1f2fe8a8d84cea032b6f5ccbe9f111fd125d2b38
[oota-llvm.git] / lib / CodeGen / SelectionDAG / LegalizeDAG.cpp
1 //===-- LegalizeDAG.cpp - Implement SelectionDAG::Legalize ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the SelectionDAG::Legalize method.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Analysis/DebugInfo.h"
15 #include "llvm/CodeGen/Analysis.h"
16 #include "llvm/CodeGen/MachineFunction.h"
17 #include "llvm/CodeGen/MachineJumpTableInfo.h"
18 #include "llvm/CodeGen/SelectionDAG.h"
19 #include "llvm/Target/TargetFrameLowering.h"
20 #include "llvm/Target/TargetLowering.h"
21 #include "llvm/Target/TargetData.h"
22 #include "llvm/Target/TargetMachine.h"
23 #include "llvm/CallingConv.h"
24 #include "llvm/Constants.h"
25 #include "llvm/DerivedTypes.h"
26 #include "llvm/LLVMContext.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/SmallPtrSet.h"
34 using namespace llvm;
35
36 //===----------------------------------------------------------------------===//
37 /// SelectionDAGLegalize - This takes an arbitrary SelectionDAG as input and
38 /// hacks on it until the target machine can handle it.  This involves
39 /// eliminating value sizes the machine cannot handle (promoting small sizes to
40 /// large sizes or splitting up large values into small values) as well as
41 /// eliminating operations the machine cannot handle.
42 ///
43 /// This code also does a small amount of optimization and recognition of idioms
44 /// as part of its processing.  For example, if a target does not support a
45 /// 'setcc' instruction efficiently, but does support 'brcc' instruction, this
46 /// will attempt merge setcc and brc instructions into brcc's.
47 ///
48 namespace {
49 class SelectionDAGLegalize : public SelectionDAG::DAGUpdateListener {
50   const TargetMachine &TM;
51   const TargetLowering &TLI;
52   SelectionDAG &DAG;
53
54   /// LegalizePosition - The iterator for walking through the node list.
55   SelectionDAG::allnodes_iterator LegalizePosition;
56
57   /// LegalizedNodes - The set of nodes which have already been legalized.
58   SmallPtrSet<SDNode *, 16> LegalizedNodes;
59
60   // Libcall insertion helpers.
61
62 public:
63   explicit SelectionDAGLegalize(SelectionDAG &DAG);
64
65   void LegalizeDAG();
66
67 private:
68   /// LegalizeOp - Legalizes the given operation.
69   void LegalizeOp(SDNode *Node);
70
71   SDValue OptimizeFloatStore(StoreSDNode *ST);
72
73   /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
74   /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
75   /// is necessary to spill the vector being inserted into to memory, perform
76   /// the insert there, and then read the result back.
77   SDValue PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val,
78                                          SDValue Idx, DebugLoc dl);
79   SDValue ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val,
80                                   SDValue Idx, DebugLoc dl);
81
82   /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
83   /// performs the same shuffe in terms of order or result bytes, but on a type
84   /// whose vector element type is narrower than the original shuffle type.
85   /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
86   SDValue ShuffleWithNarrowerEltType(EVT NVT, EVT VT, DebugLoc dl,
87                                      SDValue N1, SDValue N2,
88                                      ArrayRef<int> Mask) const;
89
90   void LegalizeSetCCCondCode(EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC,
91                              DebugLoc dl);
92
93   SDValue ExpandLibCall(RTLIB::Libcall LC, SDNode *Node, bool isSigned);
94   SDValue ExpandLibCall(RTLIB::Libcall LC, EVT RetVT, const SDValue *Ops,
95                         unsigned NumOps, bool isSigned, DebugLoc dl);
96
97   std::pair<SDValue, SDValue> ExpandChainLibCall(RTLIB::Libcall LC,
98                                                  SDNode *Node, bool isSigned);
99   SDValue ExpandFPLibCall(SDNode *Node, RTLIB::Libcall Call_F32,
100                           RTLIB::Libcall Call_F64, RTLIB::Libcall Call_F80,
101                           RTLIB::Libcall Call_PPCF128);
102   SDValue ExpandIntLibCall(SDNode *Node, bool isSigned,
103                            RTLIB::Libcall Call_I8,
104                            RTLIB::Libcall Call_I16,
105                            RTLIB::Libcall Call_I32,
106                            RTLIB::Libcall Call_I64,
107                            RTLIB::Libcall Call_I128);
108   void ExpandDivRemLibCall(SDNode *Node, SmallVectorImpl<SDValue> &Results);
109
110   SDValue EmitStackConvert(SDValue SrcOp, EVT SlotVT, EVT DestVT, DebugLoc dl);
111   SDValue ExpandBUILD_VECTOR(SDNode *Node);
112   SDValue ExpandSCALAR_TO_VECTOR(SDNode *Node);
113   void ExpandDYNAMIC_STACKALLOC(SDNode *Node,
114                                 SmallVectorImpl<SDValue> &Results);
115   SDValue ExpandFCOPYSIGN(SDNode *Node);
116   SDValue ExpandLegalINT_TO_FP(bool isSigned, SDValue LegalOp, EVT DestVT,
117                                DebugLoc dl);
118   SDValue PromoteLegalINT_TO_FP(SDValue LegalOp, EVT DestVT, bool isSigned,
119                                 DebugLoc dl);
120   SDValue PromoteLegalFP_TO_INT(SDValue LegalOp, EVT DestVT, bool isSigned,
121                                 DebugLoc dl);
122
123   SDValue ExpandBSWAP(SDValue Op, DebugLoc dl);
124   SDValue ExpandBitCount(unsigned Opc, SDValue Op, DebugLoc dl);
125
126   SDValue ExpandExtractFromVectorThroughStack(SDValue Op);
127   SDValue ExpandInsertToVectorThroughStack(SDValue Op);
128   SDValue ExpandVectorBuildThroughStack(SDNode* Node);
129
130   SDValue ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP);
131
132   std::pair<SDValue, SDValue> ExpandAtomic(SDNode *Node);
133
134   void ExpandNode(SDNode *Node);
135   void PromoteNode(SDNode *Node);
136
137   void ForgetNode(SDNode *N) {
138     LegalizedNodes.erase(N);
139     if (LegalizePosition == SelectionDAG::allnodes_iterator(N))
140       ++LegalizePosition;
141   }
142
143 public:
144   // DAGUpdateListener implementation.
145   virtual void NodeDeleted(SDNode *N, SDNode *E) {
146     ForgetNode(N);
147   }
148   virtual void NodeUpdated(SDNode *N) {}
149
150   // Node replacement helpers
151   void ReplacedNode(SDNode *N) {
152     if (N->use_empty()) {
153       DAG.RemoveDeadNode(N);
154     } else {
155       ForgetNode(N);
156     }
157   }
158   void ReplaceNode(SDNode *Old, SDNode *New) {
159     DAG.ReplaceAllUsesWith(Old, New);
160     ReplacedNode(Old);
161   }
162   void ReplaceNode(SDValue Old, SDValue New) {
163     DAG.ReplaceAllUsesWith(Old, New);
164     ReplacedNode(Old.getNode());
165   }
166   void ReplaceNode(SDNode *Old, const SDValue *New) {
167     DAG.ReplaceAllUsesWith(Old, New);
168     ReplacedNode(Old);
169   }
170 };
171 }
172
173 /// ShuffleWithNarrowerEltType - Return a vector shuffle operation which
174 /// performs the same shuffe in terms of order or result bytes, but on a type
175 /// whose vector element type is narrower than the original shuffle type.
176 /// e.g. <v4i32> <0, 1, 0, 1> -> v8i16 <0, 1, 2, 3, 0, 1, 2, 3>
177 SDValue
178 SelectionDAGLegalize::ShuffleWithNarrowerEltType(EVT NVT, EVT VT,  DebugLoc dl,
179                                                  SDValue N1, SDValue N2,
180                                                  ArrayRef<int> Mask) const {
181   unsigned NumMaskElts = VT.getVectorNumElements();
182   unsigned NumDestElts = NVT.getVectorNumElements();
183   unsigned NumEltsGrowth = NumDestElts / NumMaskElts;
184
185   assert(NumEltsGrowth && "Cannot promote to vector type with fewer elts!");
186
187   if (NumEltsGrowth == 1)
188     return DAG.getVectorShuffle(NVT, dl, N1, N2, &Mask[0]);
189
190   SmallVector<int, 8> NewMask;
191   for (unsigned i = 0; i != NumMaskElts; ++i) {
192     int Idx = Mask[i];
193     for (unsigned j = 0; j != NumEltsGrowth; ++j) {
194       if (Idx < 0)
195         NewMask.push_back(-1);
196       else
197         NewMask.push_back(Idx * NumEltsGrowth + j);
198     }
199   }
200   assert(NewMask.size() == NumDestElts && "Non-integer NumEltsGrowth?");
201   assert(TLI.isShuffleMaskLegal(NewMask, NVT) && "Shuffle not legal?");
202   return DAG.getVectorShuffle(NVT, dl, N1, N2, &NewMask[0]);
203 }
204
205 SelectionDAGLegalize::SelectionDAGLegalize(SelectionDAG &dag)
206   : SelectionDAG::DAGUpdateListener(dag),
207     TM(dag.getTarget()), TLI(dag.getTargetLoweringInfo()),
208     DAG(dag) {
209 }
210
211 void SelectionDAGLegalize::LegalizeDAG() {
212   DAG.AssignTopologicalOrder();
213
214   // Visit all the nodes. We start in topological order, so that we see
215   // nodes with their original operands intact. Legalization can produce
216   // new nodes which may themselves need to be legalized. Iterate until all
217   // nodes have been legalized.
218   for (;;) {
219     bool AnyLegalized = false;
220     for (LegalizePosition = DAG.allnodes_end();
221          LegalizePosition != DAG.allnodes_begin(); ) {
222       --LegalizePosition;
223
224       SDNode *N = LegalizePosition;
225       if (LegalizedNodes.insert(N)) {
226         AnyLegalized = true;
227         LegalizeOp(N);
228       }
229     }
230     if (!AnyLegalized)
231       break;
232
233   }
234
235   // Remove dead nodes now.
236   DAG.RemoveDeadNodes();
237 }
238
239 /// ExpandConstantFP - Expands the ConstantFP node to an integer constant or
240 /// a load from the constant pool.
241 SDValue
242 SelectionDAGLegalize::ExpandConstantFP(ConstantFPSDNode *CFP, bool UseCP) {
243   bool Extend = false;
244   DebugLoc dl = CFP->getDebugLoc();
245
246   // If a FP immediate is precise when represented as a float and if the
247   // target can do an extending load from float to double, we put it into
248   // the constant pool as a float, even if it's is statically typed as a
249   // double.  This shrinks FP constants and canonicalizes them for targets where
250   // an FP extending load is the same cost as a normal load (such as on the x87
251   // fp stack or PPC FP unit).
252   EVT VT = CFP->getValueType(0);
253   ConstantFP *LLVMC = const_cast<ConstantFP*>(CFP->getConstantFPValue());
254   if (!UseCP) {
255     assert((VT == MVT::f64 || VT == MVT::f32) && "Invalid type expansion");
256     return DAG.getConstant(LLVMC->getValueAPF().bitcastToAPInt(),
257                            (VT == MVT::f64) ? MVT::i64 : MVT::i32);
258   }
259
260   EVT OrigVT = VT;
261   EVT SVT = VT;
262   while (SVT != MVT::f32) {
263     SVT = (MVT::SimpleValueType)(SVT.getSimpleVT().SimpleTy - 1);
264     if (ConstantFPSDNode::isValueValidForType(SVT, CFP->getValueAPF()) &&
265         // Only do this if the target has a native EXTLOAD instruction from
266         // smaller type.
267         TLI.isLoadExtLegal(ISD::EXTLOAD, SVT) &&
268         TLI.ShouldShrinkFPConstant(OrigVT)) {
269       Type *SType = SVT.getTypeForEVT(*DAG.getContext());
270       LLVMC = cast<ConstantFP>(ConstantExpr::getFPTrunc(LLVMC, SType));
271       VT = SVT;
272       Extend = true;
273     }
274   }
275
276   SDValue CPIdx = DAG.getConstantPool(LLVMC, TLI.getPointerTy());
277   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
278   if (Extend) {
279     SDValue Result =
280       DAG.getExtLoad(ISD::EXTLOAD, dl, OrigVT,
281                      DAG.getEntryNode(),
282                      CPIdx, MachinePointerInfo::getConstantPool(),
283                      VT, false, false, Alignment);
284     return Result;
285   }
286   SDValue Result =
287     DAG.getLoad(OrigVT, dl, DAG.getEntryNode(), CPIdx,
288                 MachinePointerInfo::getConstantPool(), false, false, false,
289                 Alignment);
290   return Result;
291 }
292
293 /// ExpandUnalignedStore - Expands an unaligned store to 2 half-size stores.
294 static void ExpandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG,
295                                  const TargetLowering &TLI,
296                                  SelectionDAGLegalize *DAGLegalize) {
297   assert(ST->getAddressingMode() == ISD::UNINDEXED &&
298          "unaligned indexed stores not implemented!");
299   SDValue Chain = ST->getChain();
300   SDValue Ptr = ST->getBasePtr();
301   SDValue Val = ST->getValue();
302   EVT VT = Val.getValueType();
303   int Alignment = ST->getAlignment();
304   DebugLoc dl = ST->getDebugLoc();
305   if (ST->getMemoryVT().isFloatingPoint() ||
306       ST->getMemoryVT().isVector()) {
307     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
308     if (TLI.isTypeLegal(intVT)) {
309       // Expand to a bitconvert of the value to the integer type of the
310       // same size, then a (misaligned) int store.
311       // FIXME: Does not handle truncating floating point stores!
312       SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
313       Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
314                            ST->isVolatile(), ST->isNonTemporal(), Alignment);
315       DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
316       return;
317     }
318     // Do a (aligned) store to a stack slot, then copy from the stack slot
319     // to the final destination using (unaligned) integer loads and stores.
320     EVT StoredVT = ST->getMemoryVT();
321     EVT RegVT =
322       TLI.getRegisterType(*DAG.getContext(),
323                           EVT::getIntegerVT(*DAG.getContext(),
324                                             StoredVT.getSizeInBits()));
325     unsigned StoredBytes = StoredVT.getSizeInBits() / 8;
326     unsigned RegBytes = RegVT.getSizeInBits() / 8;
327     unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
328
329     // Make sure the stack slot is also aligned for the register type.
330     SDValue StackPtr = DAG.CreateStackTemporary(StoredVT, RegVT);
331
332     // Perform the original store, only redirected to the stack slot.
333     SDValue Store = DAG.getTruncStore(Chain, dl,
334                                       Val, StackPtr, MachinePointerInfo(),
335                                       StoredVT, false, false, 0);
336     SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
337     SmallVector<SDValue, 8> Stores;
338     unsigned Offset = 0;
339
340     // Do all but one copies using the full register width.
341     for (unsigned i = 1; i < NumRegs; i++) {
342       // Load one integer register's worth from the stack slot.
343       SDValue Load = DAG.getLoad(RegVT, dl, Store, StackPtr,
344                                  MachinePointerInfo(),
345                                  false, false, false, 0);
346       // Store it to the final location.  Remember the store.
347       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
348                                   ST->getPointerInfo().getWithOffset(Offset),
349                                     ST->isVolatile(), ST->isNonTemporal(),
350                                     MinAlign(ST->getAlignment(), Offset)));
351       // Increment the pointers.
352       Offset += RegBytes;
353       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
354                              Increment);
355       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
356     }
357
358     // The last store may be partial.  Do a truncating store.  On big-endian
359     // machines this requires an extending load from the stack slot to ensure
360     // that the bits are in the right place.
361     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
362                                   8 * (StoredBytes - Offset));
363
364     // Load from the stack slot.
365     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
366                                   MachinePointerInfo(),
367                                   MemVT, false, false, 0);
368
369     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
370                                        ST->getPointerInfo()
371                                          .getWithOffset(Offset),
372                                        MemVT, ST->isVolatile(),
373                                        ST->isNonTemporal(),
374                                        MinAlign(ST->getAlignment(), Offset)));
375     // The order of the stores doesn't matter - say it with a TokenFactor.
376     SDValue Result =
377       DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
378                   Stores.size());
379     DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
380     return;
381   }
382   assert(ST->getMemoryVT().isInteger() &&
383          !ST->getMemoryVT().isVector() &&
384          "Unaligned store of unknown type.");
385   // Get the half-size VT
386   EVT NewStoredVT = ST->getMemoryVT().getHalfSizedIntegerVT(*DAG.getContext());
387   int NumBits = NewStoredVT.getSizeInBits();
388   int IncrementSize = NumBits / 8;
389
390   // Divide the stored value in two parts.
391   SDValue ShiftAmount = DAG.getConstant(NumBits,
392                                       TLI.getShiftAmountTy(Val.getValueType()));
393   SDValue Lo = Val;
394   SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
395
396   // Store the two parts
397   SDValue Store1, Store2;
398   Store1 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Lo:Hi, Ptr,
399                              ST->getPointerInfo(), NewStoredVT,
400                              ST->isVolatile(), ST->isNonTemporal(), Alignment);
401   Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
402                     DAG.getConstant(IncrementSize, TLI.getPointerTy()));
403   Alignment = MinAlign(Alignment, IncrementSize);
404   Store2 = DAG.getTruncStore(Chain, dl, TLI.isLittleEndian()?Hi:Lo, Ptr,
405                              ST->getPointerInfo().getWithOffset(IncrementSize),
406                              NewStoredVT, ST->isVolatile(), ST->isNonTemporal(),
407                              Alignment);
408
409   SDValue Result =
410     DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
411   DAGLegalize->ReplaceNode(SDValue(ST, 0), Result);
412 }
413
414 /// ExpandUnalignedLoad - Expands an unaligned load to 2 half-size loads.
415 static void
416 ExpandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG,
417                     const TargetLowering &TLI,
418                     SDValue &ValResult, SDValue &ChainResult) {
419   assert(LD->getAddressingMode() == ISD::UNINDEXED &&
420          "unaligned indexed loads not implemented!");
421   SDValue Chain = LD->getChain();
422   SDValue Ptr = LD->getBasePtr();
423   EVT VT = LD->getValueType(0);
424   EVT LoadedVT = LD->getMemoryVT();
425   DebugLoc dl = LD->getDebugLoc();
426   if (VT.isFloatingPoint() || VT.isVector()) {
427     EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
428     if (TLI.isTypeLegal(intVT)) {
429       // Expand to a (misaligned) integer load of the same size,
430       // then bitconvert to floating point or vector.
431       SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr, LD->getPointerInfo(),
432                                     LD->isVolatile(),
433                                     LD->isNonTemporal(),
434                                     LD->isInvariant(), LD->getAlignment());
435       SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
436       if (VT.isFloatingPoint() && LoadedVT != VT)
437         Result = DAG.getNode(ISD::FP_EXTEND, dl, VT, Result);
438
439       ValResult = Result;
440       ChainResult = Chain;
441       return;
442     }
443
444     // Copy the value to a (aligned) stack slot using (unaligned) integer
445     // loads and stores, then do a (aligned) load from the stack slot.
446     EVT RegVT = TLI.getRegisterType(*DAG.getContext(), intVT);
447     unsigned LoadedBytes = LoadedVT.getSizeInBits() / 8;
448     unsigned RegBytes = RegVT.getSizeInBits() / 8;
449     unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
450
451     // Make sure the stack slot is also aligned for the register type.
452     SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
453
454     SDValue Increment = DAG.getConstant(RegBytes, TLI.getPointerTy());
455     SmallVector<SDValue, 8> Stores;
456     SDValue StackPtr = StackBase;
457     unsigned Offset = 0;
458
459     // Do all but one copies using the full register width.
460     for (unsigned i = 1; i < NumRegs; i++) {
461       // Load one integer register's worth from the original location.
462       SDValue Load = DAG.getLoad(RegVT, dl, Chain, Ptr,
463                                  LD->getPointerInfo().getWithOffset(Offset),
464                                  LD->isVolatile(), LD->isNonTemporal(),
465                                  LD->isInvariant(),
466                                  MinAlign(LD->getAlignment(), Offset));
467       // Follow the load with a store to the stack slot.  Remember the store.
468       Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, StackPtr,
469                                     MachinePointerInfo(), false, false, 0));
470       // Increment the pointers.
471       Offset += RegBytes;
472       Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr, Increment);
473       StackPtr = DAG.getNode(ISD::ADD, dl, StackPtr.getValueType(), StackPtr,
474                              Increment);
475     }
476
477     // The last copy may be partial.  Do an extending load.
478     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
479                                   8 * (LoadedBytes - Offset));
480     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
481                                   LD->getPointerInfo().getWithOffset(Offset),
482                                   MemVT, LD->isVolatile(),
483                                   LD->isNonTemporal(),
484                                   MinAlign(LD->getAlignment(), Offset));
485     // Follow the load with a store to the stack slot.  Remember the store.
486     // On big-endian machines this requires a truncating store to ensure
487     // that the bits end up in the right place.
488     Stores.push_back(DAG.getTruncStore(Load.getValue(1), dl, Load, StackPtr,
489                                        MachinePointerInfo(), MemVT,
490                                        false, false, 0));
491
492     // The order of the stores doesn't matter - say it with a TokenFactor.
493     SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Stores[0],
494                              Stores.size());
495
496     // Finally, perform the original load only redirected to the stack slot.
497     Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
498                           MachinePointerInfo(), LoadedVT, false, false, 0);
499
500     // Callers expect a MERGE_VALUES node.
501     ValResult = Load;
502     ChainResult = TF;
503     return;
504   }
505   assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
506          "Unaligned load of unsupported type.");
507
508   // Compute the new VT that is half the size of the old one.  This is an
509   // integer MVT.
510   unsigned NumBits = LoadedVT.getSizeInBits();
511   EVT NewLoadedVT;
512   NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
513   NumBits >>= 1;
514
515   unsigned Alignment = LD->getAlignment();
516   unsigned IncrementSize = NumBits / 8;
517   ISD::LoadExtType HiExtType = LD->getExtensionType();
518
519   // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
520   if (HiExtType == ISD::NON_EXTLOAD)
521     HiExtType = ISD::ZEXTLOAD;
522
523   // Load the value in two parts
524   SDValue Lo, Hi;
525   if (TLI.isLittleEndian()) {
526     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
527                         NewLoadedVT, LD->isVolatile(),
528                         LD->isNonTemporal(), Alignment);
529     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
530                       DAG.getConstant(IncrementSize, TLI.getPointerTy()));
531     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
532                         LD->getPointerInfo().getWithOffset(IncrementSize),
533                         NewLoadedVT, LD->isVolatile(),
534                         LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
535   } else {
536     Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
537                         NewLoadedVT, LD->isVolatile(),
538                         LD->isNonTemporal(), Alignment);
539     Ptr = DAG.getNode(ISD::ADD, dl, Ptr.getValueType(), Ptr,
540                       DAG.getConstant(IncrementSize, TLI.getPointerTy()));
541     Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
542                         LD->getPointerInfo().getWithOffset(IncrementSize),
543                         NewLoadedVT, LD->isVolatile(),
544                         LD->isNonTemporal(), MinAlign(Alignment,IncrementSize));
545   }
546
547   // aggregate the two parts
548   SDValue ShiftAmount = DAG.getConstant(NumBits,
549                                        TLI.getShiftAmountTy(Hi.getValueType()));
550   SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
551   Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
552
553   SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
554                              Hi.getValue(1));
555
556   ValResult = Result;
557   ChainResult = TF;
558 }
559
560 /// PerformInsertVectorEltInMemory - Some target cannot handle a variable
561 /// insertion index for the INSERT_VECTOR_ELT instruction.  In this case, it
562 /// is necessary to spill the vector being inserted into to memory, perform
563 /// the insert there, and then read the result back.
564 SDValue SelectionDAGLegalize::
565 PerformInsertVectorEltInMemory(SDValue Vec, SDValue Val, SDValue Idx,
566                                DebugLoc dl) {
567   SDValue Tmp1 = Vec;
568   SDValue Tmp2 = Val;
569   SDValue Tmp3 = Idx;
570
571   // If the target doesn't support this, we have to spill the input vector
572   // to a temporary stack slot, update the element, then reload it.  This is
573   // badness.  We could also load the value into a vector register (either
574   // with a "move to register" or "extload into register" instruction, then
575   // permute it into place, if the idx is a constant and if the idx is
576   // supported by the target.
577   EVT VT    = Tmp1.getValueType();
578   EVT EltVT = VT.getVectorElementType();
579   EVT IdxVT = Tmp3.getValueType();
580   EVT PtrVT = TLI.getPointerTy();
581   SDValue StackPtr = DAG.CreateStackTemporary(VT);
582
583   int SPFI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
584
585   // Store the vector.
586   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Tmp1, StackPtr,
587                             MachinePointerInfo::getFixedStack(SPFI),
588                             false, false, 0);
589
590   // Truncate or zero extend offset to target pointer type.
591   unsigned CastOpc = IdxVT.bitsGT(PtrVT) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
592   Tmp3 = DAG.getNode(CastOpc, dl, PtrVT, Tmp3);
593   // Add the offset to the index.
594   unsigned EltSize = EltVT.getSizeInBits()/8;
595   Tmp3 = DAG.getNode(ISD::MUL, dl, IdxVT, Tmp3,DAG.getConstant(EltSize, IdxVT));
596   SDValue StackPtr2 = DAG.getNode(ISD::ADD, dl, IdxVT, Tmp3, StackPtr);
597   // Store the scalar value.
598   Ch = DAG.getTruncStore(Ch, dl, Tmp2, StackPtr2, MachinePointerInfo(), EltVT,
599                          false, false, 0);
600   // Load the updated vector.
601   return DAG.getLoad(VT, dl, Ch, StackPtr,
602                      MachinePointerInfo::getFixedStack(SPFI), false, false, 
603                      false, 0);
604 }
605
606
607 SDValue SelectionDAGLegalize::
608 ExpandINSERT_VECTOR_ELT(SDValue Vec, SDValue Val, SDValue Idx, DebugLoc dl) {
609   if (ConstantSDNode *InsertPos = dyn_cast<ConstantSDNode>(Idx)) {
610     // SCALAR_TO_VECTOR requires that the type of the value being inserted
611     // match the element type of the vector being created, except for
612     // integers in which case the inserted value can be over width.
613     EVT EltVT = Vec.getValueType().getVectorElementType();
614     if (Val.getValueType() == EltVT ||
615         (EltVT.isInteger() && Val.getValueType().bitsGE(EltVT))) {
616       SDValue ScVec = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl,
617                                   Vec.getValueType(), Val);
618
619       unsigned NumElts = Vec.getValueType().getVectorNumElements();
620       // We generate a shuffle of InVec and ScVec, so the shuffle mask
621       // should be 0,1,2,3,4,5... with the appropriate element replaced with
622       // elt 0 of the RHS.
623       SmallVector<int, 8> ShufOps;
624       for (unsigned i = 0; i != NumElts; ++i)
625         ShufOps.push_back(i != InsertPos->getZExtValue() ? i : NumElts);
626
627       return DAG.getVectorShuffle(Vec.getValueType(), dl, Vec, ScVec,
628                                   &ShufOps[0]);
629     }
630   }
631   return PerformInsertVectorEltInMemory(Vec, Val, Idx, dl);
632 }
633
634 SDValue SelectionDAGLegalize::OptimizeFloatStore(StoreSDNode* ST) {
635   // Turn 'store float 1.0, Ptr' -> 'store int 0x12345678, Ptr'
636   // FIXME: We shouldn't do this for TargetConstantFP's.
637   // FIXME: move this to the DAG Combiner!  Note that we can't regress due
638   // to phase ordering between legalized code and the dag combiner.  This
639   // probably means that we need to integrate dag combiner and legalizer
640   // together.
641   // We generally can't do this one for long doubles.
642   SDValue Tmp1 = ST->getChain();
643   SDValue Tmp2 = ST->getBasePtr();
644   SDValue Tmp3;
645   unsigned Alignment = ST->getAlignment();
646   bool isVolatile = ST->isVolatile();
647   bool isNonTemporal = ST->isNonTemporal();
648   DebugLoc dl = ST->getDebugLoc();
649   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(ST->getValue())) {
650     if (CFP->getValueType(0) == MVT::f32 &&
651         TLI.isTypeLegal(MVT::i32)) {
652       Tmp3 = DAG.getConstant(CFP->getValueAPF().
653                                       bitcastToAPInt().zextOrTrunc(32),
654                               MVT::i32);
655       return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
656                           isVolatile, isNonTemporal, Alignment);
657     }
658
659     if (CFP->getValueType(0) == MVT::f64) {
660       // If this target supports 64-bit registers, do a single 64-bit store.
661       if (TLI.isTypeLegal(MVT::i64)) {
662         Tmp3 = DAG.getConstant(CFP->getValueAPF().bitcastToAPInt().
663                                   zextOrTrunc(64), MVT::i64);
664         return DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
665                             isVolatile, isNonTemporal, Alignment);
666       }
667
668       if (TLI.isTypeLegal(MVT::i32) && !ST->isVolatile()) {
669         // Otherwise, if the target supports 32-bit registers, use 2 32-bit
670         // stores.  If the target supports neither 32- nor 64-bits, this
671         // xform is certainly not worth it.
672         const APInt &IntVal =CFP->getValueAPF().bitcastToAPInt();
673         SDValue Lo = DAG.getConstant(IntVal.trunc(32), MVT::i32);
674         SDValue Hi = DAG.getConstant(IntVal.lshr(32).trunc(32), MVT::i32);
675         if (TLI.isBigEndian()) std::swap(Lo, Hi);
676
677         Lo = DAG.getStore(Tmp1, dl, Lo, Tmp2, ST->getPointerInfo(), isVolatile,
678                           isNonTemporal, Alignment);
679         Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
680                             DAG.getIntPtrConstant(4));
681         Hi = DAG.getStore(Tmp1, dl, Hi, Tmp2,
682                           ST->getPointerInfo().getWithOffset(4),
683                           isVolatile, isNonTemporal, MinAlign(Alignment, 4U));
684
685         return DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
686       }
687     }
688   }
689   return SDValue(0, 0);
690 }
691
692 /// LegalizeOp - Return a legal replacement for the given operation, with
693 /// all legal operands.
694 void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
695   if (Node->getOpcode() == ISD::TargetConstant) // Allow illegal target nodes.
696     return;
697
698   DebugLoc dl = Node->getDebugLoc();
699
700   for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
701     assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i)) ==
702              TargetLowering::TypeLegal &&
703            "Unexpected illegal type!");
704
705   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
706     assert((TLI.getTypeAction(*DAG.getContext(),
707                               Node->getOperand(i).getValueType()) ==
708               TargetLowering::TypeLegal ||
709             Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
710            "Unexpected illegal type!");
711
712   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
713   bool isCustom = false;
714
715   // Figure out the correct action; the way to query this varies by opcode
716   TargetLowering::LegalizeAction Action = TargetLowering::Legal;
717   bool SimpleFinishLegalizing = true;
718   switch (Node->getOpcode()) {
719   case ISD::INTRINSIC_W_CHAIN:
720   case ISD::INTRINSIC_WO_CHAIN:
721   case ISD::INTRINSIC_VOID:
722   case ISD::STACKSAVE:
723     Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
724     break;
725   case ISD::VAARG:
726     Action = TLI.getOperationAction(Node->getOpcode(),
727                                     Node->getValueType(0));
728     if (Action != TargetLowering::Promote)
729       Action = TLI.getOperationAction(Node->getOpcode(), MVT::Other);
730     break;
731   case ISD::SINT_TO_FP:
732   case ISD::UINT_TO_FP:
733   case ISD::EXTRACT_VECTOR_ELT:
734     Action = TLI.getOperationAction(Node->getOpcode(),
735                                     Node->getOperand(0).getValueType());
736     break;
737   case ISD::FP_ROUND_INREG:
738   case ISD::SIGN_EXTEND_INREG: {
739     EVT InnerType = cast<VTSDNode>(Node->getOperand(1))->getVT();
740     Action = TLI.getOperationAction(Node->getOpcode(), InnerType);
741     break;
742   }
743   case ISD::ATOMIC_STORE: {
744     Action = TLI.getOperationAction(Node->getOpcode(),
745                                     Node->getOperand(2).getValueType());
746     break;
747   }
748   case ISD::SELECT_CC:
749   case ISD::SETCC:
750   case ISD::BR_CC: {
751     unsigned CCOperand = Node->getOpcode() == ISD::SELECT_CC ? 4 :
752                          Node->getOpcode() == ISD::SETCC ? 2 : 1;
753     unsigned CompareOperand = Node->getOpcode() == ISD::BR_CC ? 2 : 0;
754     EVT OpVT = Node->getOperand(CompareOperand).getValueType();
755     ISD::CondCode CCCode =
756         cast<CondCodeSDNode>(Node->getOperand(CCOperand))->get();
757     Action = TLI.getCondCodeAction(CCCode, OpVT);
758     if (Action == TargetLowering::Legal) {
759       if (Node->getOpcode() == ISD::SELECT_CC)
760         Action = TLI.getOperationAction(Node->getOpcode(),
761                                         Node->getValueType(0));
762       else
763         Action = TLI.getOperationAction(Node->getOpcode(), OpVT);
764     }
765     break;
766   }
767   case ISD::LOAD:
768   case ISD::STORE:
769     // FIXME: Model these properly.  LOAD and STORE are complicated, and
770     // STORE expects the unlegalized operand in some cases.
771     SimpleFinishLegalizing = false;
772     break;
773   case ISD::CALLSEQ_START:
774   case ISD::CALLSEQ_END:
775     // FIXME: This shouldn't be necessary.  These nodes have special properties
776     // dealing with the recursive nature of legalization.  Removing this
777     // special case should be done as part of making LegalizeDAG non-recursive.
778     SimpleFinishLegalizing = false;
779     break;
780   case ISD::EXTRACT_ELEMENT:
781   case ISD::FLT_ROUNDS_:
782   case ISD::SADDO:
783   case ISD::SSUBO:
784   case ISD::UADDO:
785   case ISD::USUBO:
786   case ISD::SMULO:
787   case ISD::UMULO:
788   case ISD::FPOWI:
789   case ISD::MERGE_VALUES:
790   case ISD::EH_RETURN:
791   case ISD::FRAME_TO_ARGS_OFFSET:
792   case ISD::EH_SJLJ_SETJMP:
793   case ISD::EH_SJLJ_LONGJMP:
794     // These operations lie about being legal: when they claim to be legal,
795     // they should actually be expanded.
796     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
797     if (Action == TargetLowering::Legal)
798       Action = TargetLowering::Expand;
799     break;
800   case ISD::INIT_TRAMPOLINE:
801   case ISD::ADJUST_TRAMPOLINE:
802   case ISD::FRAMEADDR:
803   case ISD::RETURNADDR:
804     // These operations lie about being legal: when they claim to be legal,
805     // they should actually be custom-lowered.
806     Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
807     if (Action == TargetLowering::Legal)
808       Action = TargetLowering::Custom;
809     break;
810   default:
811     if (Node->getOpcode() >= ISD::BUILTIN_OP_END) {
812       Action = TargetLowering::Legal;
813     } else {
814       Action = TLI.getOperationAction(Node->getOpcode(), Node->getValueType(0));
815     }
816     break;
817   }
818
819   if (SimpleFinishLegalizing) {
820     SDNode *NewNode = Node;
821     switch (Node->getOpcode()) {
822     default: break;
823     case ISD::SHL:
824     case ISD::SRL:
825     case ISD::SRA:
826     case ISD::ROTL:
827     case ISD::ROTR:
828       // Legalizing shifts/rotates requires adjusting the shift amount
829       // to the appropriate width.
830       if (!Node->getOperand(1).getValueType().isVector()) {
831         SDValue SAO =
832           DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
833                                     Node->getOperand(1));
834         HandleSDNode Handle(SAO);
835         LegalizeOp(SAO.getNode());
836         NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
837                                          Handle.getValue());
838       }
839       break;
840     case ISD::SRL_PARTS:
841     case ISD::SRA_PARTS:
842     case ISD::SHL_PARTS:
843       // Legalizing shifts/rotates requires adjusting the shift amount
844       // to the appropriate width.
845       if (!Node->getOperand(2).getValueType().isVector()) {
846         SDValue SAO =
847           DAG.getShiftAmountOperand(Node->getOperand(0).getValueType(),
848                                     Node->getOperand(2));
849         HandleSDNode Handle(SAO);
850         LegalizeOp(SAO.getNode());
851         NewNode = DAG.UpdateNodeOperands(Node, Node->getOperand(0),
852                                          Node->getOperand(1),
853                                          Handle.getValue());
854       }
855       break;
856     }
857
858     if (NewNode != Node) {
859       DAG.ReplaceAllUsesWith(Node, NewNode);
860       for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
861         DAG.TransferDbgValues(SDValue(Node, i), SDValue(NewNode, i));
862       ReplacedNode(Node);
863       Node = NewNode;
864     }
865     switch (Action) {
866     case TargetLowering::Legal:
867       return;
868     case TargetLowering::Custom:
869       // FIXME: The handling for custom lowering with multiple results is
870       // a complete mess.
871       Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
872       if (Tmp1.getNode()) {
873         SmallVector<SDValue, 8> ResultVals;
874         for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i) {
875           if (e == 1)
876             ResultVals.push_back(Tmp1);
877           else
878             ResultVals.push_back(Tmp1.getValue(i));
879         }
880         if (Tmp1.getNode() != Node || Tmp1.getResNo() != 0) {
881           DAG.ReplaceAllUsesWith(Node, ResultVals.data());
882           for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
883             DAG.TransferDbgValues(SDValue(Node, i), ResultVals[i]);
884           ReplacedNode(Node);
885         }
886         return;
887       }
888
889       // FALL THROUGH
890     case TargetLowering::Expand:
891       ExpandNode(Node);
892       return;
893     case TargetLowering::Promote:
894       PromoteNode(Node);
895       return;
896     }
897   }
898
899   switch (Node->getOpcode()) {
900   default:
901 #ifndef NDEBUG
902     dbgs() << "NODE: ";
903     Node->dump( &DAG);
904     dbgs() << "\n";
905 #endif
906     llvm_unreachable("Do not know how to legalize this operator!");
907
908   case ISD::CALLSEQ_START:
909   case ISD::CALLSEQ_END:
910     break;
911   case ISD::LOAD: {
912     LoadSDNode *LD = cast<LoadSDNode>(Node);
913     Tmp1 = LD->getChain();   // Legalize the chain.
914     Tmp2 = LD->getBasePtr(); // Legalize the base pointer.
915
916     ISD::LoadExtType ExtType = LD->getExtensionType();
917     if (ExtType == ISD::NON_EXTLOAD) {
918       EVT VT = Node->getValueType(0);
919       Tmp3 = SDValue(Node, 0);
920       Tmp4 = SDValue(Node, 1);
921
922       switch (TLI.getOperationAction(Node->getOpcode(), VT)) {
923       default: llvm_unreachable("This action is not supported yet!");
924       case TargetLowering::Legal:
925         // If this is an unaligned load and the target doesn't support it,
926         // expand it.
927         if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
928           Type *Ty = LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
929           unsigned ABIAlignment = TLI.getTargetData()->getABITypeAlignment(Ty);
930           if (LD->getAlignment() < ABIAlignment){
931             ExpandUnalignedLoad(cast<LoadSDNode>(Node),
932                                 DAG, TLI, Tmp3, Tmp4);
933           }
934         }
935         break;
936       case TargetLowering::Custom:
937         Tmp1 = TLI.LowerOperation(Tmp3, DAG);
938         if (Tmp1.getNode()) {
939           Tmp3 = Tmp1;
940           Tmp4 = Tmp1.getValue(1);
941         }
942         break;
943       case TargetLowering::Promote: {
944         // Only promote a load of vector type to another.
945         assert(VT.isVector() && "Cannot promote this load!");
946         // Change base type to a different vector type.
947         EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), VT);
948
949         Tmp1 = DAG.getLoad(NVT, dl, Tmp1, Tmp2, LD->getPointerInfo(),
950                            LD->isVolatile(), LD->isNonTemporal(),
951                            LD->isInvariant(), LD->getAlignment());
952         Tmp3 = DAG.getNode(ISD::BITCAST, dl, VT, Tmp1);
953         Tmp4 = Tmp1.getValue(1);
954         break;
955       }
956       }
957       if (Tmp4.getNode() != Node) {
958         assert(Tmp3.getNode() != Node && "Load must be completely replaced");
959         DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp3);
960         DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp4);
961         ReplacedNode(Node);
962       }
963       return;
964     }
965
966     EVT SrcVT = LD->getMemoryVT();
967     unsigned SrcWidth = SrcVT.getSizeInBits();
968     unsigned Alignment = LD->getAlignment();
969     bool isVolatile = LD->isVolatile();
970     bool isNonTemporal = LD->isNonTemporal();
971
972     if (SrcWidth != SrcVT.getStoreSizeInBits() &&
973         // Some targets pretend to have an i1 loading operation, and actually
974         // load an i8.  This trick is correct for ZEXTLOAD because the top 7
975         // bits are guaranteed to be zero; it helps the optimizers understand
976         // that these bits are zero.  It is also useful for EXTLOAD, since it
977         // tells the optimizers that those bits are undefined.  It would be
978         // nice to have an effective generic way of getting these benefits...
979         // Until such a way is found, don't insist on promoting i1 here.
980         (SrcVT != MVT::i1 ||
981          TLI.getLoadExtAction(ExtType, MVT::i1) == TargetLowering::Promote)) {
982       // Promote to a byte-sized load if not loading an integral number of
983       // bytes.  For example, promote EXTLOAD:i20 -> EXTLOAD:i24.
984       unsigned NewWidth = SrcVT.getStoreSizeInBits();
985       EVT NVT = EVT::getIntegerVT(*DAG.getContext(), NewWidth);
986       SDValue Ch;
987
988       // The extra bits are guaranteed to be zero, since we stored them that
989       // way.  A zext load from NVT thus automatically gives zext from SrcVT.
990
991       ISD::LoadExtType NewExtType =
992         ExtType == ISD::ZEXTLOAD ? ISD::ZEXTLOAD : ISD::EXTLOAD;
993
994       SDValue Result =
995         DAG.getExtLoad(NewExtType, dl, Node->getValueType(0),
996                        Tmp1, Tmp2, LD->getPointerInfo(),
997                        NVT, isVolatile, isNonTemporal, Alignment);
998
999       Ch = Result.getValue(1); // The chain.
1000
1001       if (ExtType == ISD::SEXTLOAD)
1002         // Having the top bits zero doesn't help when sign extending.
1003         Result = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1004                              Result.getValueType(),
1005                              Result, DAG.getValueType(SrcVT));
1006       else if (ExtType == ISD::ZEXTLOAD || NVT == Result.getValueType())
1007         // All the top bits are guaranteed to be zero - inform the optimizers.
1008         Result = DAG.getNode(ISD::AssertZext, dl,
1009                              Result.getValueType(), Result,
1010                              DAG.getValueType(SrcVT));
1011
1012       Tmp1 = Result;
1013       Tmp2 = Ch;
1014     } else if (SrcWidth & (SrcWidth - 1)) {
1015       // If not loading a power-of-2 number of bits, expand as two loads.
1016       assert(!SrcVT.isVector() && "Unsupported extload!");
1017       unsigned RoundWidth = 1 << Log2_32(SrcWidth);
1018       assert(RoundWidth < SrcWidth);
1019       unsigned ExtraWidth = SrcWidth - RoundWidth;
1020       assert(ExtraWidth < RoundWidth);
1021       assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1022              "Load size not an integral number of bytes!");
1023       EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1024       EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1025       SDValue Lo, Hi, Ch;
1026       unsigned IncrementSize;
1027
1028       if (TLI.isLittleEndian()) {
1029         // EXTLOAD:i24 -> ZEXTLOAD:i16 | (shl EXTLOAD@+2:i8, 16)
1030         // Load the bottom RoundWidth bits.
1031         Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, Node->getValueType(0),
1032                             Tmp1, Tmp2,
1033                             LD->getPointerInfo(), RoundVT, isVolatile,
1034                             isNonTemporal, Alignment);
1035
1036         // Load the remaining ExtraWidth bits.
1037         IncrementSize = RoundWidth / 8;
1038         Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1039                            DAG.getIntPtrConstant(IncrementSize));
1040         Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1041                             LD->getPointerInfo().getWithOffset(IncrementSize),
1042                             ExtraVT, isVolatile, isNonTemporal,
1043                             MinAlign(Alignment, IncrementSize));
1044
1045         // Build a factor node to remember that this load is independent of
1046         // the other one.
1047         Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1048                          Hi.getValue(1));
1049
1050         // Move the top bits to the right place.
1051         Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1052                          DAG.getConstant(RoundWidth,
1053                                       TLI.getShiftAmountTy(Hi.getValueType())));
1054
1055         // Join the hi and lo parts.
1056         Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1057       } else {
1058         // Big endian - avoid unaligned loads.
1059         // EXTLOAD:i24 -> (shl EXTLOAD:i16, 8) | ZEXTLOAD@+2:i8
1060         // Load the top RoundWidth bits.
1061         Hi = DAG.getExtLoad(ExtType, dl, Node->getValueType(0), Tmp1, Tmp2,
1062                             LD->getPointerInfo(), RoundVT, isVolatile,
1063                             isNonTemporal, Alignment);
1064
1065         // Load the remaining ExtraWidth bits.
1066         IncrementSize = RoundWidth / 8;
1067         Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1068                            DAG.getIntPtrConstant(IncrementSize));
1069         Lo = DAG.getExtLoad(ISD::ZEXTLOAD,
1070                             dl, Node->getValueType(0), Tmp1, Tmp2,
1071                             LD->getPointerInfo().getWithOffset(IncrementSize),
1072                             ExtraVT, isVolatile, isNonTemporal,
1073                             MinAlign(Alignment, IncrementSize));
1074
1075         // Build a factor node to remember that this load is independent of
1076         // the other one.
1077         Ch = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
1078                          Hi.getValue(1));
1079
1080         // Move the top bits to the right place.
1081         Hi = DAG.getNode(ISD::SHL, dl, Hi.getValueType(), Hi,
1082                          DAG.getConstant(ExtraWidth,
1083                                       TLI.getShiftAmountTy(Hi.getValueType())));
1084
1085         // Join the hi and lo parts.
1086         Tmp1 = DAG.getNode(ISD::OR, dl, Node->getValueType(0), Lo, Hi);
1087       }
1088
1089       Tmp2 = Ch;
1090     } else {
1091       switch (TLI.getLoadExtAction(ExtType, SrcVT)) {
1092       default: llvm_unreachable("This action is not supported yet!");
1093       case TargetLowering::Custom:
1094         isCustom = true;
1095         // FALLTHROUGH
1096       case TargetLowering::Legal:
1097         Tmp1 = SDValue(Node, 0);
1098         Tmp2 = SDValue(Node, 1);
1099
1100         if (isCustom) {
1101           Tmp3 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1102           if (Tmp3.getNode()) {
1103             Tmp1 = Tmp3;
1104             Tmp2 = Tmp3.getValue(1);
1105           }
1106         } else {
1107           // If this is an unaligned load and the target doesn't support it,
1108           // expand it.
1109           if (!TLI.allowsUnalignedMemoryAccesses(LD->getMemoryVT())) {
1110             Type *Ty =
1111               LD->getMemoryVT().getTypeForEVT(*DAG.getContext());
1112             unsigned ABIAlignment =
1113               TLI.getTargetData()->getABITypeAlignment(Ty);
1114             if (LD->getAlignment() < ABIAlignment){
1115               ExpandUnalignedLoad(cast<LoadSDNode>(Node),
1116                                   DAG, TLI, Tmp1, Tmp2);
1117             }
1118           }
1119         }
1120         break;
1121       case TargetLowering::Expand:
1122         if (!TLI.isLoadExtLegal(ISD::EXTLOAD, SrcVT) && TLI.isTypeLegal(SrcVT)) {
1123           SDValue Load = DAG.getLoad(SrcVT, dl, Tmp1, Tmp2,
1124                                      LD->getPointerInfo(),
1125                                      LD->isVolatile(), LD->isNonTemporal(),
1126                                      LD->isInvariant(), LD->getAlignment());
1127           unsigned ExtendOp;
1128           switch (ExtType) {
1129           case ISD::EXTLOAD:
1130             ExtendOp = (SrcVT.isFloatingPoint() ?
1131                         ISD::FP_EXTEND : ISD::ANY_EXTEND);
1132             break;
1133           case ISD::SEXTLOAD: ExtendOp = ISD::SIGN_EXTEND; break;
1134           case ISD::ZEXTLOAD: ExtendOp = ISD::ZERO_EXTEND; break;
1135           default: llvm_unreachable("Unexpected extend load type!");
1136           }
1137           Tmp1 = DAG.getNode(ExtendOp, dl, Node->getValueType(0), Load);
1138           Tmp2 = Load.getValue(1);
1139           break;
1140         }
1141
1142         assert(!SrcVT.isVector() &&
1143                "Vector Loads are handled in LegalizeVectorOps");
1144
1145         // FIXME: This does not work for vectors on most targets.  Sign- and
1146         // zero-extend operations are currently folded into extending loads,
1147         // whether they are legal or not, and then we end up here without any
1148         // support for legalizing them.
1149         assert(ExtType != ISD::EXTLOAD &&
1150                "EXTLOAD should always be supported!");
1151         // Turn the unsupported load into an EXTLOAD followed by an explicit
1152         // zero/sign extend inreg.
1153         SDValue Result = DAG.getExtLoad(ISD::EXTLOAD, dl, Node->getValueType(0),
1154                                         Tmp1, Tmp2, LD->getPointerInfo(), SrcVT,
1155                                         LD->isVolatile(), LD->isNonTemporal(),
1156                                         LD->getAlignment());
1157         SDValue ValRes;
1158         if (ExtType == ISD::SEXTLOAD)
1159           ValRes = DAG.getNode(ISD::SIGN_EXTEND_INREG, dl,
1160                                Result.getValueType(),
1161                                Result, DAG.getValueType(SrcVT));
1162         else
1163           ValRes = DAG.getZeroExtendInReg(Result, dl, SrcVT.getScalarType());
1164         Tmp1 = ValRes;
1165         Tmp2 = Result.getValue(1);
1166         break;
1167       }
1168     }
1169
1170     // Since loads produce two values, make sure to remember that we legalized
1171     // both of them.
1172     if (Tmp2.getNode() != Node) {
1173       assert(Tmp1.getNode() != Node && "Load must be completely replaced");
1174       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp1);
1175       DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Tmp2);
1176       ReplacedNode(Node);
1177     }
1178     break;
1179   }
1180   case ISD::STORE: {
1181     StoreSDNode *ST = cast<StoreSDNode>(Node);
1182     Tmp1 = ST->getChain();
1183     Tmp2 = ST->getBasePtr();
1184     unsigned Alignment = ST->getAlignment();
1185     bool isVolatile = ST->isVolatile();
1186     bool isNonTemporal = ST->isNonTemporal();
1187
1188     if (!ST->isTruncatingStore()) {
1189       if (SDNode *OptStore = OptimizeFloatStore(ST).getNode()) {
1190         ReplaceNode(ST, OptStore);
1191         break;
1192       }
1193
1194       {
1195         Tmp3 = ST->getValue();
1196         EVT VT = Tmp3.getValueType();
1197         switch (TLI.getOperationAction(ISD::STORE, VT)) {
1198         default: llvm_unreachable("This action is not supported yet!");
1199         case TargetLowering::Legal:
1200           // If this is an unaligned store and the target doesn't support it,
1201           // expand it.
1202           if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1203             Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1204             unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1205             if (ST->getAlignment() < ABIAlignment)
1206               ExpandUnalignedStore(cast<StoreSDNode>(Node),
1207                                    DAG, TLI, this);
1208           }
1209           break;
1210         case TargetLowering::Custom:
1211           Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1212           if (Tmp1.getNode())
1213             ReplaceNode(SDValue(Node, 0), Tmp1);
1214           break;
1215         case TargetLowering::Promote: {
1216           assert(VT.isVector() && "Unknown legal promote case!");
1217           Tmp3 = DAG.getNode(ISD::BITCAST, dl,
1218                              TLI.getTypeToPromoteTo(ISD::STORE, VT), Tmp3);
1219           SDValue Result =
1220             DAG.getStore(Tmp1, dl, Tmp3, Tmp2,
1221                          ST->getPointerInfo(), isVolatile,
1222                          isNonTemporal, Alignment);
1223           ReplaceNode(SDValue(Node, 0), Result);
1224           break;
1225         }
1226         }
1227         break;
1228       }
1229     } else {
1230       Tmp3 = ST->getValue();
1231
1232       EVT StVT = ST->getMemoryVT();
1233       unsigned StWidth = StVT.getSizeInBits();
1234
1235       if (StWidth != StVT.getStoreSizeInBits()) {
1236         // Promote to a byte-sized store with upper bits zero if not
1237         // storing an integral number of bytes.  For example, promote
1238         // TRUNCSTORE:i1 X -> TRUNCSTORE:i8 (and X, 1)
1239         EVT NVT = EVT::getIntegerVT(*DAG.getContext(),
1240                                     StVT.getStoreSizeInBits());
1241         Tmp3 = DAG.getZeroExtendInReg(Tmp3, dl, StVT);
1242         SDValue Result =
1243           DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1244                             NVT, isVolatile, isNonTemporal, Alignment);
1245         ReplaceNode(SDValue(Node, 0), Result);
1246       } else if (StWidth & (StWidth - 1)) {
1247         // If not storing a power-of-2 number of bits, expand as two stores.
1248         assert(!StVT.isVector() && "Unsupported truncstore!");
1249         unsigned RoundWidth = 1 << Log2_32(StWidth);
1250         assert(RoundWidth < StWidth);
1251         unsigned ExtraWidth = StWidth - RoundWidth;
1252         assert(ExtraWidth < RoundWidth);
1253         assert(!(RoundWidth % 8) && !(ExtraWidth % 8) &&
1254                "Store size not an integral number of bytes!");
1255         EVT RoundVT = EVT::getIntegerVT(*DAG.getContext(), RoundWidth);
1256         EVT ExtraVT = EVT::getIntegerVT(*DAG.getContext(), ExtraWidth);
1257         SDValue Lo, Hi;
1258         unsigned IncrementSize;
1259
1260         if (TLI.isLittleEndian()) {
1261           // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 X, TRUNCSTORE@+2:i8 (srl X, 16)
1262           // Store the bottom RoundWidth bits.
1263           Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1264                                  RoundVT,
1265                                  isVolatile, isNonTemporal, Alignment);
1266
1267           // Store the remaining ExtraWidth bits.
1268           IncrementSize = RoundWidth / 8;
1269           Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1270                              DAG.getIntPtrConstant(IncrementSize));
1271           Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1272                            DAG.getConstant(RoundWidth,
1273                                     TLI.getShiftAmountTy(Tmp3.getValueType())));
1274           Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2,
1275                              ST->getPointerInfo().getWithOffset(IncrementSize),
1276                                  ExtraVT, isVolatile, isNonTemporal,
1277                                  MinAlign(Alignment, IncrementSize));
1278         } else {
1279           // Big endian - avoid unaligned stores.
1280           // TRUNCSTORE:i24 X -> TRUNCSTORE:i16 (srl X, 8), TRUNCSTORE@+2:i8 X
1281           // Store the top RoundWidth bits.
1282           Hi = DAG.getNode(ISD::SRL, dl, Tmp3.getValueType(), Tmp3,
1283                            DAG.getConstant(ExtraWidth,
1284                                     TLI.getShiftAmountTy(Tmp3.getValueType())));
1285           Hi = DAG.getTruncStore(Tmp1, dl, Hi, Tmp2, ST->getPointerInfo(),
1286                                  RoundVT, isVolatile, isNonTemporal, Alignment);
1287
1288           // Store the remaining ExtraWidth bits.
1289           IncrementSize = RoundWidth / 8;
1290           Tmp2 = DAG.getNode(ISD::ADD, dl, Tmp2.getValueType(), Tmp2,
1291                              DAG.getIntPtrConstant(IncrementSize));
1292           Lo = DAG.getTruncStore(Tmp1, dl, Tmp3, Tmp2,
1293                               ST->getPointerInfo().getWithOffset(IncrementSize),
1294                                  ExtraVT, isVolatile, isNonTemporal,
1295                                  MinAlign(Alignment, IncrementSize));
1296         }
1297
1298         // The order of the stores doesn't matter.
1299         SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo, Hi);
1300         ReplaceNode(SDValue(Node, 0), Result);
1301       } else {
1302         switch (TLI.getTruncStoreAction(ST->getValue().getValueType(), StVT)) {
1303         default: llvm_unreachable("This action is not supported yet!");
1304         case TargetLowering::Legal:
1305           // If this is an unaligned store and the target doesn't support it,
1306           // expand it.
1307           if (!TLI.allowsUnalignedMemoryAccesses(ST->getMemoryVT())) {
1308             Type *Ty = ST->getMemoryVT().getTypeForEVT(*DAG.getContext());
1309             unsigned ABIAlignment= TLI.getTargetData()->getABITypeAlignment(Ty);
1310             if (ST->getAlignment() < ABIAlignment)
1311               ExpandUnalignedStore(cast<StoreSDNode>(Node), DAG, TLI, this);
1312           }
1313           break;
1314         case TargetLowering::Custom:
1315           Tmp1 = TLI.LowerOperation(SDValue(Node, 0), DAG);
1316           if (Tmp1.getNode())
1317             ReplaceNode(SDValue(Node, 0), Tmp1);
1318           break;
1319         case TargetLowering::Expand:
1320           assert(!StVT.isVector() &&
1321                  "Vector Stores are handled in LegalizeVectorOps");
1322
1323           // TRUNCSTORE:i16 i32 -> STORE i16
1324           assert(TLI.isTypeLegal(StVT) && "Do not know how to expand this store!");
1325           Tmp3 = DAG.getNode(ISD::TRUNCATE, dl, StVT, Tmp3);
1326           SDValue Result =
1327             DAG.getStore(Tmp1, dl, Tmp3, Tmp2, ST->getPointerInfo(),
1328                          isVolatile, isNonTemporal, Alignment);
1329           ReplaceNode(SDValue(Node, 0), Result);
1330           break;
1331         }
1332       }
1333     }
1334     break;
1335   }
1336   }
1337 }
1338
1339 SDValue SelectionDAGLegalize::ExpandExtractFromVectorThroughStack(SDValue Op) {
1340   SDValue Vec = Op.getOperand(0);
1341   SDValue Idx = Op.getOperand(1);
1342   DebugLoc dl = Op.getDebugLoc();
1343   // Store the value to a temporary stack slot, then LOAD the returned part.
1344   SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1345   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr,
1346                             MachinePointerInfo(), false, false, 0);
1347
1348   // Add the offset to the index.
1349   unsigned EltSize =
1350       Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1351   Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1352                     DAG.getConstant(EltSize, Idx.getValueType()));
1353
1354   if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1355     Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1356   else
1357     Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1358
1359   StackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx, StackPtr);
1360
1361   if (Op.getValueType().isVector())
1362     return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr,MachinePointerInfo(),
1363                        false, false, false, 0);
1364   return DAG.getExtLoad(ISD::EXTLOAD, dl, Op.getValueType(), Ch, StackPtr,
1365                         MachinePointerInfo(),
1366                         Vec.getValueType().getVectorElementType(),
1367                         false, false, 0);
1368 }
1369
1370 SDValue SelectionDAGLegalize::ExpandInsertToVectorThroughStack(SDValue Op) {
1371   assert(Op.getValueType().isVector() && "Non-vector insert subvector!");
1372
1373   SDValue Vec  = Op.getOperand(0);
1374   SDValue Part = Op.getOperand(1);
1375   SDValue Idx  = Op.getOperand(2);
1376   DebugLoc dl  = Op.getDebugLoc();
1377
1378   // Store the value to a temporary stack slot, then LOAD the returned part.
1379
1380   SDValue StackPtr = DAG.CreateStackTemporary(Vec.getValueType());
1381   int FI = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
1382   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1383
1384   // First store the whole vector.
1385   SDValue Ch = DAG.getStore(DAG.getEntryNode(), dl, Vec, StackPtr, PtrInfo,
1386                             false, false, 0);
1387
1388   // Then store the inserted part.
1389
1390   // Add the offset to the index.
1391   unsigned EltSize =
1392       Vec.getValueType().getVectorElementType().getSizeInBits()/8;
1393
1394   Idx = DAG.getNode(ISD::MUL, dl, Idx.getValueType(), Idx,
1395                     DAG.getConstant(EltSize, Idx.getValueType()));
1396
1397   if (Idx.getValueType().bitsGT(TLI.getPointerTy()))
1398     Idx = DAG.getNode(ISD::TRUNCATE, dl, TLI.getPointerTy(), Idx);
1399   else
1400     Idx = DAG.getNode(ISD::ZERO_EXTEND, dl, TLI.getPointerTy(), Idx);
1401
1402   SDValue SubStackPtr = DAG.getNode(ISD::ADD, dl, Idx.getValueType(), Idx,
1403                                     StackPtr);
1404
1405   // Store the subvector.
1406   Ch = DAG.getStore(DAG.getEntryNode(), dl, Part, SubStackPtr,
1407                     MachinePointerInfo(), false, false, 0);
1408
1409   // Finally, load the updated vector.
1410   return DAG.getLoad(Op.getValueType(), dl, Ch, StackPtr, PtrInfo,
1411                      false, false, false, 0);
1412 }
1413
1414 SDValue SelectionDAGLegalize::ExpandVectorBuildThroughStack(SDNode* Node) {
1415   // We can't handle this case efficiently.  Allocate a sufficiently
1416   // aligned object on the stack, store each element into it, then load
1417   // the result as a vector.
1418   // Create the stack frame object.
1419   EVT VT = Node->getValueType(0);
1420   EVT EltVT = VT.getVectorElementType();
1421   DebugLoc dl = Node->getDebugLoc();
1422   SDValue FIPtr = DAG.CreateStackTemporary(VT);
1423   int FI = cast<FrameIndexSDNode>(FIPtr.getNode())->getIndex();
1424   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(FI);
1425
1426   // Emit a store of each element to the stack slot.
1427   SmallVector<SDValue, 8> Stores;
1428   unsigned TypeByteSize = EltVT.getSizeInBits() / 8;
1429   // Store (in the right endianness) the elements to memory.
1430   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1431     // Ignore undef elements.
1432     if (Node->getOperand(i).getOpcode() == ISD::UNDEF) continue;
1433
1434     unsigned Offset = TypeByteSize*i;
1435
1436     SDValue Idx = DAG.getConstant(Offset, FIPtr.getValueType());
1437     Idx = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr, Idx);
1438
1439     // If the destination vector element type is narrower than the source
1440     // element type, only store the bits necessary.
1441     if (EltVT.bitsLT(Node->getOperand(i).getValueType().getScalarType())) {
1442       Stores.push_back(DAG.getTruncStore(DAG.getEntryNode(), dl,
1443                                          Node->getOperand(i), Idx,
1444                                          PtrInfo.getWithOffset(Offset),
1445                                          EltVT, false, false, 0));
1446     } else
1447       Stores.push_back(DAG.getStore(DAG.getEntryNode(), dl,
1448                                     Node->getOperand(i), Idx,
1449                                     PtrInfo.getWithOffset(Offset),
1450                                     false, false, 0));
1451   }
1452
1453   SDValue StoreChain;
1454   if (!Stores.empty())    // Not all undef elements?
1455     StoreChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
1456                              &Stores[0], Stores.size());
1457   else
1458     StoreChain = DAG.getEntryNode();
1459
1460   // Result is a load from the stack slot.
1461   return DAG.getLoad(VT, dl, StoreChain, FIPtr, PtrInfo, 
1462                      false, false, false, 0);
1463 }
1464
1465 SDValue SelectionDAGLegalize::ExpandFCOPYSIGN(SDNode* Node) {
1466   DebugLoc dl = Node->getDebugLoc();
1467   SDValue Tmp1 = Node->getOperand(0);
1468   SDValue Tmp2 = Node->getOperand(1);
1469
1470   // Get the sign bit of the RHS.  First obtain a value that has the same
1471   // sign as the sign bit, i.e. negative if and only if the sign bit is 1.
1472   SDValue SignBit;
1473   EVT FloatVT = Tmp2.getValueType();
1474   EVT IVT = EVT::getIntegerVT(*DAG.getContext(), FloatVT.getSizeInBits());
1475   if (TLI.isTypeLegal(IVT)) {
1476     // Convert to an integer with the same sign bit.
1477     SignBit = DAG.getNode(ISD::BITCAST, dl, IVT, Tmp2);
1478   } else {
1479     // Store the float to memory, then load the sign part out as an integer.
1480     MVT LoadTy = TLI.getPointerTy();
1481     // First create a temporary that is aligned for both the load and store.
1482     SDValue StackPtr = DAG.CreateStackTemporary(FloatVT, LoadTy);
1483     // Then store the float to it.
1484     SDValue Ch =
1485       DAG.getStore(DAG.getEntryNode(), dl, Tmp2, StackPtr, MachinePointerInfo(),
1486                    false, false, 0);
1487     if (TLI.isBigEndian()) {
1488       assert(FloatVT.isByteSized() && "Unsupported floating point type!");
1489       // Load out a legal integer with the same sign bit as the float.
1490       SignBit = DAG.getLoad(LoadTy, dl, Ch, StackPtr, MachinePointerInfo(),
1491                             false, false, false, 0);
1492     } else { // Little endian
1493       SDValue LoadPtr = StackPtr;
1494       // The float may be wider than the integer we are going to load.  Advance
1495       // the pointer so that the loaded integer will contain the sign bit.
1496       unsigned Strides = (FloatVT.getSizeInBits()-1)/LoadTy.getSizeInBits();
1497       unsigned ByteOffset = (Strides * LoadTy.getSizeInBits()) / 8;
1498       LoadPtr = DAG.getNode(ISD::ADD, dl, LoadPtr.getValueType(),
1499                             LoadPtr, DAG.getIntPtrConstant(ByteOffset));
1500       // Load a legal integer containing the sign bit.
1501       SignBit = DAG.getLoad(LoadTy, dl, Ch, LoadPtr, MachinePointerInfo(),
1502                             false, false, false, 0);
1503       // Move the sign bit to the top bit of the loaded integer.
1504       unsigned BitShift = LoadTy.getSizeInBits() -
1505         (FloatVT.getSizeInBits() - 8 * ByteOffset);
1506       assert(BitShift < LoadTy.getSizeInBits() && "Pointer advanced wrong?");
1507       if (BitShift)
1508         SignBit = DAG.getNode(ISD::SHL, dl, LoadTy, SignBit,
1509                               DAG.getConstant(BitShift,
1510                                  TLI.getShiftAmountTy(SignBit.getValueType())));
1511     }
1512   }
1513   // Now get the sign bit proper, by seeing whether the value is negative.
1514   SignBit = DAG.getSetCC(dl, TLI.getSetCCResultType(SignBit.getValueType()),
1515                          SignBit, DAG.getConstant(0, SignBit.getValueType()),
1516                          ISD::SETLT);
1517   // Get the absolute value of the result.
1518   SDValue AbsVal = DAG.getNode(ISD::FABS, dl, Tmp1.getValueType(), Tmp1);
1519   // Select between the nabs and abs value based on the sign bit of
1520   // the input.
1521   return DAG.getNode(ISD::SELECT, dl, AbsVal.getValueType(), SignBit,
1522                      DAG.getNode(ISD::FNEG, dl, AbsVal.getValueType(), AbsVal),
1523                      AbsVal);
1524 }
1525
1526 void SelectionDAGLegalize::ExpandDYNAMIC_STACKALLOC(SDNode* Node,
1527                                            SmallVectorImpl<SDValue> &Results) {
1528   unsigned SPReg = TLI.getStackPointerRegisterToSaveRestore();
1529   assert(SPReg && "Target cannot require DYNAMIC_STACKALLOC expansion and"
1530           " not tell us which reg is the stack pointer!");
1531   DebugLoc dl = Node->getDebugLoc();
1532   EVT VT = Node->getValueType(0);
1533   SDValue Tmp1 = SDValue(Node, 0);
1534   SDValue Tmp2 = SDValue(Node, 1);
1535   SDValue Tmp3 = Node->getOperand(2);
1536   SDValue Chain = Tmp1.getOperand(0);
1537
1538   // Chain the dynamic stack allocation so that it doesn't modify the stack
1539   // pointer when other instructions are using the stack.
1540   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(0, true));
1541
1542   SDValue Size  = Tmp2.getOperand(1);
1543   SDValue SP = DAG.getCopyFromReg(Chain, dl, SPReg, VT);
1544   Chain = SP.getValue(1);
1545   unsigned Align = cast<ConstantSDNode>(Tmp3)->getZExtValue();
1546   unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1547   if (Align > StackAlign)
1548     SP = DAG.getNode(ISD::AND, dl, VT, SP,
1549                       DAG.getConstant(-(uint64_t)Align, VT));
1550   Tmp1 = DAG.getNode(ISD::SUB, dl, VT, SP, Size);       // Value
1551   Chain = DAG.getCopyToReg(Chain, dl, SPReg, Tmp1);     // Output chain
1552
1553   Tmp2 = DAG.getCALLSEQ_END(Chain,  DAG.getIntPtrConstant(0, true),
1554                             DAG.getIntPtrConstant(0, true), SDValue());
1555
1556   Results.push_back(Tmp1);
1557   Results.push_back(Tmp2);
1558 }
1559
1560 /// LegalizeSetCCCondCode - Legalize a SETCC with given LHS and RHS and
1561 /// condition code CC on the current target. This routine expands SETCC with
1562 /// illegal condition code into AND / OR of multiple SETCC values.
1563 void SelectionDAGLegalize::LegalizeSetCCCondCode(EVT VT,
1564                                                  SDValue &LHS, SDValue &RHS,
1565                                                  SDValue &CC,
1566                                                  DebugLoc dl) {
1567   EVT OpVT = LHS.getValueType();
1568   ISD::CondCode CCCode = cast<CondCodeSDNode>(CC)->get();
1569   switch (TLI.getCondCodeAction(CCCode, OpVT)) {
1570   default: llvm_unreachable("Unknown condition code action!");
1571   case TargetLowering::Legal:
1572     // Nothing to do.
1573     break;
1574   case TargetLowering::Expand: {
1575     ISD::CondCode CC1 = ISD::SETCC_INVALID, CC2 = ISD::SETCC_INVALID;
1576     unsigned Opc = 0;
1577     switch (CCCode) {
1578     default: llvm_unreachable("Don't know how to expand this condition!");
1579     case ISD::SETOEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1580     case ISD::SETOGT: CC1 = ISD::SETGT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1581     case ISD::SETOGE: CC1 = ISD::SETGE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1582     case ISD::SETOLT: CC1 = ISD::SETLT; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1583     case ISD::SETOLE: CC1 = ISD::SETLE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1584     case ISD::SETONE: CC1 = ISD::SETNE; CC2 = ISD::SETO;  Opc = ISD::AND; break;
1585     case ISD::SETUEQ: CC1 = ISD::SETEQ; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1586     case ISD::SETUGT: CC1 = ISD::SETGT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1587     case ISD::SETUGE: CC1 = ISD::SETGE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1588     case ISD::SETULT: CC1 = ISD::SETLT; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1589     case ISD::SETULE: CC1 = ISD::SETLE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1590     case ISD::SETUNE: CC1 = ISD::SETNE; CC2 = ISD::SETUO; Opc = ISD::OR;  break;
1591     // FIXME: Implement more expansions.
1592     }
1593
1594     SDValue SetCC1 = DAG.getSetCC(dl, VT, LHS, RHS, CC1);
1595     SDValue SetCC2 = DAG.getSetCC(dl, VT, LHS, RHS, CC2);
1596     LHS = DAG.getNode(Opc, dl, VT, SetCC1, SetCC2);
1597     RHS = SDValue();
1598     CC  = SDValue();
1599     break;
1600   }
1601   }
1602 }
1603
1604 /// EmitStackConvert - Emit a store/load combination to the stack.  This stores
1605 /// SrcOp to a stack slot of type SlotVT, truncating it if needed.  It then does
1606 /// a load from the stack slot to DestVT, extending it if needed.
1607 /// The resultant code need not be legal.
1608 SDValue SelectionDAGLegalize::EmitStackConvert(SDValue SrcOp,
1609                                                EVT SlotVT,
1610                                                EVT DestVT,
1611                                                DebugLoc dl) {
1612   // Create the stack frame object.
1613   unsigned SrcAlign =
1614     TLI.getTargetData()->getPrefTypeAlignment(SrcOp.getValueType().
1615                                               getTypeForEVT(*DAG.getContext()));
1616   SDValue FIPtr = DAG.CreateStackTemporary(SlotVT, SrcAlign);
1617
1618   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(FIPtr);
1619   int SPFI = StackPtrFI->getIndex();
1620   MachinePointerInfo PtrInfo = MachinePointerInfo::getFixedStack(SPFI);
1621
1622   unsigned SrcSize = SrcOp.getValueType().getSizeInBits();
1623   unsigned SlotSize = SlotVT.getSizeInBits();
1624   unsigned DestSize = DestVT.getSizeInBits();
1625   Type *DestType = DestVT.getTypeForEVT(*DAG.getContext());
1626   unsigned DestAlign = TLI.getTargetData()->getPrefTypeAlignment(DestType);
1627
1628   // Emit a store to the stack slot.  Use a truncstore if the input value is
1629   // later than DestVT.
1630   SDValue Store;
1631
1632   if (SrcSize > SlotSize)
1633     Store = DAG.getTruncStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1634                               PtrInfo, SlotVT, false, false, SrcAlign);
1635   else {
1636     assert(SrcSize == SlotSize && "Invalid store");
1637     Store = DAG.getStore(DAG.getEntryNode(), dl, SrcOp, FIPtr,
1638                          PtrInfo, false, false, SrcAlign);
1639   }
1640
1641   // Result is a load from the stack slot.
1642   if (SlotSize == DestSize)
1643     return DAG.getLoad(DestVT, dl, Store, FIPtr, PtrInfo,
1644                        false, false, false, DestAlign);
1645
1646   assert(SlotSize < DestSize && "Unknown extension!");
1647   return DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT, Store, FIPtr,
1648                         PtrInfo, SlotVT, false, false, DestAlign);
1649 }
1650
1651 SDValue SelectionDAGLegalize::ExpandSCALAR_TO_VECTOR(SDNode *Node) {
1652   DebugLoc dl = Node->getDebugLoc();
1653   // Create a vector sized/aligned stack slot, store the value to element #0,
1654   // then load the whole vector back out.
1655   SDValue StackPtr = DAG.CreateStackTemporary(Node->getValueType(0));
1656
1657   FrameIndexSDNode *StackPtrFI = cast<FrameIndexSDNode>(StackPtr);
1658   int SPFI = StackPtrFI->getIndex();
1659
1660   SDValue Ch = DAG.getTruncStore(DAG.getEntryNode(), dl, Node->getOperand(0),
1661                                  StackPtr,
1662                                  MachinePointerInfo::getFixedStack(SPFI),
1663                                  Node->getValueType(0).getVectorElementType(),
1664                                  false, false, 0);
1665   return DAG.getLoad(Node->getValueType(0), dl, Ch, StackPtr,
1666                      MachinePointerInfo::getFixedStack(SPFI),
1667                      false, false, false, 0);
1668 }
1669
1670
1671 /// ExpandBUILD_VECTOR - Expand a BUILD_VECTOR node on targets that don't
1672 /// support the operation, but do support the resultant vector type.
1673 SDValue SelectionDAGLegalize::ExpandBUILD_VECTOR(SDNode *Node) {
1674   unsigned NumElems = Node->getNumOperands();
1675   SDValue Value1, Value2;
1676   DebugLoc dl = Node->getDebugLoc();
1677   EVT VT = Node->getValueType(0);
1678   EVT OpVT = Node->getOperand(0).getValueType();
1679   EVT EltVT = VT.getVectorElementType();
1680
1681   // If the only non-undef value is the low element, turn this into a
1682   // SCALAR_TO_VECTOR node.  If this is { X, X, X, X }, determine X.
1683   bool isOnlyLowElement = true;
1684   bool MoreThanTwoValues = false;
1685   bool isConstant = true;
1686   for (unsigned i = 0; i < NumElems; ++i) {
1687     SDValue V = Node->getOperand(i);
1688     if (V.getOpcode() == ISD::UNDEF)
1689       continue;
1690     if (i > 0)
1691       isOnlyLowElement = false;
1692     if (!isa<ConstantFPSDNode>(V) && !isa<ConstantSDNode>(V))
1693       isConstant = false;
1694
1695     if (!Value1.getNode()) {
1696       Value1 = V;
1697     } else if (!Value2.getNode()) {
1698       if (V != Value1)
1699         Value2 = V;
1700     } else if (V != Value1 && V != Value2) {
1701       MoreThanTwoValues = true;
1702     }
1703   }
1704
1705   if (!Value1.getNode())
1706     return DAG.getUNDEF(VT);
1707
1708   if (isOnlyLowElement)
1709     return DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Node->getOperand(0));
1710
1711   // If all elements are constants, create a load from the constant pool.
1712   if (isConstant) {
1713     SmallVector<Constant*, 16> CV;
1714     for (unsigned i = 0, e = NumElems; i != e; ++i) {
1715       if (ConstantFPSDNode *V =
1716           dyn_cast<ConstantFPSDNode>(Node->getOperand(i))) {
1717         CV.push_back(const_cast<ConstantFP *>(V->getConstantFPValue()));
1718       } else if (ConstantSDNode *V =
1719                  dyn_cast<ConstantSDNode>(Node->getOperand(i))) {
1720         if (OpVT==EltVT)
1721           CV.push_back(const_cast<ConstantInt *>(V->getConstantIntValue()));
1722         else {
1723           // If OpVT and EltVT don't match, EltVT is not legal and the
1724           // element values have been promoted/truncated earlier.  Undo this;
1725           // we don't want a v16i8 to become a v16i32 for example.
1726           const ConstantInt *CI = V->getConstantIntValue();
1727           CV.push_back(ConstantInt::get(EltVT.getTypeForEVT(*DAG.getContext()),
1728                                         CI->getZExtValue()));
1729         }
1730       } else {
1731         assert(Node->getOperand(i).getOpcode() == ISD::UNDEF);
1732         Type *OpNTy = EltVT.getTypeForEVT(*DAG.getContext());
1733         CV.push_back(UndefValue::get(OpNTy));
1734       }
1735     }
1736     Constant *CP = ConstantVector::get(CV);
1737     SDValue CPIdx = DAG.getConstantPool(CP, TLI.getPointerTy());
1738     unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
1739     return DAG.getLoad(VT, dl, DAG.getEntryNode(), CPIdx,
1740                        MachinePointerInfo::getConstantPool(),
1741                        false, false, false, Alignment);
1742   }
1743
1744   if (!MoreThanTwoValues) {
1745     SmallVector<int, 8> ShuffleVec(NumElems, -1);
1746     for (unsigned i = 0; i < NumElems; ++i) {
1747       SDValue V = Node->getOperand(i);
1748       if (V.getOpcode() == ISD::UNDEF)
1749         continue;
1750       ShuffleVec[i] = V == Value1 ? 0 : NumElems;
1751     }
1752     if (TLI.isShuffleMaskLegal(ShuffleVec, Node->getValueType(0))) {
1753       // Get the splatted value into the low element of a vector register.
1754       SDValue Vec1 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value1);
1755       SDValue Vec2;
1756       if (Value2.getNode())
1757         Vec2 = DAG.getNode(ISD::SCALAR_TO_VECTOR, dl, VT, Value2);
1758       else
1759         Vec2 = DAG.getUNDEF(VT);
1760
1761       // Return shuffle(LowValVec, undef, <0,0,0,0>)
1762       return DAG.getVectorShuffle(VT, dl, Vec1, Vec2, ShuffleVec.data());
1763     }
1764   }
1765
1766   // Otherwise, we can't handle this case efficiently.
1767   return ExpandVectorBuildThroughStack(Node);
1768 }
1769
1770 // ExpandLibCall - Expand a node into a call to a libcall.  If the result value
1771 // does not fit into a register, return the lo part and set the hi part to the
1772 // by-reg argument.  If it does fit into a single register, return the result
1773 // and leave the Hi part unset.
1774 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, SDNode *Node,
1775                                             bool isSigned) {
1776   TargetLowering::ArgListTy Args;
1777   TargetLowering::ArgListEntry Entry;
1778   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1779     EVT ArgVT = Node->getOperand(i).getValueType();
1780     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1781     Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1782     Entry.isSExt = isSigned;
1783     Entry.isZExt = !isSigned;
1784     Args.push_back(Entry);
1785   }
1786   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1787                                          TLI.getPointerTy());
1788
1789   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1790
1791   // By default, the input chain to this libcall is the entry node of the
1792   // function. If the libcall is going to be emitted as a tail call then
1793   // TLI.isUsedByReturnOnly will change it to the right chain if the return
1794   // node which is being folded has a non-entry input chain.
1795   SDValue InChain = DAG.getEntryNode();
1796
1797   // isTailCall may be true since the callee does not reference caller stack
1798   // frame. Check if it's in the right position.
1799   SDValue TCChain = InChain;
1800   bool isTailCall = isInTailCallPosition(DAG, Node, TCChain, TLI);
1801   if (isTailCall)
1802     InChain = TCChain;
1803
1804   TargetLowering::
1805   CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1806                     0, TLI.getLibcallCallingConv(LC), isTailCall,
1807                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1808                     Callee, Args, DAG, Node->getDebugLoc());
1809   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1810
1811
1812   if (!CallInfo.second.getNode())
1813     // It's a tailcall, return the chain (which is the DAG root).
1814     return DAG.getRoot();
1815
1816   return CallInfo.first;
1817 }
1818
1819 /// ExpandLibCall - Generate a libcall taking the given operands as arguments
1820 /// and returning a result of type RetVT.
1821 SDValue SelectionDAGLegalize::ExpandLibCall(RTLIB::Libcall LC, EVT RetVT,
1822                                             const SDValue *Ops, unsigned NumOps,
1823                                             bool isSigned, DebugLoc dl) {
1824   TargetLowering::ArgListTy Args;
1825   Args.reserve(NumOps);
1826
1827   TargetLowering::ArgListEntry Entry;
1828   for (unsigned i = 0; i != NumOps; ++i) {
1829     Entry.Node = Ops[i];
1830     Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
1831     Entry.isSExt = isSigned;
1832     Entry.isZExt = !isSigned;
1833     Args.push_back(Entry);
1834   }
1835   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1836                                          TLI.getPointerTy());
1837
1838   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1839   TargetLowering::
1840   CallLoweringInfo CLI(DAG.getEntryNode(), RetTy, isSigned, !isSigned, false,
1841                        false, 0, TLI.getLibcallCallingConv(LC),
1842                        /*isTailCall=*/false,
1843                   /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1844                   Callee, Args, DAG, dl);
1845   std::pair<SDValue,SDValue> CallInfo = TLI.LowerCallTo(CLI);
1846
1847   return CallInfo.first;
1848 }
1849
1850 // ExpandChainLibCall - Expand a node into a call to a libcall. Similar to
1851 // ExpandLibCall except that the first operand is the in-chain.
1852 std::pair<SDValue, SDValue>
1853 SelectionDAGLegalize::ExpandChainLibCall(RTLIB::Libcall LC,
1854                                          SDNode *Node,
1855                                          bool isSigned) {
1856   SDValue InChain = Node->getOperand(0);
1857
1858   TargetLowering::ArgListTy Args;
1859   TargetLowering::ArgListEntry Entry;
1860   for (unsigned i = 1, e = Node->getNumOperands(); i != e; ++i) {
1861     EVT ArgVT = Node->getOperand(i).getValueType();
1862     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1863     Entry.Node = Node->getOperand(i);
1864     Entry.Ty = ArgTy;
1865     Entry.isSExt = isSigned;
1866     Entry.isZExt = !isSigned;
1867     Args.push_back(Entry);
1868   }
1869   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
1870                                          TLI.getPointerTy());
1871
1872   Type *RetTy = Node->getValueType(0).getTypeForEVT(*DAG.getContext());
1873   TargetLowering::
1874   CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
1875                     0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
1876                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
1877                     Callee, Args, DAG, Node->getDebugLoc());
1878   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
1879
1880   return CallInfo;
1881 }
1882
1883 SDValue SelectionDAGLegalize::ExpandFPLibCall(SDNode* Node,
1884                                               RTLIB::Libcall Call_F32,
1885                                               RTLIB::Libcall Call_F64,
1886                                               RTLIB::Libcall Call_F80,
1887                                               RTLIB::Libcall Call_PPCF128) {
1888   RTLIB::Libcall LC;
1889   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1890   default: llvm_unreachable("Unexpected request for libcall!");
1891   case MVT::f32: LC = Call_F32; break;
1892   case MVT::f64: LC = Call_F64; break;
1893   case MVT::f80: LC = Call_F80; break;
1894   case MVT::ppcf128: LC = Call_PPCF128; break;
1895   }
1896   return ExpandLibCall(LC, Node, false);
1897 }
1898
1899 SDValue SelectionDAGLegalize::ExpandIntLibCall(SDNode* Node, bool isSigned,
1900                                                RTLIB::Libcall Call_I8,
1901                                                RTLIB::Libcall Call_I16,
1902                                                RTLIB::Libcall Call_I32,
1903                                                RTLIB::Libcall Call_I64,
1904                                                RTLIB::Libcall Call_I128) {
1905   RTLIB::Libcall LC;
1906   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1907   default: llvm_unreachable("Unexpected request for libcall!");
1908   case MVT::i8:   LC = Call_I8; break;
1909   case MVT::i16:  LC = Call_I16; break;
1910   case MVT::i32:  LC = Call_I32; break;
1911   case MVT::i64:  LC = Call_I64; break;
1912   case MVT::i128: LC = Call_I128; break;
1913   }
1914   return ExpandLibCall(LC, Node, isSigned);
1915 }
1916
1917 /// isDivRemLibcallAvailable - Return true if divmod libcall is available.
1918 static bool isDivRemLibcallAvailable(SDNode *Node, bool isSigned,
1919                                      const TargetLowering &TLI) {
1920   RTLIB::Libcall LC;
1921   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1922   default: llvm_unreachable("Unexpected request for libcall!");
1923   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1924   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1925   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1926   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1927   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1928   }
1929
1930   return TLI.getLibcallName(LC) != 0;
1931 }
1932
1933 /// useDivRem - Only issue divrem libcall if both quotient and remainder are
1934 /// needed.
1935 static bool useDivRem(SDNode *Node, bool isSigned, bool isDIV) {
1936   // The other use might have been replaced with a divrem already.
1937   unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
1938   unsigned OtherOpcode = 0;
1939   if (isSigned)
1940     OtherOpcode = isDIV ? ISD::SREM : ISD::SDIV;
1941   else
1942     OtherOpcode = isDIV ? ISD::UREM : ISD::UDIV;
1943
1944   SDValue Op0 = Node->getOperand(0);
1945   SDValue Op1 = Node->getOperand(1);
1946   for (SDNode::use_iterator UI = Op0.getNode()->use_begin(),
1947          UE = Op0.getNode()->use_end(); UI != UE; ++UI) {
1948     SDNode *User = *UI;
1949     if (User == Node)
1950       continue;
1951     if ((User->getOpcode() == OtherOpcode || User->getOpcode() == DivRemOpc) &&
1952         User->getOperand(0) == Op0 &&
1953         User->getOperand(1) == Op1)
1954       return true;
1955   }
1956   return false;
1957 }
1958
1959 /// ExpandDivRemLibCall - Issue libcalls to __{u}divmod to compute div / rem
1960 /// pairs.
1961 void
1962 SelectionDAGLegalize::ExpandDivRemLibCall(SDNode *Node,
1963                                           SmallVectorImpl<SDValue> &Results) {
1964   unsigned Opcode = Node->getOpcode();
1965   bool isSigned = Opcode == ISD::SDIVREM;
1966
1967   RTLIB::Libcall LC;
1968   switch (Node->getValueType(0).getSimpleVT().SimpleTy) {
1969   default: llvm_unreachable("Unexpected request for libcall!");
1970   case MVT::i8:   LC= isSigned ? RTLIB::SDIVREM_I8  : RTLIB::UDIVREM_I8;  break;
1971   case MVT::i16:  LC= isSigned ? RTLIB::SDIVREM_I16 : RTLIB::UDIVREM_I16; break;
1972   case MVT::i32:  LC= isSigned ? RTLIB::SDIVREM_I32 : RTLIB::UDIVREM_I32; break;
1973   case MVT::i64:  LC= isSigned ? RTLIB::SDIVREM_I64 : RTLIB::UDIVREM_I64; break;
1974   case MVT::i128: LC= isSigned ? RTLIB::SDIVREM_I128:RTLIB::UDIVREM_I128; break;
1975   }
1976
1977   // The input chain to this libcall is the entry node of the function.
1978   // Legalizing the call will automatically add the previous call to the
1979   // dependence.
1980   SDValue InChain = DAG.getEntryNode();
1981
1982   EVT RetVT = Node->getValueType(0);
1983   Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
1984
1985   TargetLowering::ArgListTy Args;
1986   TargetLowering::ArgListEntry Entry;
1987   for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i) {
1988     EVT ArgVT = Node->getOperand(i).getValueType();
1989     Type *ArgTy = ArgVT.getTypeForEVT(*DAG.getContext());
1990     Entry.Node = Node->getOperand(i); Entry.Ty = ArgTy;
1991     Entry.isSExt = isSigned;
1992     Entry.isZExt = !isSigned;
1993     Args.push_back(Entry);
1994   }
1995
1996   // Also pass the return address of the remainder.
1997   SDValue FIPtr = DAG.CreateStackTemporary(RetVT);
1998   Entry.Node = FIPtr;
1999   Entry.Ty = RetTy->getPointerTo();
2000   Entry.isSExt = isSigned;
2001   Entry.isZExt = !isSigned;
2002   Args.push_back(Entry);
2003
2004   SDValue Callee = DAG.getExternalSymbol(TLI.getLibcallName(LC),
2005                                          TLI.getPointerTy());
2006
2007   DebugLoc dl = Node->getDebugLoc();
2008   TargetLowering::
2009   CallLoweringInfo CLI(InChain, RetTy, isSigned, !isSigned, false, false,
2010                     0, TLI.getLibcallCallingConv(LC), /*isTailCall=*/false,
2011                     /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2012                     Callee, Args, DAG, dl);
2013   std::pair<SDValue, SDValue> CallInfo = TLI.LowerCallTo(CLI);
2014
2015   // Remainder is loaded back from the stack frame.
2016   SDValue Rem = DAG.getLoad(RetVT, dl, CallInfo.second, FIPtr,
2017                             MachinePointerInfo(), false, false, false, 0);
2018   Results.push_back(CallInfo.first);
2019   Results.push_back(Rem);
2020 }
2021
2022 /// ExpandLegalINT_TO_FP - This function is responsible for legalizing a
2023 /// INT_TO_FP operation of the specified operand when the target requests that
2024 /// we expand it.  At this point, we know that the result and operand types are
2025 /// legal for the target.
2026 SDValue SelectionDAGLegalize::ExpandLegalINT_TO_FP(bool isSigned,
2027                                                    SDValue Op0,
2028                                                    EVT DestVT,
2029                                                    DebugLoc dl) {
2030   if (Op0.getValueType() == MVT::i32) {
2031     // simple 32-bit [signed|unsigned] integer to float/double expansion
2032
2033     // Get the stack frame index of a 8 byte buffer.
2034     SDValue StackSlot = DAG.CreateStackTemporary(MVT::f64);
2035
2036     // word offset constant for Hi/Lo address computation
2037     SDValue WordOff = DAG.getConstant(sizeof(int), TLI.getPointerTy());
2038     // set up Hi and Lo (into buffer) address based on endian
2039     SDValue Hi = StackSlot;
2040     SDValue Lo = DAG.getNode(ISD::ADD, dl,
2041                              TLI.getPointerTy(), StackSlot, WordOff);
2042     if (TLI.isLittleEndian())
2043       std::swap(Hi, Lo);
2044
2045     // if signed map to unsigned space
2046     SDValue Op0Mapped;
2047     if (isSigned) {
2048       // constant used to invert sign bit (signed to unsigned mapping)
2049       SDValue SignBit = DAG.getConstant(0x80000000u, MVT::i32);
2050       Op0Mapped = DAG.getNode(ISD::XOR, dl, MVT::i32, Op0, SignBit);
2051     } else {
2052       Op0Mapped = Op0;
2053     }
2054     // store the lo of the constructed double - based on integer input
2055     SDValue Store1 = DAG.getStore(DAG.getEntryNode(), dl,
2056                                   Op0Mapped, Lo, MachinePointerInfo(),
2057                                   false, false, 0);
2058     // initial hi portion of constructed double
2059     SDValue InitialHi = DAG.getConstant(0x43300000u, MVT::i32);
2060     // store the hi of the constructed double - biased exponent
2061     SDValue Store2 = DAG.getStore(Store1, dl, InitialHi, Hi,
2062                                   MachinePointerInfo(),
2063                                   false, false, 0);
2064     // load the constructed double
2065     SDValue Load = DAG.getLoad(MVT::f64, dl, Store2, StackSlot,
2066                                MachinePointerInfo(), false, false, false, 0);
2067     // FP constant to bias correct the final result
2068     SDValue Bias = DAG.getConstantFP(isSigned ?
2069                                      BitsToDouble(0x4330000080000000ULL) :
2070                                      BitsToDouble(0x4330000000000000ULL),
2071                                      MVT::f64);
2072     // subtract the bias
2073     SDValue Sub = DAG.getNode(ISD::FSUB, dl, MVT::f64, Load, Bias);
2074     // final result
2075     SDValue Result;
2076     // handle final rounding
2077     if (DestVT == MVT::f64) {
2078       // do nothing
2079       Result = Sub;
2080     } else if (DestVT.bitsLT(MVT::f64)) {
2081       Result = DAG.getNode(ISD::FP_ROUND, dl, DestVT, Sub,
2082                            DAG.getIntPtrConstant(0));
2083     } else if (DestVT.bitsGT(MVT::f64)) {
2084       Result = DAG.getNode(ISD::FP_EXTEND, dl, DestVT, Sub);
2085     }
2086     return Result;
2087   }
2088   assert(!isSigned && "Legalize cannot Expand SINT_TO_FP for i64 yet");
2089   // Code below here assumes !isSigned without checking again.
2090
2091   // Implementation of unsigned i64 to f64 following the algorithm in
2092   // __floatundidf in compiler_rt. This implementation has the advantage
2093   // of performing rounding correctly, both in the default rounding mode
2094   // and in all alternate rounding modes.
2095   // TODO: Generalize this for use with other types.
2096   if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f64) {
2097     SDValue TwoP52 =
2098       DAG.getConstant(UINT64_C(0x4330000000000000), MVT::i64);
2099     SDValue TwoP84PlusTwoP52 =
2100       DAG.getConstantFP(BitsToDouble(UINT64_C(0x4530000000100000)), MVT::f64);
2101     SDValue TwoP84 =
2102       DAG.getConstant(UINT64_C(0x4530000000000000), MVT::i64);
2103
2104     SDValue Lo = DAG.getZeroExtendInReg(Op0, dl, MVT::i32);
2105     SDValue Hi = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0,
2106                              DAG.getConstant(32, MVT::i64));
2107     SDValue LoOr = DAG.getNode(ISD::OR, dl, MVT::i64, Lo, TwoP52);
2108     SDValue HiOr = DAG.getNode(ISD::OR, dl, MVT::i64, Hi, TwoP84);
2109     SDValue LoFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, LoOr);
2110     SDValue HiFlt = DAG.getNode(ISD::BITCAST, dl, MVT::f64, HiOr);
2111     SDValue HiSub = DAG.getNode(ISD::FSUB, dl, MVT::f64, HiFlt,
2112                                 TwoP84PlusTwoP52);
2113     return DAG.getNode(ISD::FADD, dl, MVT::f64, LoFlt, HiSub);
2114   }
2115
2116   // Implementation of unsigned i64 to f32.
2117   // TODO: Generalize this for use with other types.
2118   if (Op0.getValueType() == MVT::i64 && DestVT == MVT::f32) {
2119     // For unsigned conversions, convert them to signed conversions using the
2120     // algorithm from the x86_64 __floatundidf in compiler_rt.
2121     if (!isSigned) {
2122       SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Op0);
2123
2124       SDValue ShiftConst =
2125           DAG.getConstant(1, TLI.getShiftAmountTy(Op0.getValueType()));
2126       SDValue Shr = DAG.getNode(ISD::SRL, dl, MVT::i64, Op0, ShiftConst);
2127       SDValue AndConst = DAG.getConstant(1, MVT::i64);
2128       SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0, AndConst);
2129       SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And, Shr);
2130
2131       SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, Or);
2132       SDValue Slow = DAG.getNode(ISD::FADD, dl, MVT::f32, SignCvt, SignCvt);
2133
2134       // TODO: This really should be implemented using a branch rather than a
2135       // select.  We happen to get lucky and machinesink does the right
2136       // thing most of the time.  This would be a good candidate for a
2137       //pseudo-op, or, even better, for whole-function isel.
2138       SDValue SignBitTest = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2139         Op0, DAG.getConstant(0, MVT::i64), ISD::SETLT);
2140       return DAG.getNode(ISD::SELECT, dl, MVT::f32, SignBitTest, Slow, Fast);
2141     }
2142
2143     // Otherwise, implement the fully general conversion.
2144
2145     SDValue And = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2146          DAG.getConstant(UINT64_C(0xfffffffffffff800), MVT::i64));
2147     SDValue Or = DAG.getNode(ISD::OR, dl, MVT::i64, And,
2148          DAG.getConstant(UINT64_C(0x800), MVT::i64));
2149     SDValue And2 = DAG.getNode(ISD::AND, dl, MVT::i64, Op0,
2150          DAG.getConstant(UINT64_C(0x7ff), MVT::i64));
2151     SDValue Ne = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2152                    And2, DAG.getConstant(UINT64_C(0), MVT::i64), ISD::SETNE);
2153     SDValue Sel = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ne, Or, Op0);
2154     SDValue Ge = DAG.getSetCC(dl, TLI.getSetCCResultType(MVT::i64),
2155                    Op0, DAG.getConstant(UINT64_C(0x0020000000000000), MVT::i64),
2156                    ISD::SETUGE);
2157     SDValue Sel2 = DAG.getNode(ISD::SELECT, dl, MVT::i64, Ge, Sel, Op0);
2158     EVT SHVT = TLI.getShiftAmountTy(Sel2.getValueType());
2159
2160     SDValue Sh = DAG.getNode(ISD::SRL, dl, MVT::i64, Sel2,
2161                              DAG.getConstant(32, SHVT));
2162     SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sh);
2163     SDValue Fcvt = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Trunc);
2164     SDValue TwoP32 =
2165       DAG.getConstantFP(BitsToDouble(UINT64_C(0x41f0000000000000)), MVT::f64);
2166     SDValue Fmul = DAG.getNode(ISD::FMUL, dl, MVT::f64, TwoP32, Fcvt);
2167     SDValue Lo = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Sel2);
2168     SDValue Fcvt2 = DAG.getNode(ISD::UINT_TO_FP, dl, MVT::f64, Lo);
2169     SDValue Fadd = DAG.getNode(ISD::FADD, dl, MVT::f64, Fmul, Fcvt2);
2170     return DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Fadd,
2171                        DAG.getIntPtrConstant(0));
2172   }
2173
2174   SDValue Tmp1 = DAG.getNode(ISD::SINT_TO_FP, dl, DestVT, Op0);
2175
2176   SDValue SignSet = DAG.getSetCC(dl, TLI.getSetCCResultType(Op0.getValueType()),
2177                                  Op0, DAG.getConstant(0, Op0.getValueType()),
2178                                  ISD::SETLT);
2179   SDValue Zero = DAG.getIntPtrConstant(0), Four = DAG.getIntPtrConstant(4);
2180   SDValue CstOffset = DAG.getNode(ISD::SELECT, dl, Zero.getValueType(),
2181                                     SignSet, Four, Zero);
2182
2183   // If the sign bit of the integer is set, the large number will be treated
2184   // as a negative number.  To counteract this, the dynamic code adds an
2185   // offset depending on the data type.
2186   uint64_t FF;
2187   switch (Op0.getValueType().getSimpleVT().SimpleTy) {
2188   default: llvm_unreachable("Unsupported integer type!");
2189   case MVT::i8 : FF = 0x43800000ULL; break;  // 2^8  (as a float)
2190   case MVT::i16: FF = 0x47800000ULL; break;  // 2^16 (as a float)
2191   case MVT::i32: FF = 0x4F800000ULL; break;  // 2^32 (as a float)
2192   case MVT::i64: FF = 0x5F800000ULL; break;  // 2^64 (as a float)
2193   }
2194   if (TLI.isLittleEndian()) FF <<= 32;
2195   Constant *FudgeFactor = ConstantInt::get(
2196                                        Type::getInt64Ty(*DAG.getContext()), FF);
2197
2198   SDValue CPIdx = DAG.getConstantPool(FudgeFactor, TLI.getPointerTy());
2199   unsigned Alignment = cast<ConstantPoolSDNode>(CPIdx)->getAlignment();
2200   CPIdx = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), CPIdx, CstOffset);
2201   Alignment = std::min(Alignment, 4u);
2202   SDValue FudgeInReg;
2203   if (DestVT == MVT::f32)
2204     FudgeInReg = DAG.getLoad(MVT::f32, dl, DAG.getEntryNode(), CPIdx,
2205                              MachinePointerInfo::getConstantPool(),
2206                              false, false, false, Alignment);
2207   else {
2208     SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, DestVT,
2209                                   DAG.getEntryNode(), CPIdx,
2210                                   MachinePointerInfo::getConstantPool(),
2211                                   MVT::f32, false, false, Alignment);
2212     HandleSDNode Handle(Load);
2213     LegalizeOp(Load.getNode());
2214     FudgeInReg = Handle.getValue();
2215   }
2216
2217   return DAG.getNode(ISD::FADD, dl, DestVT, Tmp1, FudgeInReg);
2218 }
2219
2220 /// PromoteLegalINT_TO_FP - This function is responsible for legalizing a
2221 /// *INT_TO_FP operation of the specified operand when the target requests that
2222 /// we promote it.  At this point, we know that the result and operand types are
2223 /// legal for the target, and that there is a legal UINT_TO_FP or SINT_TO_FP
2224 /// operation that takes a larger input.
2225 SDValue SelectionDAGLegalize::PromoteLegalINT_TO_FP(SDValue LegalOp,
2226                                                     EVT DestVT,
2227                                                     bool isSigned,
2228                                                     DebugLoc dl) {
2229   // First step, figure out the appropriate *INT_TO_FP operation to use.
2230   EVT NewInTy = LegalOp.getValueType();
2231
2232   unsigned OpToUse = 0;
2233
2234   // Scan for the appropriate larger type to use.
2235   while (1) {
2236     NewInTy = (MVT::SimpleValueType)(NewInTy.getSimpleVT().SimpleTy+1);
2237     assert(NewInTy.isInteger() && "Ran out of possibilities!");
2238
2239     // If the target supports SINT_TO_FP of this type, use it.
2240     if (TLI.isOperationLegalOrCustom(ISD::SINT_TO_FP, NewInTy)) {
2241       OpToUse = ISD::SINT_TO_FP;
2242       break;
2243     }
2244     if (isSigned) continue;
2245
2246     // If the target supports UINT_TO_FP of this type, use it.
2247     if (TLI.isOperationLegalOrCustom(ISD::UINT_TO_FP, NewInTy)) {
2248       OpToUse = ISD::UINT_TO_FP;
2249       break;
2250     }
2251
2252     // Otherwise, try a larger type.
2253   }
2254
2255   // Okay, we found the operation and type to use.  Zero extend our input to the
2256   // desired type then run the operation on it.
2257   return DAG.getNode(OpToUse, dl, DestVT,
2258                      DAG.getNode(isSigned ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND,
2259                                  dl, NewInTy, LegalOp));
2260 }
2261
2262 /// PromoteLegalFP_TO_INT - This function is responsible for legalizing a
2263 /// FP_TO_*INT operation of the specified operand when the target requests that
2264 /// we promote it.  At this point, we know that the result and operand types are
2265 /// legal for the target, and that there is a legal FP_TO_UINT or FP_TO_SINT
2266 /// operation that returns a larger result.
2267 SDValue SelectionDAGLegalize::PromoteLegalFP_TO_INT(SDValue LegalOp,
2268                                                     EVT DestVT,
2269                                                     bool isSigned,
2270                                                     DebugLoc dl) {
2271   // First step, figure out the appropriate FP_TO*INT operation to use.
2272   EVT NewOutTy = DestVT;
2273
2274   unsigned OpToUse = 0;
2275
2276   // Scan for the appropriate larger type to use.
2277   while (1) {
2278     NewOutTy = (MVT::SimpleValueType)(NewOutTy.getSimpleVT().SimpleTy+1);
2279     assert(NewOutTy.isInteger() && "Ran out of possibilities!");
2280
2281     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewOutTy)) {
2282       OpToUse = ISD::FP_TO_SINT;
2283       break;
2284     }
2285
2286     if (TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewOutTy)) {
2287       OpToUse = ISD::FP_TO_UINT;
2288       break;
2289     }
2290
2291     // Otherwise, try a larger type.
2292   }
2293
2294
2295   // Okay, we found the operation and type to use.
2296   SDValue Operation = DAG.getNode(OpToUse, dl, NewOutTy, LegalOp);
2297
2298   // Truncate the result of the extended FP_TO_*INT operation to the desired
2299   // size.
2300   return DAG.getNode(ISD::TRUNCATE, dl, DestVT, Operation);
2301 }
2302
2303 /// ExpandBSWAP - Open code the operations for BSWAP of the specified operation.
2304 ///
2305 SDValue SelectionDAGLegalize::ExpandBSWAP(SDValue Op, DebugLoc dl) {
2306   EVT VT = Op.getValueType();
2307   EVT SHVT = TLI.getShiftAmountTy(VT);
2308   SDValue Tmp1, Tmp2, Tmp3, Tmp4, Tmp5, Tmp6, Tmp7, Tmp8;
2309   switch (VT.getSimpleVT().SimpleTy) {
2310   default: llvm_unreachable("Unhandled Expand type in BSWAP!");
2311   case MVT::i16:
2312     Tmp2 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2313     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2314     return DAG.getNode(ISD::OR, dl, VT, Tmp1, Tmp2);
2315   case MVT::i32:
2316     Tmp4 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2317     Tmp3 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2318     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2319     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2320     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(0xFF0000, VT));
2321     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(0xFF00, VT));
2322     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2323     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2324     return DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2325   case MVT::i64:
2326     Tmp8 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(56, SHVT));
2327     Tmp7 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(40, SHVT));
2328     Tmp6 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(24, SHVT));
2329     Tmp5 = DAG.getNode(ISD::SHL, dl, VT, Op, DAG.getConstant(8, SHVT));
2330     Tmp4 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(8, SHVT));
2331     Tmp3 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(24, SHVT));
2332     Tmp2 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(40, SHVT));
2333     Tmp1 = DAG.getNode(ISD::SRL, dl, VT, Op, DAG.getConstant(56, SHVT));
2334     Tmp7 = DAG.getNode(ISD::AND, dl, VT, Tmp7, DAG.getConstant(255ULL<<48, VT));
2335     Tmp6 = DAG.getNode(ISD::AND, dl, VT, Tmp6, DAG.getConstant(255ULL<<40, VT));
2336     Tmp5 = DAG.getNode(ISD::AND, dl, VT, Tmp5, DAG.getConstant(255ULL<<32, VT));
2337     Tmp4 = DAG.getNode(ISD::AND, dl, VT, Tmp4, DAG.getConstant(255ULL<<24, VT));
2338     Tmp3 = DAG.getNode(ISD::AND, dl, VT, Tmp3, DAG.getConstant(255ULL<<16, VT));
2339     Tmp2 = DAG.getNode(ISD::AND, dl, VT, Tmp2, DAG.getConstant(255ULL<<8 , VT));
2340     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp7);
2341     Tmp6 = DAG.getNode(ISD::OR, dl, VT, Tmp6, Tmp5);
2342     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp3);
2343     Tmp2 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp1);
2344     Tmp8 = DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp6);
2345     Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp2);
2346     return DAG.getNode(ISD::OR, dl, VT, Tmp8, Tmp4);
2347   }
2348 }
2349
2350 /// SplatByte - Distribute ByteVal over NumBits bits.
2351 // FIXME: Move this helper to a common place.
2352 static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
2353   APInt Val = APInt(NumBits, ByteVal);
2354   unsigned Shift = 8;
2355   for (unsigned i = NumBits; i > 8; i >>= 1) {
2356     Val = (Val << Shift) | Val;
2357     Shift <<= 1;
2358   }
2359   return Val;
2360 }
2361
2362 /// ExpandBitCount - Expand the specified bitcount instruction into operations.
2363 ///
2364 SDValue SelectionDAGLegalize::ExpandBitCount(unsigned Opc, SDValue Op,
2365                                              DebugLoc dl) {
2366   switch (Opc) {
2367   default: llvm_unreachable("Cannot expand this yet!");
2368   case ISD::CTPOP: {
2369     EVT VT = Op.getValueType();
2370     EVT ShVT = TLI.getShiftAmountTy(VT);
2371     unsigned Len = VT.getSizeInBits();
2372
2373     assert(VT.isInteger() && Len <= 128 && Len % 8 == 0 &&
2374            "CTPOP not implemented for this type.");
2375
2376     // This is the "best" algorithm from
2377     // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
2378
2379     SDValue Mask55 = DAG.getConstant(SplatByte(Len, 0x55), VT);
2380     SDValue Mask33 = DAG.getConstant(SplatByte(Len, 0x33), VT);
2381     SDValue Mask0F = DAG.getConstant(SplatByte(Len, 0x0F), VT);
2382     SDValue Mask01 = DAG.getConstant(SplatByte(Len, 0x01), VT);
2383
2384     // v = v - ((v >> 1) & 0x55555555...)
2385     Op = DAG.getNode(ISD::SUB, dl, VT, Op,
2386                      DAG.getNode(ISD::AND, dl, VT,
2387                                  DAG.getNode(ISD::SRL, dl, VT, Op,
2388                                              DAG.getConstant(1, ShVT)),
2389                                  Mask55));
2390     // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
2391     Op = DAG.getNode(ISD::ADD, dl, VT,
2392                      DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
2393                      DAG.getNode(ISD::AND, dl, VT,
2394                                  DAG.getNode(ISD::SRL, dl, VT, Op,
2395                                              DAG.getConstant(2, ShVT)),
2396                                  Mask33));
2397     // v = (v + (v >> 4)) & 0x0F0F0F0F...
2398     Op = DAG.getNode(ISD::AND, dl, VT,
2399                      DAG.getNode(ISD::ADD, dl, VT, Op,
2400                                  DAG.getNode(ISD::SRL, dl, VT, Op,
2401                                              DAG.getConstant(4, ShVT))),
2402                      Mask0F);
2403     // v = (v * 0x01010101...) >> (Len - 8)
2404     Op = DAG.getNode(ISD::SRL, dl, VT,
2405                      DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
2406                      DAG.getConstant(Len - 8, ShVT));
2407
2408     return Op;
2409   }
2410   case ISD::CTLZ_ZERO_UNDEF:
2411     // This trivially expands to CTLZ.
2412     return DAG.getNode(ISD::CTLZ, dl, Op.getValueType(), Op);
2413   case ISD::CTLZ: {
2414     // for now, we do this:
2415     // x = x | (x >> 1);
2416     // x = x | (x >> 2);
2417     // ...
2418     // x = x | (x >>16);
2419     // x = x | (x >>32); // for 64-bit input
2420     // return popcount(~x);
2421     //
2422     // but see also: http://www.hackersdelight.org/HDcode/nlz.cc
2423     EVT VT = Op.getValueType();
2424     EVT ShVT = TLI.getShiftAmountTy(VT);
2425     unsigned len = VT.getSizeInBits();
2426     for (unsigned i = 0; (1U << i) <= (len / 2); ++i) {
2427       SDValue Tmp3 = DAG.getConstant(1ULL << i, ShVT);
2428       Op = DAG.getNode(ISD::OR, dl, VT, Op,
2429                        DAG.getNode(ISD::SRL, dl, VT, Op, Tmp3));
2430     }
2431     Op = DAG.getNOT(dl, Op, VT);
2432     return DAG.getNode(ISD::CTPOP, dl, VT, Op);
2433   }
2434   case ISD::CTTZ_ZERO_UNDEF:
2435     // This trivially expands to CTTZ.
2436     return DAG.getNode(ISD::CTTZ, dl, Op.getValueType(), Op);
2437   case ISD::CTTZ: {
2438     // for now, we use: { return popcount(~x & (x - 1)); }
2439     // unless the target has ctlz but not ctpop, in which case we use:
2440     // { return 32 - nlz(~x & (x-1)); }
2441     // see also http://www.hackersdelight.org/HDcode/ntz.cc
2442     EVT VT = Op.getValueType();
2443     SDValue Tmp3 = DAG.getNode(ISD::AND, dl, VT,
2444                                DAG.getNOT(dl, Op, VT),
2445                                DAG.getNode(ISD::SUB, dl, VT, Op,
2446                                            DAG.getConstant(1, VT)));
2447     // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
2448     if (!TLI.isOperationLegalOrCustom(ISD::CTPOP, VT) &&
2449         TLI.isOperationLegalOrCustom(ISD::CTLZ, VT))
2450       return DAG.getNode(ISD::SUB, dl, VT,
2451                          DAG.getConstant(VT.getSizeInBits(), VT),
2452                          DAG.getNode(ISD::CTLZ, dl, VT, Tmp3));
2453     return DAG.getNode(ISD::CTPOP, dl, VT, Tmp3);
2454   }
2455   }
2456 }
2457
2458 std::pair <SDValue, SDValue> SelectionDAGLegalize::ExpandAtomic(SDNode *Node) {
2459   unsigned Opc = Node->getOpcode();
2460   MVT VT = cast<AtomicSDNode>(Node)->getMemoryVT().getSimpleVT();
2461   RTLIB::Libcall LC;
2462
2463   switch (Opc) {
2464   default:
2465     llvm_unreachable("Unhandled atomic intrinsic Expand!");
2466   case ISD::ATOMIC_SWAP:
2467     switch (VT.SimpleTy) {
2468     default: llvm_unreachable("Unexpected value type for atomic!");
2469     case MVT::i8:  LC = RTLIB::SYNC_LOCK_TEST_AND_SET_1; break;
2470     case MVT::i16: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_2; break;
2471     case MVT::i32: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_4; break;
2472     case MVT::i64: LC = RTLIB::SYNC_LOCK_TEST_AND_SET_8; break;
2473     }
2474     break;
2475   case ISD::ATOMIC_CMP_SWAP:
2476     switch (VT.SimpleTy) {
2477     default: llvm_unreachable("Unexpected value type for atomic!");
2478     case MVT::i8:  LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1; break;
2479     case MVT::i16: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2; break;
2480     case MVT::i32: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4; break;
2481     case MVT::i64: LC = RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8; break;
2482     }
2483     break;
2484   case ISD::ATOMIC_LOAD_ADD:
2485     switch (VT.SimpleTy) {
2486     default: llvm_unreachable("Unexpected value type for atomic!");
2487     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_ADD_1; break;
2488     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_ADD_2; break;
2489     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_ADD_4; break;
2490     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_ADD_8; break;
2491     }
2492     break;
2493   case ISD::ATOMIC_LOAD_SUB:
2494     switch (VT.SimpleTy) {
2495     default: llvm_unreachable("Unexpected value type for atomic!");
2496     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_SUB_1; break;
2497     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_SUB_2; break;
2498     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_SUB_4; break;
2499     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_SUB_8; break;
2500     }
2501     break;
2502   case ISD::ATOMIC_LOAD_AND:
2503     switch (VT.SimpleTy) {
2504     default: llvm_unreachable("Unexpected value type for atomic!");
2505     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_AND_1; break;
2506     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_AND_2; break;
2507     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_AND_4; break;
2508     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_AND_8; break;
2509     }
2510     break;
2511   case ISD::ATOMIC_LOAD_OR:
2512     switch (VT.SimpleTy) {
2513     default: llvm_unreachable("Unexpected value type for atomic!");
2514     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_OR_1; break;
2515     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_OR_2; break;
2516     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_OR_4; break;
2517     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_OR_8; break;
2518     }
2519     break;
2520   case ISD::ATOMIC_LOAD_XOR:
2521     switch (VT.SimpleTy) {
2522     default: llvm_unreachable("Unexpected value type for atomic!");
2523     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_XOR_1; break;
2524     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_XOR_2; break;
2525     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_XOR_4; break;
2526     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_XOR_8; break;
2527     }
2528     break;
2529   case ISD::ATOMIC_LOAD_NAND:
2530     switch (VT.SimpleTy) {
2531     default: llvm_unreachable("Unexpected value type for atomic!");
2532     case MVT::i8:  LC = RTLIB::SYNC_FETCH_AND_NAND_1; break;
2533     case MVT::i16: LC = RTLIB::SYNC_FETCH_AND_NAND_2; break;
2534     case MVT::i32: LC = RTLIB::SYNC_FETCH_AND_NAND_4; break;
2535     case MVT::i64: LC = RTLIB::SYNC_FETCH_AND_NAND_8; break;
2536     }
2537     break;
2538   }
2539
2540   return ExpandChainLibCall(LC, Node, false);
2541 }
2542
2543 void SelectionDAGLegalize::ExpandNode(SDNode *Node) {
2544   SmallVector<SDValue, 8> Results;
2545   DebugLoc dl = Node->getDebugLoc();
2546   SDValue Tmp1, Tmp2, Tmp3, Tmp4;
2547   switch (Node->getOpcode()) {
2548   case ISD::CTPOP:
2549   case ISD::CTLZ:
2550   case ISD::CTLZ_ZERO_UNDEF:
2551   case ISD::CTTZ:
2552   case ISD::CTTZ_ZERO_UNDEF:
2553     Tmp1 = ExpandBitCount(Node->getOpcode(), Node->getOperand(0), dl);
2554     Results.push_back(Tmp1);
2555     break;
2556   case ISD::BSWAP:
2557     Results.push_back(ExpandBSWAP(Node->getOperand(0), dl));
2558     break;
2559   case ISD::FRAMEADDR:
2560   case ISD::RETURNADDR:
2561   case ISD::FRAME_TO_ARGS_OFFSET:
2562     Results.push_back(DAG.getConstant(0, Node->getValueType(0)));
2563     break;
2564   case ISD::FLT_ROUNDS_:
2565     Results.push_back(DAG.getConstant(1, Node->getValueType(0)));
2566     break;
2567   case ISD::EH_RETURN:
2568   case ISD::EH_LABEL:
2569   case ISD::PREFETCH:
2570   case ISD::VAEND:
2571   case ISD::EH_SJLJ_LONGJMP:
2572     // If the target didn't expand these, there's nothing to do, so just
2573     // preserve the chain and be done.
2574     Results.push_back(Node->getOperand(0));
2575     break;
2576   case ISD::EH_SJLJ_SETJMP:
2577     // If the target didn't expand this, just return 'zero' and preserve the
2578     // chain.
2579     Results.push_back(DAG.getConstant(0, MVT::i32));
2580     Results.push_back(Node->getOperand(0));
2581     break;
2582   case ISD::ATOMIC_FENCE:
2583   case ISD::MEMBARRIER: {
2584     // If the target didn't lower this, lower it to '__sync_synchronize()' call
2585     // FIXME: handle "fence singlethread" more efficiently.
2586     TargetLowering::ArgListTy Args;
2587     TargetLowering::
2588     CallLoweringInfo CLI(Node->getOperand(0),
2589                          Type::getVoidTy(*DAG.getContext()),
2590                       false, false, false, false, 0, CallingConv::C,
2591                       /*isTailCall=*/false,
2592                       /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2593                       DAG.getExternalSymbol("__sync_synchronize",
2594                                             TLI.getPointerTy()),
2595                       Args, DAG, dl);
2596     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2597
2598     Results.push_back(CallResult.second);
2599     break;
2600   }
2601   case ISD::ATOMIC_LOAD: {
2602     // There is no libcall for atomic load; fake it with ATOMIC_CMP_SWAP.
2603     SDValue Zero = DAG.getConstant(0, Node->getValueType(0));
2604     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
2605                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
2606                                  Node->getOperand(0),
2607                                  Node->getOperand(1), Zero, Zero,
2608                                  cast<AtomicSDNode>(Node)->getMemOperand(),
2609                                  cast<AtomicSDNode>(Node)->getOrdering(),
2610                                  cast<AtomicSDNode>(Node)->getSynchScope());
2611     Results.push_back(Swap.getValue(0));
2612     Results.push_back(Swap.getValue(1));
2613     break;
2614   }
2615   case ISD::ATOMIC_STORE: {
2616     // There is no libcall for atomic store; fake it with ATOMIC_SWAP.
2617     SDValue Swap = DAG.getAtomic(ISD::ATOMIC_SWAP, dl,
2618                                  cast<AtomicSDNode>(Node)->getMemoryVT(),
2619                                  Node->getOperand(0),
2620                                  Node->getOperand(1), Node->getOperand(2),
2621                                  cast<AtomicSDNode>(Node)->getMemOperand(),
2622                                  cast<AtomicSDNode>(Node)->getOrdering(),
2623                                  cast<AtomicSDNode>(Node)->getSynchScope());
2624     Results.push_back(Swap.getValue(1));
2625     break;
2626   }
2627   // By default, atomic intrinsics are marked Legal and lowered. Targets
2628   // which don't support them directly, however, may want libcalls, in which
2629   // case they mark them Expand, and we get here.
2630   case ISD::ATOMIC_SWAP:
2631   case ISD::ATOMIC_LOAD_ADD:
2632   case ISD::ATOMIC_LOAD_SUB:
2633   case ISD::ATOMIC_LOAD_AND:
2634   case ISD::ATOMIC_LOAD_OR:
2635   case ISD::ATOMIC_LOAD_XOR:
2636   case ISD::ATOMIC_LOAD_NAND:
2637   case ISD::ATOMIC_LOAD_MIN:
2638   case ISD::ATOMIC_LOAD_MAX:
2639   case ISD::ATOMIC_LOAD_UMIN:
2640   case ISD::ATOMIC_LOAD_UMAX:
2641   case ISD::ATOMIC_CMP_SWAP: {
2642     std::pair<SDValue, SDValue> Tmp = ExpandAtomic(Node);
2643     Results.push_back(Tmp.first);
2644     Results.push_back(Tmp.second);
2645     break;
2646   }
2647   case ISD::DYNAMIC_STACKALLOC:
2648     ExpandDYNAMIC_STACKALLOC(Node, Results);
2649     break;
2650   case ISD::MERGE_VALUES:
2651     for (unsigned i = 0; i < Node->getNumValues(); i++)
2652       Results.push_back(Node->getOperand(i));
2653     break;
2654   case ISD::UNDEF: {
2655     EVT VT = Node->getValueType(0);
2656     if (VT.isInteger())
2657       Results.push_back(DAG.getConstant(0, VT));
2658     else {
2659       assert(VT.isFloatingPoint() && "Unknown value type!");
2660       Results.push_back(DAG.getConstantFP(0, VT));
2661     }
2662     break;
2663   }
2664   case ISD::TRAP: {
2665     // If this operation is not supported, lower it to 'abort()' call
2666     TargetLowering::ArgListTy Args;
2667     TargetLowering::
2668     CallLoweringInfo CLI(Node->getOperand(0),
2669                          Type::getVoidTy(*DAG.getContext()),
2670                       false, false, false, false, 0, CallingConv::C,
2671                       /*isTailCall=*/false,
2672                       /*doesNotReturn=*/false, /*isReturnValueUsed=*/true,
2673                       DAG.getExternalSymbol("abort", TLI.getPointerTy()),
2674                       Args, DAG, dl);
2675     std::pair<SDValue, SDValue> CallResult = TLI.LowerCallTo(CLI);
2676
2677     Results.push_back(CallResult.second);
2678     break;
2679   }
2680   case ISD::FP_ROUND:
2681   case ISD::BITCAST:
2682     Tmp1 = EmitStackConvert(Node->getOperand(0), Node->getValueType(0),
2683                             Node->getValueType(0), dl);
2684     Results.push_back(Tmp1);
2685     break;
2686   case ISD::FP_EXTEND:
2687     Tmp1 = EmitStackConvert(Node->getOperand(0),
2688                             Node->getOperand(0).getValueType(),
2689                             Node->getValueType(0), dl);
2690     Results.push_back(Tmp1);
2691     break;
2692   case ISD::SIGN_EXTEND_INREG: {
2693     // NOTE: we could fall back on load/store here too for targets without
2694     // SAR.  However, it is doubtful that any exist.
2695     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2696     EVT VT = Node->getValueType(0);
2697     EVT ShiftAmountTy = TLI.getShiftAmountTy(VT);
2698     if (VT.isVector())
2699       ShiftAmountTy = VT;
2700     unsigned BitsDiff = VT.getScalarType().getSizeInBits() -
2701                         ExtraVT.getScalarType().getSizeInBits();
2702     SDValue ShiftCst = DAG.getConstant(BitsDiff, ShiftAmountTy);
2703     Tmp1 = DAG.getNode(ISD::SHL, dl, Node->getValueType(0),
2704                        Node->getOperand(0), ShiftCst);
2705     Tmp1 = DAG.getNode(ISD::SRA, dl, Node->getValueType(0), Tmp1, ShiftCst);
2706     Results.push_back(Tmp1);
2707     break;
2708   }
2709   case ISD::FP_ROUND_INREG: {
2710     // The only way we can lower this is to turn it into a TRUNCSTORE,
2711     // EXTLOAD pair, targeting a temporary location (a stack slot).
2712
2713     // NOTE: there is a choice here between constantly creating new stack
2714     // slots and always reusing the same one.  We currently always create
2715     // new ones, as reuse may inhibit scheduling.
2716     EVT ExtraVT = cast<VTSDNode>(Node->getOperand(1))->getVT();
2717     Tmp1 = EmitStackConvert(Node->getOperand(0), ExtraVT,
2718                             Node->getValueType(0), dl);
2719     Results.push_back(Tmp1);
2720     break;
2721   }
2722   case ISD::SINT_TO_FP:
2723   case ISD::UINT_TO_FP:
2724     Tmp1 = ExpandLegalINT_TO_FP(Node->getOpcode() == ISD::SINT_TO_FP,
2725                                 Node->getOperand(0), Node->getValueType(0), dl);
2726     Results.push_back(Tmp1);
2727     break;
2728   case ISD::FP_TO_UINT: {
2729     SDValue True, False;
2730     EVT VT =  Node->getOperand(0).getValueType();
2731     EVT NVT = Node->getValueType(0);
2732     APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
2733     APInt x = APInt::getSignBit(NVT.getSizeInBits());
2734     (void)apf.convertFromAPInt(x, false, APFloat::rmNearestTiesToEven);
2735     Tmp1 = DAG.getConstantFP(apf, VT);
2736     Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(VT),
2737                         Node->getOperand(0),
2738                         Tmp1, ISD::SETLT);
2739     True = DAG.getNode(ISD::FP_TO_SINT, dl, NVT, Node->getOperand(0));
2740     False = DAG.getNode(ISD::FP_TO_SINT, dl, NVT,
2741                         DAG.getNode(ISD::FSUB, dl, VT,
2742                                     Node->getOperand(0), Tmp1));
2743     False = DAG.getNode(ISD::XOR, dl, NVT, False,
2744                         DAG.getConstant(x, NVT));
2745     Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2, True, False);
2746     Results.push_back(Tmp1);
2747     break;
2748   }
2749   case ISD::VAARG: {
2750     const Value *V = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
2751     EVT VT = Node->getValueType(0);
2752     Tmp1 = Node->getOperand(0);
2753     Tmp2 = Node->getOperand(1);
2754     unsigned Align = Node->getConstantOperandVal(3);
2755
2756     SDValue VAListLoad = DAG.getLoad(TLI.getPointerTy(), dl, Tmp1, Tmp2,
2757                                      MachinePointerInfo(V), 
2758                                      false, false, false, 0);
2759     SDValue VAList = VAListLoad;
2760
2761     if (Align > TLI.getMinStackArgumentAlignment()) {
2762       assert(((Align & (Align-1)) == 0) && "Expected Align to be a power of 2");
2763
2764       VAList = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2765                            DAG.getConstant(Align - 1,
2766                                            TLI.getPointerTy()));
2767
2768       VAList = DAG.getNode(ISD::AND, dl, TLI.getPointerTy(), VAList,
2769                            DAG.getConstant(-(int64_t)Align,
2770                                            TLI.getPointerTy()));
2771     }
2772
2773     // Increment the pointer, VAList, to the next vaarg
2774     Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
2775                        DAG.getConstant(TLI.getTargetData()->
2776                           getTypeAllocSize(VT.getTypeForEVT(*DAG.getContext())),
2777                                        TLI.getPointerTy()));
2778     // Store the incremented VAList to the legalized pointer
2779     Tmp3 = DAG.getStore(VAListLoad.getValue(1), dl, Tmp3, Tmp2,
2780                         MachinePointerInfo(V), false, false, 0);
2781     // Load the actual argument out of the pointer VAList
2782     Results.push_back(DAG.getLoad(VT, dl, Tmp3, VAList, MachinePointerInfo(),
2783                                   false, false, false, 0));
2784     Results.push_back(Results[0].getValue(1));
2785     break;
2786   }
2787   case ISD::VACOPY: {
2788     // This defaults to loading a pointer from the input and storing it to the
2789     // output, returning the chain.
2790     const Value *VD = cast<SrcValueSDNode>(Node->getOperand(3))->getValue();
2791     const Value *VS = cast<SrcValueSDNode>(Node->getOperand(4))->getValue();
2792     Tmp1 = DAG.getLoad(TLI.getPointerTy(), dl, Node->getOperand(0),
2793                        Node->getOperand(2), MachinePointerInfo(VS),
2794                        false, false, false, 0);
2795     Tmp1 = DAG.getStore(Tmp1.getValue(1), dl, Tmp1, Node->getOperand(1),
2796                         MachinePointerInfo(VD), false, false, 0);
2797     Results.push_back(Tmp1);
2798     break;
2799   }
2800   case ISD::EXTRACT_VECTOR_ELT:
2801     if (Node->getOperand(0).getValueType().getVectorNumElements() == 1)
2802       // This must be an access of the only element.  Return it.
2803       Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0),
2804                          Node->getOperand(0));
2805     else
2806       Tmp1 = ExpandExtractFromVectorThroughStack(SDValue(Node, 0));
2807     Results.push_back(Tmp1);
2808     break;
2809   case ISD::EXTRACT_SUBVECTOR:
2810     Results.push_back(ExpandExtractFromVectorThroughStack(SDValue(Node, 0)));
2811     break;
2812   case ISD::INSERT_SUBVECTOR:
2813     Results.push_back(ExpandInsertToVectorThroughStack(SDValue(Node, 0)));
2814     break;
2815   case ISD::CONCAT_VECTORS: {
2816     Results.push_back(ExpandVectorBuildThroughStack(Node));
2817     break;
2818   }
2819   case ISD::SCALAR_TO_VECTOR:
2820     Results.push_back(ExpandSCALAR_TO_VECTOR(Node));
2821     break;
2822   case ISD::INSERT_VECTOR_ELT:
2823     Results.push_back(ExpandINSERT_VECTOR_ELT(Node->getOperand(0),
2824                                               Node->getOperand(1),
2825                                               Node->getOperand(2), dl));
2826     break;
2827   case ISD::VECTOR_SHUFFLE: {
2828     SmallVector<int, 32> NewMask;
2829     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
2830
2831     EVT VT = Node->getValueType(0);
2832     EVT EltVT = VT.getVectorElementType();
2833     SDValue Op0 = Node->getOperand(0);
2834     SDValue Op1 = Node->getOperand(1);
2835     if (!TLI.isTypeLegal(EltVT)) {
2836
2837       EVT NewEltVT = TLI.getTypeToTransformTo(*DAG.getContext(), EltVT);
2838
2839       // BUILD_VECTOR operands are allowed to be wider than the element type.
2840       // But if NewEltVT is smaller that EltVT the BUILD_VECTOR does not accept it
2841       if (NewEltVT.bitsLT(EltVT)) {
2842
2843         // Convert shuffle node.
2844         // If original node was v4i64 and the new EltVT is i32,
2845         // cast operands to v8i32 and re-build the mask.
2846
2847         // Calculate new VT, the size of the new VT should be equal to original.
2848         EVT NewVT = EVT::getVectorVT(*DAG.getContext(), NewEltVT, 
2849                                       VT.getSizeInBits()/NewEltVT.getSizeInBits());
2850         assert(NewVT.bitsEq(VT));
2851
2852         // cast operands to new VT
2853         Op0 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op0);
2854         Op1 = DAG.getNode(ISD::BITCAST, dl, NewVT, Op1);
2855
2856         // Convert the shuffle mask
2857         unsigned int factor = NewVT.getVectorNumElements()/VT.getVectorNumElements();
2858
2859         // EltVT gets smaller
2860         assert(factor > 0);
2861
2862         for (unsigned i = 0; i < VT.getVectorNumElements(); ++i) {
2863           if (Mask[i] < 0) {
2864             for (unsigned fi = 0; fi < factor; ++fi)
2865               NewMask.push_back(Mask[i]);
2866           }
2867           else {
2868             for (unsigned fi = 0; fi < factor; ++fi)
2869               NewMask.push_back(Mask[i]*factor+fi);
2870           }
2871         }
2872         Mask = NewMask;
2873         VT = NewVT;
2874       }
2875       EltVT = NewEltVT;
2876     }
2877     unsigned NumElems = VT.getVectorNumElements();
2878     SmallVector<SDValue, 16> Ops;
2879     for (unsigned i = 0; i != NumElems; ++i) {
2880       if (Mask[i] < 0) {
2881         Ops.push_back(DAG.getUNDEF(EltVT));
2882         continue;
2883       }
2884       unsigned Idx = Mask[i];
2885       if (Idx < NumElems)
2886         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2887                                   Op0,
2888                                   DAG.getIntPtrConstant(Idx)));
2889       else
2890         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl, EltVT,
2891                                   Op1,
2892                                   DAG.getIntPtrConstant(Idx - NumElems)));
2893     }
2894
2895     Tmp1 = DAG.getNode(ISD::BUILD_VECTOR, dl, VT, &Ops[0], Ops.size());
2896     // We may have changed the BUILD_VECTOR type. Cast it back to the Node type.
2897     Tmp1 = DAG.getNode(ISD::BITCAST, dl, Node->getValueType(0), Tmp1);
2898     Results.push_back(Tmp1);
2899     break;
2900   }
2901   case ISD::EXTRACT_ELEMENT: {
2902     EVT OpTy = Node->getOperand(0).getValueType();
2903     if (cast<ConstantSDNode>(Node->getOperand(1))->getZExtValue()) {
2904       // 1 -> Hi
2905       Tmp1 = DAG.getNode(ISD::SRL, dl, OpTy, Node->getOperand(0),
2906                          DAG.getConstant(OpTy.getSizeInBits()/2,
2907                     TLI.getShiftAmountTy(Node->getOperand(0).getValueType())));
2908       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0), Tmp1);
2909     } else {
2910       // 0 -> Lo
2911       Tmp1 = DAG.getNode(ISD::TRUNCATE, dl, Node->getValueType(0),
2912                          Node->getOperand(0));
2913     }
2914     Results.push_back(Tmp1);
2915     break;
2916   }
2917   case ISD::STACKSAVE:
2918     // Expand to CopyFromReg if the target set
2919     // StackPointerRegisterToSaveRestore.
2920     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2921       Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, SP,
2922                                            Node->getValueType(0)));
2923       Results.push_back(Results[0].getValue(1));
2924     } else {
2925       Results.push_back(DAG.getUNDEF(Node->getValueType(0)));
2926       Results.push_back(Node->getOperand(0));
2927     }
2928     break;
2929   case ISD::STACKRESTORE:
2930     // Expand to CopyToReg if the target set
2931     // StackPointerRegisterToSaveRestore.
2932     if (unsigned SP = TLI.getStackPointerRegisterToSaveRestore()) {
2933       Results.push_back(DAG.getCopyToReg(Node->getOperand(0), dl, SP,
2934                                          Node->getOperand(1)));
2935     } else {
2936       Results.push_back(Node->getOperand(0));
2937     }
2938     break;
2939   case ISD::FCOPYSIGN:
2940     Results.push_back(ExpandFCOPYSIGN(Node));
2941     break;
2942   case ISD::FNEG:
2943     // Expand Y = FNEG(X) ->  Y = SUB -0.0, X
2944     Tmp1 = DAG.getConstantFP(-0.0, Node->getValueType(0));
2945     Tmp1 = DAG.getNode(ISD::FSUB, dl, Node->getValueType(0), Tmp1,
2946                        Node->getOperand(0));
2947     Results.push_back(Tmp1);
2948     break;
2949   case ISD::FABS: {
2950     // Expand Y = FABS(X) -> Y = (X >u 0.0) ? X : fneg(X).
2951     EVT VT = Node->getValueType(0);
2952     Tmp1 = Node->getOperand(0);
2953     Tmp2 = DAG.getConstantFP(0.0, VT);
2954     Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(Tmp1.getValueType()),
2955                         Tmp1, Tmp2, ISD::SETUGT);
2956     Tmp3 = DAG.getNode(ISD::FNEG, dl, VT, Tmp1);
2957     Tmp1 = DAG.getNode(ISD::SELECT, dl, VT, Tmp2, Tmp1, Tmp3);
2958     Results.push_back(Tmp1);
2959     break;
2960   }
2961   case ISD::FSQRT:
2962     Results.push_back(ExpandFPLibCall(Node, RTLIB::SQRT_F32, RTLIB::SQRT_F64,
2963                                       RTLIB::SQRT_F80, RTLIB::SQRT_PPCF128));
2964     break;
2965   case ISD::FSIN:
2966     Results.push_back(ExpandFPLibCall(Node, RTLIB::SIN_F32, RTLIB::SIN_F64,
2967                                       RTLIB::SIN_F80, RTLIB::SIN_PPCF128));
2968     break;
2969   case ISD::FCOS:
2970     Results.push_back(ExpandFPLibCall(Node, RTLIB::COS_F32, RTLIB::COS_F64,
2971                                       RTLIB::COS_F80, RTLIB::COS_PPCF128));
2972     break;
2973   case ISD::FLOG:
2974     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG_F32, RTLIB::LOG_F64,
2975                                       RTLIB::LOG_F80, RTLIB::LOG_PPCF128));
2976     break;
2977   case ISD::FLOG2:
2978     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG2_F32, RTLIB::LOG2_F64,
2979                                       RTLIB::LOG2_F80, RTLIB::LOG2_PPCF128));
2980     break;
2981   case ISD::FLOG10:
2982     Results.push_back(ExpandFPLibCall(Node, RTLIB::LOG10_F32, RTLIB::LOG10_F64,
2983                                       RTLIB::LOG10_F80, RTLIB::LOG10_PPCF128));
2984     break;
2985   case ISD::FEXP:
2986     Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP_F32, RTLIB::EXP_F64,
2987                                       RTLIB::EXP_F80, RTLIB::EXP_PPCF128));
2988     break;
2989   case ISD::FEXP2:
2990     Results.push_back(ExpandFPLibCall(Node, RTLIB::EXP2_F32, RTLIB::EXP2_F64,
2991                                       RTLIB::EXP2_F80, RTLIB::EXP2_PPCF128));
2992     break;
2993   case ISD::FTRUNC:
2994     Results.push_back(ExpandFPLibCall(Node, RTLIB::TRUNC_F32, RTLIB::TRUNC_F64,
2995                                       RTLIB::TRUNC_F80, RTLIB::TRUNC_PPCF128));
2996     break;
2997   case ISD::FFLOOR:
2998     Results.push_back(ExpandFPLibCall(Node, RTLIB::FLOOR_F32, RTLIB::FLOOR_F64,
2999                                       RTLIB::FLOOR_F80, RTLIB::FLOOR_PPCF128));
3000     break;
3001   case ISD::FCEIL:
3002     Results.push_back(ExpandFPLibCall(Node, RTLIB::CEIL_F32, RTLIB::CEIL_F64,
3003                                       RTLIB::CEIL_F80, RTLIB::CEIL_PPCF128));
3004     break;
3005   case ISD::FRINT:
3006     Results.push_back(ExpandFPLibCall(Node, RTLIB::RINT_F32, RTLIB::RINT_F64,
3007                                       RTLIB::RINT_F80, RTLIB::RINT_PPCF128));
3008     break;
3009   case ISD::FNEARBYINT:
3010     Results.push_back(ExpandFPLibCall(Node, RTLIB::NEARBYINT_F32,
3011                                       RTLIB::NEARBYINT_F64,
3012                                       RTLIB::NEARBYINT_F80,
3013                                       RTLIB::NEARBYINT_PPCF128));
3014     break;
3015   case ISD::FPOWI:
3016     Results.push_back(ExpandFPLibCall(Node, RTLIB::POWI_F32, RTLIB::POWI_F64,
3017                                       RTLIB::POWI_F80, RTLIB::POWI_PPCF128));
3018     break;
3019   case ISD::FPOW:
3020     Results.push_back(ExpandFPLibCall(Node, RTLIB::POW_F32, RTLIB::POW_F64,
3021                                       RTLIB::POW_F80, RTLIB::POW_PPCF128));
3022     break;
3023   case ISD::FDIV:
3024     Results.push_back(ExpandFPLibCall(Node, RTLIB::DIV_F32, RTLIB::DIV_F64,
3025                                       RTLIB::DIV_F80, RTLIB::DIV_PPCF128));
3026     break;
3027   case ISD::FREM:
3028     Results.push_back(ExpandFPLibCall(Node, RTLIB::REM_F32, RTLIB::REM_F64,
3029                                       RTLIB::REM_F80, RTLIB::REM_PPCF128));
3030     break;
3031   case ISD::FMA:
3032     Results.push_back(ExpandFPLibCall(Node, RTLIB::FMA_F32, RTLIB::FMA_F64,
3033                                       RTLIB::FMA_F80, RTLIB::FMA_PPCF128));
3034     break;
3035   case ISD::FP16_TO_FP32:
3036     Results.push_back(ExpandLibCall(RTLIB::FPEXT_F16_F32, Node, false));
3037     break;
3038   case ISD::FP32_TO_FP16:
3039     Results.push_back(ExpandLibCall(RTLIB::FPROUND_F32_F16, Node, false));
3040     break;
3041   case ISD::ConstantFP: {
3042     ConstantFPSDNode *CFP = cast<ConstantFPSDNode>(Node);
3043     // Check to see if this FP immediate is already legal.
3044     // If this is a legal constant, turn it into a TargetConstantFP node.
3045     if (!TLI.isFPImmLegal(CFP->getValueAPF(), Node->getValueType(0)))
3046       Results.push_back(ExpandConstantFP(CFP, true));
3047     break;
3048   }
3049   case ISD::EHSELECTION: {
3050     unsigned Reg = TLI.getExceptionSelectorRegister();
3051     assert(Reg && "Can't expand to unknown register!");
3052     Results.push_back(DAG.getCopyFromReg(Node->getOperand(1), dl, Reg,
3053                                          Node->getValueType(0)));
3054     Results.push_back(Results[0].getValue(1));
3055     break;
3056   }
3057   case ISD::EXCEPTIONADDR: {
3058     unsigned Reg = TLI.getExceptionPointerRegister();
3059     assert(Reg && "Can't expand to unknown register!");
3060     Results.push_back(DAG.getCopyFromReg(Node->getOperand(0), dl, Reg,
3061                                          Node->getValueType(0)));
3062     Results.push_back(Results[0].getValue(1));
3063     break;
3064   }
3065   case ISD::FSUB: {
3066     EVT VT = Node->getValueType(0);
3067     assert(TLI.isOperationLegalOrCustom(ISD::FADD, VT) &&
3068            TLI.isOperationLegalOrCustom(ISD::FNEG, VT) &&
3069            "Don't know how to expand this FP subtraction!");
3070     Tmp1 = DAG.getNode(ISD::FNEG, dl, VT, Node->getOperand(1));
3071     Tmp1 = DAG.getNode(ISD::FADD, dl, VT, Node->getOperand(0), Tmp1);
3072     Results.push_back(Tmp1);
3073     break;
3074   }
3075   case ISD::SUB: {
3076     EVT VT = Node->getValueType(0);
3077     assert(TLI.isOperationLegalOrCustom(ISD::ADD, VT) &&
3078            TLI.isOperationLegalOrCustom(ISD::XOR, VT) &&
3079            "Don't know how to expand this subtraction!");
3080     Tmp1 = DAG.getNode(ISD::XOR, dl, VT, Node->getOperand(1),
3081                DAG.getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT));
3082     Tmp1 = DAG.getNode(ISD::ADD, dl, VT, Tmp1, DAG.getConstant(1, VT));
3083     Results.push_back(DAG.getNode(ISD::ADD, dl, VT, Node->getOperand(0), Tmp1));
3084     break;
3085   }
3086   case ISD::UREM:
3087   case ISD::SREM: {
3088     EVT VT = Node->getValueType(0);
3089     SDVTList VTs = DAG.getVTList(VT, VT);
3090     bool isSigned = Node->getOpcode() == ISD::SREM;
3091     unsigned DivOpc = isSigned ? ISD::SDIV : ISD::UDIV;
3092     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3093     Tmp2 = Node->getOperand(0);
3094     Tmp3 = Node->getOperand(1);
3095     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3096         (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3097          useDivRem(Node, isSigned, false))) {
3098       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Tmp2, Tmp3).getValue(1);
3099     } else if (TLI.isOperationLegalOrCustom(DivOpc, VT)) {
3100       // X % Y -> X-X/Y*Y
3101       Tmp1 = DAG.getNode(DivOpc, dl, VT, Tmp2, Tmp3);
3102       Tmp1 = DAG.getNode(ISD::MUL, dl, VT, Tmp1, Tmp3);
3103       Tmp1 = DAG.getNode(ISD::SUB, dl, VT, Tmp2, Tmp1);
3104     } else if (isSigned)
3105       Tmp1 = ExpandIntLibCall(Node, true,
3106                               RTLIB::SREM_I8,
3107                               RTLIB::SREM_I16, RTLIB::SREM_I32,
3108                               RTLIB::SREM_I64, RTLIB::SREM_I128);
3109     else
3110       Tmp1 = ExpandIntLibCall(Node, false,
3111                               RTLIB::UREM_I8,
3112                               RTLIB::UREM_I16, RTLIB::UREM_I32,
3113                               RTLIB::UREM_I64, RTLIB::UREM_I128);
3114     Results.push_back(Tmp1);
3115     break;
3116   }
3117   case ISD::UDIV:
3118   case ISD::SDIV: {
3119     bool isSigned = Node->getOpcode() == ISD::SDIV;
3120     unsigned DivRemOpc = isSigned ? ISD::SDIVREM : ISD::UDIVREM;
3121     EVT VT = Node->getValueType(0);
3122     SDVTList VTs = DAG.getVTList(VT, VT);
3123     if (TLI.isOperationLegalOrCustom(DivRemOpc, VT) ||
3124         (isDivRemLibcallAvailable(Node, isSigned, TLI) &&
3125          useDivRem(Node, isSigned, true)))
3126       Tmp1 = DAG.getNode(DivRemOpc, dl, VTs, Node->getOperand(0),
3127                          Node->getOperand(1));
3128     else if (isSigned)
3129       Tmp1 = ExpandIntLibCall(Node, true,
3130                               RTLIB::SDIV_I8,
3131                               RTLIB::SDIV_I16, RTLIB::SDIV_I32,
3132                               RTLIB::SDIV_I64, RTLIB::SDIV_I128);
3133     else
3134       Tmp1 = ExpandIntLibCall(Node, false,
3135                               RTLIB::UDIV_I8,
3136                               RTLIB::UDIV_I16, RTLIB::UDIV_I32,
3137                               RTLIB::UDIV_I64, RTLIB::UDIV_I128);
3138     Results.push_back(Tmp1);
3139     break;
3140   }
3141   case ISD::MULHU:
3142   case ISD::MULHS: {
3143     unsigned ExpandOpcode = Node->getOpcode() == ISD::MULHU ? ISD::UMUL_LOHI :
3144                                                               ISD::SMUL_LOHI;
3145     EVT VT = Node->getValueType(0);
3146     SDVTList VTs = DAG.getVTList(VT, VT);
3147     assert(TLI.isOperationLegalOrCustom(ExpandOpcode, VT) &&
3148            "If this wasn't legal, it shouldn't have been created!");
3149     Tmp1 = DAG.getNode(ExpandOpcode, dl, VTs, Node->getOperand(0),
3150                        Node->getOperand(1));
3151     Results.push_back(Tmp1.getValue(1));
3152     break;
3153   }
3154   case ISD::SDIVREM:
3155   case ISD::UDIVREM:
3156     // Expand into divrem libcall
3157     ExpandDivRemLibCall(Node, Results);
3158     break;
3159   case ISD::MUL: {
3160     EVT VT = Node->getValueType(0);
3161     SDVTList VTs = DAG.getVTList(VT, VT);
3162     // See if multiply or divide can be lowered using two-result operations.
3163     // We just need the low half of the multiply; try both the signed
3164     // and unsigned forms. If the target supports both SMUL_LOHI and
3165     // UMUL_LOHI, form a preference by checking which forms of plain
3166     // MULH it supports.
3167     bool HasSMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::SMUL_LOHI, VT);
3168     bool HasUMUL_LOHI = TLI.isOperationLegalOrCustom(ISD::UMUL_LOHI, VT);
3169     bool HasMULHS = TLI.isOperationLegalOrCustom(ISD::MULHS, VT);
3170     bool HasMULHU = TLI.isOperationLegalOrCustom(ISD::MULHU, VT);
3171     unsigned OpToUse = 0;
3172     if (HasSMUL_LOHI && !HasMULHS) {
3173       OpToUse = ISD::SMUL_LOHI;
3174     } else if (HasUMUL_LOHI && !HasMULHU) {
3175       OpToUse = ISD::UMUL_LOHI;
3176     } else if (HasSMUL_LOHI) {
3177       OpToUse = ISD::SMUL_LOHI;
3178     } else if (HasUMUL_LOHI) {
3179       OpToUse = ISD::UMUL_LOHI;
3180     }
3181     if (OpToUse) {
3182       Results.push_back(DAG.getNode(OpToUse, dl, VTs, Node->getOperand(0),
3183                                     Node->getOperand(1)));
3184       break;
3185     }
3186     Tmp1 = ExpandIntLibCall(Node, false,
3187                             RTLIB::MUL_I8,
3188                             RTLIB::MUL_I16, RTLIB::MUL_I32,
3189                             RTLIB::MUL_I64, RTLIB::MUL_I128);
3190     Results.push_back(Tmp1);
3191     break;
3192   }
3193   case ISD::SADDO:
3194   case ISD::SSUBO: {
3195     SDValue LHS = Node->getOperand(0);
3196     SDValue RHS = Node->getOperand(1);
3197     SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::SADDO ?
3198                               ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3199                               LHS, RHS);
3200     Results.push_back(Sum);
3201     EVT OType = Node->getValueType(1);
3202
3203     SDValue Zero = DAG.getConstant(0, LHS.getValueType());
3204
3205     //   LHSSign -> LHS >= 0
3206     //   RHSSign -> RHS >= 0
3207     //   SumSign -> Sum >= 0
3208     //
3209     //   Add:
3210     //   Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
3211     //   Sub:
3212     //   Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
3213     //
3214     SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
3215     SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
3216     SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
3217                                       Node->getOpcode() == ISD::SADDO ?
3218                                       ISD::SETEQ : ISD::SETNE);
3219
3220     SDValue SumSign = DAG.getSetCC(dl, OType, Sum, Zero, ISD::SETGE);
3221     SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
3222
3223     SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
3224     Results.push_back(Cmp);
3225     break;
3226   }
3227   case ISD::UADDO:
3228   case ISD::USUBO: {
3229     SDValue LHS = Node->getOperand(0);
3230     SDValue RHS = Node->getOperand(1);
3231     SDValue Sum = DAG.getNode(Node->getOpcode() == ISD::UADDO ?
3232                               ISD::ADD : ISD::SUB, dl, LHS.getValueType(),
3233                               LHS, RHS);
3234     Results.push_back(Sum);
3235     Results.push_back(DAG.getSetCC(dl, Node->getValueType(1), Sum, LHS,
3236                                    Node->getOpcode () == ISD::UADDO ?
3237                                    ISD::SETULT : ISD::SETUGT));
3238     break;
3239   }
3240   case ISD::UMULO:
3241   case ISD::SMULO: {
3242     EVT VT = Node->getValueType(0);
3243     EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits() * 2);
3244     SDValue LHS = Node->getOperand(0);
3245     SDValue RHS = Node->getOperand(1);
3246     SDValue BottomHalf;
3247     SDValue TopHalf;
3248     static const unsigned Ops[2][3] =
3249         { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
3250           { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
3251     bool isSigned = Node->getOpcode() == ISD::SMULO;
3252     if (TLI.isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
3253       BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
3254       TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
3255     } else if (TLI.isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
3256       BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
3257                                RHS);
3258       TopHalf = BottomHalf.getValue(1);
3259     } else if (TLI.isTypeLegal(EVT::getIntegerVT(*DAG.getContext(),
3260                                                  VT.getSizeInBits() * 2))) {
3261       LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
3262       RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
3263       Tmp1 = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
3264       BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3265                                DAG.getIntPtrConstant(0));
3266       TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Tmp1,
3267                             DAG.getIntPtrConstant(1));
3268     } else {
3269       // We can fall back to a libcall with an illegal type for the MUL if we
3270       // have a libcall big enough.
3271       // Also, we can fall back to a division in some cases, but that's a big
3272       // performance hit in the general case.
3273       RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
3274       if (WideVT == MVT::i16)
3275         LC = RTLIB::MUL_I16;
3276       else if (WideVT == MVT::i32)
3277         LC = RTLIB::MUL_I32;
3278       else if (WideVT == MVT::i64)
3279         LC = RTLIB::MUL_I64;
3280       else if (WideVT == MVT::i128)
3281         LC = RTLIB::MUL_I128;
3282       assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
3283
3284       // The high part is obtained by SRA'ing all but one of the bits of low
3285       // part.
3286       unsigned LoSize = VT.getSizeInBits();
3287       SDValue HiLHS = DAG.getNode(ISD::SRA, dl, VT, RHS,
3288                                 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3289       SDValue HiRHS = DAG.getNode(ISD::SRA, dl, VT, LHS,
3290                                 DAG.getConstant(LoSize-1, TLI.getPointerTy()));
3291
3292       // Here we're passing the 2 arguments explicitly as 4 arguments that are
3293       // pre-lowered to the correct types. This all depends upon WideVT not
3294       // being a legal type for the architecture and thus has to be split to
3295       // two arguments.
3296       SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
3297       SDValue Ret = ExpandLibCall(LC, WideVT, Args, 4, isSigned, dl);
3298       BottomHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3299                                DAG.getIntPtrConstant(0));
3300       TopHalf = DAG.getNode(ISD::EXTRACT_ELEMENT, dl, VT, Ret,
3301                             DAG.getIntPtrConstant(1));
3302       // Ret is a node with an illegal type. Because such things are not
3303       // generally permitted during this phase of legalization, delete the
3304       // node. The above EXTRACT_ELEMENT nodes should have been folded.
3305       DAG.DeleteNode(Ret.getNode());
3306     }
3307
3308     if (isSigned) {
3309       Tmp1 = DAG.getConstant(VT.getSizeInBits() - 1,
3310                              TLI.getShiftAmountTy(BottomHalf.getValueType()));
3311       Tmp1 = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, Tmp1);
3312       TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf, Tmp1,
3313                              ISD::SETNE);
3314     } else {
3315       TopHalf = DAG.getSetCC(dl, TLI.getSetCCResultType(VT), TopHalf,
3316                              DAG.getConstant(0, VT), ISD::SETNE);
3317     }
3318     Results.push_back(BottomHalf);
3319     Results.push_back(TopHalf);
3320     break;
3321   }
3322   case ISD::BUILD_PAIR: {
3323     EVT PairTy = Node->getValueType(0);
3324     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, PairTy, Node->getOperand(0));
3325     Tmp2 = DAG.getNode(ISD::ANY_EXTEND, dl, PairTy, Node->getOperand(1));
3326     Tmp2 = DAG.getNode(ISD::SHL, dl, PairTy, Tmp2,
3327                        DAG.getConstant(PairTy.getSizeInBits()/2,
3328                                        TLI.getShiftAmountTy(PairTy)));
3329     Results.push_back(DAG.getNode(ISD::OR, dl, PairTy, Tmp1, Tmp2));
3330     break;
3331   }
3332   case ISD::SELECT:
3333     Tmp1 = Node->getOperand(0);
3334     Tmp2 = Node->getOperand(1);
3335     Tmp3 = Node->getOperand(2);
3336     if (Tmp1.getOpcode() == ISD::SETCC) {
3337       Tmp1 = DAG.getSelectCC(dl, Tmp1.getOperand(0), Tmp1.getOperand(1),
3338                              Tmp2, Tmp3,
3339                              cast<CondCodeSDNode>(Tmp1.getOperand(2))->get());
3340     } else {
3341       Tmp1 = DAG.getSelectCC(dl, Tmp1,
3342                              DAG.getConstant(0, Tmp1.getValueType()),
3343                              Tmp2, Tmp3, ISD::SETNE);
3344     }
3345     Results.push_back(Tmp1);
3346     break;
3347   case ISD::BR_JT: {
3348     SDValue Chain = Node->getOperand(0);
3349     SDValue Table = Node->getOperand(1);
3350     SDValue Index = Node->getOperand(2);
3351
3352     EVT PTy = TLI.getPointerTy();
3353
3354     const TargetData &TD = *TLI.getTargetData();
3355     unsigned EntrySize =
3356       DAG.getMachineFunction().getJumpTableInfo()->getEntrySize(TD);
3357
3358     Index = DAG.getNode(ISD::MUL, dl, PTy,
3359                         Index, DAG.getConstant(EntrySize, PTy));
3360     SDValue Addr = DAG.getNode(ISD::ADD, dl, PTy, Index, Table);
3361
3362     EVT MemVT = EVT::getIntegerVT(*DAG.getContext(), EntrySize * 8);
3363     SDValue LD = DAG.getExtLoad(ISD::SEXTLOAD, dl, PTy, Chain, Addr,
3364                                 MachinePointerInfo::getJumpTable(), MemVT,
3365                                 false, false, 0);
3366     Addr = LD;
3367     if (TM.getRelocationModel() == Reloc::PIC_) {
3368       // For PIC, the sequence is:
3369       // BRIND(load(Jumptable + index) + RelocBase)
3370       // RelocBase can be JumpTable, GOT or some sort of global base.
3371       Addr = DAG.getNode(ISD::ADD, dl, PTy, Addr,
3372                           TLI.getPICJumpTableRelocBase(Table, DAG));
3373     }
3374     Tmp1 = DAG.getNode(ISD::BRIND, dl, MVT::Other, LD.getValue(1), Addr);
3375     Results.push_back(Tmp1);
3376     break;
3377   }
3378   case ISD::BRCOND:
3379     // Expand brcond's setcc into its constituent parts and create a BR_CC
3380     // Node.
3381     Tmp1 = Node->getOperand(0);
3382     Tmp2 = Node->getOperand(1);
3383     if (Tmp2.getOpcode() == ISD::SETCC) {
3384       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other,
3385                          Tmp1, Tmp2.getOperand(2),
3386                          Tmp2.getOperand(0), Tmp2.getOperand(1),
3387                          Node->getOperand(2));
3388     } else {
3389       // We test only the i1 bit.  Skip the AND if UNDEF.
3390       Tmp3 = (Tmp2.getOpcode() == ISD::UNDEF) ? Tmp2 :
3391         DAG.getNode(ISD::AND, dl, Tmp2.getValueType(), Tmp2,
3392                     DAG.getConstant(1, Tmp2.getValueType()));
3393       Tmp1 = DAG.getNode(ISD::BR_CC, dl, MVT::Other, Tmp1,
3394                          DAG.getCondCode(ISD::SETNE), Tmp3,
3395                          DAG.getConstant(0, Tmp3.getValueType()),
3396                          Node->getOperand(2));
3397     }
3398     Results.push_back(Tmp1);
3399     break;
3400   case ISD::SETCC: {
3401     Tmp1 = Node->getOperand(0);
3402     Tmp2 = Node->getOperand(1);
3403     Tmp3 = Node->getOperand(2);
3404     LegalizeSetCCCondCode(Node->getValueType(0), Tmp1, Tmp2, Tmp3, dl);
3405
3406     // If we expanded the SETCC into an AND/OR, return the new node
3407     if (Tmp2.getNode() == 0) {
3408       Results.push_back(Tmp1);
3409       break;
3410     }
3411
3412     // Otherwise, SETCC for the given comparison type must be completely
3413     // illegal; expand it into a SELECT_CC.
3414     EVT VT = Node->getValueType(0);
3415     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, VT, Tmp1, Tmp2,
3416                        DAG.getConstant(1, VT), DAG.getConstant(0, VT), Tmp3);
3417     Results.push_back(Tmp1);
3418     break;
3419   }
3420   case ISD::SELECT_CC: {
3421     Tmp1 = Node->getOperand(0);   // LHS
3422     Tmp2 = Node->getOperand(1);   // RHS
3423     Tmp3 = Node->getOperand(2);   // True
3424     Tmp4 = Node->getOperand(3);   // False
3425     SDValue CC = Node->getOperand(4);
3426
3427     LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp1.getValueType()),
3428                           Tmp1, Tmp2, CC, dl);
3429
3430     assert(!Tmp2.getNode() && "Can't legalize SELECT_CC with legal condition!");
3431     Tmp2 = DAG.getConstant(0, Tmp1.getValueType());
3432     CC = DAG.getCondCode(ISD::SETNE);
3433     Tmp1 = DAG.getNode(ISD::SELECT_CC, dl, Node->getValueType(0), Tmp1, Tmp2,
3434                        Tmp3, Tmp4, CC);
3435     Results.push_back(Tmp1);
3436     break;
3437   }
3438   case ISD::BR_CC: {
3439     Tmp1 = Node->getOperand(0);              // Chain
3440     Tmp2 = Node->getOperand(2);              // LHS
3441     Tmp3 = Node->getOperand(3);              // RHS
3442     Tmp4 = Node->getOperand(1);              // CC
3443
3444     LegalizeSetCCCondCode(TLI.getSetCCResultType(Tmp2.getValueType()),
3445                           Tmp2, Tmp3, Tmp4, dl);
3446
3447     assert(!Tmp3.getNode() && "Can't legalize BR_CC with legal condition!");
3448     Tmp3 = DAG.getConstant(0, Tmp2.getValueType());
3449     Tmp4 = DAG.getCondCode(ISD::SETNE);
3450     Tmp1 = DAG.getNode(ISD::BR_CC, dl, Node->getValueType(0), Tmp1, Tmp4, Tmp2,
3451                        Tmp3, Node->getOperand(4));
3452     Results.push_back(Tmp1);
3453     break;
3454   }
3455   case ISD::BUILD_VECTOR:
3456     Results.push_back(ExpandBUILD_VECTOR(Node));
3457     break;
3458   case ISD::SRA:
3459   case ISD::SRL:
3460   case ISD::SHL: {
3461     // Scalarize vector SRA/SRL/SHL.
3462     EVT VT = Node->getValueType(0);
3463     assert(VT.isVector() && "Unable to legalize non-vector shift");
3464     assert(TLI.isTypeLegal(VT.getScalarType())&& "Element type must be legal");
3465     unsigned NumElem = VT.getVectorNumElements();
3466
3467     SmallVector<SDValue, 8> Scalars;
3468     for (unsigned Idx = 0; Idx < NumElem; Idx++) {
3469       SDValue Ex = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3470                                VT.getScalarType(),
3471                                Node->getOperand(0), DAG.getIntPtrConstant(Idx));
3472       SDValue Sh = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, dl,
3473                                VT.getScalarType(),
3474                                Node->getOperand(1), DAG.getIntPtrConstant(Idx));
3475       Scalars.push_back(DAG.getNode(Node->getOpcode(), dl,
3476                                     VT.getScalarType(), Ex, Sh));
3477     }
3478     SDValue Result =
3479       DAG.getNode(ISD::BUILD_VECTOR, dl, Node->getValueType(0),
3480                   &Scalars[0], Scalars.size());
3481     ReplaceNode(SDValue(Node, 0), Result);
3482     break;
3483   }
3484   case ISD::GLOBAL_OFFSET_TABLE:
3485   case ISD::GlobalAddress:
3486   case ISD::GlobalTLSAddress:
3487   case ISD::ExternalSymbol:
3488   case ISD::ConstantPool:
3489   case ISD::JumpTable:
3490   case ISD::INTRINSIC_W_CHAIN:
3491   case ISD::INTRINSIC_WO_CHAIN:
3492   case ISD::INTRINSIC_VOID:
3493     // FIXME: Custom lowering for these operations shouldn't return null!
3494     break;
3495   }
3496
3497   // Replace the original node with the legalized result.
3498   if (!Results.empty())
3499     ReplaceNode(Node, Results.data());
3500 }
3501
3502 void SelectionDAGLegalize::PromoteNode(SDNode *Node) {
3503   SmallVector<SDValue, 8> Results;
3504   EVT OVT = Node->getValueType(0);
3505   if (Node->getOpcode() == ISD::UINT_TO_FP ||
3506       Node->getOpcode() == ISD::SINT_TO_FP ||
3507       Node->getOpcode() == ISD::SETCC) {
3508     OVT = Node->getOperand(0).getValueType();
3509   }
3510   EVT NVT = TLI.getTypeToPromoteTo(Node->getOpcode(), OVT);
3511   DebugLoc dl = Node->getDebugLoc();
3512   SDValue Tmp1, Tmp2, Tmp3;
3513   switch (Node->getOpcode()) {
3514   case ISD::CTTZ:
3515   case ISD::CTTZ_ZERO_UNDEF:
3516   case ISD::CTLZ:
3517   case ISD::CTLZ_ZERO_UNDEF:
3518   case ISD::CTPOP:
3519     // Zero extend the argument.
3520     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3521     // Perform the larger operation. For CTPOP and CTTZ_ZERO_UNDEF, this is
3522     // already the correct result.
3523     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3524     if (Node->getOpcode() == ISD::CTTZ) {
3525       // FIXME: This should set a bit in the zero extended value instead.
3526       Tmp2 = DAG.getSetCC(dl, TLI.getSetCCResultType(NVT),
3527                           Tmp1, DAG.getConstant(NVT.getSizeInBits(), NVT),
3528                           ISD::SETEQ);
3529       Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp2,
3530                           DAG.getConstant(OVT.getSizeInBits(), NVT), Tmp1);
3531     } else if (Node->getOpcode() == ISD::CTLZ ||
3532                Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF) {
3533       // Tmp1 = Tmp1 - (sizeinbits(NVT) - sizeinbits(Old VT))
3534       Tmp1 = DAG.getNode(ISD::SUB, dl, NVT, Tmp1,
3535                           DAG.getConstant(NVT.getSizeInBits() -
3536                                           OVT.getSizeInBits(), NVT));
3537     }
3538     Results.push_back(DAG.getNode(ISD::TRUNCATE, dl, OVT, Tmp1));
3539     break;
3540   case ISD::BSWAP: {
3541     unsigned DiffBits = NVT.getSizeInBits() - OVT.getSizeInBits();
3542     Tmp1 = DAG.getNode(ISD::ZERO_EXTEND, dl, NVT, Node->getOperand(0));
3543     Tmp1 = DAG.getNode(ISD::BSWAP, dl, NVT, Tmp1);
3544     Tmp1 = DAG.getNode(ISD::SRL, dl, NVT, Tmp1,
3545                           DAG.getConstant(DiffBits, TLI.getShiftAmountTy(NVT)));
3546     Results.push_back(Tmp1);
3547     break;
3548   }
3549   case ISD::FP_TO_UINT:
3550   case ISD::FP_TO_SINT:
3551     Tmp1 = PromoteLegalFP_TO_INT(Node->getOperand(0), Node->getValueType(0),
3552                                  Node->getOpcode() == ISD::FP_TO_SINT, dl);
3553     Results.push_back(Tmp1);
3554     break;
3555   case ISD::UINT_TO_FP:
3556   case ISD::SINT_TO_FP:
3557     Tmp1 = PromoteLegalINT_TO_FP(Node->getOperand(0), Node->getValueType(0),
3558                                  Node->getOpcode() == ISD::SINT_TO_FP, dl);
3559     Results.push_back(Tmp1);
3560     break;
3561   case ISD::VAARG: {
3562     SDValue Chain = Node->getOperand(0); // Get the chain.
3563     SDValue Ptr = Node->getOperand(1); // Get the pointer.
3564
3565     unsigned TruncOp;
3566     if (OVT.isVector()) {
3567       TruncOp = ISD::BITCAST;
3568     } else {
3569       assert(OVT.isInteger()
3570         && "VAARG promotion is supported only for vectors or integer types");
3571       TruncOp = ISD::TRUNCATE;
3572     }
3573
3574     // Perform the larger operation, then convert back
3575     Tmp1 = DAG.getVAArg(NVT, dl, Chain, Ptr, Node->getOperand(2),
3576              Node->getConstantOperandVal(3));
3577     Chain = Tmp1.getValue(1);
3578
3579     Tmp2 = DAG.getNode(TruncOp, dl, OVT, Tmp1);
3580
3581     // Modified the chain result - switch anything that used the old chain to
3582     // use the new one.
3583     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 0), Tmp2);
3584     DAG.ReplaceAllUsesOfValueWith(SDValue(Node, 1), Chain);
3585     ReplacedNode(Node);
3586     break;
3587   }
3588   case ISD::AND:
3589   case ISD::OR:
3590   case ISD::XOR: {
3591     unsigned ExtOp, TruncOp;
3592     if (OVT.isVector()) {
3593       ExtOp   = ISD::BITCAST;
3594       TruncOp = ISD::BITCAST;
3595     } else {
3596       assert(OVT.isInteger() && "Cannot promote logic operation");
3597       ExtOp   = ISD::ANY_EXTEND;
3598       TruncOp = ISD::TRUNCATE;
3599     }
3600     // Promote each of the values to the new type.
3601     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3602     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3603     // Perform the larger operation, then convert back
3604     Tmp1 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3605     Results.push_back(DAG.getNode(TruncOp, dl, OVT, Tmp1));
3606     break;
3607   }
3608   case ISD::SELECT: {
3609     unsigned ExtOp, TruncOp;
3610     if (Node->getValueType(0).isVector()) {
3611       ExtOp   = ISD::BITCAST;
3612       TruncOp = ISD::BITCAST;
3613     } else if (Node->getValueType(0).isInteger()) {
3614       ExtOp   = ISD::ANY_EXTEND;
3615       TruncOp = ISD::TRUNCATE;
3616     } else {
3617       ExtOp   = ISD::FP_EXTEND;
3618       TruncOp = ISD::FP_ROUND;
3619     }
3620     Tmp1 = Node->getOperand(0);
3621     // Promote each of the values to the new type.
3622     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3623     Tmp3 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(2));
3624     // Perform the larger operation, then round down.
3625     Tmp1 = DAG.getNode(ISD::SELECT, dl, NVT, Tmp1, Tmp2, Tmp3);
3626     if (TruncOp != ISD::FP_ROUND)
3627       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1);
3628     else
3629       Tmp1 = DAG.getNode(TruncOp, dl, Node->getValueType(0), Tmp1,
3630                          DAG.getIntPtrConstant(0));
3631     Results.push_back(Tmp1);
3632     break;
3633   }
3634   case ISD::VECTOR_SHUFFLE: {
3635     ArrayRef<int> Mask = cast<ShuffleVectorSDNode>(Node)->getMask();
3636
3637     // Cast the two input vectors.
3638     Tmp1 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(0));
3639     Tmp2 = DAG.getNode(ISD::BITCAST, dl, NVT, Node->getOperand(1));
3640
3641     // Convert the shuffle mask to the right # elements.
3642     Tmp1 = ShuffleWithNarrowerEltType(NVT, OVT, dl, Tmp1, Tmp2, Mask);
3643     Tmp1 = DAG.getNode(ISD::BITCAST, dl, OVT, Tmp1);
3644     Results.push_back(Tmp1);
3645     break;
3646   }
3647   case ISD::SETCC: {
3648     unsigned ExtOp = ISD::FP_EXTEND;
3649     if (NVT.isInteger()) {
3650       ISD::CondCode CCCode =
3651         cast<CondCodeSDNode>(Node->getOperand(2))->get();
3652       ExtOp = isSignedIntSetCC(CCCode) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3653     }
3654     Tmp1 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(0));
3655     Tmp2 = DAG.getNode(ExtOp, dl, NVT, Node->getOperand(1));
3656     Results.push_back(DAG.getNode(ISD::SETCC, dl, Node->getValueType(0),
3657                                   Tmp1, Tmp2, Node->getOperand(2)));
3658     break;
3659   }
3660   case ISD::FDIV:
3661   case ISD::FREM:
3662   case ISD::FPOW: {
3663     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3664     Tmp2 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(1));
3665     Tmp3 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1, Tmp2);
3666     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3667                                   Tmp3, DAG.getIntPtrConstant(0)));
3668     break;
3669   }
3670   case ISD::FLOG2:
3671   case ISD::FEXP2:
3672   case ISD::FLOG:
3673   case ISD::FEXP: {
3674     Tmp1 = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Node->getOperand(0));
3675     Tmp2 = DAG.getNode(Node->getOpcode(), dl, NVT, Tmp1);
3676     Results.push_back(DAG.getNode(ISD::FP_ROUND, dl, OVT,
3677                                   Tmp2, DAG.getIntPtrConstant(0)));
3678     break;
3679   }
3680   }
3681
3682   // Replace the original node with the legalized result.
3683   if (!Results.empty())
3684     ReplaceNode(Node, Results.data());
3685 }
3686
3687 // SelectionDAG::Legalize - This is the entry point for the file.
3688 //
3689 void SelectionDAG::Legalize() {
3690   /// run - This is the main entry point to this class.
3691   ///
3692   SelectionDAGLegalize(*this).LegalizeDAG();
3693 }