1 //===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the ScheduleDAGInstrs class, which implements re-scheduling
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "sched-instrs"
16 #include "ScheduleDAGInstrs.h"
17 #include "llvm/Operator.h"
18 #include "llvm/Analysis/AliasAnalysis.h"
19 #include "llvm/CodeGen/MachineFunctionPass.h"
20 #include "llvm/CodeGen/MachineMemOperand.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/PseudoSourceValue.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/Target/TargetInstrInfo.h"
25 #include "llvm/Target/TargetRegisterInfo.h"
26 #include "llvm/Target/TargetSubtarget.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/ADT/SmallSet.h"
32 ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
33 const MachineLoopInfo &mli,
34 const MachineDominatorTree &mdt)
35 : ScheduleDAG(mf), MLI(mli), MDT(mdt), LoopRegs(MLI, MDT) {
36 MFI = mf.getFrameInfo();
39 /// Run - perform scheduling.
41 void ScheduleDAGInstrs::Run(MachineBasicBlock *bb,
42 MachineBasicBlock::iterator begin,
43 MachineBasicBlock::iterator end,
47 InsertPosIndex = endcount;
49 ScheduleDAG::Run(bb, end);
52 /// getUnderlyingObjectFromInt - This is the function that does the work of
53 /// looking through basic ptrtoint+arithmetic+inttoptr sequences.
54 static const Value *getUnderlyingObjectFromInt(const Value *V) {
56 if (const Operator *U = dyn_cast<Operator>(V)) {
57 // If we find a ptrtoint, we can transfer control back to the
58 // regular getUnderlyingObjectFromInt.
59 if (U->getOpcode() == Instruction::PtrToInt)
60 return U->getOperand(0);
61 // If we find an add of a constant or a multiplied value, it's
62 // likely that the other operand will lead us to the base
63 // object. We don't have to worry about the case where the
64 // object address is somehow being computed by the multiply,
65 // because our callers only care when the result is an
66 // identifibale object.
67 if (U->getOpcode() != Instruction::Add ||
68 (!isa<ConstantInt>(U->getOperand(1)) &&
69 Operator::getOpcode(U->getOperand(1)) != Instruction::Mul))
75 assert(isa<IntegerType>(V->getType()) && "Unexpected operand type!");
79 /// getUnderlyingObject - This is a wrapper around Value::getUnderlyingObject
80 /// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
81 static const Value *getUnderlyingObject(const Value *V) {
82 // First just call Value::getUnderlyingObject to let it do what it does.
84 V = V->getUnderlyingObject();
85 // If it found an inttoptr, use special code to continue climing.
86 if (Operator::getOpcode(V) != Instruction::IntToPtr)
88 const Value *O = getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
89 // If that succeeded in finding a pointer, continue the search.
90 if (!isa<PointerType>(O->getType()))
97 /// getUnderlyingObjectForInstr - If this machine instr has memory reference
98 /// information and it can be tracked to a normal reference to a known
99 /// object, return the Value for that object. Otherwise return null.
100 static const Value *getUnderlyingObjectForInstr(const MachineInstr *MI,
101 const MachineFrameInfo *MFI,
104 if (!MI->hasOneMemOperand() ||
105 !(*MI->memoperands_begin())->getValue() ||
106 (*MI->memoperands_begin())->isVolatile())
109 const Value *V = (*MI->memoperands_begin())->getValue();
113 V = getUnderlyingObject(V);
114 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V)) {
115 MayAlias = PSV->mayAlias(MFI);
116 // For now, ignore PseudoSourceValues which may alias LLVM IR values
117 // because the code that uses this function has no way to cope with
119 if (PSV->isAliased(MFI))
124 if (isIdentifiedObject(V))
130 static bool mayUnderlyingObjectForInstrAlias(const MachineInstr *MI,
131 const MachineFrameInfo *MFI) {
132 if (!MI->hasOneMemOperand() ||
133 !(*MI->memoperands_begin())->getValue() ||
134 (*MI->memoperands_begin())->isVolatile())
137 const Value *V = (*MI->memoperands_begin())->getValue();
141 V = getUnderlyingObject(V);
142 if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
143 return PSV->mayAlias(MFI);
147 void ScheduleDAGInstrs::StartBlock(MachineBasicBlock *BB) {
148 if (MachineLoop *ML = MLI.getLoopFor(BB))
149 if (BB == ML->getLoopLatch()) {
150 MachineBasicBlock *Header = ML->getHeader();
151 for (MachineBasicBlock::livein_iterator I = Header->livein_begin(),
152 E = Header->livein_end(); I != E; ++I)
153 LoopLiveInRegs.insert(*I);
154 LoopRegs.VisitLoop(ML);
158 void ScheduleDAGInstrs::BuildSchedGraph(AliasAnalysis *AA) {
159 // We'll be allocating one SUnit for each instruction, plus one for
160 // the region exit node.
161 SUnits.reserve(BB->size());
163 // We build scheduling units by walking a block's instruction list from bottom
166 // Remember where a generic side-effecting instruction is as we procede. If
167 // ChainMMO is null, this is assumed to have arbitrary side-effects. If
168 // ChainMMO is non-null, then Chain makes only a single memory reference.
170 MachineMemOperand *ChainMMO = 0;
172 // Memory references to specific known memory locations are tracked so that
173 // they can be given more precise dependencies.
174 std::map<const Value *, SUnit *> MemDefs;
175 std::map<const Value *, std::vector<SUnit *> > MemUses;
177 // Check to see if the scheduler cares about latencies.
178 bool UnitLatencies = ForceUnitLatencies();
180 // Ask the target if address-backscheduling is desirable, and if so how much.
181 const TargetSubtarget &ST = TM.getSubtarget<TargetSubtarget>();
182 unsigned SpecialAddressLatency = ST.getSpecialAddressLatency();
184 // Walk the list of instructions, from bottom moving up.
185 for (MachineBasicBlock::iterator MII = InsertPos, MIE = Begin;
187 MachineInstr *MI = prior(MII);
188 const TargetInstrDesc &TID = MI->getDesc();
189 assert(!TID.isTerminator() && !MI->isLabel() &&
190 "Cannot schedule terminators or labels!");
191 // Create the SUnit for this MI.
192 SUnit *SU = NewSUnit(MI);
194 // Assign the Latency field of SU using target-provided information.
200 // Add register-based dependencies (data, anti, and output).
201 for (unsigned j = 0, n = MI->getNumOperands(); j != n; ++j) {
202 const MachineOperand &MO = MI->getOperand(j);
203 if (!MO.isReg()) continue;
204 unsigned Reg = MO.getReg();
205 if (Reg == 0) continue;
207 assert(TRI->isPhysicalRegister(Reg) && "Virtual register encountered!");
208 std::vector<SUnit *> &UseList = Uses[Reg];
209 std::vector<SUnit *> &DefList = Defs[Reg];
210 // Optionally add output and anti dependencies. For anti
211 // dependencies we use a latency of 0 because for a multi-issue
212 // target we want to allow the defining instruction to issue
213 // in the same cycle as the using instruction.
214 // TODO: Using a latency of 1 here for output dependencies assumes
215 // there's no cost for reusing registers.
216 SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
217 unsigned AOLatency = (Kind == SDep::Anti) ? 0 : 1;
218 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
219 SUnit *DefSU = DefList[i];
221 (Kind != SDep::Output || !MO.isDead() ||
222 !DefSU->getInstr()->registerDefIsDead(Reg)))
223 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/Reg));
225 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
226 std::vector<SUnit *> &DefList = Defs[*Alias];
227 for (unsigned i = 0, e = DefList.size(); i != e; ++i) {
228 SUnit *DefSU = DefList[i];
230 (Kind != SDep::Output || !MO.isDead() ||
231 !DefSU->getInstr()->registerDefIsDead(*Alias)))
232 DefSU->addPred(SDep(SU, Kind, AOLatency, /*Reg=*/ *Alias));
237 // Add any data dependencies.
238 unsigned DataLatency = SU->Latency;
239 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
240 SUnit *UseSU = UseList[i];
242 unsigned LDataLatency = DataLatency;
243 // Optionally add in a special extra latency for nodes that
245 // TODO: Do this for register aliases too.
246 // TODO: Perhaps we should get rid of
247 // SpecialAddressLatency and just move this into
248 // adjustSchedDependency for the targets that care about
250 if (SpecialAddressLatency != 0 && !UnitLatencies) {
251 MachineInstr *UseMI = UseSU->getInstr();
252 const TargetInstrDesc &UseTID = UseMI->getDesc();
253 int RegUseIndex = UseMI->findRegisterUseOperandIdx(Reg);
254 assert(RegUseIndex >= 0 && "UseMI doesn's use register!");
255 if ((UseTID.mayLoad() || UseTID.mayStore()) &&
256 (unsigned)RegUseIndex < UseTID.getNumOperands() &&
257 UseTID.OpInfo[RegUseIndex].isLookupPtrRegClass())
258 LDataLatency += SpecialAddressLatency;
260 // Adjust the dependence latency using operand def/use
261 // information (if any), and then allow the target to
262 // perform its own adjustments.
263 const SDep& dep = SDep(SU, SDep::Data, LDataLatency, Reg);
264 if (!UnitLatencies) {
265 ComputeOperandLatency(SU, UseSU, (SDep &)dep);
266 ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
271 for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
272 std::vector<SUnit *> &UseList = Uses[*Alias];
273 for (unsigned i = 0, e = UseList.size(); i != e; ++i) {
274 SUnit *UseSU = UseList[i];
276 const SDep& dep = SDep(SU, SDep::Data, DataLatency, *Alias);
277 if (!UnitLatencies) {
278 ComputeOperandLatency(SU, UseSU, (SDep &)dep);
279 ST.adjustSchedDependency(SU, UseSU, (SDep &)dep);
286 // If a def is going to wrap back around to the top of the loop,
288 if (!UnitLatencies && DefList.empty()) {
289 LoopDependencies::LoopDeps::iterator I = LoopRegs.Deps.find(Reg);
290 if (I != LoopRegs.Deps.end()) {
291 const MachineOperand *UseMO = I->second.first;
292 unsigned Count = I->second.second;
293 const MachineInstr *UseMI = UseMO->getParent();
294 unsigned UseMOIdx = UseMO - &UseMI->getOperand(0);
295 const TargetInstrDesc &UseTID = UseMI->getDesc();
296 // TODO: If we knew the total depth of the region here, we could
297 // handle the case where the whole loop is inside the region but
298 // is large enough that the isScheduleHigh trick isn't needed.
299 if (UseMOIdx < UseTID.getNumOperands()) {
300 // Currently, we only support scheduling regions consisting of
301 // single basic blocks. Check to see if the instruction is in
302 // the same region by checking to see if it has the same parent.
303 if (UseMI->getParent() != MI->getParent()) {
304 unsigned Latency = SU->Latency;
305 if (UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass())
306 Latency += SpecialAddressLatency;
307 // This is a wild guess as to the portion of the latency which
308 // will be overlapped by work done outside the current
309 // scheduling region.
310 Latency -= std::min(Latency, Count);
311 // Add the artifical edge.
312 ExitSU.addPred(SDep(SU, SDep::Order, Latency,
313 /*Reg=*/0, /*isNormalMemory=*/false,
314 /*isMustAlias=*/false,
315 /*isArtificial=*/true));
316 } else if (SpecialAddressLatency > 0 &&
317 UseTID.OpInfo[UseMOIdx].isLookupPtrRegClass()) {
318 // The entire loop body is within the current scheduling region
319 // and the latency of this operation is assumed to be greater
320 // than the latency of the loop.
321 // TODO: Recursively mark data-edge predecessors as
322 // isScheduleHigh too.
323 SU->isScheduleHigh = true;
326 LoopRegs.Deps.erase(I);
333 DefList.push_back(SU);
335 UseList.push_back(SU);
339 // Add chain dependencies.
340 // Chain dependencies used to enforce memory order should have
341 // latency of 0 (except for true dependency of Store followed by
342 // aliased Load... we estimate that with a single cycle of latency
343 // assuming the hardware will bypass)
344 // Note that isStoreToStackSlot and isLoadFromStackSLot are not usable
345 // after stack slots are lowered to actual addresses.
346 // TODO: Use an AliasAnalysis and do real alias-analysis queries, and
347 // produce more precise dependence information.
348 #define STORE_LOAD_LATENCY 1
349 unsigned TrueMemOrderLatency = 0;
350 if (TID.isCall() || TID.hasUnmodeledSideEffects()) {
352 // This is the conservative case. Add dependencies on all memory
355 Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
357 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
358 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
359 PendingLoads.clear();
360 for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
361 E = MemDefs.end(); I != E; ++I) {
362 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
365 for (std::map<const Value *, std::vector<SUnit *> >::iterator I =
366 MemUses.begin(), E = MemUses.end(); I != E; ++I) {
367 for (unsigned i = 0, e = I->second.size(); i != e; ++i)
368 I->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
370 I->second.push_back(SU);
372 // See if it is known to just have a single memory reference.
373 MachineInstr *ChainMI = Chain->getInstr();
374 const TargetInstrDesc &ChainTID = ChainMI->getDesc();
375 if (!ChainTID.isCall() &&
376 !ChainTID.hasUnmodeledSideEffects() &&
377 ChainMI->hasOneMemOperand() &&
378 !(*ChainMI->memoperands_begin())->isVolatile() &&
379 (*ChainMI->memoperands_begin())->getValue())
380 // We know that the Chain accesses one specific memory location.
381 ChainMMO = *ChainMI->memoperands_begin();
383 // Unknown memory accesses. Assume the worst.
385 } else if (TID.mayStore()) {
386 bool MayAlias = true;
387 TrueMemOrderLatency = STORE_LOAD_LATENCY;
388 if (const Value *V = getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
389 // A store to a specific PseudoSourceValue. Add precise dependencies.
390 // Handle the def in MemDefs, if there is one.
391 std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
392 if (I != MemDefs.end()) {
393 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
394 /*isNormalMemory=*/true));
399 // Handle the uses in MemUses, if there are any.
400 std::map<const Value *, std::vector<SUnit *> >::iterator J =
402 if (J != MemUses.end()) {
403 for (unsigned i = 0, e = J->second.size(); i != e; ++i)
404 J->second[i]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency,
405 /*Reg=*/0, /*isNormalMemory=*/true));
409 // Add dependencies from all the PendingLoads, since without
410 // memoperands we must assume they alias anything.
411 for (unsigned k = 0, m = PendingLoads.size(); k != m; ++k)
412 PendingLoads[k]->addPred(SDep(SU, SDep::Order, TrueMemOrderLatency));
413 // Add a general dependence too, if needed.
415 Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
418 // Treat all other stores conservatively.
421 } else if (TID.mayLoad()) {
422 bool MayAlias = true;
423 TrueMemOrderLatency = 0;
424 if (MI->isInvariantLoad(AA)) {
425 // Invariant load, no chain dependencies needed!
426 } else if (const Value *V =
427 getUnderlyingObjectForInstr(MI, MFI, MayAlias)) {
428 // A load from a specific PseudoSourceValue. Add precise dependencies.
429 std::map<const Value *, SUnit *>::iterator I = MemDefs.find(V);
430 if (I != MemDefs.end())
431 I->second->addPred(SDep(SU, SDep::Order, /*Latency=*/0, /*Reg=*/0,
432 /*isNormalMemory=*/true));
433 MemUses[V].push_back(SU);
435 // Add a general dependence too, if needed.
436 if (Chain && (!ChainMMO ||
437 (ChainMMO->isStore() || ChainMMO->isVolatile())))
438 Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
439 } else if (MI->hasVolatileMemoryRef()) {
440 // Treat volatile loads conservatively. Note that this includes
441 // cases where memoperand information is unavailable.
444 // A "MayAlias" load. Depend on the general chain, as well as on
445 // all stores. In the absense of MachineMemOperand information,
446 // we can't even assume that the load doesn't alias well-behaved
449 Chain->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
450 for (std::map<const Value *, SUnit *>::iterator I = MemDefs.begin(),
451 E = MemDefs.end(); I != E; ++I) {
452 SUnit *DefSU = I->second;
453 if (mayUnderlyingObjectForInstrAlias(DefSU->getInstr(), MFI))
454 DefSU->addPred(SDep(SU, SDep::Order, /*Latency=*/0));
456 PendingLoads.push_back(SU);
461 for (int i = 0, e = TRI->getNumRegs(); i != e; ++i) {
465 PendingLoads.clear();
468 void ScheduleDAGInstrs::FinishBlock() {
472 void ScheduleDAGInstrs::ComputeLatency(SUnit *SU) {
473 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
475 // Compute the latency for the node.
477 InstrItins.getStageLatency(SU->getInstr()->getDesc().getSchedClass());
479 // Simplistic target-independent heuristic: assume that loads take
481 if (InstrItins.isEmpty())
482 if (SU->getInstr()->getDesc().mayLoad())
486 void ScheduleDAGInstrs::ComputeOperandLatency(SUnit *Def, SUnit *Use,
488 const InstrItineraryData &InstrItins = TM.getInstrItineraryData();
489 if (InstrItins.isEmpty())
492 // For a data dependency with a known register...
493 if ((dep.getKind() != SDep::Data) || (dep.getReg() == 0))
496 const unsigned Reg = dep.getReg();
498 // ... find the definition of the register in the defining
500 MachineInstr *DefMI = Def->getInstr();
501 int DefIdx = DefMI->findRegisterDefOperandIdx(Reg);
503 int DefCycle = InstrItins.getOperandCycle(DefMI->getDesc().getSchedClass(), DefIdx);
505 MachineInstr *UseMI = Use->getInstr();
506 const unsigned UseClass = UseMI->getDesc().getSchedClass();
508 // For all uses of the register, calculate the maxmimum latency
510 for (unsigned i = 0, e = UseMI->getNumOperands(); i != e; ++i) {
511 const MachineOperand &MO = UseMI->getOperand(i);
512 if (!MO.isReg() || !MO.isUse())
514 unsigned MOReg = MO.getReg();
518 int UseCycle = InstrItins.getOperandCycle(UseClass, i);
520 Latency = std::max(Latency, DefCycle - UseCycle + 1);
523 // If we found a latency, then replace the existing dependence latency.
525 dep.setLatency(Latency);
530 void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
531 SU->getInstr()->dump();
534 std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
536 raw_string_ostream oss(s);
539 else if (SU == &ExitSU)
542 SU->getInstr()->print(oss);
546 // EmitSchedule - Emit the machine code in scheduled order.
547 MachineBasicBlock *ScheduleDAGInstrs::
548 EmitSchedule(DenseMap<MachineBasicBlock*, MachineBasicBlock*> *EM) {
549 // For MachineInstr-based scheduling, we're rescheduling the instructions in
550 // the block, so start by removing them from the block.
551 while (Begin != InsertPos) {
552 MachineBasicBlock::iterator I = Begin;
557 // Then re-insert them according to the given schedule.
558 for (unsigned i = 0, e = Sequence.size(); i != e; i++) {
559 SUnit *SU = Sequence[i];
561 // Null SUnit* is a noop.
566 BB->insert(InsertPos, SU->getInstr());
569 // Update the Begin iterator, as the first instruction in the block
570 // may have been scheduled later.
571 if (!Sequence.empty())
572 Begin = Sequence[0]->getInstr();