpcode()) return nullptr;
59   return &TII->get(Node->getMachineOpcode());
60 }
61
62 /// addPred - This adds the specified edge as a pred of the current node if
63 /// not already.  It also adds the current node as a successor of the
64 /// specified node.
65 bool SUnit::addPred(const SDep &D, bool Required) {
66   // If this node already has this dependence, don't add a redundant one.
67   for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end();
68          I != E; ++I) {
69     // Zero-latency weak edges may be added purely for heuristic ordering. Don't
70     // add them if another kind of edge already exists.
71     if (!Required && I->getSUnit() == D.getSUnit())
72       return false;
73     if (I->overlaps(D)) {
74       // Extend the latency if needed. Equivalent to removePred(I) + addPred(D).
75       if (I->getLatency() < D.getLatency()) {
76         SUnit *PredSU = I->getSUnit();
77         // Find the corresponding successor in N.
78         SDep ForwardD = *I;
79         ForwardD.setSUnit(this);
80         for (SmallVectorImpl<SDep>::iterator II = PredSU->Succs.begin(),
81                EE = PredSU->Succs.end(); II != EE; ++II) {
82           if (*II == ForwardD) {
83             II->setLatency(D.getLatency());
84             break;
85           }
86         }
87         I->setLatency(D.getLatency());
88       }
89       return false;
90     }
91   }
92   // Now add a corresponding succ to N.
93   SDep P = D;
94   P.setSUnit(this);
95   SUnit *N = D.getSUnit();
96   // Update the bookkeeping.
97   if (D.getKind() == SDep::Data) {
98     assert(NumPreds < UINT_MAX && "NumPreds will overflow!");
99     assert(N->NumSuccs < UINT_MAX && "NumSuccs will overflow!");
100     ++NumPreds;
101     ++N->NumSuccs;
102   }
103   if (!N->isScheduled) {
104     if (D.isWeak()) {
105       ++WeakPredsLeft;
106     }
107     else {
108       assert(NumPredsLeft < UINT_MAX && "NumPredsLeft will overflow!");
109       ++NumPredsLeft;
110     }
111   }
112   if (!isScheduled) {
113     if (D.isWeak()) {
114       ++N->WeakSuccsLeft;
115     }
116     else {
117       assert(N->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
118       ++N->NumSuccsLeft;
119     }
120   }
121   Preds.push_back(D);
122   N->Succs.push_back(P);
123   if (P.getLatency() != 0) {
124     this->setDepthDirty();
125     N->setHeightDirty();
126   }
127   return true;
128 }
129
130 /// removePred - This removes the specified edge as a pred of the current
131 /// node if it exists.  It also removes the current node as a successor of
132 /// the specified node.
133 void SUnit::removePred(const SDep &D) {
134   // Find the matching predecessor.
135   for (SmallVectorImpl<SDep>::iterator I = Preds.begin(), E = Preds.end();
136          I != E; ++I)
137     if (*I == D) {
138       // Find the corresponding successor in N.
139       SDep P = D;
140       P.setSUnit(this);
141       SUnit *N = D.getSUnit();
142       SmallVectorImpl<SDep>::iterator Succ = std::find(N->Succs.begin(),
143                                                        N->Succs.end(), P);
144       assert(Succ != N->Succs.end() && "Mismatching preds / succs lists!");
145       N->Succs.erase(Succ);
146       Preds.erase(I);
147       // Update the bookkeeping.
148       if (P.getKind() == SDep::Data) {
149         assert(NumPreds > 0 && "NumPreds will underflow!");
150         assert(N->NumSuccs > 0 && "NumSuccs will underflow!");
151         --NumPreds;
152         --N->NumSuccs;
153       }
154       if (!N->isScheduled) {
155         if (D.isWeak())
156           --WeakPredsLeft;
157         else {
158           assert(NumPredsLeft > 0 && "NumPredsLeft will underflow!");
159           --NumPredsLeft;
160         }
161       }
162       if (!isScheduled) {
163         if (D.isWeak())
164           --N->WeakSuccsLeft;
165         else {
166           assert(N->NumSuccsLeft > 0 && "NumSuccsLeft will underflow!");
167           --N->NumSuccsLeft;
168         }
169       }
170       if (P.getLatency() != 0) {
171         this->setDepthDirty();
172         N->setHeightDirty();
173       }
174       return;
175     }
176 }
177
178 void SUnit::setDepthDirty() {
179   if (!isDepthCurrent) return;
180   SmallVector<SUnit*, 8> WorkList;
181   WorkList.push_back(this);
182   do {
183     SUnit *SU = WorkList.pop_back_val();
184     SU->isDepthCurrent = false;
185     for (SUnit::const_succ_iterator I = SU->Succs.begin(),
186          E = SU->Succs.end(); I != E; ++I) {
187       SUnit *SuccSU = I->getSUnit();
188       if (SuccSU->isDepthCurrent)
189         WorkList.push_back(SuccSU);
190     }
191   } while (!WorkList.empty());
192 }
193
194 void SUnit::setHeightDirty() {
195   if (!isHeightCurrent) return;
196   SmallVector<SUnit*, 8> WorkList;
197   WorkList.push_back(this);
198   do {
199     SUnit *SU = WorkList.pop_back_val();
200     SU->isHeightCurrent = false;
201     for (SUnit::const_pred_iterator I = SU->Preds.begin(),
202          E = SU->Preds.end(); I != E; ++I) {
203       SUnit *PredSU = I->getSUnit();
204       if (PredSU->isHeightCurrent)
205         WorkList.push_back(PredSU);
206     }
207   } while (!WorkList.empty());
208 }
209
210 /// setDepthToAtLeast - Update this node's successors to reflect the
211 /// fact that this node's depth just increased.
212 ///
213 void SUnit::setDepthToAtLeast(unsigned NewDepth) {
214   if (NewDepth <= getDepth())
215     return;
216   setDepthDirty();
217   Depth = NewDepth;
218   isDepthCurrent = true;
219 }
220
221 /// setHeightToAtLeast - Update this node's predecessors to reflect the
222 /// fact that this node's height just increased.
223 ///
224 void SUnit::setHeightToAtLeast(unsigned NewHeight) {
225   if (NewHeight <= getHeight())
226     return;
227   setHeightDirty();
228   Height = NewHeight;
229   isHeightCurrent = true;
230 }
231
232 /// ComputeDepth - Calculate the maximal path from the node to the exit.
233 ///
234 void SUnit::ComputeDepth() {
235   SmallVector<SUnit*, 8> WorkList;
236   WorkList.push_back(this);
237   do {
238     SUnit *Cur = WorkList.back();
239
240     bool Done = true;
241     unsigned MaxPredDepth = 0;
242     for (SUnit::const_pred_iterator I = Cur->Preds.begin(),
243          E = Cur->Preds.end(); I != E; ++I) {
244       SUnit *PredSU = I->getSUnit();
245       if (PredSU->isDepthCurrent)
246         MaxPredDepth = std::max(MaxPredDepth,
247                                 PredSU->Depth + I->getLatency());
248       else {
249         Done = false;
250         WorkList.push_back(PredSU);
251       }
252     }
253
254     if (Done) {
255       WorkList.pop_back();
256       if (MaxPredDepth != Cur->Depth) {
257         Cur->setDepthDirty();
258         Cur->Depth = MaxPredDepth;
259       }
260       Cur->isDepthCurrent = true;
261     }
262   } while (!WorkList.empty());
263 }
264
265 /// ComputeHeight - Calculate the maximal path from the node to the entry.
266 ///
267 void SUnit::ComputeHeight() {
268   SmallVector<SUnit*, 8> WorkList;
269   WorkList.push_back(this);
270   do {
271     SUnit *Cur = WorkList.back();
272
273     bool Done = true;
274     unsigned MaxSuccHeight = 0;
275     for (SUnit::const_succ_iterator I = Cur->Succs.begin(),
276          E = Cur->Succs.end(); I != E; ++I) {
277       SUnit *SuccSU = I->getSUnit();
278       if (SuccSU->isHeightCurrent)
279         MaxSuccHeight = std::max(MaxSuccHeight,
280                                  SuccSU->Height + I->getLatency());
281       else {
282         Done = false;
283         WorkList.push_back(SuccSU);
284       }
285     }
286
287     if (Done) {
288       WorkList.pop_back();
289       if (MaxSuccHeight != Cur->Height) {
290         Cur->setHeightDirty();
291         Cur->Height = MaxSuccHeight;
292       }
293       Cur->isHeightCurrent = true;
294     }
295   } while (!WorkList.empty());
296 }
297
298 void SUnit::biasCriticalPath() {
299   if (NumPreds < 2)
300     return;
301
302   SUnit::pred_iterator BestI = Preds.begin();
303   unsigned MaxDepth = BestI->getSUnit()->getDepth();
304   for (SUnit::pred_iterator I = std::next(BestI), E = Preds.end(); I != E;
305        ++I) {
306     if (I->getKind() == SDep::Data && I->getSUnit()->getDepth() > MaxDepth)
307       BestI = I;
308   }
309   if (BestI != Preds.begin())
310     std::swap(*Preds.begin(), *BestI);
311 }
312
313 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
314 /// SUnit - Scheduling unit. It's an wrapper around either a single SDNode or
315 /// a group of nodes flagged together.
316 void SUnit::dump(const ScheduleDAG *G) const {
317   dbgs() << "SU(" << NodeNum << "): ";
318   G->dumpNode(this);
319 }
320
321 void SUnit::dumpAll(const ScheduleDAG *G) const {
322   dump(G);
323
324   dbgs() << "  # preds left       : " << NumPredsLeft << "\n";
325   dbgs() << "  # succs left       : " << NumSuccsLeft << "\n";
326   if (WeakPredsLeft)
327     dbgs() << "  # weak preds left  : " << WeakPredsLeft << "\n";
328   if (WeakSuccsLeft)
329     dbgs() << "  # weak succs left  : " << WeakSuccsLeft << "\n";
330   dbgs() << "  # rdefs left       : " << NumRegDefsLeft << "\n";
331   dbgs() << "  Latency            : " << Latency << "\n";
332   dbgs() << "  Depth              : " << getDepth() << "\n";
333   dbgs() << "  Height             : " << getHeight() << "\n";
334
335   if (Preds.size() != 0) {
336     dbgs() << "  Predecessors:\n";
337     for (SUnit::const_succ_iterator I = Preds.begin(), E = Preds.end();
338          I != E; ++I) {
339       dbgs() << "   ";
340       switch (I->getKind()) {
341       case SDep::Data:        dbgs() << "val "; break;
342       case SDep::Anti:        dbgs() << "anti"; break;
343       case SDep::Output:      dbgs() << "out "; break;
344       case SDep::Order:       dbgs() << "ch  "; break;
345       }
346       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
347       if (I->isArtificial())
348         dbgs() << " *";
349       dbgs() << ": Latency=" << I->getLatency();
350       if (I->isAssignedRegDep())
351         dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
352       dbgs() << "\n";
353     }
354   }
355   if (Succs.size() != 0) {
356     dbgs() << "  Successors:\n";
357     for (SUnit::const_succ_iterator I = Succs.begin(), E = Succs.end();
358          I != E; ++I) {
359       dbgs() << "   ";
360       switch (I->getKind()) {
361       case SDep::Data:        dbgs() << "val "; break;
362       case SDep::Anti:        dbgs() << "anti"; break;
363       case SDep::Output:      dbgs() << "out "; break;
364       case SDep::Order:       dbgs() << "ch  "; break;
365       }
366       dbgs() << "SU(" << I->getSUnit()->NodeNum << ")";
367       if (I->isArtificial())
368         dbgs() << " *";
369       dbgs() << ": Latency=" << I->getLatency();
370       if (I->isAssignedRegDep())
371         dbgs() << " Reg=" << PrintReg(I->getReg(), G->TRI);
372       dbgs() << "\n";
373     }
374   }
375   dbgs() << "\n";
376 }
377 #endif
378
379 #ifndef NDEBUG
380 /// VerifyScheduledDAG - Verify that all SUnits were scheduled and that
381 /// their state is consistent. Return the number of scheduled nodes.
382 ///
383 unsigned ScheduleDAG::VerifyScheduledDAG(bool isBottomUp) {
384   bool AnyNotSched = false;
385   unsigned DeadNodes = 0;
386   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
387     if (!SUnits[i].isScheduled) {
388       if (SUnits[i].NumPreds == 0 && SUnits[i].NumSuccs == 0) {
389         ++DeadNodes;
390         continue;
391       }
392       if (!AnyNotSched)
393         dbgs() << "*** Scheduling failed! ***\n";
394       SUnits[i].dump(this);
395       dbgs() << "has not been scheduled!\n";
396       AnyNotSched = true;
397     }
398     if (SUnits[i].isScheduled &&
399         (isBottomUp ? SUnits[i].getHeight() : SUnits[i].getDepth()) >
400           unsigned(INT_MAX)) {
401       if (!AnyNotSched)
402         dbgs() << "*** Scheduling failed! ***\n";
403       SUnits[i].dump(this);
404       dbgs() << "has an unexpected "
405            << (isBottomUp ? "Height" : "Depth") << " value!\n";
406       AnyNotSched = true;
407     }
408     if (isBottomUp) {
409       if (SUnits[i].NumSuccsLeft != 0) {
410         if (!AnyNotSched)
411           dbgs() << "*** Scheduling failed! ***\n";
412         SUnits[i].dump(this);
413         dbgs() << "has successors left!\n";
414         AnyNotSched = true;
415       }
416     } else {
417       if (SUnits[i].NumPredsLeft != 0) {
418         if (!AnyNotSched)
419           dbgs() << "*** Scheduling failed! ***\n";
420         SUnits[i].dump(this);
421         dbgs() << "has predecessors left!\n";
422         AnyNotSched = true;
423       }
424     }
425   }
426   assert(!AnyNotSched);
427   return SUnits.size() - DeadNodes;
428 }
429 #endif
430
431 /// InitDAGTopologicalSorting - create the initial topological
432 /// ordering from the DAG to be scheduled.
433 ///
434 /// The idea of the algorithm is taken from
435 /// "Online algorithms for managing the topological order of
436 /// a directed acyclic graph" by David J. Pearce and Paul H.J. Kelly
437 /// This is the MNR algorithm, which was first introduced by
438 /// A. Marchetti-Spaccamela, U. Nanni and H. Rohnert in
439 /// "Maintaining a topological order under edge insertions".
440 ///
441 /// Short description of the algorithm:
442 ///
443 /// Topological ordering, ord, of a DAG maps each node to a topological
444 /// index so that for all edges X->Y it is the case that ord(X) < ord(Y).
445 ///
446 /// This means that if there is a path from the node X to the node Z,
447 /// then ord(X) < ord(Z).
448 ///
449 /// This property can be used to check for reachability of nodes:
450 /// if Z is reachable from X, then an insertion of the edge Z->X would
451 /// create a cycle.
452 ///
453 /// The algorithm first computes a topological ordering for the DAG by
454 /// initializing the Index2Node and Node2Index arrays and then tries to keep
455 /// the ordering up-to-date after edge insertions by reordering the DAG.
456 ///
457 /// On insertion of the edge X->Y, the algorithm first marks by calling DFS
458 /// the nodes reachable from Y, and then shifts them using Shift to lie
459 /// immediately after X in Index2Node.
460 void ScheduleDAGTopologicalSort::InitDAGTopologicalSorting() {
461   unsigned DAGSize = SUnits.size();
462   std::vector<SUnit*> WorkList;
463   WorkList.reserve(DAGSize);
464
465   Index2Node.resize(DAGSize);
466   Node2Index.resize(DAGSize);
467
468   // Initialize the data structures.
469   if (ExitSU)
470     WorkList.push_back(ExitSU);
471   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
472     SUnit *SU = &SUnits[i];
473     int NodeNum = SU->NodeNum;
474     unsigned Degree = SU->Succs.size();
475     // Temporarily use the Node2Index array as scratch space for degree counts.
476     Node2Index[NodeNum] = Degree;
477
478     // Is it a node without dependencies?
479     if (Degree == 0) {
480       assert(SU->Succs.empty() && "SUnit should have no successors");
481       // Collect leaf nodes.
482       WorkList.push_back(SU);
483     }
484   }
485
486   int Id = DAGSize;
487   while (!WorkList.empty()) {
488     SUnit *SU = WorkList.back();
489     WorkList.pop_back();
490     if (SU->NodeNum < DAGSize)
491       Allocate(SU->NodeNum, --Id);
492     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
493          I != E; ++I) {
494       SUnit *SU = I->getSUnit();
495       if (SU->NodeNum < DAGSize && !--Node2Index[SU->NodeNum])
496         // If all dependencies of the node are processed already,
497         // then the node can be computed now.
498         WorkList.push_back(SU);
499     }
500   }
501
502   Visited.resize(DAGSize);
503
504 #ifndef NDEBUG
505   // Check correctness of the ordering
506   for (unsigned i = 0, e = DAGSize; i != e; ++i) {
507     SUnit *SU = &SUnits[i];
508     for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
509          I != E; ++I) {
510       assert(Node2Index[SU->NodeNum] > Node2Index[I->getSUnit()->NodeNum] &&
511       "Wrong topological sorting");
512     }
513   }
514 #endif
515 }
516
517 /// AddPred - Updates the topological ordering to accommodate an edge
518 /// to be added from SUnit X to SUnit Y.
519 void ScheduleDAGTopologicalSort::AddPred(SUnit *Y, SUnit *X) {
520   int UpperBound, LowerBound;
521   LowerBound = Node2Index[Y->NodeNum];
522   UpperBound = Node2Index[X->NodeNum];
523   bool HasLoop = false;
524   // Is Ord(X) < Ord(Y) ?
525   if (LowerBound < UpperBound) {
526     // Update the topological order.
527     Visited.reset();
528     DFS(Y, UpperBound, HasLoop);
529     assert(!HasLoop && "Inserted edge creates a loop!");
530     // Recompute topological indexes.
531     Shift(Visited, LowerBound, UpperBound);
532   }
533 }
534
535 /// RemovePred - Updates the topological ordering to accommodate an
536 /// an edge to be removed from the specified node N from the predecessors
537 /// of the current node M.
538 void ScheduleDAGTopologicalSort::RemovePred(SUnit *M, SUnit *N) {
539   // InitDAGTopologicalSorting();
540 }
541
542 /// DFS - Make a DFS traversal to mark all nodes reachable from SU and mark
543 /// all nodes affected by the edge insertion. These nodes will later get new
544 /// topological indexes by means of the Shift method.
545 void ScheduleDAGTopologicalSort::DFS(const SUnit *SU, int UpperBound,
546                                      bool &HasLoop) {
547   std::vector<const SUnit*> WorkList;
548   WorkList.reserve(SUnits.size());
549
550   WorkList.push_back(SU);
551   do {
552     SU = WorkList.back();
553     WorkList.pop_back();
554     Visited.set(SU->NodeNum);
555     for (int I = SU->Succs.size()-1; I >= 0; --I) {
556       unsigned s = SU->Succs[I].getSUnit()->NodeNum;
557       // Edges to non-SUnits are allowed but ignored (e.g. ExitSU).
558       if (s >= Node2Index.size())
559         continue;
560       if (Node2Index[s] == UpperBound) {
561         HasLoop = true;
562         return;
563       }
564       // Visit successors if not already and in affected region.
565       if (!Visited.test(s) && Node2Index[s] < UpperBound) {
566         WorkList.push_back(SU->Succs[I].getSUnit());
567       }
568     }
569   } while (!WorkList.empty());
570 }
571
572 /// Shift - Renumber the nodes so that the topological ordering is
573 /// preserved.
574 void ScheduleDAGTopologicalSort::Shift(BitVector& Visited, int LowerBound,
575                                        int UpperBound) {
576   std::vector<int> L;
577   int shift = 0;
578   int i;
579
580   for (i = LowerBound; i <= UpperBound; ++i) {
581     // w is node at topological index i.
582     int w = Index2Node[i];
583     if (Visited.test(w)) {
584       // Unmark.
585       Visited.reset(w);
586       L.push_back(w);
587       shift = shift + 1;
588     } else {
589       Allocate(w, i - shift);
590     }
591   }
592
593   for (unsigned j = 0; j < L.size(); ++j) {
594     Allocate(L[j], i - shift);
595     i = i + 1;
596   }
597 }
598
599
600 /// WillCreateCycle - Returns true if adding an edge to TargetSU from SU will
601 /// create a cycle. If so, it is not safe to call AddPred(TargetSU, SU).
602 bool ScheduleDAGTopologicalSort::WillCreateCycle(SUnit *TargetSU, SUnit *SU) {
603   // Is SU reachable from TargetSU via successor edges?
604   if (IsReachable(SU, TargetSU))
605     return true;
606   for (SUnit::pred_iterator
607          I = TargetSU->Preds.begin(), E = TargetSU->Preds.end(); I != E; ++I)
608     if (I->isAssignedRegDep() &&
609         IsReachable(SU, I->getSUnit()))
610       return true;
611   return false;
612 }
613
614 /// IsReachable - Checks if SU is reachable from TargetSU.
615 bool ScheduleDAGTopologicalSort::IsReachable(const SUnit *SU,
616                                              const SUnit *TargetSU) {
617   // If insertion of the edge SU->TargetSU would create a cycle
618   // then there is a path from TargetSU to SU.
619   int UpperBound, LowerBound;
620   LowerBound = Node2Index[TargetSU->NodeNum];
621   UpperBound = Node2Index[SU->NodeNum];
622   bool HasLoop = false;
623   // Is Ord(TargetSU) < Ord(SU) ?
624   if (LowerBound < UpperBound) {
625     Visited.reset();
626     // There may be a path from TargetSU to SU. Check for it.
627     DFS(TargetSU, UpperBound, HasLoop);
628   }
629   return HasLoop;
630 }
631
632 /// Allocate - assign the topological index to the node n.
633 void ScheduleDAGTopologicalSort::Allocate(int n, int index) {
634   Node2Index[n] = index;
635   Index2Node[index] = n;
636 }
637
638 ScheduleDAGTopologicalSort::
639 ScheduleDAGTopologicalSort(std::vector<SUnit> &sunits, SUnit *exitsu)
640   : SUnits(sunits), ExitSU(exitsu) {}
641
642 ScheduleHazardRecognizer::~ScheduleHazardRecognizer() {}