1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "misched"
16 #include "llvm/CodeGen/ScheduleDAGInstrs.h"
17 #include "llvm/ADT/MapVector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/ValueTracking.h"
22 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
23 #include "llvm/CodeGen/MachineFunctionPass.h"
24 #include "llvm/CodeGen/MachineInstrBuilder.h"
25 #include "llvm/CodeGen/MachineMemOperand.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/PseudoSourceValue.h"
28 #include "llvm/CodeGen/RegisterPressure.h"
29 #include "llvm/CodeGen/ScheduleDFS.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/MC/MCInstrItineraries.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/Format.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetSubtargetInfo.h"
44 static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
45 cl::ZeroOrMore, cl::init(false),
46 cl::desc("Enable use of AA during MI GAD construction"));
48 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
49 const MachineLoopInfo &mli,
50 const MachineDominatorTree &mdt,
54 : ScheduleDAG(mf), MLI(mli), MDT(mdt), MFI(mf.getFrameInfo()), LIS(lis),
55 IsPostRA(IsPostRAFlag), RemoveKillFlags(RemoveKillFlags),
56 CanHandleTerminators(false), FirstDbgValue(0) {
57 assert((IsPostRA || LIS) && "PreRA scheduling requires LiveIntervals");
59 assert(!(IsPostRA && MRI.getNumVirtRegs()) &&
60 "Virtual registers must be removed prior to PostRA scheduling");
62 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
63 SchedModel.init(*ST.getSchedModel(), &ST, TII);
66 /// getUnderlyingObjectFromInt - This is the function that does the work of
67 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
68 static const Value *getUnderlyingObjectFromInt(const Value *V) {
70 if (const Operator *U = dyn_cast<Operator>(V)) {
71 // If we find a ptrtoint, we can transfer control back to the
72 // regular getUnderlyingObjectFromInt.
73 if (U->getOpcode() == Instruction::PtrToInt)
74 return U->getOperand(0);
75 // If we find an add of a constant, a multiplied value, or a phi, it's
76 // likely that the other operand will lead us to the base
77 // object. We don't have to worry about the case where the
78 // object address is somehow being computed by the multiply,
79 // because our callers only care when the result is an
80 // identifiable object.
81 if (U->getOpcode() != Instruction::Add ||
82 (!isa<ConstantInt>(U->getOperand(1)) &&
83 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
84 !isa<PHINode>(U->getOperand(1))))
90 assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
94 /// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
95 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
96 static void getUnderlyingObjects(const Value *V,
97 SmallVectorImpl<Value *> &Objects) {
98 SmallPtrSet<const Value*, 16> Visited;
99 SmallVector<const Value *, 4> Working(1, V);
101 V = Working.pop_back_val();
103 SmallVector<Value *, 4> Objs;
104 GetUnderlyingObjects(const_cast<Value *>(V), Objs);
106 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
109 if (!Visited.insert(V))
111 if (Operator::getOpcode(V) == Instruction::IntToPtr) {
113 getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
114 if (O->getType()->isPointerTy()) {
115 Working.push_back(O);
119 Objects.push_back(const_cast<Value *>(V));
121 } while (!Working.empty());
124 typedef SmallVector<PointerIntPair<const Value *, 1, bool>, 4>
125 UnderlyingObjectsVector;
127 /// getUnderlyingObjectsForInstr - If this machine instr has memory reference
128 /// information and it can be tracked to a normal reference to a known
129 /// object, return the Value for that object.
130 static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
131 const MachineFrameInfo *MFI,
132 UnderlyingObjectsVector &Objects) {
133 if (!MI->hasOneMemOperand() ||
134 !(*MI->memoperands_begin())->getValue() ||
135 (*MI->memoperands_begin())->isVolatile())
138 const Value *V = (*MI->memoperands_begin())->getValue();
142 SmallVector<Value *, 4> Objs;
143 getUnderlyingObjects(V, Objs);
145 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
147 bool MayAlias = true;
150 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
151 // For now, ignore PseudoSourceValues which may alias LLVM IR values
152 // because the code that uses this function has no way to cope with
155 if (PSV->isAliased(MFI)) {
160 MayAlias = PSV->mayAlias(MFI);
161 } else if (!isIdentifiedObject(V)) {
166 Objects.push_back(UnderlyingObjectsVector::value_type(V, MayAlias));
170 void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
174 void ScheduleDAGInstrs::finishBlock() {
175 // Subclasses should no longer refer to the old block.
179 /// Initialize the DAG and common scheduler state for the current scheduling
180 /// region. This does not actually create the DAG, only clears it. The
181 /// scheduling driver may call BuildSchedGraph multiple times per scheduling
183 void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
184 MachineBasicBlock::iterator begin,
185 MachineBasicBlock::iterator end,
186 unsigned regioninstrs) {
187 assert(bb == BB && "startBlock should set BB");
190 NumRegionInstrs = regioninstrs;
193 /// Close the current scheduling region. Don't clear any state in case the
194 /// driver wants to refer to the previous scheduling region.
195 void ScheduleDAGInstrs::exitRegion() {
199 /// addSchedBarrierDeps - Add dependencies from instructions in the current
200 /// list of instructions being scheduled to scheduling barrier by adding
201 /// the exit SU to the register defs and use list. This is because we want to
202 /// make sure instructions which define registers that are either used by
203 /// the terminator or are live-out are properly scheduled. This is
204 /// especially important when the definition latency of the return value(s)
205 /// are too high to be hidden by the branch or when the liveout registers
206 /// used by instructions in the fallthrough block.
207 void ScheduleDAGInstrs::addSchedBarrierDeps() {
208 MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : 0;
209 ExitSU.setInstr(ExitMI);
210 bool AllDepKnown = ExitMI &&
211 (ExitMI->isCall() || ExitMI->isBarrier());
212 if (ExitMI && AllDepKnown) {
213 // If it's a call or a barrier, add dependencies on the defs and uses of
215 for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
216 const MachineOperand &MO = ExitMI->getOperand(i);
217 if (!MO.isReg() || MO.isDef()) continue;
218 unsigned Reg = MO.getReg();
219 if (Reg == 0) continue;
221 if (TRI->isPhysicalRegister(Reg))
222 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
224 assert(!IsPostRA && "Virtual register encountered after regalloc.");
225 if (MO.readsReg()) // ignore undef operands
226 addVRegUseDeps(&ExitSU, i);
230 // For others, e.g. fallthrough, conditional branch, assume the exit
231 // uses all the registers that are livein to the successor blocks.
232 assert(Uses.empty() && "Uses in set before adding deps?");
233 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
234 SE = BB->succ_end(); SI != SE; ++SI)
235 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
236 E = (*SI)->livein_end(); I != E; ++I) {
238 if (!Uses.contains(Reg))
239 Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
244 /// MO is an operand of SU's instruction that defines a physical register. Add
245 /// data dependencies from SU to any uses of the physical register.
246 void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
247 const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
248 assert(MO.isDef() && "expect physreg def");
250 // Ask the target if address-backscheduling is desirable, and if so how much.
251 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
253 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
254 Alias.isValid(); ++Alias) {
255 if (!Uses.contains(*Alias))
257 for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
258 SUnit *UseSU = I->SU;
262 // Adjust the dependence latency using operand def/use information,
263 // then allow the target to perform its own adjustments.
264 int UseOp = I->OpIdx;
265 MachineInstr *RegUse = 0;
268 Dep = SDep(SU, SDep::Artificial);
270 // Set the hasPhysRegDefs only for physreg defs that have a use within
271 // the scheduling region.
272 SU->hasPhysRegDefs = true;
273 Dep = SDep(SU, SDep::Data, *Alias);
274 RegUse = UseSU->getInstr();
277 SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
280 ST.adjustSchedDependency(SU, UseSU, Dep);
286 /// addPhysRegDeps - Add register dependencies (data, anti, and output) from
287 /// this SUnit to following instructions in the same scheduling region that
288 /// depend the physical register referenced at OperIdx.
289 void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
290 MachineInstr *MI = SU->getInstr();
291 MachineOperand &MO = MI->getOperand(OperIdx);
293 // Optionally add output and anti dependencies. For anti
294 // dependencies we use a latency of 0 because for a multi-issue
295 // target we want to allow the defining instruction to issue
296 // in the same cycle as the using instruction.
297 // TODO: Using a latency of 1 here for output dependencies assumes
298 // there's no cost for reusing registers.
299 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
300 for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
301 Alias.isValid(); ++Alias) {
302 if (!Defs.contains(*Alias))
304 for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
305 SUnit *DefSU = I->SU;
306 if (DefSU == &ExitSU)
309 (Kind != SDep::Output || !MO.isDead() ||
310 !DefSU->getInstr()->registerDefIsDead(*Alias))) {
311 if (Kind == SDep::Anti)
312 DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
314 SDep Dep(SU, Kind, /*Reg=*/*Alias);
316 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
324 SU->hasPhysRegUses = true;
325 // Either insert a new Reg2SUnits entry with an empty SUnits list, or
326 // retrieve the existing SUnits list for this register's uses.
327 // Push this SUnit on the use list.
328 Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
333 addPhysRegDataDeps(SU, OperIdx);
334 unsigned Reg = MO.getReg();
336 // clear this register's use list
337 if (Uses.contains(Reg))
342 } else if (SU->isCall) {
343 // Calls will not be reordered because of chain dependencies (see
344 // below). Since call operands are dead, calls may continue to be added
345 // to the DefList making dependence checking quadratic in the size of
346 // the block. Instead, we leave only one call at the back of the
348 Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
349 Reg2SUnitsMap::iterator B = P.first;
350 Reg2SUnitsMap::iterator I = P.second;
351 for (bool isBegin = I == B; !isBegin; /* empty */) {
352 isBegin = (--I) == B;
359 // Defs are pushed in the order they are visited and never reordered.
360 Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
364 /// addVRegDefDeps - Add register output and data dependencies from this SUnit
365 /// to instructions that occur later in the same scheduling region if they read
366 /// from or write to the virtual register defined at OperIdx.
368 /// TODO: Hoist loop induction variable increments. This has to be
369 /// reevaluated. Generally, IV scheduling should be done before coalescing.
370 void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
371 const MachineInstr *MI = SU->getInstr();
372 unsigned Reg = MI->getOperand(OperIdx).getReg();
374 // Singly defined vregs do not have output/anti dependencies.
375 // The current operand is a def, so we have at least one.
376 // Check here if there are any others...
377 if (MRI.hasOneDef(Reg))
380 // Add output dependence to the next nearest def of this vreg.
382 // Unless this definition is dead, the output dependence should be
383 // transitively redundant with antidependencies from this definition's
384 // uses. We're conservative for now until we have a way to guarantee the uses
385 // are not eliminated sometime during scheduling. The output dependence edge
386 // is also useful if output latency exceeds def-use latency.
387 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
388 if (DefI == VRegDefs.end())
389 VRegDefs.insert(VReg2SUnit(Reg, SU));
391 SUnit *DefSU = DefI->SU;
392 if (DefSU != SU && DefSU != &ExitSU) {
393 SDep Dep(SU, SDep::Output, Reg);
395 SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
402 /// addVRegUseDeps - Add a register data dependency if the instruction that
403 /// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
404 /// register antidependency from this SUnit to instructions that occur later in
405 /// the same scheduling region if they write the virtual register.
407 /// TODO: Handle ExitSU "uses" properly.
408 void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
409 MachineInstr *MI = SU->getInstr();
410 unsigned Reg = MI->getOperand(OperIdx).getReg();
412 // Record this local VReg use.
413 VReg2UseMap::iterator UI = VRegUses.find(Reg);
414 for (; UI != VRegUses.end(); ++UI) {
418 if (UI == VRegUses.end())
419 VRegUses.insert(VReg2SUnit(Reg, SU));
421 // Lookup this operand's reaching definition.
422 assert(LIS && "vreg dependencies requires LiveIntervals");
424 = LIS->getInterval(Reg).Query(LIS->getInstructionIndex(MI));
425 VNInfo *VNI = LRQ.valueIn();
427 // VNI will be valid because MachineOperand::readsReg() is checked by caller.
428 assert(VNI && "No value to read by operand");
429 MachineInstr *Def = LIS->getInstructionFromIndex(VNI->def);
430 // Phis and other noninstructions (after coalescing) have a NULL Def.
432 SUnit *DefSU = getSUnit(Def);
434 // The reaching Def lives within this scheduling region.
435 // Create a data dependence.
436 SDep dep(DefSU, SDep::Data, Reg);
437 // Adjust the dependence latency using operand def/use information, then
438 // allow the target to perform its own adjustments.
439 int DefOp = Def->findRegisterDefOperandIdx(Reg);
440 dep.setLatency(SchedModel.computeOperandLatency(Def, DefOp, MI, OperIdx));
442 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
443 ST.adjustSchedDependency(DefSU, SU, const_cast<SDep &>(dep));
448 // Add antidependence to the following def of the vreg it uses.
449 VReg2SUnitMap::iterator DefI = VRegDefs.find(Reg);
450 if (DefI != VRegDefs.end() && DefI->SU != SU)
451 DefI->SU->addPred(SDep(SU, SDep::Anti, Reg));
454 /// Return true if MI is an instruction we are unable to reason about
455 /// (like a call or something with unmodeled side effects).
456 static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
457 if (MI->isCall() || MI->hasUnmodeledSideEffects() ||
458 (MI->hasOrderedMemoryRef() &&
459 (!MI->mayLoad() || !MI->isInvariantLoad(AA))))
464 // This MI might have either incomplete info, or known to be unsafe
465 // to deal with (i.e. volatile object).
466 static inline bool isUnsafeMemoryObject(MachineInstr *MI,
467 const MachineFrameInfo *MFI) {
468 if (!MI || MI->memoperands_empty())
470 // We purposefully do no check for hasOneMemOperand() here
471 // in hope to trigger an assert downstream in order to
472 // finish implementation.
473 if ((*MI->memoperands_begin())->isVolatile() ||
474 MI->hasUnmodeledSideEffects())
476 const Value *V = (*MI->memoperands_begin())->getValue();
480 SmallVector<Value *, 4> Objs;
481 getUnderlyingObjects(V, Objs);
482 for (SmallVectorImpl<Value *>::iterator I = Objs.begin(),
483 IE = Objs.end(); I != IE; ++I) {
486 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
487 // Similarly to getUnderlyingObjectForInstr:
488 // For now, ignore PseudoSourceValues which may alias LLVM IR values
489 // because the code that uses this function has no way to cope with
491 if (PSV->isAliased(MFI))
495 // Does this pointer refer to a distinct and identifiable object?
496 if (!isIdentifiedObject(V))
503 /// This returns true if the two MIs need a chain edge betwee them.
504 /// If these are not even memory operations, we still may need
505 /// chain deps between them. The question really is - could
506 /// these two MIs be reordered during scheduling from memory dependency
508 static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
511 // Cover a trivial case - no edge is need to itself.
515 // FIXME: Need to handle multiple memory operands to support all targets.
516 if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
519 if (isUnsafeMemoryObject(MIa, MFI) || isUnsafeMemoryObject(MIb, MFI))
522 // If we are dealing with two "normal" loads, we do not need an edge
523 // between them - they could be reordered.
524 if (!MIa->mayStore() && !MIb->mayStore())
527 // To this point analysis is generic. From here on we do need AA.
531 MachineMemOperand *MMOa = *MIa->memoperands_begin();
532 MachineMemOperand *MMOb = *MIb->memoperands_begin();
534 // The following interface to AA is fashioned after DAGCombiner::isAlias
535 // and operates with MachineMemOperand offset with some important
537 // - LLVM fundamentally assumes flat address spaces.
538 // - MachineOperand offset can *only* result from legalization and
539 // cannot affect queries other than the trivial case of overlap
541 // - These offsets never wrap and never step outside
542 // of allocated objects.
543 // - There should never be any negative offsets here.
545 // FIXME: Modify API to hide this math from "user"
546 // FIXME: Even before we go to AA we can reason locally about some
547 // memory objects. It can save compile time, and possibly catch some
548 // corner cases not currently covered.
550 assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
551 assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");
553 int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
554 int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
555 int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;
557 AliasAnalysis::AliasResult AAResult = AA->alias(
558 AliasAnalysis::Location(MMOa->getValue(), Overlapa,
559 MMOa->getTBAAInfo()),
560 AliasAnalysis::Location(MMOb->getValue(), Overlapb,
561 MMOb->getTBAAInfo()));
563 return (AAResult != AliasAnalysis::NoAlias);
566 /// This recursive function iterates over chain deps of SUb looking for
567 /// "latest" node that needs a chain edge to SUa.
569 iterateChainSucc(AliasAnalysis *AA, const MachineFrameInfo *MFI,
570 SUnit *SUa, SUnit *SUb, SUnit *ExitSU, unsigned *Depth,
571 SmallPtrSet<const SUnit*, 16> &Visited) {
572 if (!SUa || !SUb || SUb == ExitSU)
575 // Remember visited nodes.
576 if (!Visited.insert(SUb))
578 // If there is _some_ dependency already in place, do not
579 // descend any further.
580 // TODO: Need to make sure that if that dependency got eliminated or ignored
581 // for any reason in the future, we would not violate DAG topology.
582 // Currently it does not happen, but makes an implicit assumption about
583 // future implementation.
585 // Independently, if we encounter node that is some sort of global
586 // object (like a call) we already have full set of dependencies to it
587 // and we can stop descending.
588 if (SUa->isSucc(SUb) ||
589 isGlobalMemoryObject(AA, SUb->getInstr()))
592 // If we do need an edge, or we have exceeded depth budget,
593 // add that edge to the predecessors chain of SUb,
594 // and stop descending.
596 MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
597 SUb->addPred(SDep(SUa, SDep::MayAliasMem));
600 // Track current depth.
602 // Iterate over chain dependencies only.
603 for (SUnit::const_succ_iterator I = SUb->Succs.begin(), E = SUb->Succs.end();
606 iterateChainSucc (AA, MFI, SUa, I->getSUnit(), ExitSU, Depth, Visited);
610 /// This function assumes that "downward" from SU there exist
611 /// tail/leaf of already constructed DAG. It iterates downward and
612 /// checks whether SU can be aliasing any node dominated
614 static void adjustChainDeps(AliasAnalysis *AA, const MachineFrameInfo *MFI,
615 SUnit *SU, SUnit *ExitSU, std::set<SUnit *> &CheckList,
616 unsigned LatencyToLoad) {
620 SmallPtrSet<const SUnit*, 16> Visited;
623 for (std::set<SUnit *>::iterator I = CheckList.begin(), IE = CheckList.end();
627 if (MIsNeedChainEdge(AA, MFI, SU->getInstr(), (*I)->getInstr())) {
628 SDep Dep(SU, SDep::MayAliasMem);
629 Dep.setLatency(((*I)->getInstr()->mayLoad()) ? LatencyToLoad : 0);
632 // Now go through all the chain successors and iterate from them.
633 // Keep track of visited nodes.
634 for (SUnit::const_succ_iterator J = (*I)->Succs.begin(),
635 JE = (*I)->Succs.end(); J != JE; ++J)
637 iterateChainSucc (AA, MFI, SU, J->getSUnit(),
638 ExitSU, &Depth, Visited);
642 /// Check whether two objects need a chain edge, if so, add it
643 /// otherwise remember the rejected SU.
645 void addChainDependency (AliasAnalysis *AA, const MachineFrameInfo *MFI,
646 SUnit *SUa, SUnit *SUb,
647 std::set<SUnit *> &RejectList,
648 unsigned TrueMemOrderLatency = 0,
649 bool isNormalMemory = false) {
650 // If this is a false dependency,
651 // do not add the edge, but rememeber the rejected node.
652 if (!AA || MIsNeedChainEdge(AA, MFI, SUa->getInstr(), SUb->getInstr())) {
653 SDep Dep(SUa, isNormalMemory ? SDep::MayAliasMem : SDep::Barrier);
654 Dep.setLatency(TrueMemOrderLatency);
658 // Duplicate entries should be ignored.
659 RejectList.insert(SUb);
660 DEBUG(dbgs() << "\tReject chain dep between SU("
661 << SUa->NodeNum << ") and SU("
662 << SUb->NodeNum << ")\n");
666 /// Create an SUnit for each real instruction, numbered in top-down toplological
667 /// order. The instruction order A < B, implies that no edge exists from B to A.
669 /// Map each real instruction to its SUnit.
671 /// After initSUnits, the SUnits vector cannot be resized and the scheduler may
672 /// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
673 /// instead of pointers.
675 /// MachineScheduler relies on initSUnits numbering the nodes by their order in
676 /// the original instruction list.
677 void ScheduleDAGInstrs::initSUnits() {
678 // We'll be allocating one SUnit for each real instruction in the region,
679 // which is contained within a basic block.
680 SUnits.reserve(NumRegionInstrs);
682 for (MachineBasicBlock::iterator I = RegionBegin; I != RegionEnd; ++I) {
683 MachineInstr *MI = I;
684 if (MI->isDebugValue())
687 SUnit *SU = newSUnit(MI);
690 SU->isCall = MI->isCall();
691 SU->isCommutable = MI->isCommutable();
693 // Assign the Latency field of SU using target-provided information.
694 SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());
696 // If this SUnit uses an unbuffered resource, mark it as such.
697 // These resources are used for in-order execution pipelines within an
698 // out-of-order core and are identified by BufferSize=1. BufferSize=0 is
699 // used for dispatch/issue groups and is not considered here.
700 if (SchedModel.hasInstrSchedModel()) {
701 const MCSchedClassDesc *SC = getSchedClass(SU);
702 for (TargetSchedModel::ProcResIter
703 PI = SchedModel.getWriteProcResBegin(SC),
704 PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
705 switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
707 SU->hasReservedResource = true;
710 SU->isUnbuffered = true;
720 /// If RegPressure is non-null, compute register pressure as a side effect. The
721 /// DAG builder is an efficient place to do it because it already visits
723 void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
724 RegPressureTracker *RPTracker,
725 PressureDiffs *PDiffs) {
726 const TargetSubtargetInfo &ST = TM.getSubtarget<TargetSubtargetInfo>();
727 bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
729 AliasAnalysis *AAForDep = UseAA ? AA : 0;
732 ScheduleDAG::clearDAG();
734 // Create an SUnit for each real instruction.
738 PDiffs->init(SUnits.size());
740 // We build scheduling units by walking a block's instruction list from bottom
743 // Remember where a generic side-effecting instruction is as we procede.
744 SUnit *BarrierChain = 0, *AliasChain = 0;
746 // Memory references to specific known memory locations are tracked
747 // so that they can be given more precise dependencies. We track
748 // separately the known memory locations that may alias and those
749 // that are known not to alias
750 MapVector<const Value *, SUnit *> AliasMemDefs, NonAliasMemDefs;
751 MapVector<const Value *, std::vector<SUnit *> > AliasMemUses, NonAliasMemUses;
752 std::set<SUnit*> RejectMemNodes;
754 // Remove any stale debug info; sometimes BuildSchedGraph is called again
755 // without emitting the info from the previous call.
757 FirstDbgValue = NULL;
759 assert(Defs.empty() && Uses.empty() &&
760 "Only BuildGraph should update Defs/Uses");
761 Defs.setUniverse(TRI->getNumRegs());
762 Uses.setUniverse(TRI->getNumRegs());
764 assert(VRegDefs.empty() && "Only BuildSchedGraph may access VRegDefs");
766 VRegDefs.setUniverse(MRI.getNumVirtRegs());
767 VRegUses.setUniverse(MRI.getNumVirtRegs());
769 // Model data dependencies between instructions being scheduled and the
771 addSchedBarrierDeps();
773 // Walk the list of instructions, from bottom moving up.
774 MachineInstr *DbgMI = NULL;
775 for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
777 MachineInstr *MI = prior(MII);
779 DbgValues.push_back(std::make_pair(DbgMI, MI));
783 if (MI->isDebugValue()) {
787 SUnit *SU = MISUnitMap[MI];
788 assert(SU && "No SUnit mapped to this MI");
791 PressureDiff *PDiff = PDiffs ? &(*PDiffs)[SU->NodeNum] : 0;
792 RPTracker->recede(/*LiveUses=*/0, PDiff);
793 assert(RPTracker->getPos() == prior(MII) && "RPTracker can't find MI");
796 assert((CanHandleTerminators || (!MI->isTerminator() && !MI->isLabel())) &&
797 "Cannot schedule terminators or labels!");
799 // Add register-based dependencies (data, anti, and output).
800 bool HasVRegDef = false;
801 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
802 const MachineOperand &MO = MI->getOperand(j);
803 if (!MO.isReg()) continue;
804 unsigned Reg = MO.getReg();
805 if (Reg == 0) continue;
807 if (TRI->isPhysicalRegister(Reg))
808 addPhysRegDeps(SU, j);
810 assert(!IsPostRA && "Virtual register encountered!");
813 addVRegDefDeps(SU, j);
815 else if (MO.readsReg()) // ignore undef operands
816 addVRegUseDeps(SU, j);
819 // If we haven't seen any uses in this scheduling region, create a
820 // dependence edge to ExitSU to model the live-out latency. This is required
821 // for vreg defs with no in-region use, and prefetches with no vreg def.
823 // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
824 // check currently relies on being called before adding chain deps.
825 if (SU->NumSuccs == 0 && SU->Latency > 1
826 && (HasVRegDef || MI->mayLoad())) {
827 SDep Dep(SU, SDep::Artificial);
828 Dep.setLatency(SU->Latency - 1);
832 // Add chain dependencies.
833 // Chain dependencies used to enforce memory order should have
834 // latency of 0 (except for true dependency of Store followed by
835 // aliased Load... we estimate that with a single cycle of latency
836 // assuming the hardware will bypass)
837 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
838 // after stack slots are lowered to actual addresses.
839 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
840 // produce more precise dependence information.
841 unsigned TrueMemOrderLatency = MI->mayStore() ? 1 : 0;
842 if (isGlobalMemoryObject(AA, MI)) {
843 // Be conservative with these and add dependencies on all memory
844 // references, even those that are known to not alias.
845 for (MapVector<const Value *, SUnit *>::iterator I =
846 NonAliasMemDefs.begin(), E = NonAliasMemDefs.end(); I != E; ++I) {
847 I->second->addPred(SDep(SU, SDep::Barrier));
849 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
850 NonAliasMemUses.begin(), E = NonAliasMemUses.end(); I != E; ++I) {
851 for (unsigned i = 0, e = I->second.size(); i != e; ++i) {
852 SDep Dep(SU, SDep::Barrier);
853 Dep.setLatency(TrueMemOrderLatency);
854 I->second[i]->addPred(Dep);
857 // Add SU to the barrier chain.
859 BarrierChain->addPred(SDep(SU, SDep::Barrier));
861 // This is a barrier event that acts as a pivotal node in the DAG,
862 // so it is safe to clear list of exposed nodes.
863 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
864 TrueMemOrderLatency);
865 RejectMemNodes.clear();
866 NonAliasMemDefs.clear();
867 NonAliasMemUses.clear();
871 // Chain all possibly aliasing memory references though SU.
873 unsigned ChainLatency = 0;
874 if (AliasChain->getInstr()->mayLoad())
875 ChainLatency = TrueMemOrderLatency;
876 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes,
880 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
881 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
882 TrueMemOrderLatency);
883 for (MapVector<const Value *, SUnit *>::iterator I = AliasMemDefs.begin(),
884 E = AliasMemDefs.end(); I != E; ++I)
885 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes);
886 for (MapVector<const Value *, std::vector<SUnit *> >::iterator I =
887 AliasMemUses.begin(), E = AliasMemUses.end(); I != E; ++I) {
888 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
889 addChainDependency(AAForDep, MFI, SU, I->second[i], RejectMemNodes,
890 TrueMemOrderLatency);
892 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
893 TrueMemOrderLatency);
894 PendingLoads.clear();
895 AliasMemDefs.clear();
896 AliasMemUses.clear();
897 } else if (MI->mayStore()) {
898 UnderlyingObjectsVector Objs;
899 getUnderlyingObjectsForInstr(MI, MFI, Objs);
902 // Treat all other stores conservatively.
903 goto new_alias_chain;
906 bool MayAlias = false;
907 for (UnderlyingObjectsVector::iterator K = Objs.begin(), KE = Objs.end();
909 const Value *V = K->getPointer();
910 bool ThisMayAlias = K->getInt();
914 // A store to a specific PseudoSourceValue. Add precise dependencies.
915 // Record the def in MemDefs, first adding a dep if there is
917 MapVector<const Value *, SUnit *>::iterator I =
918 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
919 MapVector<const Value *, SUnit *>::iterator IE =
920 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
922 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes,
927 AliasMemDefs[V] = SU;
929 NonAliasMemDefs[V] = SU;
931 // Handle the uses in MemUses, if there are any.
932 MapVector<const Value *, std::vector<SUnit *> >::iterator J =
933 ((ThisMayAlias) ? AliasMemUses.find(V) : NonAliasMemUses.find(V));
934 MapVector<const Value *, std::vector<SUnit *> >::iterator JE =
935 ((ThisMayAlias) ? AliasMemUses.end() : NonAliasMemUses.end());
937 for (unsigned i = 0, e = J->second.size(); i != e; ++i)
938 addChainDependency(AAForDep, MFI, SU, J->second[i], RejectMemNodes,
939 TrueMemOrderLatency, true);
944 // Add dependencies from all the PendingLoads, i.e. loads
945 // with no underlying object.
946 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
947 addChainDependency(AAForDep, MFI, SU, PendingLoads[k], RejectMemNodes,
948 TrueMemOrderLatency);
949 // Add dependence on alias chain, if needed.
951 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
952 // But we also should check dependent instructions for the
954 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes,
955 TrueMemOrderLatency);
957 // Add dependence on barrier chain, if needed.
958 // There is no point to check aliasing on barrier event. Even if
959 // SU and barrier _could_ be reordered, they should not. In addition,
960 // we have lost all RejectMemNodes below barrier.
962 BarrierChain->addPred(SDep(SU, SDep::Barrier));
964 if (!ExitSU.isPred(SU))
965 // Push store's up a bit to avoid them getting in between cmp
967 ExitSU.addPred(SDep(SU, SDep::Artificial));
968 } else if (MI->mayLoad()) {
969 bool MayAlias = true;
970 if (MI->isInvariantLoad(AA)) {
971 // Invariant load, no chain dependencies needed!
973 UnderlyingObjectsVector Objs;
974 getUnderlyingObjectsForInstr(MI, MFI, Objs);
977 // A load with no underlying object. Depend on all
978 // potentially aliasing stores.
979 for (MapVector<const Value *, SUnit *>::iterator I =
980 AliasMemDefs.begin(), E = AliasMemDefs.end(); I != E; ++I)
981 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes);
983 PendingLoads.push_back(SU);
989 for (UnderlyingObjectsVector::iterator
990 J = Objs.begin(), JE = Objs.end(); J != JE; ++J) {
991 const Value *V = J->getPointer();
992 bool ThisMayAlias = J->getInt();
997 // A load from a specific PseudoSourceValue. Add precise dependencies.
998 MapVector<const Value *, SUnit *>::iterator I =
999 ((ThisMayAlias) ? AliasMemDefs.find(V) : NonAliasMemDefs.find(V));
1000 MapVector<const Value *, SUnit *>::iterator IE =
1001 ((ThisMayAlias) ? AliasMemDefs.end() : NonAliasMemDefs.end());
1003 addChainDependency(AAForDep, MFI, SU, I->second, RejectMemNodes,
1006 AliasMemUses[V].push_back(SU);
1008 NonAliasMemUses[V].push_back(SU);
1011 adjustChainDeps(AA, MFI, SU, &ExitSU, RejectMemNodes, /*Latency=*/0);
1012 // Add dependencies on alias and barrier chains, if needed.
1013 if (MayAlias && AliasChain)
1014 addChainDependency(AAForDep, MFI, SU, AliasChain, RejectMemNodes);
1016 BarrierChain->addPred(SDep(SU, SDep::Barrier));
1021 FirstDbgValue = DbgMI;
1026 PendingLoads.clear();
1029 /// \brief Initialize register live-range state for updating kills.
1030 void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
1031 // Start with no live registers.
1034 // Examine the live-in regs of all successors.
1035 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
1036 SE = BB->succ_end(); SI != SE; ++SI) {
1037 for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(),
1038 E = (*SI)->livein_end(); I != E; ++I) {
1040 // Repeat, for reg and all subregs.
1041 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1042 SubRegs.isValid(); ++SubRegs)
1043 LiveRegs.set(*SubRegs);
1048 bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
1049 // Setting kill flag...
1055 // If MO itself is live, clear the kill flag...
1056 if (LiveRegs.test(MO.getReg())) {
1057 MO.setIsKill(false);
1061 // If any subreg of MO is live, then create an imp-def for that
1062 // subreg and keep MO marked as killed.
1063 MO.setIsKill(false);
1064 bool AllDead = true;
1065 const unsigned SuperReg = MO.getReg();
1066 MachineInstrBuilder MIB(MF, MI);
1067 for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
1068 if (LiveRegs.test(*SubRegs)) {
1069 MIB.addReg(*SubRegs, RegState::ImplicitDefine);
1079 // FIXME: Reuse the LivePhysRegs utility for this.
1080 void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
1081 DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');
1083 LiveRegs.resize(TRI->getNumRegs());
1084 BitVector killedRegs(TRI->getNumRegs());
1086 startBlockForKills(MBB);
1088 // Examine block from end to start...
1089 unsigned Count = MBB->size();
1090 for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
1092 MachineInstr *MI = --I;
1093 if (MI->isDebugValue())
1096 // Update liveness. Registers that are defed but not used in this
1097 // instruction are now dead. Mark register and all subregs as they
1098 // are completely defined.
1099 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1100 MachineOperand &MO = MI->getOperand(i);
1102 LiveRegs.clearBitsNotInMask(MO.getRegMask());
1103 if (!MO.isReg()) continue;
1104 unsigned Reg = MO.getReg();
1105 if (Reg == 0) continue;
1106 if (!MO.isDef()) continue;
1107 // Ignore two-addr defs.
1108 if (MI->isRegTiedToUseOperand(i)) continue;
1110 // Repeat for reg and all subregs.
1111 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1112 SubRegs.isValid(); ++SubRegs)
1113 LiveRegs.reset(*SubRegs);
1116 // Examine all used registers and set/clear kill flag. When a
1117 // register is used multiple times we only set the kill flag on
1118 // the first use. Don't set kill flags on undef operands.
1120 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1121 MachineOperand &MO = MI->getOperand(i);
1122 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1123 unsigned Reg = MO.getReg();
1124 if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1127 if (!killedRegs.test(Reg)) {
1129 // A register is not killed if any subregs are live...
1130 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
1131 if (LiveRegs.test(*SubRegs)) {
1137 // If subreg is not live, then register is killed if it became
1138 // live in this instruction
1140 kill = !LiveRegs.test(Reg);
1143 if (MO.isKill() != kill) {
1144 DEBUG(dbgs() << "Fixing " << MO << " in ");
1145 // Warning: toggleKillFlag may invalidate MO.
1146 toggleKillFlag(MI, MO);
1150 killedRegs.set(Reg);
1153 // Mark any used register (that is not using undef) and subregs as
1155 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1156 MachineOperand &MO = MI->getOperand(i);
1157 if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
1158 unsigned Reg = MO.getReg();
1159 if ((Reg == 0) || MRI.isReserved(Reg)) continue;
1161 for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
1162 SubRegs.isValid(); ++SubRegs)
1163 LiveRegs.set(*SubRegs);
1168 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
1169 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1170 SU->getInstr()->dump();
1174 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
1176 raw_string_ostream oss(s);
1179 else if (SU == &ExitSU)
1182 SU->getInstr()->print(oss, &TM, /*SkipOpers=*/true);
1186 /// Return the basic block label. It is not necessarilly unique because a block
1187 /// contains multiple scheduling regions. But it is fine for visualization.
1188 std::string ScheduleDAGInstrs::getDAGName() const {
1189 return "dag." + BB->getFullName();
1192 //===----------------------------------------------------------------------===//
1193 // SchedDFSResult Implementation
1194 //===----------------------------------------------------------------------===//
1197 /// \brief Internal state used to compute SchedDFSResult.
1198 class SchedDFSImpl {
1201 /// Join DAG nodes into equivalence classes by their subtree.
1202 IntEqClasses SubtreeClasses;
1203 /// List PredSU, SuccSU pairs that represent data edges between subtrees.
1204 std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;
1208 unsigned ParentNodeID; // Parent node (member of the parent subtree).
1209 unsigned SubInstrCount; // Instr count in this tree only, not children.
1211 RootData(unsigned id): NodeID(id),
1212 ParentNodeID(SchedDFSResult::InvalidSubtreeID),
1215 unsigned getSparseSetIndex() const { return NodeID; }
1218 SparseSet<RootData> RootSet;
1221 SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
1222 RootSet.setUniverse(R.DFSNodeData.size());
1225 /// Return true if this node been visited by the DFS traversal.
1227 /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
1228 /// ID. Later, SubtreeID is updated but remains valid.
1229 bool isVisited(const SUnit *SU) const {
1230 return R.DFSNodeData[SU->NodeNum].SubtreeID
1231 != SchedDFSResult::InvalidSubtreeID;
1234 /// Initialize this node's instruction count. We don't need to flag the node
1235 /// visited until visitPostorder because the DAG cannot have cycles.
1236 void visitPreorder(const SUnit *SU) {
1237 R.DFSNodeData[SU->NodeNum].InstrCount =
1238 SU->getInstr()->isTransient() ? 0 : 1;
1241 /// Called once for each node after all predecessors are visited. Revisit this
1242 /// node's predecessors and potentially join them now that we know the ILP of
1243 /// the other predecessors.
1244 void visitPostorderNode(const SUnit *SU) {
1245 // Mark this node as the root of a subtree. It may be joined with its
1246 // successors later.
1247 R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
1248 RootData RData(SU->NodeNum);
1249 RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;
1251 // If any predecessors are still in their own subtree, they either cannot be
1252 // joined or are large enough to remain separate. If this parent node's
1253 // total instruction count is not greater than a child subtree by at least
1254 // the subtree limit, then try to join it now since splitting subtrees is
1255 // only useful if multiple high-pressure paths are possible.
1256 unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
1257 for (SUnit::const_pred_iterator
1258 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1259 if (PI->getKind() != SDep::Data)
1261 unsigned PredNum = PI->getSUnit()->NodeNum;
1262 if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
1263 joinPredSubtree(*PI, SU, /*CheckLimit=*/false);
1265 // Either link or merge the TreeData entry from the child to the parent.
1266 if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
1267 // If the predecessor's parent is invalid, this is a tree edge and the
1268 // current node is the parent.
1269 if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
1270 RootSet[PredNum].ParentNodeID = SU->NodeNum;
1272 else if (RootSet.count(PredNum)) {
1273 // The predecessor is not a root, but is still in the root set. This
1274 // must be the new parent that it was just joined to. Note that
1275 // RootSet[PredNum].ParentNodeID may either be invalid or may still be
1276 // set to the original parent.
1277 RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
1278 RootSet.erase(PredNum);
1281 RootSet[SU->NodeNum] = RData;
1284 /// Called once for each tree edge after calling visitPostOrderNode on the
1285 /// predecessor. Increment the parent node's instruction count and
1286 /// preemptively join this subtree to its parent's if it is small enough.
1287 void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
1288 R.DFSNodeData[Succ->NodeNum].InstrCount
1289 += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
1290 joinPredSubtree(PredDep, Succ);
1293 /// Add a connection for cross edges.
1294 void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
1295 ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
1298 /// Set each node's subtree ID to the representative ID and record connections
1301 SubtreeClasses.compress();
1302 R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
1303 assert(SubtreeClasses.getNumClasses() == RootSet.size()
1304 && "number of roots should match trees");
1305 for (SparseSet<RootData>::const_iterator
1306 RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
1307 unsigned TreeID = SubtreeClasses[RI->NodeID];
1308 if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
1309 R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
1310 R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
1311 // Note that SubInstrCount may be greater than InstrCount if we joined
1312 // subtrees across a cross edge. InstrCount will be attributed to the
1313 // original parent, while SubInstrCount will be attributed to the joined
1316 R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
1317 R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
1318 DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
1319 for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
1320 R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
1321 DEBUG(dbgs() << " SU(" << Idx << ") in tree "
1322 << R.DFSNodeData[Idx].SubtreeID << '\n');
1324 for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
1325 I = ConnectionPairs.begin(), E = ConnectionPairs.end();
1327 unsigned PredTree = SubtreeClasses[I->first->NodeNum];
1328 unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
1329 if (PredTree == SuccTree)
1331 unsigned Depth = I->first->getDepth();
1332 addConnection(PredTree, SuccTree, Depth);
1333 addConnection(SuccTree, PredTree, Depth);
1338 /// Join the predecessor subtree with the successor that is its DFS
1339 /// parent. Apply some heuristics before joining.
1340 bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
1341 bool CheckLimit = true) {
1342 assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");
1344 // Check if the predecessor is already joined.
1345 const SUnit *PredSU = PredDep.getSUnit();
1346 unsigned PredNum = PredSU->NodeNum;
1347 if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
1350 // Four is the magic number of successors before a node is considered a
1352 unsigned NumDataSucs = 0;
1353 for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
1354 SE = PredSU->Succs.end(); SI != SE; ++SI) {
1355 if (SI->getKind() == SDep::Data) {
1356 if (++NumDataSucs >= 4)
1360 if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
1362 R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
1363 SubtreeClasses.join(Succ->NodeNum, PredNum);
1367 /// Called by finalize() to record a connection between trees.
1368 void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
1373 SmallVectorImpl<SchedDFSResult::Connection> &Connections =
1374 R.SubtreeConnections[FromTree];
1375 for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
1376 I = Connections.begin(), E = Connections.end(); I != E; ++I) {
1377 if (I->TreeID == ToTree) {
1378 I->Level = std::max(I->Level, Depth);
1382 Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
1383 FromTree = R.DFSTreeData[FromTree].ParentTreeID;
1384 } while (FromTree != SchedDFSResult::InvalidSubtreeID);
1390 /// \brief Manage the stack used by a reverse depth-first search over the DAG.
1391 class SchedDAGReverseDFS {
1392 std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
1394 bool isComplete() const { return DFSStack.empty(); }
1396 void follow(const SUnit *SU) {
1397 DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
1399 void advance() { ++DFSStack.back().second; }
1401 const SDep *backtrack() {
1402 DFSStack.pop_back();
1403 return DFSStack.empty() ? 0 : llvm::prior(DFSStack.back().second);
1406 const SUnit *getCurr() const { return DFSStack.back().first; }
1408 SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }
1410 SUnit::const_pred_iterator getPredEnd() const {
1411 return getCurr()->Preds.end();
1416 static bool hasDataSucc(const SUnit *SU) {
1417 for (SUnit::const_succ_iterator
1418 SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
1419 if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
1425 /// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
1426 /// search from this root.
1427 void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
1429 llvm_unreachable("Top-down ILP metric is unimplemnted");
1431 SchedDFSImpl Impl(*this);
1432 for (ArrayRef<SUnit>::const_iterator
1433 SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
1434 const SUnit *SU = &*SI;
1435 if (Impl.isVisited(SU) || hasDataSucc(SU))
1438 SchedDAGReverseDFS DFS;
1439 Impl.visitPreorder(SU);
1442 // Traverse the leftmost path as far as possible.
1443 while (DFS.getPred() != DFS.getPredEnd()) {
1444 const SDep &PredDep = *DFS.getPred();
1446 // Ignore non-data edges.
1447 if (PredDep.getKind() != SDep::Data
1448 || PredDep.getSUnit()->isBoundaryNode()) {
1451 // An already visited edge is a cross edge, assuming an acyclic DAG.
1452 if (Impl.isVisited(PredDep.getSUnit())) {
1453 Impl.visitCrossEdge(PredDep, DFS.getCurr());
1456 Impl.visitPreorder(PredDep.getSUnit());
1457 DFS.follow(PredDep.getSUnit());
1459 // Visit the top of the stack in postorder and backtrack.
1460 const SUnit *Child = DFS.getCurr();
1461 const SDep *PredDep = DFS.backtrack();
1462 Impl.visitPostorderNode(Child);
1464 Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
1465 if (DFS.isComplete())
1472 /// The root of the given SubtreeID was just scheduled. For all subtrees
1473 /// connected to this tree, record the depth of the connection so that the
1474 /// nearest connected subtrees can be prioritized.
1475 void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
1476 for (SmallVectorImpl<Connection>::const_iterator
1477 I = SubtreeConnections[SubtreeID].begin(),
1478 E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
1479 SubtreeConnectLevels[I->TreeID] =
1480 std::max(SubtreeConnectLevels[I->TreeID], I->Level);
1481 DEBUG(dbgs() << " Tree: " << I->TreeID
1482 << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
1486 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1487 void ILPValue::print(raw_ostream &OS) const {
1488 OS << InstrCount << " / " << Length << " = ";
1492 OS << format("%g", ((double)InstrCount / Length));
1495 void ILPValue::dump() const {
1496 dbgs() << *this << '\n';
1501 raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
1507 #endif // !NDEBUG || LLVM_ENABLE_DUMP