1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "isel"
15 #include "SelectionDAGBuilder.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/BitVector.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GCMetadata.h"
28 #include "llvm/CodeGen/GCStrategy.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineJumpTableInfo.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/DebugInfo.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DerivedTypes.h"
41 #include "llvm/IR/Function.h"
42 #include "llvm/IR/GlobalVariable.h"
43 #include "llvm/IR/InlineAsm.h"
44 #include "llvm/IR/Instructions.h"
45 #include "llvm/IR/IntrinsicInst.h"
46 #include "llvm/IR/Intrinsics.h"
47 #include "llvm/IR/LLVMContext.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Debug.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Support/raw_ostream.h"
54 #include "llvm/Target/TargetFrameLowering.h"
55 #include "llvm/Target/TargetInstrInfo.h"
56 #include "llvm/Target/TargetIntrinsicInfo.h"
57 #include "llvm/Target/TargetLibraryInfo.h"
58 #include "llvm/Target/TargetLowering.h"
59 #include "llvm/Target/TargetOptions.h"
60 #include "llvm/Target/TargetSelectionDAGInfo.h"
64 /// LimitFloatPrecision - Generate low-precision inline sequences for
65 /// some float libcalls (6, 8 or 12 bits).
66 static unsigned LimitFloatPrecision;
68 static cl::opt<unsigned, true>
69 LimitFPPrecision("limit-float-precision",
70 cl::desc("Generate low-precision inline sequences "
71 "for some float libcalls"),
72 cl::location(LimitFloatPrecision),
75 // Limit the width of DAG chains. This is important in general to prevent
76 // prevent DAG-based analysis from blowing up. For example, alias analysis and
77 // load clustering may not complete in reasonable time. It is difficult to
78 // recognize and avoid this situation within each individual analysis, and
79 // future analyses are likely to have the same behavior. Limiting DAG width is
80 // the safe approach, and will be especially important with global DAGs.
82 // MaxParallelChains default is arbitrarily high to avoid affecting
83 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
84 // sequence over this should have been converted to llvm.memcpy by the
85 // frontend. It easy to induce this behavior with .ll code such as:
86 // %buffer = alloca [4096 x i8]
87 // %data = load [4096 x i8]* %argPtr
88 // store [4096 x i8] %data, [4096 x i8]* %buffer
89 static const unsigned MaxParallelChains = 64;
91 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
92 const SDValue *Parts, unsigned NumParts,
93 MVT PartVT, EVT ValueVT, const Value *V);
95 /// getCopyFromParts - Create a value that contains the specified legal parts
96 /// combined into the value they represent. If the parts combine to a type
97 /// larger then ValueVT then AssertOp can be used to specify whether the extra
98 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
99 /// (ISD::AssertSext).
100 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
101 const SDValue *Parts,
102 unsigned NumParts, MVT PartVT, EVT ValueVT,
104 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
105 if (ValueVT.isVector())
106 return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
109 assert(NumParts > 0 && "No parts to assemble!");
110 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
111 SDValue Val = Parts[0];
114 // Assemble the value from multiple parts.
115 if (ValueVT.isInteger()) {
116 unsigned PartBits = PartVT.getSizeInBits();
117 unsigned ValueBits = ValueVT.getSizeInBits();
119 // Assemble the power of 2 part.
120 unsigned RoundParts = NumParts & (NumParts - 1) ?
121 1 << Log2_32(NumParts) : NumParts;
122 unsigned RoundBits = PartBits * RoundParts;
123 EVT RoundVT = RoundBits == ValueBits ?
124 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
127 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
129 if (RoundParts > 2) {
130 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
132 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
133 RoundParts / 2, PartVT, HalfVT, V);
135 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
136 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
139 if (TLI.isBigEndian())
142 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
144 if (RoundParts < NumParts) {
145 // Assemble the trailing non-power-of-2 part.
146 unsigned OddParts = NumParts - RoundParts;
147 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
148 Hi = getCopyFromParts(DAG, DL,
149 Parts + RoundParts, OddParts, PartVT, OddVT, V);
151 // Combine the round and odd parts.
153 if (TLI.isBigEndian())
155 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
156 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
157 Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
158 DAG.getConstant(Lo.getValueType().getSizeInBits(),
159 TLI.getPointerTy()));
160 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
161 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
163 } else if (PartVT.isFloatingPoint()) {
164 // FP split into multiple FP parts (for ppcf128)
165 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
168 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
169 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
170 if (TLI.isBigEndian())
172 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
174 // FP split into integer parts (soft fp)
175 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
176 !PartVT.isVector() && "Unexpected split");
177 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
178 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
182 // There is now one part, held in Val. Correct it to match ValueVT.
183 EVT PartEVT = Val.getValueType();
185 if (PartEVT == ValueVT)
188 if (PartEVT.isInteger() && ValueVT.isInteger()) {
189 if (ValueVT.bitsLT(PartEVT)) {
190 // For a truncate, see if we have any information to
191 // indicate whether the truncated bits will always be
192 // zero or sign-extension.
193 if (AssertOp != ISD::DELETED_NODE)
194 Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
195 DAG.getValueType(ValueVT));
196 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
198 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
201 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
202 // FP_ROUND's are always exact here.
203 if (ValueVT.bitsLT(Val.getValueType()))
204 return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
205 DAG.getTargetConstant(1, TLI.getPointerTy()));
207 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
210 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
211 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
213 llvm_unreachable("Unknown mismatch!");
216 /// getCopyFromPartsVector - Create a value that contains the specified legal
217 /// parts combined into the value they represent. If the parts combine to a
218 /// type larger then ValueVT then AssertOp can be used to specify whether the
219 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
220 /// ValueVT (ISD::AssertSext).
221 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
222 const SDValue *Parts, unsigned NumParts,
223 MVT PartVT, EVT ValueVT, const Value *V) {
224 assert(ValueVT.isVector() && "Not a vector value");
225 assert(NumParts > 0 && "No parts to assemble!");
226 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
227 SDValue Val = Parts[0];
229 // Handle a multi-element vector.
233 unsigned NumIntermediates;
235 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
236 NumIntermediates, RegisterVT);
237 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
238 NumParts = NumRegs; // Silence a compiler warning.
239 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
240 assert(RegisterVT == Parts[0].getSimpleValueType() &&
241 "Part type doesn't match part!");
243 // Assemble the parts into intermediate operands.
244 SmallVector<SDValue, 8> Ops(NumIntermediates);
245 if (NumIntermediates == NumParts) {
246 // If the register was not expanded, truncate or copy the value,
248 for (unsigned i = 0; i != NumParts; ++i)
249 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
250 PartVT, IntermediateVT, V);
251 } else if (NumParts > 0) {
252 // If the intermediate type was expanded, build the intermediate
253 // operands from the parts.
254 assert(NumParts % NumIntermediates == 0 &&
255 "Must expand into a divisible number of parts!");
256 unsigned Factor = NumParts / NumIntermediates;
257 for (unsigned i = 0; i != NumIntermediates; ++i)
258 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
259 PartVT, IntermediateVT, V);
262 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
263 // intermediate operands.
264 Val = DAG.getNode(IntermediateVT.isVector() ?
265 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR, DL,
266 ValueVT, &Ops[0], NumIntermediates);
269 // There is now one part, held in Val. Correct it to match ValueVT.
270 EVT PartEVT = Val.getValueType();
272 if (PartEVT == ValueVT)
275 if (PartEVT.isVector()) {
276 // If the element type of the source/dest vectors are the same, but the
277 // parts vector has more elements than the value vector, then we have a
278 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
280 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
281 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
282 "Cannot narrow, it would be a lossy transformation");
283 return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
284 DAG.getConstant(0, TLI.getVectorIdxTy()));
287 // Vector/Vector bitcast.
288 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
289 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
291 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
292 "Cannot handle this kind of promotion");
293 // Promoted vector extract
294 bool Smaller = ValueVT.bitsLE(PartEVT);
295 return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
300 // Trivial bitcast if the types are the same size and the destination
301 // vector type is legal.
302 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
303 TLI.isTypeLegal(ValueVT))
304 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
306 // Handle cases such as i8 -> <1 x i1>
307 if (ValueVT.getVectorNumElements() != 1) {
308 LLVMContext &Ctx = *DAG.getContext();
309 Twine ErrMsg("non-trivial scalar-to-vector conversion");
310 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
311 if (const CallInst *CI = dyn_cast<CallInst>(I))
312 if (isa<InlineAsm>(CI->getCalledValue()))
313 ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
314 Ctx.emitError(I, ErrMsg);
316 Ctx.emitError(ErrMsg);
318 return DAG.getUNDEF(ValueVT);
321 if (ValueVT.getVectorNumElements() == 1 &&
322 ValueVT.getVectorElementType() != PartEVT) {
323 bool Smaller = ValueVT.bitsLE(PartEVT);
324 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
325 DL, ValueVT.getScalarType(), Val);
328 return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
331 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
332 SDValue Val, SDValue *Parts, unsigned NumParts,
333 MVT PartVT, const Value *V);
335 /// getCopyToParts - Create a series of nodes that contain the specified value
336 /// split into legal parts. If the parts contain more bits than Val, then, for
337 /// integers, ExtendKind can be used to specify how to generate the extra bits.
338 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
339 SDValue Val, SDValue *Parts, unsigned NumParts,
340 MVT PartVT, const Value *V,
341 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
342 EVT ValueVT = Val.getValueType();
344 // Handle the vector case separately.
345 if (ValueVT.isVector())
346 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
348 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
349 unsigned PartBits = PartVT.getSizeInBits();
350 unsigned OrigNumParts = NumParts;
351 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
356 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
357 EVT PartEVT = PartVT;
358 if (PartEVT == ValueVT) {
359 assert(NumParts == 1 && "No-op copy with multiple parts!");
364 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
365 // If the parts cover more bits than the value has, promote the value.
366 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
367 assert(NumParts == 1 && "Do not know what to promote to!");
368 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
370 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
371 ValueVT.isInteger() &&
372 "Unknown mismatch!");
373 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
374 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
375 if (PartVT == MVT::x86mmx)
376 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
378 } else if (PartBits == ValueVT.getSizeInBits()) {
379 // Different types of the same size.
380 assert(NumParts == 1 && PartEVT != ValueVT);
381 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
382 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
383 // If the parts cover less bits than value has, truncate the value.
384 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
385 ValueVT.isInteger() &&
386 "Unknown mismatch!");
387 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
388 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
389 if (PartVT == MVT::x86mmx)
390 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
393 // The value may have changed - recompute ValueVT.
394 ValueVT = Val.getValueType();
395 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
396 "Failed to tile the value with PartVT!");
399 if (PartEVT != ValueVT) {
400 LLVMContext &Ctx = *DAG.getContext();
401 Twine ErrMsg("scalar-to-vector conversion failed");
402 if (const Instruction *I = dyn_cast_or_null<Instruction>(V)) {
403 if (const CallInst *CI = dyn_cast<CallInst>(I))
404 if (isa<InlineAsm>(CI->getCalledValue()))
405 ErrMsg = ErrMsg + ", possible invalid constraint for vector type";
406 Ctx.emitError(I, ErrMsg);
408 Ctx.emitError(ErrMsg);
416 // Expand the value into multiple parts.
417 if (NumParts & (NumParts - 1)) {
418 // The number of parts is not a power of 2. Split off and copy the tail.
419 assert(PartVT.isInteger() && ValueVT.isInteger() &&
420 "Do not know what to expand to!");
421 unsigned RoundParts = 1 << Log2_32(NumParts);
422 unsigned RoundBits = RoundParts * PartBits;
423 unsigned OddParts = NumParts - RoundParts;
424 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
425 DAG.getIntPtrConstant(RoundBits));
426 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
428 if (TLI.isBigEndian())
429 // The odd parts were reversed by getCopyToParts - unreverse them.
430 std::reverse(Parts + RoundParts, Parts + NumParts);
432 NumParts = RoundParts;
433 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
434 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
437 // The number of parts is a power of 2. Repeatedly bisect the value using
439 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
440 EVT::getIntegerVT(*DAG.getContext(),
441 ValueVT.getSizeInBits()),
444 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
445 for (unsigned i = 0; i < NumParts; i += StepSize) {
446 unsigned ThisBits = StepSize * PartBits / 2;
447 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
448 SDValue &Part0 = Parts[i];
449 SDValue &Part1 = Parts[i+StepSize/2];
451 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
452 ThisVT, Part0, DAG.getIntPtrConstant(1));
453 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
454 ThisVT, Part0, DAG.getIntPtrConstant(0));
456 if (ThisBits == PartBits && ThisVT != PartVT) {
457 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
458 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
463 if (TLI.isBigEndian())
464 std::reverse(Parts, Parts + OrigNumParts);
468 /// getCopyToPartsVector - Create a series of nodes that contain the specified
469 /// value split into legal parts.
470 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
471 SDValue Val, SDValue *Parts, unsigned NumParts,
472 MVT PartVT, const Value *V) {
473 EVT ValueVT = Val.getValueType();
474 assert(ValueVT.isVector() && "Not a vector");
475 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
478 EVT PartEVT = PartVT;
479 if (PartEVT == ValueVT) {
481 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
482 // Bitconvert vector->vector case.
483 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
484 } else if (PartVT.isVector() &&
485 PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
486 PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
487 EVT ElementVT = PartVT.getVectorElementType();
488 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
490 SmallVector<SDValue, 16> Ops;
491 for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
492 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
493 ElementVT, Val, DAG.getConstant(i,
494 TLI.getVectorIdxTy())));
496 for (unsigned i = ValueVT.getVectorNumElements(),
497 e = PartVT.getVectorNumElements(); i != e; ++i)
498 Ops.push_back(DAG.getUNDEF(ElementVT));
500 Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, &Ops[0], Ops.size());
502 // FIXME: Use CONCAT for 2x -> 4x.
504 //SDValue UndefElts = DAG.getUNDEF(VectorTy);
505 //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
506 } else if (PartVT.isVector() &&
507 PartEVT.getVectorElementType().bitsGE(
508 ValueVT.getVectorElementType()) &&
509 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
511 // Promoted vector extract
512 bool Smaller = PartEVT.bitsLE(ValueVT);
513 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
516 // Vector -> scalar conversion.
517 assert(ValueVT.getVectorNumElements() == 1 &&
518 "Only trivial vector-to-scalar conversions should get here!");
519 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
520 PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
522 bool Smaller = ValueVT.bitsLE(PartVT);
523 Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
531 // Handle a multi-element vector.
534 unsigned NumIntermediates;
535 unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
537 NumIntermediates, RegisterVT);
538 unsigned NumElements = ValueVT.getVectorNumElements();
540 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
541 NumParts = NumRegs; // Silence a compiler warning.
542 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
544 // Split the vector into intermediate operands.
545 SmallVector<SDValue, 8> Ops(NumIntermediates);
546 for (unsigned i = 0; i != NumIntermediates; ++i) {
547 if (IntermediateVT.isVector())
548 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
550 DAG.getConstant(i * (NumElements / NumIntermediates),
551 TLI.getVectorIdxTy()));
553 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
555 DAG.getConstant(i, TLI.getVectorIdxTy()));
558 // Split the intermediate operands into legal parts.
559 if (NumParts == NumIntermediates) {
560 // If the register was not expanded, promote or copy the value,
562 for (unsigned i = 0; i != NumParts; ++i)
563 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
564 } else if (NumParts > 0) {
565 // If the intermediate type was expanded, split each the value into
567 assert(NumParts % NumIntermediates == 0 &&
568 "Must expand into a divisible number of parts!");
569 unsigned Factor = NumParts / NumIntermediates;
570 for (unsigned i = 0; i != NumIntermediates; ++i)
571 getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
576 /// RegsForValue - This struct represents the registers (physical or virtual)
577 /// that a particular set of values is assigned, and the type information
578 /// about the value. The most common situation is to represent one value at a
579 /// time, but struct or array values are handled element-wise as multiple
580 /// values. The splitting of aggregates is performed recursively, so that we
581 /// never have aggregate-typed registers. The values at this point do not
582 /// necessarily have legal types, so each value may require one or more
583 /// registers of some legal type.
585 struct RegsForValue {
586 /// ValueVTs - The value types of the values, which may not be legal, and
587 /// may need be promoted or synthesized from one or more registers.
589 SmallVector<EVT, 4> ValueVTs;
591 /// RegVTs - The value types of the registers. This is the same size as
592 /// ValueVTs and it records, for each value, what the type of the assigned
593 /// register or registers are. (Individual values are never synthesized
594 /// from more than one type of register.)
596 /// With virtual registers, the contents of RegVTs is redundant with TLI's
597 /// getRegisterType member function, however when with physical registers
598 /// it is necessary to have a separate record of the types.
600 SmallVector<MVT, 4> RegVTs;
602 /// Regs - This list holds the registers assigned to the values.
603 /// Each legal or promoted value requires one register, and each
604 /// expanded value requires multiple registers.
606 SmallVector<unsigned, 4> Regs;
610 RegsForValue(const SmallVector<unsigned, 4> ®s,
611 MVT regvt, EVT valuevt)
612 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
614 RegsForValue(LLVMContext &Context, const TargetLowering &tli,
615 unsigned Reg, Type *Ty) {
616 ComputeValueVTs(tli, Ty, ValueVTs);
618 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
619 EVT ValueVT = ValueVTs[Value];
620 unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
621 MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
622 for (unsigned i = 0; i != NumRegs; ++i)
623 Regs.push_back(Reg + i);
624 RegVTs.push_back(RegisterVT);
629 /// areValueTypesLegal - Return true if types of all the values are legal.
630 bool areValueTypesLegal(const TargetLowering &TLI) {
631 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
632 MVT RegisterVT = RegVTs[Value];
633 if (!TLI.isTypeLegal(RegisterVT))
639 /// append - Add the specified values to this one.
640 void append(const RegsForValue &RHS) {
641 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
642 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
643 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
646 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
647 /// this value and returns the result as a ValueVTs value. This uses
648 /// Chain/Flag as the input and updates them for the output Chain/Flag.
649 /// If the Flag pointer is NULL, no flag is used.
650 SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
652 SDValue &Chain, SDValue *Flag,
653 const Value *V = 0) const;
655 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
656 /// specified value into the registers specified by this object. This uses
657 /// Chain/Flag as the input and updates them for the output Chain/Flag.
658 /// If the Flag pointer is NULL, no flag is used.
659 void getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
660 SDValue &Chain, SDValue *Flag, const Value *V) const;
662 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
663 /// operand list. This adds the code marker, matching input operand index
664 /// (if applicable), and includes the number of values added into it.
665 void AddInlineAsmOperands(unsigned Kind,
666 bool HasMatching, unsigned MatchingIdx,
668 std::vector<SDValue> &Ops) const;
672 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
673 /// this value and returns the result as a ValueVT value. This uses
674 /// Chain/Flag as the input and updates them for the output Chain/Flag.
675 /// If the Flag pointer is NULL, no flag is used.
676 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
677 FunctionLoweringInfo &FuncInfo,
679 SDValue &Chain, SDValue *Flag,
680 const Value *V) const {
681 // A Value with type {} or [0 x %t] needs no registers.
682 if (ValueVTs.empty())
685 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
687 // Assemble the legal parts into the final values.
688 SmallVector<SDValue, 4> Values(ValueVTs.size());
689 SmallVector<SDValue, 8> Parts;
690 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
691 // Copy the legal parts from the registers.
692 EVT ValueVT = ValueVTs[Value];
693 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
694 MVT RegisterVT = RegVTs[Value];
696 Parts.resize(NumRegs);
697 for (unsigned i = 0; i != NumRegs; ++i) {
700 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
702 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
703 *Flag = P.getValue(2);
706 Chain = P.getValue(1);
709 // If the source register was virtual and if we know something about it,
710 // add an assert node.
711 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
712 !RegisterVT.isInteger() || RegisterVT.isVector())
715 const FunctionLoweringInfo::LiveOutInfo *LOI =
716 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
720 unsigned RegSize = RegisterVT.getSizeInBits();
721 unsigned NumSignBits = LOI->NumSignBits;
722 unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
724 if (NumZeroBits == RegSize) {
725 // The current value is a zero.
726 // Explicitly express that as it would be easier for
727 // optimizations to kick in.
728 Parts[i] = DAG.getConstant(0, RegisterVT);
732 // FIXME: We capture more information than the dag can represent. For
733 // now, just use the tightest assertzext/assertsext possible.
735 EVT FromVT(MVT::Other);
736 if (NumSignBits == RegSize)
737 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
738 else if (NumZeroBits >= RegSize-1)
739 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
740 else if (NumSignBits > RegSize-8)
741 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
742 else if (NumZeroBits >= RegSize-8)
743 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
744 else if (NumSignBits > RegSize-16)
745 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
746 else if (NumZeroBits >= RegSize-16)
747 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
748 else if (NumSignBits > RegSize-32)
749 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
750 else if (NumZeroBits >= RegSize-32)
751 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
755 // Add an assertion node.
756 assert(FromVT != MVT::Other);
757 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
758 RegisterVT, P, DAG.getValueType(FromVT));
761 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
762 NumRegs, RegisterVT, ValueVT, V);
767 return DAG.getNode(ISD::MERGE_VALUES, dl,
768 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
769 &Values[0], ValueVTs.size());
772 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
773 /// specified value into the registers specified by this object. This uses
774 /// Chain/Flag as the input and updates them for the output Chain/Flag.
775 /// If the Flag pointer is NULL, no flag is used.
776 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
777 SDValue &Chain, SDValue *Flag,
778 const Value *V) const {
779 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
781 // Get the list of the values's legal parts.
782 unsigned NumRegs = Regs.size();
783 SmallVector<SDValue, 8> Parts(NumRegs);
784 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
785 EVT ValueVT = ValueVTs[Value];
786 unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
787 MVT RegisterVT = RegVTs[Value];
788 ISD::NodeType ExtendKind =
789 TLI.isZExtFree(Val, RegisterVT)? ISD::ZERO_EXTEND: ISD::ANY_EXTEND;
791 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
792 &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
796 // Copy the parts into the registers.
797 SmallVector<SDValue, 8> Chains(NumRegs);
798 for (unsigned i = 0; i != NumRegs; ++i) {
801 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
803 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
804 *Flag = Part.getValue(1);
807 Chains[i] = Part.getValue(0);
810 if (NumRegs == 1 || Flag)
811 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
812 // flagged to it. That is the CopyToReg nodes and the user are considered
813 // a single scheduling unit. If we create a TokenFactor and return it as
814 // chain, then the TokenFactor is both a predecessor (operand) of the
815 // user as well as a successor (the TF operands are flagged to the user).
816 // c1, f1 = CopyToReg
817 // c2, f2 = CopyToReg
818 // c3 = TokenFactor c1, c2
821 Chain = Chains[NumRegs-1];
823 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &Chains[0], NumRegs);
826 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
827 /// operand list. This adds the code marker and includes the number of
828 /// values added into it.
829 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
830 unsigned MatchingIdx,
832 std::vector<SDValue> &Ops) const {
833 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
835 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
837 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
838 else if (!Regs.empty() &&
839 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
840 // Put the register class of the virtual registers in the flag word. That
841 // way, later passes can recompute register class constraints for inline
842 // assembly as well as normal instructions.
843 // Don't do this for tied operands that can use the regclass information
845 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
846 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
847 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
850 SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
853 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
854 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
855 MVT RegisterVT = RegVTs[Value];
856 for (unsigned i = 0; i != NumRegs; ++i) {
857 assert(Reg < Regs.size() && "Mismatch in # registers expected");
858 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
863 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
864 const TargetLibraryInfo *li) {
868 TD = DAG.getTarget().getDataLayout();
869 Context = DAG.getContext();
870 LPadToCallSiteMap.clear();
873 /// clear - Clear out the current SelectionDAG and the associated
874 /// state and prepare this SelectionDAGBuilder object to be used
875 /// for a new block. This doesn't clear out information about
876 /// additional blocks that are needed to complete switch lowering
877 /// or PHI node updating; that information is cleared out as it is
879 void SelectionDAGBuilder::clear() {
881 UnusedArgNodeMap.clear();
882 PendingLoads.clear();
883 PendingExports.clear();
888 /// clearDanglingDebugInfo - Clear the dangling debug information
889 /// map. This function is separated from the clear so that debug
890 /// information that is dangling in a basic block can be properly
891 /// resolved in a different basic block. This allows the
892 /// SelectionDAG to resolve dangling debug information attached
894 void SelectionDAGBuilder::clearDanglingDebugInfo() {
895 DanglingDebugInfoMap.clear();
898 /// getRoot - Return the current virtual root of the Selection DAG,
899 /// flushing any PendingLoad items. This must be done before emitting
900 /// a store or any other node that may need to be ordered after any
901 /// prior load instructions.
903 SDValue SelectionDAGBuilder::getRoot() {
904 if (PendingLoads.empty())
905 return DAG.getRoot();
907 if (PendingLoads.size() == 1) {
908 SDValue Root = PendingLoads[0];
910 PendingLoads.clear();
914 // Otherwise, we have to make a token factor node.
915 SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
916 &PendingLoads[0], PendingLoads.size());
917 PendingLoads.clear();
922 /// getControlRoot - Similar to getRoot, but instead of flushing all the
923 /// PendingLoad items, flush all the PendingExports items. It is necessary
924 /// to do this before emitting a terminator instruction.
926 SDValue SelectionDAGBuilder::getControlRoot() {
927 SDValue Root = DAG.getRoot();
929 if (PendingExports.empty())
932 // Turn all of the CopyToReg chains into one factored node.
933 if (Root.getOpcode() != ISD::EntryToken) {
934 unsigned i = 0, e = PendingExports.size();
935 for (; i != e; ++i) {
936 assert(PendingExports[i].getNode()->getNumOperands() > 1);
937 if (PendingExports[i].getNode()->getOperand(0) == Root)
938 break; // Don't add the root if we already indirectly depend on it.
942 PendingExports.push_back(Root);
945 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
947 PendingExports.size());
948 PendingExports.clear();
953 void SelectionDAGBuilder::visit(const Instruction &I) {
954 // Set up outgoing PHI node register values before emitting the terminator.
955 if (isa<TerminatorInst>(&I))
956 HandlePHINodesInSuccessorBlocks(I.getParent());
962 visit(I.getOpcode(), I);
964 if (!isa<TerminatorInst>(&I) && !HasTailCall)
965 CopyToExportRegsIfNeeded(&I);
970 void SelectionDAGBuilder::visitPHI(const PHINode &) {
971 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
974 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
975 // Note: this doesn't use InstVisitor, because it has to work with
976 // ConstantExpr's in addition to instructions.
978 default: llvm_unreachable("Unknown instruction type encountered!");
979 // Build the switch statement using the Instruction.def file.
980 #define HANDLE_INST(NUM, OPCODE, CLASS) \
981 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
982 #include "llvm/IR/Instruction.def"
986 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
987 // generate the debug data structures now that we've seen its definition.
988 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
990 DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
992 const DbgValueInst *DI = DDI.getDI();
993 DebugLoc dl = DDI.getdl();
994 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
995 MDNode *Variable = DI->getVariable();
996 uint64_t Offset = DI->getOffset();
999 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, Val)) {
1000 SDV = DAG.getDbgValue(Variable, Val.getNode(),
1001 Val.getResNo(), Offset, dl, DbgSDNodeOrder);
1002 DAG.AddDbgValue(SDV, Val.getNode(), false);
1005 DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1006 DanglingDebugInfoMap[V] = DanglingDebugInfo();
1010 /// getValue - Return an SDValue for the given Value.
1011 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1012 // If we already have an SDValue for this value, use it. It's important
1013 // to do this first, so that we don't create a CopyFromReg if we already
1014 // have a regular SDValue.
1015 SDValue &N = NodeMap[V];
1016 if (N.getNode()) return N;
1018 // If there's a virtual register allocated and initialized for this
1020 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1021 if (It != FuncInfo.ValueMap.end()) {
1022 unsigned InReg = It->second;
1023 RegsForValue RFV(*DAG.getContext(), *TM.getTargetLowering(),
1024 InReg, V->getType());
1025 SDValue Chain = DAG.getEntryNode();
1026 N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1027 resolveDanglingDebugInfo(V, N);
1031 // Otherwise create a new SDValue and remember it.
1032 SDValue Val = getValueImpl(V);
1034 resolveDanglingDebugInfo(V, Val);
1038 /// getNonRegisterValue - Return an SDValue for the given Value, but
1039 /// don't look in FuncInfo.ValueMap for a virtual register.
1040 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1041 // If we already have an SDValue for this value, use it.
1042 SDValue &N = NodeMap[V];
1043 if (N.getNode()) return N;
1045 // Otherwise create a new SDValue and remember it.
1046 SDValue Val = getValueImpl(V);
1048 resolveDanglingDebugInfo(V, Val);
1052 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1053 /// Create an SDValue for the given value.
1054 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1055 const TargetLowering *TLI = TM.getTargetLowering();
1057 if (const Constant *C = dyn_cast<Constant>(V)) {
1058 EVT VT = TLI->getValueType(V->getType(), true);
1060 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1061 return DAG.getConstant(*CI, VT);
1063 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1064 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1066 if (isa<ConstantPointerNull>(C))
1067 return DAG.getConstant(0, TLI->getPointerTy());
1069 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1070 return DAG.getConstantFP(*CFP, VT);
1072 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1073 return DAG.getUNDEF(VT);
1075 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1076 visit(CE->getOpcode(), *CE);
1077 SDValue N1 = NodeMap[V];
1078 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1082 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1083 SmallVector<SDValue, 4> Constants;
1084 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1086 SDNode *Val = getValue(*OI).getNode();
1087 // If the operand is an empty aggregate, there are no values.
1089 // Add each leaf value from the operand to the Constants list
1090 // to form a flattened list of all the values.
1091 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1092 Constants.push_back(SDValue(Val, i));
1095 return DAG.getMergeValues(&Constants[0], Constants.size(),
1099 if (const ConstantDataSequential *CDS =
1100 dyn_cast<ConstantDataSequential>(C)) {
1101 SmallVector<SDValue, 4> Ops;
1102 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1103 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1104 // Add each leaf value from the operand to the Constants list
1105 // to form a flattened list of all the values.
1106 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1107 Ops.push_back(SDValue(Val, i));
1110 if (isa<ArrayType>(CDS->getType()))
1111 return DAG.getMergeValues(&Ops[0], Ops.size(), getCurSDLoc());
1112 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1113 VT, &Ops[0], Ops.size());
1116 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1117 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1118 "Unknown struct or array constant!");
1120 SmallVector<EVT, 4> ValueVTs;
1121 ComputeValueVTs(*TLI, C->getType(), ValueVTs);
1122 unsigned NumElts = ValueVTs.size();
1124 return SDValue(); // empty struct
1125 SmallVector<SDValue, 4> Constants(NumElts);
1126 for (unsigned i = 0; i != NumElts; ++i) {
1127 EVT EltVT = ValueVTs[i];
1128 if (isa<UndefValue>(C))
1129 Constants[i] = DAG.getUNDEF(EltVT);
1130 else if (EltVT.isFloatingPoint())
1131 Constants[i] = DAG.getConstantFP(0, EltVT);
1133 Constants[i] = DAG.getConstant(0, EltVT);
1136 return DAG.getMergeValues(&Constants[0], NumElts,
1140 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1141 return DAG.getBlockAddress(BA, VT);
1143 VectorType *VecTy = cast<VectorType>(V->getType());
1144 unsigned NumElements = VecTy->getNumElements();
1146 // Now that we know the number and type of the elements, get that number of
1147 // elements into the Ops array based on what kind of constant it is.
1148 SmallVector<SDValue, 16> Ops;
1149 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1150 for (unsigned i = 0; i != NumElements; ++i)
1151 Ops.push_back(getValue(CV->getOperand(i)));
1153 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1154 EVT EltVT = TLI->getValueType(VecTy->getElementType());
1157 if (EltVT.isFloatingPoint())
1158 Op = DAG.getConstantFP(0, EltVT);
1160 Op = DAG.getConstant(0, EltVT);
1161 Ops.assign(NumElements, Op);
1164 // Create a BUILD_VECTOR node.
1165 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1166 VT, &Ops[0], Ops.size());
1169 // If this is a static alloca, generate it as the frameindex instead of
1171 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1172 DenseMap<const AllocaInst*, int>::iterator SI =
1173 FuncInfo.StaticAllocaMap.find(AI);
1174 if (SI != FuncInfo.StaticAllocaMap.end())
1175 return DAG.getFrameIndex(SI->second, TLI->getPointerTy());
1178 // If this is an instruction which fast-isel has deferred, select it now.
1179 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1180 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1181 RegsForValue RFV(*DAG.getContext(), *TLI, InReg, Inst->getType());
1182 SDValue Chain = DAG.getEntryNode();
1183 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, NULL, V);
1186 llvm_unreachable("Can't get register for value!");
1189 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1190 const TargetLowering *TLI = TM.getTargetLowering();
1191 SDValue Chain = getControlRoot();
1192 SmallVector<ISD::OutputArg, 8> Outs;
1193 SmallVector<SDValue, 8> OutVals;
1195 if (!FuncInfo.CanLowerReturn) {
1196 unsigned DemoteReg = FuncInfo.DemoteRegister;
1197 const Function *F = I.getParent()->getParent();
1199 // Emit a store of the return value through the virtual register.
1200 // Leave Outs empty so that LowerReturn won't try to load return
1201 // registers the usual way.
1202 SmallVector<EVT, 1> PtrValueVTs;
1203 ComputeValueVTs(*TLI, PointerType::getUnqual(F->getReturnType()),
1206 SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1207 SDValue RetOp = getValue(I.getOperand(0));
1209 SmallVector<EVT, 4> ValueVTs;
1210 SmallVector<uint64_t, 4> Offsets;
1211 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1212 unsigned NumValues = ValueVTs.size();
1214 SmallVector<SDValue, 4> Chains(NumValues);
1215 for (unsigned i = 0; i != NumValues; ++i) {
1216 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1217 RetPtr.getValueType(), RetPtr,
1218 DAG.getIntPtrConstant(Offsets[i]));
1220 DAG.getStore(Chain, getCurSDLoc(),
1221 SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1222 // FIXME: better loc info would be nice.
1223 Add, MachinePointerInfo(), false, false, 0);
1226 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1227 MVT::Other, &Chains[0], NumValues);
1228 } else if (I.getNumOperands() != 0) {
1229 SmallVector<EVT, 4> ValueVTs;
1230 ComputeValueVTs(*TLI, I.getOperand(0)->getType(), ValueVTs);
1231 unsigned NumValues = ValueVTs.size();
1233 SDValue RetOp = getValue(I.getOperand(0));
1234 for (unsigned j = 0, f = NumValues; j != f; ++j) {
1235 EVT VT = ValueVTs[j];
1237 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1239 const Function *F = I.getParent()->getParent();
1240 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1242 ExtendKind = ISD::SIGN_EXTEND;
1243 else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1245 ExtendKind = ISD::ZERO_EXTEND;
1247 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1248 VT = TLI->getTypeForExtArgOrReturn(VT.getSimpleVT(), ExtendKind);
1250 unsigned NumParts = TLI->getNumRegisters(*DAG.getContext(), VT);
1251 MVT PartVT = TLI->getRegisterType(*DAG.getContext(), VT);
1252 SmallVector<SDValue, 4> Parts(NumParts);
1253 getCopyToParts(DAG, getCurSDLoc(),
1254 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1255 &Parts[0], NumParts, PartVT, &I, ExtendKind);
1257 // 'inreg' on function refers to return value
1258 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1259 if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1263 // Propagate extension type if any
1264 if (ExtendKind == ISD::SIGN_EXTEND)
1266 else if (ExtendKind == ISD::ZERO_EXTEND)
1269 for (unsigned i = 0; i < NumParts; ++i) {
1270 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1271 /*isfixed=*/true, 0, 0));
1272 OutVals.push_back(Parts[i]);
1278 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1279 CallingConv::ID CallConv =
1280 DAG.getMachineFunction().getFunction()->getCallingConv();
1281 Chain = TM.getTargetLowering()->LowerReturn(Chain, CallConv, isVarArg,
1282 Outs, OutVals, getCurSDLoc(),
1285 // Verify that the target's LowerReturn behaved as expected.
1286 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1287 "LowerReturn didn't return a valid chain!");
1289 // Update the DAG with the new chain value resulting from return lowering.
1293 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1294 /// created for it, emit nodes to copy the value into the virtual
1296 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1298 if (V->getType()->isEmptyTy())
1301 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1302 if (VMI != FuncInfo.ValueMap.end()) {
1303 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1304 CopyValueToVirtualRegister(V, VMI->second);
1308 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1309 /// the current basic block, add it to ValueMap now so that we'll get a
1311 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1312 // No need to export constants.
1313 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1315 // Already exported?
1316 if (FuncInfo.isExportedInst(V)) return;
1318 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1319 CopyValueToVirtualRegister(V, Reg);
1322 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1323 const BasicBlock *FromBB) {
1324 // The operands of the setcc have to be in this block. We don't know
1325 // how to export them from some other block.
1326 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1327 // Can export from current BB.
1328 if (VI->getParent() == FromBB)
1331 // Is already exported, noop.
1332 return FuncInfo.isExportedInst(V);
1335 // If this is an argument, we can export it if the BB is the entry block or
1336 // if it is already exported.
1337 if (isa<Argument>(V)) {
1338 if (FromBB == &FromBB->getParent()->getEntryBlock())
1341 // Otherwise, can only export this if it is already exported.
1342 return FuncInfo.isExportedInst(V);
1345 // Otherwise, constants can always be exported.
1349 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1350 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1351 const MachineBasicBlock *Dst) const {
1352 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1355 const BasicBlock *SrcBB = Src->getBasicBlock();
1356 const BasicBlock *DstBB = Dst->getBasicBlock();
1357 return BPI->getEdgeWeight(SrcBB, DstBB);
1360 void SelectionDAGBuilder::
1361 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1362 uint32_t Weight /* = 0 */) {
1364 Weight = getEdgeWeight(Src, Dst);
1365 Src->addSuccessor(Dst, Weight);
1369 static bool InBlock(const Value *V, const BasicBlock *BB) {
1370 if (const Instruction *I = dyn_cast<Instruction>(V))
1371 return I->getParent() == BB;
1375 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1376 /// This function emits a branch and is used at the leaves of an OR or an
1377 /// AND operator tree.
1380 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1381 MachineBasicBlock *TBB,
1382 MachineBasicBlock *FBB,
1383 MachineBasicBlock *CurBB,
1384 MachineBasicBlock *SwitchBB) {
1385 const BasicBlock *BB = CurBB->getBasicBlock();
1387 // If the leaf of the tree is a comparison, merge the condition into
1389 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1390 // The operands of the cmp have to be in this block. We don't know
1391 // how to export them from some other block. If this is the first block
1392 // of the sequence, no exporting is needed.
1393 if (CurBB == SwitchBB ||
1394 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1395 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1396 ISD::CondCode Condition;
1397 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1398 Condition = getICmpCondCode(IC->getPredicate());
1399 } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1400 Condition = getFCmpCondCode(FC->getPredicate());
1401 if (TM.Options.NoNaNsFPMath)
1402 Condition = getFCmpCodeWithoutNaN(Condition);
1404 Condition = ISD::SETEQ; // silence warning.
1405 llvm_unreachable("Unknown compare instruction");
1408 CaseBlock CB(Condition, BOp->getOperand(0),
1409 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1410 SwitchCases.push_back(CB);
1415 // Create a CaseBlock record representing this branch.
1416 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1417 NULL, TBB, FBB, CurBB);
1418 SwitchCases.push_back(CB);
1421 /// FindMergedConditions - If Cond is an expression like
1422 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1423 MachineBasicBlock *TBB,
1424 MachineBasicBlock *FBB,
1425 MachineBasicBlock *CurBB,
1426 MachineBasicBlock *SwitchBB,
1428 // If this node is not part of the or/and tree, emit it as a branch.
1429 const Instruction *BOp = dyn_cast<Instruction>(Cond);
1430 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1431 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1432 BOp->getParent() != CurBB->getBasicBlock() ||
1433 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1434 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1435 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB);
1439 // Create TmpBB after CurBB.
1440 MachineFunction::iterator BBI = CurBB;
1441 MachineFunction &MF = DAG.getMachineFunction();
1442 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1443 CurBB->getParent()->insert(++BBI, TmpBB);
1445 if (Opc == Instruction::Or) {
1446 // Codegen X | Y as:
1454 // Emit the LHS condition.
1455 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc);
1457 // Emit the RHS condition into TmpBB.
1458 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1460 assert(Opc == Instruction::And && "Unknown merge op!");
1461 // Codegen X & Y as:
1468 // This requires creation of TmpBB after CurBB.
1470 // Emit the LHS condition.
1471 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc);
1473 // Emit the RHS condition into TmpBB.
1474 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc);
1478 /// If the set of cases should be emitted as a series of branches, return true.
1479 /// If we should emit this as a bunch of and/or'd together conditions, return
1482 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1483 if (Cases.size() != 2) return true;
1485 // If this is two comparisons of the same values or'd or and'd together, they
1486 // will get folded into a single comparison, so don't emit two blocks.
1487 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1488 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1489 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1490 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1494 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1495 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1496 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1497 Cases[0].CC == Cases[1].CC &&
1498 isa<Constant>(Cases[0].CmpRHS) &&
1499 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1500 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1502 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1509 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1510 MachineBasicBlock *BrMBB = FuncInfo.MBB;
1512 // Update machine-CFG edges.
1513 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1515 // Figure out which block is immediately after the current one.
1516 MachineBasicBlock *NextBlock = 0;
1517 MachineFunction::iterator BBI = BrMBB;
1518 if (++BBI != FuncInfo.MF->end())
1521 if (I.isUnconditional()) {
1522 // Update machine-CFG edges.
1523 BrMBB->addSuccessor(Succ0MBB);
1525 // If this is not a fall-through branch, emit the branch.
1526 if (Succ0MBB != NextBlock)
1527 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1528 MVT::Other, getControlRoot(),
1529 DAG.getBasicBlock(Succ0MBB)));
1534 // If this condition is one of the special cases we handle, do special stuff
1536 const Value *CondVal = I.getCondition();
1537 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1539 // If this is a series of conditions that are or'd or and'd together, emit
1540 // this as a sequence of branches instead of setcc's with and/or operations.
1541 // As long as jumps are not expensive, this should improve performance.
1542 // For example, instead of something like:
1555 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1556 if (!TM.getTargetLowering()->isJumpExpensive() &&
1558 (BOp->getOpcode() == Instruction::And ||
1559 BOp->getOpcode() == Instruction::Or)) {
1560 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1562 // If the compares in later blocks need to use values not currently
1563 // exported from this block, export them now. This block should always
1564 // be the first entry.
1565 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1567 // Allow some cases to be rejected.
1568 if (ShouldEmitAsBranches(SwitchCases)) {
1569 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1570 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1571 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1574 // Emit the branch for this block.
1575 visitSwitchCase(SwitchCases[0], BrMBB);
1576 SwitchCases.erase(SwitchCases.begin());
1580 // Okay, we decided not to do this, remove any inserted MBB's and clear
1582 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1583 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1585 SwitchCases.clear();
1589 // Create a CaseBlock record representing this branch.
1590 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1591 NULL, Succ0MBB, Succ1MBB, BrMBB);
1593 // Use visitSwitchCase to actually insert the fast branch sequence for this
1595 visitSwitchCase(CB, BrMBB);
1598 /// visitSwitchCase - Emits the necessary code to represent a single node in
1599 /// the binary search tree resulting from lowering a switch instruction.
1600 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1601 MachineBasicBlock *SwitchBB) {
1603 SDValue CondLHS = getValue(CB.CmpLHS);
1604 SDLoc dl = getCurSDLoc();
1606 // Build the setcc now.
1607 if (CB.CmpMHS == NULL) {
1608 // Fold "(X == true)" to X and "(X == false)" to !X to
1609 // handle common cases produced by branch lowering.
1610 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1611 CB.CC == ISD::SETEQ)
1613 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1614 CB.CC == ISD::SETEQ) {
1615 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1616 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1618 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1620 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1622 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1623 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
1625 SDValue CmpOp = getValue(CB.CmpMHS);
1626 EVT VT = CmpOp.getValueType();
1628 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1629 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1632 SDValue SUB = DAG.getNode(ISD::SUB, dl,
1633 VT, CmpOp, DAG.getConstant(Low, VT));
1634 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1635 DAG.getConstant(High-Low, VT), ISD::SETULE);
1639 // Update successor info
1640 addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1641 // TrueBB and FalseBB are always different unless the incoming IR is
1642 // degenerate. This only happens when running llc on weird IR.
1643 if (CB.TrueBB != CB.FalseBB)
1644 addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1646 // Set NextBlock to be the MBB immediately after the current one, if any.
1647 // This is used to avoid emitting unnecessary branches to the next block.
1648 MachineBasicBlock *NextBlock = 0;
1649 MachineFunction::iterator BBI = SwitchBB;
1650 if (++BBI != FuncInfo.MF->end())
1653 // If the lhs block is the next block, invert the condition so that we can
1654 // fall through to the lhs instead of the rhs block.
1655 if (CB.TrueBB == NextBlock) {
1656 std::swap(CB.TrueBB, CB.FalseBB);
1657 SDValue True = DAG.getConstant(1, Cond.getValueType());
1658 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1661 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1662 MVT::Other, getControlRoot(), Cond,
1663 DAG.getBasicBlock(CB.TrueBB));
1665 // Insert the false branch. Do this even if it's a fall through branch,
1666 // this makes it easier to do DAG optimizations which require inverting
1667 // the branch condition.
1668 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1669 DAG.getBasicBlock(CB.FalseBB));
1671 DAG.setRoot(BrCond);
1674 /// visitJumpTable - Emit JumpTable node in the current MBB
1675 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1676 // Emit the code for the jump table
1677 assert(JT.Reg != -1U && "Should lower JT Header first!");
1678 EVT PTy = TM.getTargetLowering()->getPointerTy();
1679 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1681 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1682 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1683 MVT::Other, Index.getValue(1),
1685 DAG.setRoot(BrJumpTable);
1688 /// visitJumpTableHeader - This function emits necessary code to produce index
1689 /// in the JumpTable from switch case.
1690 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1691 JumpTableHeader &JTH,
1692 MachineBasicBlock *SwitchBB) {
1693 // Subtract the lowest switch case value from the value being switched on and
1694 // conditional branch to default mbb if the result is greater than the
1695 // difference between smallest and largest cases.
1696 SDValue SwitchOp = getValue(JTH.SValue);
1697 EVT VT = SwitchOp.getValueType();
1698 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1699 DAG.getConstant(JTH.First, VT));
1701 // The SDNode we just created, which holds the value being switched on minus
1702 // the smallest case value, needs to be copied to a virtual register so it
1703 // can be used as an index into the jump table in a subsequent basic block.
1704 // This value may be smaller or larger than the target's pointer type, and
1705 // therefore require extension or truncating.
1706 const TargetLowering *TLI = TM.getTargetLowering();
1707 SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI->getPointerTy());
1709 unsigned JumpTableReg = FuncInfo.CreateReg(TLI->getPointerTy());
1710 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1711 JumpTableReg, SwitchOp);
1712 JT.Reg = JumpTableReg;
1714 // Emit the range check for the jump table, and branch to the default block
1715 // for the switch statement if the value being switched on exceeds the largest
1716 // case in the switch.
1717 SDValue CMP = DAG.getSetCC(getCurSDLoc(),
1718 TLI->getSetCCResultType(*DAG.getContext(),
1719 Sub.getValueType()),
1721 DAG.getConstant(JTH.Last - JTH.First,VT),
1724 // Set NextBlock to be the MBB immediately after the current one, if any.
1725 // This is used to avoid emitting unnecessary branches to the next block.
1726 MachineBasicBlock *NextBlock = 0;
1727 MachineFunction::iterator BBI = SwitchBB;
1729 if (++BBI != FuncInfo.MF->end())
1732 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1733 MVT::Other, CopyTo, CMP,
1734 DAG.getBasicBlock(JT.Default));
1736 if (JT.MBB != NextBlock)
1737 BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1738 DAG.getBasicBlock(JT.MBB));
1740 DAG.setRoot(BrCond);
1743 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1744 /// tail spliced into a stack protector check success bb.
1746 /// For a high level explanation of how this fits into the stack protector
1747 /// generation see the comment on the declaration of class
1748 /// StackProtectorDescriptor.
1749 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1750 MachineBasicBlock *ParentBB) {
1752 // First create the loads to the guard/stack slot for the comparison.
1753 const TargetLowering *TLI = TM.getTargetLowering();
1754 EVT PtrTy = TLI->getPointerTy();
1756 MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1757 int FI = MFI->getStackProtectorIndex();
1759 const Value *IRGuard = SPD.getGuard();
1760 SDValue GuardPtr = getValue(IRGuard);
1761 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1764 TLI->getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1765 SDValue Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1766 GuardPtr, MachinePointerInfo(IRGuard, 0),
1767 true, false, false, Align);
1769 SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1771 MachinePointerInfo::getFixedStack(FI),
1772 true, false, false, Align);
1774 // Perform the comparison via a subtract/getsetcc.
1775 EVT VT = Guard.getValueType();
1776 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1778 SDValue Cmp = DAG.getSetCC(getCurSDLoc(),
1779 TLI->getSetCCResultType(*DAG.getContext(),
1780 Sub.getValueType()),
1781 Sub, DAG.getConstant(0, VT),
1784 // If the sub is not 0, then we know the guard/stackslot do not equal, so
1785 // branch to failure MBB.
1786 SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1787 MVT::Other, StackSlot.getOperand(0),
1788 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1789 // Otherwise branch to success MBB.
1790 SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1792 DAG.getBasicBlock(SPD.getSuccessMBB()));
1797 /// Codegen the failure basic block for a stack protector check.
1799 /// A failure stack protector machine basic block consists simply of a call to
1800 /// __stack_chk_fail().
1802 /// For a high level explanation of how this fits into the stack protector
1803 /// generation see the comment on the declaration of class
1804 /// StackProtectorDescriptor.
1806 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1807 const TargetLowering *TLI = TM.getTargetLowering();
1808 SDValue Chain = TLI->makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL,
1809 MVT::isVoid, 0, 0, false, getCurSDLoc(),
1810 false, false).second;
1814 /// visitBitTestHeader - This function emits necessary code to produce value
1815 /// suitable for "bit tests"
1816 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1817 MachineBasicBlock *SwitchBB) {
1818 // Subtract the minimum value
1819 SDValue SwitchOp = getValue(B.SValue);
1820 EVT VT = SwitchOp.getValueType();
1821 SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1822 DAG.getConstant(B.First, VT));
1825 const TargetLowering *TLI = TM.getTargetLowering();
1826 SDValue RangeCmp = DAG.getSetCC(getCurSDLoc(),
1827 TLI->getSetCCResultType(*DAG.getContext(),
1828 Sub.getValueType()),
1829 Sub, DAG.getConstant(B.Range, VT),
1832 // Determine the type of the test operands.
1833 bool UsePtrType = false;
1834 if (!TLI->isTypeLegal(VT))
1837 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1838 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1839 // Switch table case range are encoded into series of masks.
1840 // Just use pointer type, it's guaranteed to fit.
1846 VT = TLI->getPointerTy();
1847 Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1850 B.RegVT = VT.getSimpleVT();
1851 B.Reg = FuncInfo.CreateReg(B.RegVT);
1852 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1855 // Set NextBlock to be the MBB immediately after the current one, if any.
1856 // This is used to avoid emitting unnecessary branches to the next block.
1857 MachineBasicBlock *NextBlock = 0;
1858 MachineFunction::iterator BBI = SwitchBB;
1859 if (++BBI != FuncInfo.MF->end())
1862 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1864 addSuccessorWithWeight(SwitchBB, B.Default);
1865 addSuccessorWithWeight(SwitchBB, MBB);
1867 SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1868 MVT::Other, CopyTo, RangeCmp,
1869 DAG.getBasicBlock(B.Default));
1871 if (MBB != NextBlock)
1872 BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1873 DAG.getBasicBlock(MBB));
1875 DAG.setRoot(BrRange);
1878 /// visitBitTestCase - this function produces one "bit test"
1879 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1880 MachineBasicBlock* NextMBB,
1881 uint32_t BranchWeightToNext,
1884 MachineBasicBlock *SwitchBB) {
1886 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1889 unsigned PopCount = CountPopulation_64(B.Mask);
1890 const TargetLowering *TLI = TM.getTargetLowering();
1891 if (PopCount == 1) {
1892 // Testing for a single bit; just compare the shift count with what it
1893 // would need to be to shift a 1 bit in that position.
1894 Cmp = DAG.getSetCC(getCurSDLoc(),
1895 TLI->getSetCCResultType(*DAG.getContext(), VT),
1897 DAG.getConstant(countTrailingZeros(B.Mask), VT),
1899 } else if (PopCount == BB.Range) {
1900 // There is only one zero bit in the range, test for it directly.
1901 Cmp = DAG.getSetCC(getCurSDLoc(),
1902 TLI->getSetCCResultType(*DAG.getContext(), VT),
1904 DAG.getConstant(CountTrailingOnes_64(B.Mask), VT),
1907 // Make desired shift
1908 SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1909 DAG.getConstant(1, VT), ShiftOp);
1911 // Emit bit tests and jumps
1912 SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1913 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1914 Cmp = DAG.getSetCC(getCurSDLoc(),
1915 TLI->getSetCCResultType(*DAG.getContext(), VT),
1916 AndOp, DAG.getConstant(0, VT),
1920 // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1921 addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1922 // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1923 addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1925 SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1926 MVT::Other, getControlRoot(),
1927 Cmp, DAG.getBasicBlock(B.TargetBB));
1929 // Set NextBlock to be the MBB immediately after the current one, if any.
1930 // This is used to avoid emitting unnecessary branches to the next block.
1931 MachineBasicBlock *NextBlock = 0;
1932 MachineFunction::iterator BBI = SwitchBB;
1933 if (++BBI != FuncInfo.MF->end())
1936 if (NextMBB != NextBlock)
1937 BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
1938 DAG.getBasicBlock(NextMBB));
1943 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
1944 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
1946 // Retrieve successors.
1947 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1948 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1950 const Value *Callee(I.getCalledValue());
1951 const Function *Fn = dyn_cast<Function>(Callee);
1952 if (isa<InlineAsm>(Callee))
1954 else if (Fn && Fn->isIntrinsic()) {
1955 assert(Fn->getIntrinsicID() == Intrinsic::donothing);
1956 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
1958 LowerCallTo(&I, getValue(Callee), false, LandingPad);
1960 // If the value of the invoke is used outside of its defining block, make it
1961 // available as a virtual register.
1962 CopyToExportRegsIfNeeded(&I);
1964 // Update successor info
1965 addSuccessorWithWeight(InvokeMBB, Return);
1966 addSuccessorWithWeight(InvokeMBB, LandingPad);
1968 // Drop into normal successor.
1969 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1970 MVT::Other, getControlRoot(),
1971 DAG.getBasicBlock(Return)));
1974 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
1975 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
1978 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
1979 assert(FuncInfo.MBB->isLandingPad() &&
1980 "Call to landingpad not in landing pad!");
1982 MachineBasicBlock *MBB = FuncInfo.MBB;
1983 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
1984 AddLandingPadInfo(LP, MMI, MBB);
1986 // If there aren't registers to copy the values into (e.g., during SjLj
1987 // exceptions), then don't bother to create these DAG nodes.
1988 const TargetLowering *TLI = TM.getTargetLowering();
1989 if (TLI->getExceptionPointerRegister() == 0 &&
1990 TLI->getExceptionSelectorRegister() == 0)
1993 SmallVector<EVT, 2> ValueVTs;
1994 ComputeValueVTs(*TLI, LP.getType(), ValueVTs);
1995 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
1997 // Get the two live-in registers as SDValues. The physregs have already been
1998 // copied into virtual registers.
2000 Ops[0] = DAG.getZExtOrTrunc(
2001 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2002 FuncInfo.ExceptionPointerVirtReg, TLI->getPointerTy()),
2003 getCurSDLoc(), ValueVTs[0]);
2004 Ops[1] = DAG.getZExtOrTrunc(
2005 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2006 FuncInfo.ExceptionSelectorVirtReg, TLI->getPointerTy()),
2007 getCurSDLoc(), ValueVTs[1]);
2010 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2011 DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
2016 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2017 /// small case ranges).
2018 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2019 CaseRecVector& WorkList,
2021 MachineBasicBlock *Default,
2022 MachineBasicBlock *SwitchBB) {
2023 // Size is the number of Cases represented by this range.
2024 size_t Size = CR.Range.second - CR.Range.first;
2028 // Get the MachineFunction which holds the current MBB. This is used when
2029 // inserting any additional MBBs necessary to represent the switch.
2030 MachineFunction *CurMF = FuncInfo.MF;
2032 // Figure out which block is immediately after the current one.
2033 MachineBasicBlock *NextBlock = 0;
2034 MachineFunction::iterator BBI = CR.CaseBB;
2036 if (++BBI != FuncInfo.MF->end())
2039 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2040 // If any two of the cases has the same destination, and if one value
2041 // is the same as the other, but has one bit unset that the other has set,
2042 // use bit manipulation to do two compares at once. For example:
2043 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2044 // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2045 // TODO: Handle cases where CR.CaseBB != SwitchBB.
2046 if (Size == 2 && CR.CaseBB == SwitchBB) {
2047 Case &Small = *CR.Range.first;
2048 Case &Big = *(CR.Range.second-1);
2050 if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2051 const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2052 const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2054 // Check that there is only one bit different.
2055 if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2056 (SmallValue | BigValue) == BigValue) {
2057 // Isolate the common bit.
2058 APInt CommonBit = BigValue & ~SmallValue;
2059 assert((SmallValue | CommonBit) == BigValue &&
2060 CommonBit.countPopulation() == 1 && "Not a common bit?");
2062 SDValue CondLHS = getValue(SV);
2063 EVT VT = CondLHS.getValueType();
2064 SDLoc DL = getCurSDLoc();
2066 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2067 DAG.getConstant(CommonBit, VT));
2068 SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2069 Or, DAG.getConstant(BigValue, VT),
2072 // Update successor info.
2073 // Both Small and Big will jump to Small.BB, so we sum up the weights.
2074 addSuccessorWithWeight(SwitchBB, Small.BB,
2075 Small.ExtraWeight + Big.ExtraWeight);
2076 addSuccessorWithWeight(SwitchBB, Default,
2077 // The default destination is the first successor in IR.
2078 BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2080 // Insert the true branch.
2081 SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2082 getControlRoot(), Cond,
2083 DAG.getBasicBlock(Small.BB));
2085 // Insert the false branch.
2086 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2087 DAG.getBasicBlock(Default));
2089 DAG.setRoot(BrCond);
2095 // Order cases by weight so the most likely case will be checked first.
2096 uint32_t UnhandledWeights = 0;
2098 for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2099 uint32_t IWeight = I->ExtraWeight;
2100 UnhandledWeights += IWeight;
2101 for (CaseItr J = CR.Range.first; J < I; ++J) {
2102 uint32_t JWeight = J->ExtraWeight;
2103 if (IWeight > JWeight)
2108 // Rearrange the case blocks so that the last one falls through if possible.
2109 Case &BackCase = *(CR.Range.second-1);
2111 NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2112 // The last case block won't fall through into 'NextBlock' if we emit the
2113 // branches in this order. See if rearranging a case value would help.
2114 // We start at the bottom as it's the case with the least weight.
2115 for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2116 if (I->BB == NextBlock) {
2117 std::swap(*I, BackCase);
2122 // Create a CaseBlock record representing a conditional branch to
2123 // the Case's target mbb if the value being switched on SV is equal
2125 MachineBasicBlock *CurBlock = CR.CaseBB;
2126 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2127 MachineBasicBlock *FallThrough;
2129 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2130 CurMF->insert(BBI, FallThrough);
2132 // Put SV in a virtual register to make it available from the new blocks.
2133 ExportFromCurrentBlock(SV);
2135 // If the last case doesn't match, go to the default block.
2136 FallThrough = Default;
2139 const Value *RHS, *LHS, *MHS;
2141 if (I->High == I->Low) {
2142 // This is just small small case range :) containing exactly 1 case
2144 LHS = SV; RHS = I->High; MHS = NULL;
2147 LHS = I->Low; MHS = SV; RHS = I->High;
2150 // The false weight should be sum of all un-handled cases.
2151 UnhandledWeights -= I->ExtraWeight;
2152 CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2154 /* trueweight */ I->ExtraWeight,
2155 /* falseweight */ UnhandledWeights);
2157 // If emitting the first comparison, just call visitSwitchCase to emit the
2158 // code into the current block. Otherwise, push the CaseBlock onto the
2159 // vector to be later processed by SDISel, and insert the node's MBB
2160 // before the next MBB.
2161 if (CurBlock == SwitchBB)
2162 visitSwitchCase(CB, SwitchBB);
2164 SwitchCases.push_back(CB);
2166 CurBlock = FallThrough;
2172 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2173 return TLI.supportJumpTables() &&
2174 (TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2175 TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other));
2178 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2179 uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2180 APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2181 return (LastExt - FirstExt + 1ULL);
2184 /// handleJTSwitchCase - Emit jumptable for current switch case range
2185 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2186 CaseRecVector &WorkList,
2188 MachineBasicBlock *Default,
2189 MachineBasicBlock *SwitchBB) {
2190 Case& FrontCase = *CR.Range.first;
2191 Case& BackCase = *(CR.Range.second-1);
2193 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2194 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2196 APInt TSize(First.getBitWidth(), 0);
2197 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2200 const TargetLowering *TLI = TM.getTargetLowering();
2201 if (!areJTsAllowed(*TLI) || TSize.ult(TLI->getMinimumJumpTableEntries()))
2204 APInt Range = ComputeRange(First, Last);
2205 // The density is TSize / Range. Require at least 40%.
2206 // It should not be possible for IntTSize to saturate for sane code, but make
2207 // sure we handle Range saturation correctly.
2208 uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2209 uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2210 if (IntTSize * 10 < IntRange * 4)
2213 DEBUG(dbgs() << "Lowering jump table\n"
2214 << "First entry: " << First << ". Last entry: " << Last << '\n'
2215 << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2217 // Get the MachineFunction which holds the current MBB. This is used when
2218 // inserting any additional MBBs necessary to represent the switch.
2219 MachineFunction *CurMF = FuncInfo.MF;
2221 // Figure out which block is immediately after the current one.
2222 MachineFunction::iterator BBI = CR.CaseBB;
2225 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2227 // Create a new basic block to hold the code for loading the address
2228 // of the jump table, and jumping to it. Update successor information;
2229 // we will either branch to the default case for the switch, or the jump
2231 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2232 CurMF->insert(BBI, JumpTableBB);
2234 addSuccessorWithWeight(CR.CaseBB, Default);
2235 addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2237 // Build a vector of destination BBs, corresponding to each target
2238 // of the jump table. If the value of the jump table slot corresponds to
2239 // a case statement, push the case's BB onto the vector, otherwise, push
2241 std::vector<MachineBasicBlock*> DestBBs;
2243 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2244 const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2245 const APInt &High = cast<ConstantInt>(I->High)->getValue();
2247 if (Low.sle(TEI) && TEI.sle(High)) {
2248 DestBBs.push_back(I->BB);
2252 DestBBs.push_back(Default);
2256 // Calculate weight for each unique destination in CR.
2257 DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2259 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2260 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2261 DestWeights.find(I->BB);
2262 if (Itr != DestWeights.end())
2263 Itr->second += I->ExtraWeight;
2265 DestWeights[I->BB] = I->ExtraWeight;
2268 // Update successor info. Add one edge to each unique successor.
2269 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2270 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2271 E = DestBBs.end(); I != E; ++I) {
2272 if (!SuccsHandled[(*I)->getNumber()]) {
2273 SuccsHandled[(*I)->getNumber()] = true;
2274 DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2275 DestWeights.find(*I);
2276 addSuccessorWithWeight(JumpTableBB, *I,
2277 Itr != DestWeights.end() ? Itr->second : 0);
2281 // Create a jump table index for this jump table.
2282 unsigned JTEncoding = TLI->getJumpTableEncoding();
2283 unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2284 ->createJumpTableIndex(DestBBs);
2286 // Set the jump table information so that we can codegen it as a second
2287 // MachineBasicBlock
2288 JumpTable JT(-1U, JTI, JumpTableBB, Default);
2289 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2290 if (CR.CaseBB == SwitchBB)
2291 visitJumpTableHeader(JT, JTH, SwitchBB);
2293 JTCases.push_back(JumpTableBlock(JTH, JT));
2297 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2299 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2300 CaseRecVector& WorkList,
2302 MachineBasicBlock* Default,
2303 MachineBasicBlock* SwitchBB) {
2304 // Get the MachineFunction which holds the current MBB. This is used when
2305 // inserting any additional MBBs necessary to represent the switch.
2306 MachineFunction *CurMF = FuncInfo.MF;
2308 // Figure out which block is immediately after the current one.
2309 MachineFunction::iterator BBI = CR.CaseBB;
2312 Case& FrontCase = *CR.Range.first;
2313 Case& BackCase = *(CR.Range.second-1);
2314 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2316 // Size is the number of Cases represented by this range.
2317 unsigned Size = CR.Range.second - CR.Range.first;
2319 const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2320 const APInt &Last = cast<ConstantInt>(BackCase.High)->getValue();
2322 CaseItr Pivot = CR.Range.first + Size/2;
2324 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2325 // (heuristically) allow us to emit JumpTable's later.
2326 APInt TSize(First.getBitWidth(), 0);
2327 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2331 APInt LSize = FrontCase.size();
2332 APInt RSize = TSize-LSize;
2333 DEBUG(dbgs() << "Selecting best pivot: \n"
2334 << "First: " << First << ", Last: " << Last <<'\n'
2335 << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2336 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2338 const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2339 const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2340 APInt Range = ComputeRange(LEnd, RBegin);
2341 assert((Range - 2ULL).isNonNegative() &&
2342 "Invalid case distance");
2343 // Use volatile double here to avoid excess precision issues on some hosts,
2344 // e.g. that use 80-bit X87 registers.
2345 volatile double LDensity =
2346 (double)LSize.roundToDouble() /
2347 (LEnd - First + 1ULL).roundToDouble();
2348 volatile double RDensity =
2349 (double)RSize.roundToDouble() /
2350 (Last - RBegin + 1ULL).roundToDouble();
2351 double Metric = Range.logBase2()*(LDensity+RDensity);
2352 // Should always split in some non-trivial place
2353 DEBUG(dbgs() <<"=>Step\n"
2354 << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2355 << "LDensity: " << LDensity
2356 << ", RDensity: " << RDensity << '\n'
2357 << "Metric: " << Metric << '\n');
2358 if (FMetric < Metric) {
2361 DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2368 const TargetLowering *TLI = TM.getTargetLowering();
2369 if (areJTsAllowed(*TLI)) {
2370 // If our case is dense we *really* should handle it earlier!
2371 assert((FMetric > 0) && "Should handle dense range earlier!");
2373 Pivot = CR.Range.first + Size/2;
2376 CaseRange LHSR(CR.Range.first, Pivot);
2377 CaseRange RHSR(Pivot, CR.Range.second);
2378 const Constant *C = Pivot->Low;
2379 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
2381 // We know that we branch to the LHS if the Value being switched on is
2382 // less than the Pivot value, C. We use this to optimize our binary
2383 // tree a bit, by recognizing that if SV is greater than or equal to the
2384 // LHS's Case Value, and that Case Value is exactly one less than the
2385 // Pivot's Value, then we can branch directly to the LHS's Target,
2386 // rather than creating a leaf node for it.
2387 if ((LHSR.second - LHSR.first) == 1 &&
2388 LHSR.first->High == CR.GE &&
2389 cast<ConstantInt>(C)->getValue() ==
2390 (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2391 TrueBB = LHSR.first->BB;
2393 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2394 CurMF->insert(BBI, TrueBB);
2395 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2397 // Put SV in a virtual register to make it available from the new blocks.
2398 ExportFromCurrentBlock(SV);
2401 // Similar to the optimization above, if the Value being switched on is
2402 // known to be less than the Constant CR.LT, and the current Case Value
2403 // is CR.LT - 1, then we can branch directly to the target block for
2404 // the current Case Value, rather than emitting a RHS leaf node for it.
2405 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2406 cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2407 (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2408 FalseBB = RHSR.first->BB;
2410 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2411 CurMF->insert(BBI, FalseBB);
2412 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2414 // Put SV in a virtual register to make it available from the new blocks.
2415 ExportFromCurrentBlock(SV);
2418 // Create a CaseBlock record representing a conditional branch to
2419 // the LHS node if the value being switched on SV is less than C.
2420 // Otherwise, branch to LHS.
2421 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
2423 if (CR.CaseBB == SwitchBB)
2424 visitSwitchCase(CB, SwitchBB);
2426 SwitchCases.push_back(CB);
2431 /// handleBitTestsSwitchCase - if current case range has few destination and
2432 /// range span less, than machine word bitwidth, encode case range into series
2433 /// of masks and emit bit tests with these masks.
2434 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2435 CaseRecVector& WorkList,
2437 MachineBasicBlock* Default,
2438 MachineBasicBlock* SwitchBB) {
2439 const TargetLowering *TLI = TM.getTargetLowering();
2440 EVT PTy = TLI->getPointerTy();
2441 unsigned IntPtrBits = PTy.getSizeInBits();
2443 Case& FrontCase = *CR.Range.first;
2444 Case& BackCase = *(CR.Range.second-1);
2446 // Get the MachineFunction which holds the current MBB. This is used when
2447 // inserting any additional MBBs necessary to represent the switch.
2448 MachineFunction *CurMF = FuncInfo.MF;
2450 // If target does not have legal shift left, do not emit bit tests at all.
2451 if (!TLI->isOperationLegal(ISD::SHL, PTy))
2455 for (CaseItr I = CR.Range.first, E = CR.Range.second;
2457 // Single case counts one, case range - two.
2458 numCmps += (I->Low == I->High ? 1 : 2);
2461 // Count unique destinations
2462 SmallSet<MachineBasicBlock*, 4> Dests;
2463 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2464 Dests.insert(I->BB);
2465 if (Dests.size() > 3)
2466 // Don't bother the code below, if there are too much unique destinations
2469 DEBUG(dbgs() << "Total number of unique destinations: "
2470 << Dests.size() << '\n'
2471 << "Total number of comparisons: " << numCmps << '\n');
2473 // Compute span of values.
2474 const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2475 const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2476 APInt cmpRange = maxValue - minValue;
2478 DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2479 << "Low bound: " << minValue << '\n'
2480 << "High bound: " << maxValue << '\n');
2482 if (cmpRange.uge(IntPtrBits) ||
2483 (!(Dests.size() == 1 && numCmps >= 3) &&
2484 !(Dests.size() == 2 && numCmps >= 5) &&
2485 !(Dests.size() >= 3 && numCmps >= 6)))
2488 DEBUG(dbgs() << "Emitting bit tests\n");
2489 APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2491 // Optimize the case where all the case values fit in a
2492 // word without having to subtract minValue. In this case,
2493 // we can optimize away the subtraction.
2494 if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2495 cmpRange = maxValue;
2497 lowBound = minValue;
2500 CaseBitsVector CasesBits;
2501 unsigned i, count = 0;
2503 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2504 MachineBasicBlock* Dest = I->BB;
2505 for (i = 0; i < count; ++i)
2506 if (Dest == CasesBits[i].BB)
2510 assert((count < 3) && "Too much destinations to test!");
2511 CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2515 const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2516 const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2518 uint64_t lo = (lowValue - lowBound).getZExtValue();
2519 uint64_t hi = (highValue - lowBound).getZExtValue();
2520 CasesBits[i].ExtraWeight += I->ExtraWeight;
2522 for (uint64_t j = lo; j <= hi; j++) {
2523 CasesBits[i].Mask |= 1ULL << j;
2524 CasesBits[i].Bits++;
2528 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2532 // Figure out which block is immediately after the current one.
2533 MachineFunction::iterator BBI = CR.CaseBB;
2536 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2538 DEBUG(dbgs() << "Cases:\n");
2539 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2540 DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2541 << ", Bits: " << CasesBits[i].Bits
2542 << ", BB: " << CasesBits[i].BB << '\n');
2544 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2545 CurMF->insert(BBI, CaseBB);
2546 BTC.push_back(BitTestCase(CasesBits[i].Mask,
2548 CasesBits[i].BB, CasesBits[i].ExtraWeight));
2550 // Put SV in a virtual register to make it available from the new blocks.
2551 ExportFromCurrentBlock(SV);
2554 BitTestBlock BTB(lowBound, cmpRange, SV,
2555 -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2556 CR.CaseBB, Default, BTC);
2558 if (CR.CaseBB == SwitchBB)
2559 visitBitTestHeader(BTB, SwitchBB);
2561 BitTestCases.push_back(BTB);
2566 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2567 size_t SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2568 const SwitchInst& SI) {
2571 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2572 // Start with "simple" cases
2573 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2575 const BasicBlock *SuccBB = i.getCaseSuccessor();
2576 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2578 uint32_t ExtraWeight =
2579 BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2581 Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2582 SMBB, ExtraWeight));
2584 std::sort(Cases.begin(), Cases.end(), CaseCmp());
2586 // Merge case into clusters
2587 if (Cases.size() >= 2)
2588 // Must recompute end() each iteration because it may be
2589 // invalidated by erase if we hold on to it
2590 for (CaseItr I = Cases.begin(), J = llvm::next(Cases.begin());
2591 J != Cases.end(); ) {
2592 const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2593 const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2594 MachineBasicBlock* nextBB = J->BB;
2595 MachineBasicBlock* currentBB = I->BB;
2597 // If the two neighboring cases go to the same destination, merge them
2598 // into a single case.
2599 if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2601 I->ExtraWeight += J->ExtraWeight;
2608 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
2609 if (I->Low != I->High)
2610 // A range counts double, since it requires two compares.
2617 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2618 MachineBasicBlock *Last) {
2620 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2621 if (JTCases[i].first.HeaderBB == First)
2622 JTCases[i].first.HeaderBB = Last;
2624 // Update BitTestCases.
2625 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2626 if (BitTestCases[i].Parent == First)
2627 BitTestCases[i].Parent = Last;
2630 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2631 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2633 // Figure out which block is immediately after the current one.
2634 MachineBasicBlock *NextBlock = 0;
2635 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2637 // If there is only the default destination, branch to it if it is not the
2638 // next basic block. Otherwise, just fall through.
2639 if (!SI.getNumCases()) {
2640 // Update machine-CFG edges.
2642 // If this is not a fall-through branch, emit the branch.
2643 SwitchMBB->addSuccessor(Default);
2644 if (Default != NextBlock)
2645 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2646 MVT::Other, getControlRoot(),
2647 DAG.getBasicBlock(Default)));
2652 // If there are any non-default case statements, create a vector of Cases
2653 // representing each one, and sort the vector so that we can efficiently
2654 // create a binary search tree from them.
2656 size_t numCmps = Clusterify(Cases, SI);
2657 DEBUG(dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2658 << ". Total compares: " << numCmps << '\n');
2661 // Get the Value to be switched on and default basic blocks, which will be
2662 // inserted into CaseBlock records, representing basic blocks in the binary
2664 const Value *SV = SI.getCondition();
2666 // Push the initial CaseRec onto the worklist
2667 CaseRecVector WorkList;
2668 WorkList.push_back(CaseRec(SwitchMBB,0,0,
2669 CaseRange(Cases.begin(),Cases.end())));
2671 while (!WorkList.empty()) {
2672 // Grab a record representing a case range to process off the worklist
2673 CaseRec CR = WorkList.back();
2674 WorkList.pop_back();
2676 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2679 // If the range has few cases (two or less) emit a series of specific
2681 if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2684 // If the switch has more than N blocks, and is at least 40% dense, and the
2685 // target supports indirect branches, then emit a jump table rather than
2686 // lowering the switch to a binary tree of conditional branches.
2687 // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2688 if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2691 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2692 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2693 handleBTSplitSwitchCase(CR, WorkList, SV, Default, SwitchMBB);
2697 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2698 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2700 // Update machine-CFG edges with unique successors.
2701 SmallSet<BasicBlock*, 32> Done;
2702 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2703 BasicBlock *BB = I.getSuccessor(i);
2704 bool Inserted = Done.insert(BB);
2708 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2709 addSuccessorWithWeight(IndirectBrMBB, Succ);
2712 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2713 MVT::Other, getControlRoot(),
2714 getValue(I.getAddress())));
2717 void SelectionDAGBuilder::visitFSub(const User &I) {
2718 // -0.0 - X --> fneg
2719 Type *Ty = I.getType();
2720 if (isa<Constant>(I.getOperand(0)) &&
2721 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2722 SDValue Op2 = getValue(I.getOperand(1));
2723 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2724 Op2.getValueType(), Op2));
2728 visitBinary(I, ISD::FSUB);
2731 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2732 SDValue Op1 = getValue(I.getOperand(0));
2733 SDValue Op2 = getValue(I.getOperand(1));
2734 setValue(&I, DAG.getNode(OpCode, getCurSDLoc(),
2735 Op1.getValueType(), Op1, Op2));
2738 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2739 SDValue Op1 = getValue(I.getOperand(0));
2740 SDValue Op2 = getValue(I.getOperand(1));
2742 EVT ShiftTy = TM.getTargetLowering()->getShiftAmountTy(Op2.getValueType());
2744 // Coerce the shift amount to the right type if we can.
2745 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2746 unsigned ShiftSize = ShiftTy.getSizeInBits();
2747 unsigned Op2Size = Op2.getValueType().getSizeInBits();
2748 SDLoc DL = getCurSDLoc();
2750 // If the operand is smaller than the shift count type, promote it.
2751 if (ShiftSize > Op2Size)
2752 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2754 // If the operand is larger than the shift count type but the shift
2755 // count type has enough bits to represent any shift value, truncate
2756 // it now. This is a common case and it exposes the truncate to
2757 // optimization early.
2758 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2759 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2760 // Otherwise we'll need to temporarily settle for some other convenient
2761 // type. Type legalization will make adjustments once the shiftee is split.
2763 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2766 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(),
2767 Op1.getValueType(), Op1, Op2));
2770 void SelectionDAGBuilder::visitSDiv(const User &I) {
2771 SDValue Op1 = getValue(I.getOperand(0));
2772 SDValue Op2 = getValue(I.getOperand(1));
2774 // Turn exact SDivs into multiplications.
2775 // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2777 if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2778 !isa<ConstantSDNode>(Op1) &&
2779 isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2780 setValue(&I, TM.getTargetLowering()->BuildExactSDIV(Op1, Op2,
2781 getCurSDLoc(), DAG));
2783 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2787 void SelectionDAGBuilder::visitICmp(const User &I) {
2788 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2789 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2790 predicate = IC->getPredicate();
2791 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2792 predicate = ICmpInst::Predicate(IC->getPredicate());
2793 SDValue Op1 = getValue(I.getOperand(0));
2794 SDValue Op2 = getValue(I.getOperand(1));
2795 ISD::CondCode Opcode = getICmpCondCode(predicate);
2797 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2798 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2801 void SelectionDAGBuilder::visitFCmp(const User &I) {
2802 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2803 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2804 predicate = FC->getPredicate();
2805 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2806 predicate = FCmpInst::Predicate(FC->getPredicate());
2807 SDValue Op1 = getValue(I.getOperand(0));
2808 SDValue Op2 = getValue(I.getOperand(1));
2809 ISD::CondCode Condition = getFCmpCondCode(predicate);
2810 if (TM.Options.NoNaNsFPMath)
2811 Condition = getFCmpCodeWithoutNaN(Condition);
2812 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2813 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2816 void SelectionDAGBuilder::visitSelect(const User &I) {
2817 SmallVector<EVT, 4> ValueVTs;
2818 ComputeValueVTs(*TM.getTargetLowering(), I.getType(), ValueVTs);
2819 unsigned NumValues = ValueVTs.size();
2820 if (NumValues == 0) return;
2822 SmallVector<SDValue, 4> Values(NumValues);
2823 SDValue Cond = getValue(I.getOperand(0));
2824 SDValue TrueVal = getValue(I.getOperand(1));
2825 SDValue FalseVal = getValue(I.getOperand(2));
2826 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2827 ISD::VSELECT : ISD::SELECT;
2829 for (unsigned i = 0; i != NumValues; ++i)
2830 Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2831 TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2833 SDValue(TrueVal.getNode(),
2834 TrueVal.getResNo() + i),
2835 SDValue(FalseVal.getNode(),
2836 FalseVal.getResNo() + i));
2838 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2839 DAG.getVTList(&ValueVTs[0], NumValues),
2840 &Values[0], NumValues));
2843 void SelectionDAGBuilder::visitTrunc(const User &I) {
2844 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2845 SDValue N = getValue(I.getOperand(0));
2846 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2847 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2850 void SelectionDAGBuilder::visitZExt(const User &I) {
2851 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2852 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2853 SDValue N = getValue(I.getOperand(0));
2854 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2855 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2858 void SelectionDAGBuilder::visitSExt(const User &I) {
2859 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2860 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2861 SDValue N = getValue(I.getOperand(0));
2862 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2863 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2866 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2867 // FPTrunc is never a no-op cast, no need to check
2868 SDValue N = getValue(I.getOperand(0));
2869 const TargetLowering *TLI = TM.getTargetLowering();
2870 EVT DestVT = TLI->getValueType(I.getType());
2871 setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(),
2873 DAG.getTargetConstant(0, TLI->getPointerTy())));
2876 void SelectionDAGBuilder::visitFPExt(const User &I) {
2877 // FPExt is never a no-op cast, no need to check
2878 SDValue N = getValue(I.getOperand(0));
2879 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2880 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
2883 void SelectionDAGBuilder::visitFPToUI(const User &I) {
2884 // FPToUI is never a no-op cast, no need to check
2885 SDValue N = getValue(I.getOperand(0));
2886 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2887 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
2890 void SelectionDAGBuilder::visitFPToSI(const User &I) {
2891 // FPToSI is never a no-op cast, no need to check
2892 SDValue N = getValue(I.getOperand(0));
2893 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2894 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
2897 void SelectionDAGBuilder::visitUIToFP(const User &I) {
2898 // UIToFP is never a no-op cast, no need to check
2899 SDValue N = getValue(I.getOperand(0));
2900 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2901 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
2904 void SelectionDAGBuilder::visitSIToFP(const User &I) {
2905 // SIToFP is never a no-op cast, no need to check
2906 SDValue N = getValue(I.getOperand(0));
2907 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2908 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
2911 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
2912 // What to do depends on the size of the integer and the size of the pointer.
2913 // We can either truncate, zero extend, or no-op, accordingly.
2914 SDValue N = getValue(I.getOperand(0));
2915 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2916 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2919 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
2920 // What to do depends on the size of the integer and the size of the pointer.
2921 // We can either truncate, zero extend, or no-op, accordingly.
2922 SDValue N = getValue(I.getOperand(0));
2923 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2924 setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
2927 void SelectionDAGBuilder::visitBitCast(const User &I) {
2928 SDValue N = getValue(I.getOperand(0));
2929 EVT DestVT = TM.getTargetLowering()->getValueType(I.getType());
2931 // BitCast assures us that source and destination are the same size so this is
2932 // either a BITCAST or a no-op.
2933 if (DestVT != N.getValueType())
2934 setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
2935 DestVT, N)); // convert types.
2937 setValue(&I, N); // noop cast.
2940 void SelectionDAGBuilder::visitInsertElement(const User &I) {
2941 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2942 SDValue InVec = getValue(I.getOperand(0));
2943 SDValue InVal = getValue(I.getOperand(1));
2944 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
2945 getCurSDLoc(), TLI.getVectorIdxTy());
2946 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
2947 TM.getTargetLowering()->getValueType(I.getType()),
2948 InVec, InVal, InIdx));
2951 void SelectionDAGBuilder::visitExtractElement(const User &I) {
2952 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2953 SDValue InVec = getValue(I.getOperand(0));
2954 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
2955 getCurSDLoc(), TLI.getVectorIdxTy());
2956 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
2957 TM.getTargetLowering()->getValueType(I.getType()),
2961 // Utility for visitShuffleVector - Return true if every element in Mask,
2962 // beginning from position Pos and ending in Pos+Size, falls within the
2963 // specified sequential range [L, L+Pos). or is undef.
2964 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
2965 unsigned Pos, unsigned Size, int Low) {
2966 for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
2967 if (Mask[i] >= 0 && Mask[i] != Low)
2972 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
2973 SDValue Src1 = getValue(I.getOperand(0));
2974 SDValue Src2 = getValue(I.getOperand(1));
2976 SmallVector<int, 8> Mask;
2977 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
2978 unsigned MaskNumElts = Mask.size();
2980 const TargetLowering *TLI = TM.getTargetLowering();
2981 EVT VT = TLI->getValueType(I.getType());
2982 EVT SrcVT = Src1.getValueType();
2983 unsigned SrcNumElts = SrcVT.getVectorNumElements();
2985 if (SrcNumElts == MaskNumElts) {
2986 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
2991 // Normalize the shuffle vector since mask and vector length don't match.
2992 if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
2993 // Mask is longer than the source vectors and is a multiple of the source
2994 // vectors. We can use concatenate vector to make the mask and vectors
2996 if (SrcNumElts*2 == MaskNumElts) {
2997 // First check for Src1 in low and Src2 in high
2998 if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
2999 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3000 // The shuffle is concatenating two vectors together.
3001 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3005 // Then check for Src2 in low and Src1 in high
3006 if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3007 isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3008 // The shuffle is concatenating two vectors together.
3009 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3015 // Pad both vectors with undefs to make them the same length as the mask.
3016 unsigned NumConcat = MaskNumElts / SrcNumElts;
3017 bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3018 bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3019 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3021 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3022 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3026 Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3028 &MOps1[0], NumConcat);
3029 Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3031 &MOps2[0], NumConcat);
3033 // Readjust mask for new input vector length.
3034 SmallVector<int, 8> MappedOps;
3035 for (unsigned i = 0; i != MaskNumElts; ++i) {
3037 if (Idx >= (int)SrcNumElts)
3038 Idx -= SrcNumElts - MaskNumElts;
3039 MappedOps.push_back(Idx);
3042 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3047 if (SrcNumElts > MaskNumElts) {
3048 // Analyze the access pattern of the vector to see if we can extract
3049 // two subvectors and do the shuffle. The analysis is done by calculating
3050 // the range of elements the mask access on both vectors.
3051 int MinRange[2] = { static_cast<int>(SrcNumElts),
3052 static_cast<int>(SrcNumElts)};
3053 int MaxRange[2] = {-1, -1};
3055 for (unsigned i = 0; i != MaskNumElts; ++i) {
3061 if (Idx >= (int)SrcNumElts) {
3065 if (Idx > MaxRange[Input])
3066 MaxRange[Input] = Idx;
3067 if (Idx < MinRange[Input])
3068 MinRange[Input] = Idx;
3071 // Check if the access is smaller than the vector size and can we find
3072 // a reasonable extract index.
3073 int RangeUse[2] = { -1, -1 }; // 0 = Unused, 1 = Extract, -1 = Can not
3075 int StartIdx[2]; // StartIdx to extract from
3076 for (unsigned Input = 0; Input < 2; ++Input) {
3077 if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3078 RangeUse[Input] = 0; // Unused
3079 StartIdx[Input] = 0;
3083 // Find a good start index that is a multiple of the mask length. Then
3084 // see if the rest of the elements are in range.
3085 StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3086 if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3087 StartIdx[Input] + MaskNumElts <= SrcNumElts)
3088 RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3091 if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3092 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3095 if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3096 // Extract appropriate subvector and generate a vector shuffle
3097 for (unsigned Input = 0; Input < 2; ++Input) {
3098 SDValue &Src = Input == 0 ? Src1 : Src2;
3099 if (RangeUse[Input] == 0)
3100 Src = DAG.getUNDEF(VT);
3102 Src = DAG.getNode(ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT,
3103 Src, DAG.getConstant(StartIdx[Input],
3104 TLI->getVectorIdxTy()));
3107 // Calculate new mask.
3108 SmallVector<int, 8> MappedOps;
3109 for (unsigned i = 0; i != MaskNumElts; ++i) {
3112 if (Idx < (int)SrcNumElts)
3115 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3117 MappedOps.push_back(Idx);
3120 setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3126 // We can't use either concat vectors or extract subvectors so fall back to
3127 // replacing the shuffle with extract and build vector.
3128 // to insert and build vector.
3129 EVT EltVT = VT.getVectorElementType();
3130 EVT IdxVT = TLI->getVectorIdxTy();
3131 SmallVector<SDValue,8> Ops;
3132 for (unsigned i = 0; i != MaskNumElts; ++i) {
3137 Res = DAG.getUNDEF(EltVT);
3139 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3140 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3142 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3143 EltVT, Src, DAG.getConstant(Idx, IdxVT));
3149 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
3150 VT, &Ops[0], Ops.size()));
3153 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3154 const Value *Op0 = I.getOperand(0);
3155 const Value *Op1 = I.getOperand(1);
3156 Type *AggTy = I.getType();
3157 Type *ValTy = Op1->getType();
3158 bool IntoUndef = isa<UndefValue>(Op0);
3159 bool FromUndef = isa<UndefValue>(Op1);
3161 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3163 const TargetLowering *TLI = TM.getTargetLowering();
3164 SmallVector<EVT, 4> AggValueVTs;
3165 ComputeValueVTs(*TLI, AggTy, AggValueVTs);
3166 SmallVector<EVT, 4> ValValueVTs;
3167 ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3169 unsigned NumAggValues = AggValueVTs.size();
3170 unsigned NumValValues = ValValueVTs.size();
3171 SmallVector<SDValue, 4> Values(NumAggValues);
3173 SDValue Agg = getValue(Op0);
3175 // Copy the beginning value(s) from the original aggregate.
3176 for (; i != LinearIndex; ++i)
3177 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3178 SDValue(Agg.getNode(), Agg.getResNo() + i);
3179 // Copy values from the inserted value(s).
3181 SDValue Val = getValue(Op1);
3182 for (; i != LinearIndex + NumValValues; ++i)
3183 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3184 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3186 // Copy remaining value(s) from the original aggregate.
3187 for (; i != NumAggValues; ++i)
3188 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3189 SDValue(Agg.getNode(), Agg.getResNo() + i);
3191 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3192 DAG.getVTList(&AggValueVTs[0], NumAggValues),
3193 &Values[0], NumAggValues));
3196 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3197 const Value *Op0 = I.getOperand(0);
3198 Type *AggTy = Op0->getType();
3199 Type *ValTy = I.getType();
3200 bool OutOfUndef = isa<UndefValue>(Op0);
3202 unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3204 const TargetLowering *TLI = TM.getTargetLowering();
3205 SmallVector<EVT, 4> ValValueVTs;
3206 ComputeValueVTs(*TLI, ValTy, ValValueVTs);
3208 unsigned NumValValues = ValValueVTs.size();
3210 // Ignore a extractvalue that produces an empty object
3211 if (!NumValValues) {
3212 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3216 SmallVector<SDValue, 4> Values(NumValValues);
3218 SDValue Agg = getValue(Op0);
3219 // Copy out the selected value(s).
3220 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3221 Values[i - LinearIndex] =
3223 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3224 SDValue(Agg.getNode(), Agg.getResNo() + i);
3226 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3227 DAG.getVTList(&ValValueVTs[0], NumValValues),
3228 &Values[0], NumValValues));
3231 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3232 SDValue N = getValue(I.getOperand(0));
3233 // Note that the pointer operand may be a vector of pointers. Take the scalar
3234 // element which holds a pointer.
3235 Type *Ty = I.getOperand(0)->getType()->getScalarType();
3237 for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3239 const Value *Idx = *OI;
3240 if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3241 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3244 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
3245 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3246 DAG.getConstant(Offset, N.getValueType()));
3249 Ty = StTy->getElementType(Field);
3252 if (PointerType *PtrType = dyn_cast<PointerType>(Ty)) {
3253 AS = PtrType->getAddressSpace();
3255 Ty = cast<SequentialType>(Ty)->getElementType();
3257 // If this is a constant subscript, handle it quickly.
3258 const TargetLowering *TLI = TM.getTargetLowering();
3259 if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3260 if (CI->isZero()) continue;
3262 TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3264 EVT PTy = TLI->getPointerTy(AS);
3265 unsigned PtrBits = PTy.getSizeInBits();
3267 OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3268 DAG.getConstant(Offs, MVT::i64));
3270 OffsVal = DAG.getConstant(Offs, PTy);
3272 N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3277 // N = N + Idx * ElementSize;
3278 APInt ElementSize = APInt(TLI->getPointerSizeInBits(AS),
3279 TD->getTypeAllocSize(Ty));
3280 SDValue IdxN = getValue(Idx);
3282 // If the index is smaller or larger than intptr_t, truncate or extend
3284 IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3286 // If this is a multiply by a power of two, turn it into a shl
3287 // immediately. This is a very common case.
3288 if (ElementSize != 1) {
3289 if (ElementSize.isPowerOf2()) {
3290 unsigned Amt = ElementSize.logBase2();
3291 IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3292 N.getValueType(), IdxN,
3293 DAG.getConstant(Amt, IdxN.getValueType()));
3295 SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3296 IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3297 N.getValueType(), IdxN, Scale);
3301 N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3302 N.getValueType(), N, IdxN);
3309 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3310 // If this is a fixed sized alloca in the entry block of the function,
3311 // allocate it statically on the stack.
3312 if (FuncInfo.StaticAllocaMap.count(&I))
3313 return; // getValue will auto-populate this.
3315 Type *Ty = I.getAllocatedType();
3316 const TargetLowering *TLI = TM.getTargetLowering();
3317 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
3319 std::max((unsigned)TLI->getDataLayout()->getPrefTypeAlignment(Ty),
3322 SDValue AllocSize = getValue(I.getArraySize());
3324 EVT IntPtr = TLI->getPointerTy();
3325 if (AllocSize.getValueType() != IntPtr)
3326 AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3328 AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3330 DAG.getConstant(TySize, IntPtr));
3332 // Handle alignment. If the requested alignment is less than or equal to
3333 // the stack alignment, ignore it. If the size is greater than or equal to
3334 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3335 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
3336 if (Align <= StackAlign)
3339 // Round the size of the allocation up to the stack alignment size
3340 // by add SA-1 to the size.
3341 AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3342 AllocSize.getValueType(), AllocSize,
3343 DAG.getIntPtrConstant(StackAlign-1));
3345 // Mask out the low bits for alignment purposes.
3346 AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3347 AllocSize.getValueType(), AllocSize,
3348 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3350 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3351 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3352 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(),
3355 DAG.setRoot(DSA.getValue(1));
3357 // Inform the Frame Information that we have just allocated a variable-sized
3359 FuncInfo.MF->getFrameInfo()->CreateVariableSizedObject(Align ? Align : 1);
3362 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3364 return visitAtomicLoad(I);
3366 const Value *SV = I.getOperand(0);
3367 SDValue Ptr = getValue(SV);
3369 Type *Ty = I.getType();
3371 bool isVolatile = I.isVolatile();
3372 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3373 bool isInvariant = I.getMetadata("invariant.load") != 0;
3374 unsigned Alignment = I.getAlignment();
3375 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3376 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3378 SmallVector<EVT, 4> ValueVTs;
3379 SmallVector<uint64_t, 4> Offsets;
3380 ComputeValueVTs(*TM.getTargetLowering(), Ty, ValueVTs, &Offsets);
3381 unsigned NumValues = ValueVTs.size();
3386 bool ConstantMemory = false;
3387 if (I.isVolatile() || NumValues > MaxParallelChains)
3388 // Serialize volatile loads with other side effects.
3390 else if (AA->pointsToConstantMemory(
3391 AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), TBAAInfo))) {
3392 // Do not serialize (non-volatile) loads of constant memory with anything.
3393 Root = DAG.getEntryNode();
3394 ConstantMemory = true;
3396 // Do not serialize non-volatile loads against each other.
3397 Root = DAG.getRoot();
3400 SmallVector<SDValue, 4> Values(NumValues);
3401 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3403 EVT PtrVT = Ptr.getValueType();
3404 unsigned ChainI = 0;
3405 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3406 // Serializing loads here may result in excessive register pressure, and
3407 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3408 // could recover a bit by hoisting nodes upward in the chain by recognizing
3409 // they are side-effect free or do not alias. The optimizer should really
3410 // avoid this case by converting large object/array copies to llvm.memcpy
3411 // (MaxParallelChains should always remain as failsafe).
3412 if (ChainI == MaxParallelChains) {
3413 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3414 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3415 MVT::Other, &Chains[0], ChainI);
3419 SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3421 DAG.getConstant(Offsets[i], PtrVT));
3422 SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3423 A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3424 isNonTemporal, isInvariant, Alignment, TBAAInfo,
3428 Chains[ChainI] = L.getValue(1);
3431 if (!ConstantMemory) {
3432 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3433 MVT::Other, &Chains[0], ChainI);
3437 PendingLoads.push_back(Chain);
3440 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3441 DAG.getVTList(&ValueVTs[0], NumValues),
3442 &Values[0], NumValues));
3445 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3447 return visitAtomicStore(I);
3449 const Value *SrcV = I.getOperand(0);
3450 const Value *PtrV = I.getOperand(1);
3452 SmallVector<EVT, 4> ValueVTs;
3453 SmallVector<uint64_t, 4> Offsets;
3454 ComputeValueVTs(*TM.getTargetLowering(), SrcV->getType(), ValueVTs, &Offsets);
3455 unsigned NumValues = ValueVTs.size();
3459 // Get the lowered operands. Note that we do this after
3460 // checking if NumResults is zero, because with zero results
3461 // the operands won't have values in the map.
3462 SDValue Src = getValue(SrcV);
3463 SDValue Ptr = getValue(PtrV);
3465 SDValue Root = getRoot();
3466 SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3468 EVT PtrVT = Ptr.getValueType();
3469 bool isVolatile = I.isVolatile();
3470 bool isNonTemporal = I.getMetadata("nontemporal") != 0;
3471 unsigned Alignment = I.getAlignment();
3472 const MDNode *TBAAInfo = I.getMetadata(LLVMContext::MD_tbaa);
3474 unsigned ChainI = 0;
3475 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3476 // See visitLoad comments.
3477 if (ChainI == MaxParallelChains) {
3478 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3479 MVT::Other, &Chains[0], ChainI);
3483 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3484 DAG.getConstant(Offsets[i], PtrVT));
3485 SDValue St = DAG.getStore(Root, getCurSDLoc(),
3486 SDValue(Src.getNode(), Src.getResNo() + i),
3487 Add, MachinePointerInfo(PtrV, Offsets[i]),
3488 isVolatile, isNonTemporal, Alignment, TBAAInfo);
3489 Chains[ChainI] = St;
3492 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
3493 MVT::Other, &Chains[0], ChainI);
3494 DAG.setRoot(StoreNode);
3497 static SDValue InsertFenceForAtomic(SDValue Chain, AtomicOrdering Order,
3498 SynchronizationScope Scope,
3499 bool Before, SDLoc dl,
3501 const TargetLowering &TLI) {
3502 // Fence, if necessary
3504 if (Order == AcquireRelease || Order == SequentiallyConsistent)
3506 else if (Order == Acquire || Order == Monotonic)
3509 if (Order == AcquireRelease)
3511 else if (Order == Release || Order == Monotonic)
3516 Ops[1] = DAG.getConstant(Order, TLI.getPointerTy());
3517 Ops[2] = DAG.getConstant(Scope, TLI.getPointerTy());
3518 return DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3);
3521 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3522 SDLoc dl = getCurSDLoc();
3523 AtomicOrdering Order = I.getOrdering();
3524 SynchronizationScope Scope = I.getSynchScope();
3526 SDValue InChain = getRoot();
3528 const TargetLowering *TLI = TM.getTargetLowering();
3529 if (TLI->getInsertFencesForAtomic())
3530 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3534 DAG.getAtomic(ISD::ATOMIC_CMP_SWAP, dl,
3535 getValue(I.getCompareOperand()).getSimpleValueType(),
3537 getValue(I.getPointerOperand()),
3538 getValue(I.getCompareOperand()),
3539 getValue(I.getNewValOperand()),
3540 MachinePointerInfo(I.getPointerOperand()), 0 /* Alignment */,
3541 TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3544 SDValue OutChain = L.getValue(1);
3546 if (TLI->getInsertFencesForAtomic())
3547 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3551 DAG.setRoot(OutChain);
3554 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3555 SDLoc dl = getCurSDLoc();
3557 switch (I.getOperation()) {
3558 default: llvm_unreachable("Unknown atomicrmw operation");
3559 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3560 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
3561 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
3562 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
3563 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3564 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
3565 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
3566 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
3567 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
3568 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3569 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3571 AtomicOrdering Order = I.getOrdering();
3572 SynchronizationScope Scope = I.getSynchScope();
3574 SDValue InChain = getRoot();
3576 const TargetLowering *TLI = TM.getTargetLowering();
3577 if (TLI->getInsertFencesForAtomic())
3578 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3582 DAG.getAtomic(NT, dl,
3583 getValue(I.getValOperand()).getSimpleValueType(),
3585 getValue(I.getPointerOperand()),
3586 getValue(I.getValOperand()),
3587 I.getPointerOperand(), 0 /* Alignment */,
3588 TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3591 SDValue OutChain = L.getValue(1);
3593 if (TLI->getInsertFencesForAtomic())
3594 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3598 DAG.setRoot(OutChain);
3601 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3602 SDLoc dl = getCurSDLoc();
3603 const TargetLowering *TLI = TM.getTargetLowering();
3606 Ops[1] = DAG.getConstant(I.getOrdering(), TLI->getPointerTy());
3607 Ops[2] = DAG.getConstant(I.getSynchScope(), TLI->getPointerTy());
3608 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops, 3));
3611 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3612 SDLoc dl = getCurSDLoc();
3613 AtomicOrdering Order = I.getOrdering();
3614 SynchronizationScope Scope = I.getSynchScope();
3616 SDValue InChain = getRoot();
3618 const TargetLowering *TLI = TM.getTargetLowering();
3619 EVT VT = TLI->getValueType(I.getType());
3621 if (I.getAlignment() < VT.getSizeInBits() / 8)
3622 report_fatal_error("Cannot generate unaligned atomic load");
3625 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3626 getValue(I.getPointerOperand()),
3627 I.getPointerOperand(), I.getAlignment(),
3628 TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3631 SDValue OutChain = L.getValue(1);
3633 if (TLI->getInsertFencesForAtomic())
3634 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3638 DAG.setRoot(OutChain);
3641 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3642 SDLoc dl = getCurSDLoc();
3644 AtomicOrdering Order = I.getOrdering();
3645 SynchronizationScope Scope = I.getSynchScope();
3647 SDValue InChain = getRoot();
3649 const TargetLowering *TLI = TM.getTargetLowering();
3650 EVT VT = TLI->getValueType(I.getValueOperand()->getType());
3652 if (I.getAlignment() < VT.getSizeInBits() / 8)
3653 report_fatal_error("Cannot generate unaligned atomic store");
3655 if (TLI->getInsertFencesForAtomic())
3656 InChain = InsertFenceForAtomic(InChain, Order, Scope, true, dl,
3660 DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3662 getValue(I.getPointerOperand()),
3663 getValue(I.getValueOperand()),
3664 I.getPointerOperand(), I.getAlignment(),
3665 TLI->getInsertFencesForAtomic() ? Monotonic : Order,
3668 if (TLI->getInsertFencesForAtomic())
3669 OutChain = InsertFenceForAtomic(OutChain, Order, Scope, false, dl,
3672 DAG.setRoot(OutChain);
3675 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3677 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3678 unsigned Intrinsic) {
3679 bool HasChain = !I.doesNotAccessMemory();
3680 bool OnlyLoad = HasChain && I.onlyReadsMemory();
3682 // Build the operand list.
3683 SmallVector<SDValue, 8> Ops;
3684 if (HasChain) { // If this intrinsic has side-effects, chainify it.
3686 // We don't need to serialize loads against other loads.
3687 Ops.push_back(DAG.getRoot());
3689 Ops.push_back(getRoot());
3693 // Info is set by getTgtMemInstrinsic
3694 TargetLowering::IntrinsicInfo Info;
3695 const TargetLowering *TLI = TM.getTargetLowering();
3696 bool IsTgtIntrinsic = TLI->getTgtMemIntrinsic(Info, I, Intrinsic);
3698 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3699 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3700 Info.opc == ISD::INTRINSIC_W_CHAIN)
3701 Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI->getPointerTy()));
3703 // Add all operands of the call to the operand list.
3704 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3705 SDValue Op = getValue(I.getArgOperand(i));
3709 SmallVector<EVT, 4> ValueVTs;
3710 ComputeValueVTs(*TLI, I.getType(), ValueVTs);
3713 ValueVTs.push_back(MVT::Other);
3715 SDVTList VTs = DAG.getVTList(ValueVTs.data(), ValueVTs.size());
3719 if (IsTgtIntrinsic) {
3720 // This is target intrinsic that touches memory
3721 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3722 VTs, &Ops[0], Ops.size(),
3724 MachinePointerInfo(Info.ptrVal, Info.offset),
3725 Info.align, Info.vol,
3726 Info.readMem, Info.writeMem);
3727 } else if (!HasChain) {
3728 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(),
3729 VTs, &Ops[0], Ops.size());
3730 } else if (!I.getType()->isVoidTy()) {
3731 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(),
3732 VTs, &Ops[0], Ops.size());
3734 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(),
3735 VTs, &Ops[0], Ops.size());
3739 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3741 PendingLoads.push_back(Chain);
3746 if (!I.getType()->isVoidTy()) {
3747 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3748 EVT VT = TLI->getValueType(PTy);
3749 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3752 setValue(&I, Result);
3756 /// GetSignificand - Get the significand and build it into a floating-point
3757 /// number with exponent of 1:
3759 /// Op = (Op & 0x007fffff) | 0x3f800000;
3761 /// where Op is the hexadecimal representation of floating point value.
3763 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3764 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3765 DAG.getConstant(0x007fffff, MVT::i32));
3766 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3767 DAG.getConstant(0x3f800000, MVT::i32));
3768 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3771 /// GetExponent - Get the exponent:
3773 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3775 /// where Op is the hexadecimal representation of floating point value.
3777 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3779 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3780 DAG.getConstant(0x7f800000, MVT::i32));
3781 SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3782 DAG.getConstant(23, TLI.getPointerTy()));
3783 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3784 DAG.getConstant(127, MVT::i32));
3785 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3788 /// getF32Constant - Get 32-bit floating point constant.
3790 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3791 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3795 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3796 /// limited-precision mode.
3797 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3798 const TargetLowering &TLI) {
3799 if (Op.getValueType() == MVT::f32 &&
3800 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3802 // Put the exponent in the right bit position for later addition to the
3805 // #define LOG2OFe 1.4426950f
3806 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3807 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3808 getF32Constant(DAG, 0x3fb8aa3b));
3809 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3811 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3812 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3813 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3815 // IntegerPartOfX <<= 23;
3816 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3817 DAG.getConstant(23, TLI.getPointerTy()));
3819 SDValue TwoToFracPartOfX;
3820 if (LimitFloatPrecision <= 6) {
3821 // For floating-point precision of 6:
3823 // TwoToFractionalPartOfX =
3825 // (0.735607626f + 0.252464424f * x) * x;
3827 // error 0.0144103317, which is 6 bits
3828 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3829 getF32Constant(DAG, 0x3e814304));
3830 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3831 getF32Constant(DAG, 0x3f3c50c8));
3832 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3833 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3834 getF32Constant(DAG, 0x3f7f5e7e));
3835 } else if (LimitFloatPrecision <= 12) {
3836 // For floating-point precision of 12:
3838 // TwoToFractionalPartOfX =
3841 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3843 // 0.000107046256 error, which is 13 to 14 bits
3844 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3845 getF32Constant(DAG, 0x3da235e3));
3846 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3847 getF32Constant(DAG, 0x3e65b8f3));
3848 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3849 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3850 getF32Constant(DAG, 0x3f324b07));
3851 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3852 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3853 getF32Constant(DAG, 0x3f7ff8fd));
3854 } else { // LimitFloatPrecision <= 18
3855 // For floating-point precision of 18:
3857 // TwoToFractionalPartOfX =
3861 // (0.554906021e-1f +
3862 // (0.961591928e-2f +
3863 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3865 // error 2.47208000*10^(-7), which is better than 18 bits
3866 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3867 getF32Constant(DAG, 0x3924b03e));
3868 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3869 getF32Constant(DAG, 0x3ab24b87));
3870 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3871 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3872 getF32Constant(DAG, 0x3c1d8c17));
3873 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3874 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
3875 getF32Constant(DAG, 0x3d634a1d));
3876 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3877 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3878 getF32Constant(DAG, 0x3e75fe14));
3879 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3880 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
3881 getF32Constant(DAG, 0x3f317234));
3882 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
3883 TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
3884 getF32Constant(DAG, 0x3f800000));
3887 // Add the exponent into the result in integer domain.
3888 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
3889 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
3890 DAG.getNode(ISD::ADD, dl, MVT::i32,
3891 t13, IntegerPartOfX));
3894 // No special expansion.
3895 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
3898 /// expandLog - Lower a log intrinsic. Handles the special sequences for
3899 /// limited-precision mode.
3900 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3901 const TargetLowering &TLI) {
3902 if (Op.getValueType() == MVT::f32 &&
3903 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3904 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
3906 // Scale the exponent by log(2) [0.69314718f].
3907 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
3908 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
3909 getF32Constant(DAG, 0x3f317218));
3911 // Get the significand and build it into a floating-point number with
3913 SDValue X = GetSignificand(DAG, Op1, dl);
3915 SDValue LogOfMantissa;
3916 if (LimitFloatPrecision <= 6) {
3917 // For floating-point precision of 6:
3921 // (1.4034025f - 0.23903021f * x) * x;
3923 // error 0.0034276066, which is better than 8 bits
3924 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3925 getF32Constant(DAG, 0xbe74c456));
3926 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3927 getF32Constant(DAG, 0x3fb3a2b1));
3928 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3929 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3930 getF32Constant(DAG, 0x3f949a29));
3931 } else if (LimitFloatPrecision <= 12) {
3932 // For floating-point precision of 12:
3938 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3940 // error 0.000061011436, which is 14 bits
3941 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3942 getF32Constant(DAG, 0xbd67b6d6));
3943 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3944 getF32Constant(DAG, 0x3ee4f4b8));
3945 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3946 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3947 getF32Constant(DAG, 0x3fbc278b));
3948 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3949 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3950 getF32Constant(DAG, 0x40348e95));
3951 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3952 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3953 getF32Constant(DAG, 0x3fdef31a));
3954 } else { // LimitFloatPrecision <= 18
3955 // For floating-point precision of 18:
3963 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3965 // error 0.0000023660568, which is better than 18 bits
3966 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3967 getF32Constant(DAG, 0xbc91e5ac));
3968 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
3969 getF32Constant(DAG, 0x3e4350aa));
3970 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
3971 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
3972 getF32Constant(DAG, 0x3f60d3e3));
3973 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3974 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3975 getF32Constant(DAG, 0x4011cdf0));
3976 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
3977 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
3978 getF32Constant(DAG, 0x406cfd1c));
3979 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
3980 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
3981 getF32Constant(DAG, 0x408797cb));
3982 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
3983 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
3984 getF32Constant(DAG, 0x4006dcab));
3987 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
3990 // No special expansion.
3991 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
3994 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
3995 /// limited-precision mode.
3996 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3997 const TargetLowering &TLI) {
3998 if (Op.getValueType() == MVT::f32 &&
3999 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4000 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4002 // Get the exponent.
4003 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4005 // Get the significand and build it into a floating-point number with
4007 SDValue X = GetSignificand(DAG, Op1, dl);
4009 // Different possible minimax approximations of significand in
4010 // floating-point for various degrees of accuracy over [1,2].
4011 SDValue Log2ofMantissa;
4012 if (LimitFloatPrecision <= 6) {
4013 // For floating-point precision of 6:
4015 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4017 // error 0.0049451742, which is more than 7 bits
4018 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4019 getF32Constant(DAG, 0xbeb08fe0));
4020 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4021 getF32Constant(DAG, 0x40019463));
4022 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4023 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4024 getF32Constant(DAG, 0x3fd6633d));
4025 } else if (LimitFloatPrecision <= 12) {
4026 // For floating-point precision of 12:
4032 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4034 // error 0.0000876136000, which is better than 13 bits
4035 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4036 getF32Constant(DAG, 0xbda7262e));
4037 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4038 getF32Constant(DAG, 0x3f25280b));
4039 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4040 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4041 getF32Constant(DAG, 0x4007b923));
4042 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4043 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4044 getF32Constant(DAG, 0x40823e2f));
4045 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4046 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4047 getF32Constant(DAG, 0x4020d29c));
4048 } else { // LimitFloatPrecision <= 18
4049 // For floating-point precision of 18:
4058 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4060 // error 0.0000018516, which is better than 18 bits
4061 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4062 getF32Constant(DAG, 0xbcd2769e));
4063 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4064 getF32Constant(DAG, 0x3e8ce0b9));
4065 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4066 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4067 getF32Constant(DAG, 0x3fa22ae7));
4068 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4069 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4070 getF32Constant(DAG, 0x40525723));
4071 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4072 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4073 getF32Constant(DAG, 0x40aaf200));
4074 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4075 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4076 getF32Constant(DAG, 0x40c39dad));
4077 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4078 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4079 getF32Constant(DAG, 0x4042902c));
4082 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4085 // No special expansion.
4086 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4089 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4090 /// limited-precision mode.
4091 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4092 const TargetLowering &TLI) {
4093 if (Op.getValueType() == MVT::f32 &&
4094 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4095 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4097 // Scale the exponent by log10(2) [0.30102999f].
4098 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4099 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4100 getF32Constant(DAG, 0x3e9a209a));
4102 // Get the significand and build it into a floating-point number with
4104 SDValue X = GetSignificand(DAG, Op1, dl);
4106 SDValue Log10ofMantissa;
4107 if (LimitFloatPrecision <= 6) {
4108 // For floating-point precision of 6:
4110 // Log10ofMantissa =
4112 // (0.60948995f - 0.10380950f * x) * x;
4114 // error 0.0014886165, which is 6 bits
4115 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4116 getF32Constant(DAG, 0xbdd49a13));
4117 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4118 getF32Constant(DAG, 0x3f1c0789));
4119 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4120 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4121 getF32Constant(DAG, 0x3f011300));
4122 } else if (LimitFloatPrecision <= 12) {
4123 // For floating-point precision of 12:
4125 // Log10ofMantissa =
4128 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4130 // error 0.00019228036, which is better than 12 bits
4131 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4132 getF32Constant(DAG, 0x3d431f31));
4133 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4134 getF32Constant(DAG, 0x3ea21fb2));
4135 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4136 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4137 getF32Constant(DAG, 0x3f6ae232));
4138 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4139 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4140 getF32Constant(DAG, 0x3f25f7c3));
4141 } else { // LimitFloatPrecision <= 18
4142 // For floating-point precision of 18:
4144 // Log10ofMantissa =
4149 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4151 // error 0.0000037995730, which is better than 18 bits
4152 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4153 getF32Constant(DAG, 0x3c5d51ce));
4154 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4155 getF32Constant(DAG, 0x3e00685a));
4156 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4157 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4158 getF32Constant(DAG, 0x3efb6798));
4159 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4160 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4161 getF32Constant(DAG, 0x3f88d192));
4162 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4163 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4164 getF32Constant(DAG, 0x3fc4316c));
4165 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4166 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4167 getF32Constant(DAG, 0x3f57ce70));
4170 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4173 // No special expansion.
4174 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4177 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4178 /// limited-precision mode.
4179 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4180 const TargetLowering &TLI) {
4181 if (Op.getValueType() == MVT::f32 &&
4182 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4183 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4185 // FractionalPartOfX = x - (float)IntegerPartOfX;
4186 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4187 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4189 // IntegerPartOfX <<= 23;
4190 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4191 DAG.getConstant(23, TLI.getPointerTy()));
4193 SDValue TwoToFractionalPartOfX;
4194 if (LimitFloatPrecision <= 6) {
4195 // For floating-point precision of 6:
4197 // TwoToFractionalPartOfX =
4199 // (0.735607626f + 0.252464424f * x) * x;
4201 // error 0.0144103317, which is 6 bits
4202 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4203 getF32Constant(DAG, 0x3e814304));
4204 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4205 getF32Constant(DAG, 0x3f3c50c8));
4206 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4207 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4208 getF32Constant(DAG, 0x3f7f5e7e));
4209 } else if (LimitFloatPrecision <= 12) {
4210 // For floating-point precision of 12:
4212 // TwoToFractionalPartOfX =
4215 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4217 // error 0.000107046256, which is 13 to 14 bits
4218 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4219 getF32Constant(DAG, 0x3da235e3));
4220 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4221 getF32Constant(DAG, 0x3e65b8f3));
4222 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4223 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4224 getF32Constant(DAG, 0x3f324b07));
4225 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4226 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4227 getF32Constant(DAG, 0x3f7ff8fd));
4228 } else { // LimitFloatPrecision <= 18
4229 // For floating-point precision of 18:
4231 // TwoToFractionalPartOfX =
4235 // (0.554906021e-1f +
4236 // (0.961591928e-2f +
4237 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4238 // error 2.47208000*10^(-7), which is better than 18 bits
4239 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4240 getF32Constant(DAG, 0x3924b03e));
4241 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4242 getF32Constant(DAG, 0x3ab24b87));
4243 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4244 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4245 getF32Constant(DAG, 0x3c1d8c17));
4246 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4247 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4248 getF32Constant(DAG, 0x3d634a1d));
4249 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4250 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4251 getF32Constant(DAG, 0x3e75fe14));
4252 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4253 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4254 getF32Constant(DAG, 0x3f317234));
4255 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4256 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4257 getF32Constant(DAG, 0x3f800000));
4260 // Add the exponent into the result in integer domain.
4261 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4262 TwoToFractionalPartOfX);
4263 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4264 DAG.getNode(ISD::ADD, dl, MVT::i32,
4265 t13, IntegerPartOfX));
4268 // No special expansion.
4269 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4272 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4273 /// limited-precision mode with x == 10.0f.
4274 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4275 SelectionDAG &DAG, const TargetLowering &TLI) {
4276 bool IsExp10 = false;
4277 if (LHS.getValueType() == MVT::f32 && LHS.getValueType() == MVT::f32 &&
4278 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4279 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4281 IsExp10 = LHSC->isExactlyValue(Ten);
4286 // Put the exponent in the right bit position for later addition to the
4289 // #define LOG2OF10 3.3219281f
4290 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
4291 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4292 getF32Constant(DAG, 0x40549a78));
4293 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4295 // FractionalPartOfX = x - (float)IntegerPartOfX;
4296 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4297 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4299 // IntegerPartOfX <<= 23;
4300 IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4301 DAG.getConstant(23, TLI.getPointerTy()));
4303 SDValue TwoToFractionalPartOfX;
4304 if (LimitFloatPrecision <= 6) {
4305 // For floating-point precision of 6:
4307 // twoToFractionalPartOfX =
4309 // (0.735607626f + 0.252464424f * x) * x;
4311 // error 0.0144103317, which is 6 bits
4312 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4313 getF32Constant(DAG, 0x3e814304));
4314 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4315 getF32Constant(DAG, 0x3f3c50c8));
4316 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4317 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4318 getF32Constant(DAG, 0x3f7f5e7e));
4319 } else if (LimitFloatPrecision <= 12) {
4320 // For floating-point precision of 12:
4322 // TwoToFractionalPartOfX =
4325 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4327 // error 0.000107046256, which is 13 to 14 bits
4328 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4329 getF32Constant(DAG, 0x3da235e3));
4330 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4331 getF32Constant(DAG, 0x3e65b8f3));
4332 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4333 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4334 getF32Constant(DAG, 0x3f324b07));
4335 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4336 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4337 getF32Constant(DAG, 0x3f7ff8fd));
4338 } else { // LimitFloatPrecision <= 18
4339 // For floating-point precision of 18:
4341 // TwoToFractionalPartOfX =
4345 // (0.554906021e-1f +
4346 // (0.961591928e-2f +
4347 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4348 // error 2.47208000*10^(-7), which is better than 18 bits
4349 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4350 getF32Constant(DAG, 0x3924b03e));
4351 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4352 getF32Constant(DAG, 0x3ab24b87));
4353 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4354 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4355 getF32Constant(DAG, 0x3c1d8c17));
4356 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4357 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4358 getF32Constant(DAG, 0x3d634a1d));
4359 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4360 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4361 getF32Constant(DAG, 0x3e75fe14));
4362 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4363 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4364 getF32Constant(DAG, 0x3f317234));
4365 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4366 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4367 getF32Constant(DAG, 0x3f800000));
4370 SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4371 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4372 DAG.getNode(ISD::ADD, dl, MVT::i32,
4373 t13, IntegerPartOfX));
4376 // No special expansion.
4377 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4381 /// ExpandPowI - Expand a llvm.powi intrinsic.
4382 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4383 SelectionDAG &DAG) {
4384 // If RHS is a constant, we can expand this out to a multiplication tree,
4385 // otherwise we end up lowering to a call to __powidf2 (for example). When
4386 // optimizing for size, we only want to do this if the expansion would produce
4387 // a small number of multiplies, otherwise we do the full expansion.
4388 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4389 // Get the exponent as a positive value.
4390 unsigned Val = RHSC->getSExtValue();
4391 if ((int)Val < 0) Val = -Val;
4393 // powi(x, 0) -> 1.0
4395 return DAG.getConstantFP(1.0, LHS.getValueType());
4397 const Function *F = DAG.getMachineFunction().getFunction();
4398 if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4399 Attribute::OptimizeForSize) ||
4400 // If optimizing for size, don't insert too many multiplies. This
4401 // inserts up to 5 multiplies.
4402 CountPopulation_32(Val)+Log2_32(Val) < 7) {
4403 // We use the simple binary decomposition method to generate the multiply
4404 // sequence. There are more optimal ways to do this (for example,
4405 // powi(x,15) generates one more multiply than it should), but this has
4406 // the benefit of being both really simple and much better than a libcall.
4407 SDValue Res; // Logically starts equal to 1.0
4408 SDValue CurSquare = LHS;
4412 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4414 Res = CurSquare; // 1.0*CurSquare.
4417 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4418 CurSquare, CurSquare);
4422 // If the original was negative, invert the result, producing 1/(x*x*x).
4423 if (RHSC->getSExtValue() < 0)
4424 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4425 DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4430 // Otherwise, expand to a libcall.
4431 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4434 // getTruncatedArgReg - Find underlying register used for an truncated
4436 static unsigned getTruncatedArgReg(const SDValue &N) {
4437 if (N.getOpcode() != ISD::TRUNCATE)
4440 const SDValue &Ext = N.getOperand(0);
4441 if (Ext.getOpcode() == ISD::AssertZext ||
4442 Ext.getOpcode() == ISD::AssertSext) {
4443 const SDValue &CFR = Ext.getOperand(0);
4444 if (CFR.getOpcode() == ISD::CopyFromReg)
4445 return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4446 if (CFR.getOpcode() == ISD::TRUNCATE)
4447 return getTruncatedArgReg(CFR);
4452 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4453 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4454 /// At the end of instruction selection, they will be inserted to the entry BB.
4456 SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V, MDNode *Variable,
4459 const Argument *Arg = dyn_cast<Argument>(V);
4463 MachineFunction &MF = DAG.getMachineFunction();
4464 const TargetInstrInfo *TII = DAG.getTarget().getInstrInfo();
4466 // Ignore inlined function arguments here.
4467 DIVariable DV(Variable);
4468 if (DV.isInlinedFnArgument(MF.getFunction()))
4471 Optional<MachineOperand> Op;
4472 // Some arguments' frame index is recorded during argument lowering.
4473 if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4474 Op = MachineOperand::CreateFI(FI);
4476 if (!Op && N.getNode()) {
4478 if (N.getOpcode() == ISD::CopyFromReg)
4479 Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4481 Reg = getTruncatedArgReg(N);
4482 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4483 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4484 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4489 Op = MachineOperand::CreateReg(Reg, false);
4493 // Check if ValueMap has reg number.
4494 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4495 if (VMI != FuncInfo.ValueMap.end())
4496 Op = MachineOperand::CreateReg(VMI->second, false);
4499 if (!Op && N.getNode())
4500 // Check if frame index is available.
4501 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4502 if (FrameIndexSDNode *FINode =
4503 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4504 Op = MachineOperand::CreateFI(FINode->getIndex());
4509 // FIXME: This does not handle register-indirect values at offset 0.
4510 bool IsIndirect = Offset != 0;
4512 FuncInfo.ArgDbgValues.push_back(BuildMI(MF, getCurDebugLoc(),
4513 TII->get(TargetOpcode::DBG_VALUE),
4515 Op->getReg(), Offset, Variable));
4517 FuncInfo.ArgDbgValues.push_back(
4518 BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4519 .addOperand(*Op).addImm(Offset).addMetadata(Variable));
4524 // VisualStudio defines setjmp as _setjmp
4525 #if defined(_MSC_VER) && defined(setjmp) && \
4526 !defined(setjmp_undefined_for_msvc)
4527 # pragma push_macro("setjmp")
4529 # define setjmp_undefined_for_msvc
4532 /// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
4533 /// we want to emit this as a call to a named external function, return the name
4534 /// otherwise lower it and return null.
4536 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4537 const TargetLowering *TLI = TM.getTargetLowering();
4538 SDLoc sdl = getCurSDLoc();
4539 DebugLoc dl = getCurDebugLoc();
4542 switch (Intrinsic) {
4544 // By default, turn this into a target intrinsic node.
4545 visitTargetIntrinsic(I, Intrinsic);
4547 case Intrinsic::vastart: visitVAStart(I); return 0;
4548 case Intrinsic::vaend: visitVAEnd(I); return 0;
4549 case Intrinsic::vacopy: visitVACopy(I); return 0;
4550 case Intrinsic::returnaddress:
4551 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI->getPointerTy(),
4552 getValue(I.getArgOperand(0))));
4554 case Intrinsic::frameaddress:
4555 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI->getPointerTy(),
4556 getValue(I.getArgOperand(0))));
4558 case Intrinsic::setjmp:
4559 return &"_setjmp"[!TLI->usesUnderscoreSetJmp()];
4560 case Intrinsic::longjmp:
4561 return &"_longjmp"[!TLI->usesUnderscoreLongJmp()];
4562 case Intrinsic::memcpy: {
4563 // Assert for address < 256 since we support only user defined address
4565 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4567 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4569 "Unknown address space");
4570 SDValue Op1 = getValue(I.getArgOperand(0));
4571 SDValue Op2 = getValue(I.getArgOperand(1));
4572 SDValue Op3 = getValue(I.getArgOperand(2));
4573 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4575 Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4576 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4577 DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4578 MachinePointerInfo(I.getArgOperand(0)),
4579 MachinePointerInfo(I.getArgOperand(1))));
4582 case Intrinsic::memset: {
4583 // Assert for address < 256 since we support only user defined address
4585 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4587 "Unknown address space");
4588 SDValue Op1 = getValue(I.getArgOperand(0));
4589 SDValue Op2 = getValue(I.getArgOperand(1));
4590 SDValue Op3 = getValue(I.getArgOperand(2));
4591 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4593 Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4594 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4595 DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4596 MachinePointerInfo(I.getArgOperand(0))));
4599 case Intrinsic::memmove: {
4600 // Assert for address < 256 since we support only user defined address
4602 assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4604 cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4606 "Unknown address space");
4607 SDValue Op1 = getValue(I.getArgOperand(0));
4608 SDValue Op2 = getValue(I.getArgOperand(1));
4609 SDValue Op3 = getValue(I.getArgOperand(2));
4610 unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4612 Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4613 bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4614 DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4615 MachinePointerInfo(I.getArgOperand(0)),
4616 MachinePointerInfo(I.getArgOperand(1))));
4619 case Intrinsic::dbg_declare: {
4620 const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4621 MDNode *Variable = DI.getVariable();
4622 const Value *Address = DI.getAddress();
4623 DIVariable DIVar(Variable);
4624 assert((!DIVar || DIVar.isVariable()) &&
4625 "Variable in DbgDeclareInst should be either null or a DIVariable.");
4626 if (!Address || !DIVar) {
4627 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4631 // Check if address has undef value.
4632 if (isa<UndefValue>(Address) ||
4633 (Address->use_empty() && !isa<Argument>(Address))) {
4634 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4638 SDValue &N = NodeMap[Address];
4639 if (!N.getNode() && isa<Argument>(Address))
4640 // Check unused arguments map.
4641 N = UnusedArgNodeMap[Address];
4644 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4645 Address = BCI->getOperand(0);
4646 // Parameters are handled specially.
4648 (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4649 isa<Argument>(Address));
4651 const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4653 if (isParameter && !AI) {
4654 FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4656 // Byval parameter. We have a frame index at this point.
4657 SDV = DAG.getDbgValue(Variable, FINode->getIndex(),
4658 0, dl, SDNodeOrder);
4660 // Address is an argument, so try to emit its dbg value using
4661 // virtual register info from the FuncInfo.ValueMap.
4662 EmitFuncArgumentDbgValue(Address, Variable, 0, N);
4666 SDV = DAG.getDbgValue(Variable, N.getNode(), N.getResNo(),
4667 0, dl, SDNodeOrder);
4669 // Can't do anything with other non-AI cases yet.
4670 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4671 DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4672 DEBUG(Address->dump());
4675 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4677 // If Address is an argument then try to emit its dbg value using
4678 // virtual register info from the FuncInfo.ValueMap.
4679 if (!EmitFuncArgumentDbgValue(Address, Variable, 0, N)) {
4680 // If variable is pinned by a alloca in dominating bb then
4681 // use StaticAllocaMap.
4682 if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4683 if (AI->getParent() != DI.getParent()) {
4684 DenseMap<const AllocaInst*, int>::iterator SI =
4685 FuncInfo.StaticAllocaMap.find(AI);
4686 if (SI != FuncInfo.StaticAllocaMap.end()) {
4687 SDV = DAG.getDbgValue(Variable, SI->second,
4688 0, dl, SDNodeOrder);
4689 DAG.AddDbgValue(SDV, 0, false);
4694 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4699 case Intrinsic::dbg_value: {
4700 const DbgValueInst &DI = cast<DbgValueInst>(I);
4701 DIVariable DIVar(DI.getVariable());
4702 assert((!DIVar || DIVar.isVariable()) &&
4703 "Variable in DbgValueInst should be either null or a DIVariable.");
4707 MDNode *Variable = DI.getVariable();
4708 uint64_t Offset = DI.getOffset();
4709 const Value *V = DI.getValue();
4714 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4715 SDV = DAG.getDbgValue(Variable, V, Offset, dl, SDNodeOrder);
4716 DAG.AddDbgValue(SDV, 0, false);
4718 // Do not use getValue() in here; we don't want to generate code at
4719 // this point if it hasn't been done yet.
4720 SDValue N = NodeMap[V];
4721 if (!N.getNode() && isa<Argument>(V))
4722 // Check unused arguments map.
4723 N = UnusedArgNodeMap[V];
4725 if (!EmitFuncArgumentDbgValue(V, Variable, Offset, N)) {
4726 SDV = DAG.getDbgValue(Variable, N.getNode(),
4727 N.getResNo(), Offset, dl, SDNodeOrder);
4728 DAG.AddDbgValue(SDV, N.getNode(), false);
4730 } else if (!V->use_empty() ) {
4731 // Do not call getValue(V) yet, as we don't want to generate code.
4732 // Remember it for later.
4733 DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4734 DanglingDebugInfoMap[V] = DDI;
4736 // We may expand this to cover more cases. One case where we have no
4737 // data available is an unreferenced parameter.
4738 DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4742 // Build a debug info table entry.
4743 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4744 V = BCI->getOperand(0);
4745 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4746 // Don't handle byval struct arguments or VLAs, for example.
4748 DEBUG(dbgs() << "Dropping debug location info for:\n " << DI << "\n");
4749 DEBUG(dbgs() << " Last seen at:\n " << *V << "\n");
4752 DenseMap<const AllocaInst*, int>::iterator SI =
4753 FuncInfo.StaticAllocaMap.find(AI);
4754 if (SI == FuncInfo.StaticAllocaMap.end())
4756 int FI = SI->second;
4758 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4759 if (!DI.getDebugLoc().isUnknown() && MMI.hasDebugInfo())
4760 MMI.setVariableDbgInfo(Variable, FI, DI.getDebugLoc());
4764 case Intrinsic::eh_typeid_for: {
4765 // Find the type id for the given typeinfo.
4766 GlobalVariable *GV = ExtractTypeInfo(I.getArgOperand(0));
4767 unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4768 Res = DAG.getConstant(TypeID, MVT::i32);
4773 case Intrinsic::eh_return_i32:
4774 case Intrinsic::eh_return_i64:
4775 DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4776 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4779 getValue(I.getArgOperand(0)),
4780 getValue(I.getArgOperand(1))));
4782 case Intrinsic::eh_unwind_init:
4783 DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4785 case Intrinsic::eh_dwarf_cfa: {
4786 SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4787 TLI->getPointerTy());
4788 SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4789 CfaArg.getValueType(),
4790 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4791 CfaArg.getValueType()),
4793 SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl,
4794 TLI->getPointerTy(),
4795 DAG.getConstant(0, TLI->getPointerTy()));
4796 setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4800 case Intrinsic::eh_sjlj_callsite: {
4801 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4802 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4803 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4804 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4806 MMI.setCurrentCallSite(CI->getZExtValue());
4809 case Intrinsic::eh_sjlj_functioncontext: {
4810 // Get and store the index of the function context.
4811 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4813 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4814 int FI = FuncInfo.StaticAllocaMap[FnCtx];
4815 MFI->setFunctionContextIndex(FI);
4818 case Intrinsic::eh_sjlj_setjmp: {
4821 Ops[1] = getValue(I.getArgOperand(0));
4822 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
4823 DAG.getVTList(MVT::i32, MVT::Other),
4825 setValue(&I, Op.getValue(0));
4826 DAG.setRoot(Op.getValue(1));
4829 case Intrinsic::eh_sjlj_longjmp: {
4830 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
4831 getRoot(), getValue(I.getArgOperand(0))));
4835 case Intrinsic::x86_mmx_pslli_w:
4836 case Intrinsic::x86_mmx_pslli_d:
4837 case Intrinsic::x86_mmx_pslli_q:
4838 case Intrinsic::x86_mmx_psrli_w:
4839 case Intrinsic::x86_mmx_psrli_d:
4840 case Intrinsic::x86_mmx_psrli_q:
4841 case Intrinsic::x86_mmx_psrai_w:
4842 case Intrinsic::x86_mmx_psrai_d: {
4843 SDValue ShAmt = getValue(I.getArgOperand(1));
4844 if (isa<ConstantSDNode>(ShAmt)) {
4845 visitTargetIntrinsic(I, Intrinsic);
4848 unsigned NewIntrinsic = 0;
4849 EVT ShAmtVT = MVT::v2i32;
4850 switch (Intrinsic) {
4851 case Intrinsic::x86_mmx_pslli_w:
4852 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
4854 case Intrinsic::x86_mmx_pslli_d:
4855 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
4857 case Intrinsic::x86_mmx_pslli_q:
4858 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
4860 case Intrinsic::x86_mmx_psrli_w:
4861 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
4863 case Intrinsic::x86_mmx_psrli_d:
4864 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
4866 case Intrinsic::x86_mmx_psrli_q:
4867 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
4869 case Intrinsic::x86_mmx_psrai_w:
4870 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
4872 case Intrinsic::x86_mmx_psrai_d:
4873 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
4875 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4878 // The vector shift intrinsics with scalars uses 32b shift amounts but
4879 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
4881 // We must do this early because v2i32 is not a legal type.
4884 ShOps[1] = DAG.getConstant(0, MVT::i32);
4885 ShAmt = DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, &ShOps[0], 2);
4886 EVT DestVT = TLI->getValueType(I.getType());
4887 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
4888 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
4889 DAG.getConstant(NewIntrinsic, MVT::i32),
4890 getValue(I.getArgOperand(0)), ShAmt);
4894 case Intrinsic::x86_avx_vinsertf128_pd_256:
4895 case Intrinsic::x86_avx_vinsertf128_ps_256:
4896 case Intrinsic::x86_avx_vinsertf128_si_256:
4897 case Intrinsic::x86_avx2_vinserti128: {
4898 EVT DestVT = TLI->getValueType(I.getType());
4899 EVT ElVT = TLI->getValueType(I.getArgOperand(1)->getType());
4900 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
4901 ElVT.getVectorNumElements();
4902 Res = DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
4903 getValue(I.getArgOperand(0)),
4904 getValue(I.getArgOperand(1)),
4905 DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4909 case Intrinsic::x86_avx_vextractf128_pd_256:
4910 case Intrinsic::x86_avx_vextractf128_ps_256:
4911 case Intrinsic::x86_avx_vextractf128_si_256:
4912 case Intrinsic::x86_avx2_vextracti128: {
4913 EVT DestVT = TLI->getValueType(I.getType());
4914 uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
4915 DestVT.getVectorNumElements();
4916 Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
4917 getValue(I.getArgOperand(0)),
4918 DAG.getConstant(Idx, TLI->getVectorIdxTy()));
4922 case Intrinsic::convertff:
4923 case Intrinsic::convertfsi:
4924 case Intrinsic::convertfui:
4925 case Intrinsic::convertsif:
4926 case Intrinsic::convertuif:
4927 case Intrinsic::convertss:
4928 case Intrinsic::convertsu:
4929 case Intrinsic::convertus:
4930 case Intrinsic::convertuu: {
4931 ISD::CvtCode Code = ISD::CVT_INVALID;
4932 switch (Intrinsic) {
4933 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4934 case Intrinsic::convertff: Code = ISD::CVT_FF; break;
4935 case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
4936 case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
4937 case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
4938 case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
4939 case Intrinsic::convertss: Code = ISD::CVT_SS; break;
4940 case Intrinsic::convertsu: Code = ISD::CVT_SU; break;
4941 case Intrinsic::convertus: Code = ISD::CVT_US; break;
4942 case Intrinsic::convertuu: Code = ISD::CVT_UU; break;
4944 EVT DestVT = TLI->getValueType(I.getType());
4945 const Value *Op1 = I.getArgOperand(0);
4946 Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
4947 DAG.getValueType(DestVT),
4948 DAG.getValueType(getValue(Op1).getValueType()),
4949 getValue(I.getArgOperand(1)),
4950 getValue(I.getArgOperand(2)),
4955 case Intrinsic::powi:
4956 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
4957 getValue(I.getArgOperand(1)), DAG));
4959 case Intrinsic::log:
4960 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4962 case Intrinsic::log2:
4963 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4965 case Intrinsic::log10:
4966 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4968 case Intrinsic::exp:
4969 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4971 case Intrinsic::exp2:
4972 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, *TLI));
4974 case Intrinsic::pow:
4975 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
4976 getValue(I.getArgOperand(1)), DAG, *TLI));
4978 case Intrinsic::sqrt:
4979 case Intrinsic::fabs:
4980 case Intrinsic::sin:
4981 case Intrinsic::cos:
4982 case Intrinsic::floor:
4983 case Intrinsic::ceil:
4984 case Intrinsic::trunc:
4985 case Intrinsic::rint:
4986 case Intrinsic::nearbyint:
4987 case Intrinsic::round: {
4989 switch (Intrinsic) {
4990 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
4991 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
4992 case Intrinsic::fabs: Opcode = ISD::FABS; break;
4993 case Intrinsic::sin: Opcode = ISD::FSIN; break;
4994 case Intrinsic::cos: Opcode = ISD::FCOS; break;
4995 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
4996 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
4997 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
4998 case Intrinsic::rint: Opcode = ISD::FRINT; break;
4999 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5000 case Intrinsic::round: Opcode = ISD::FROUND; break;
5003 setValue(&I, DAG.getNode(Opcode, sdl,
5004 getValue(I.getArgOperand(0)).getValueType(),
5005 getValue(I.getArgOperand(0))));
5008 case Intrinsic::copysign:
5009 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5010 getValue(I.getArgOperand(0)).getValueType(),
5011 getValue(I.getArgOperand(0)),
5012 getValue(I.getArgOperand(1))));
5014 case Intrinsic::fma:
5015 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5016 getValue(I.getArgOperand(0)).getValueType(),
5017 getValue(I.getArgOperand(0)),
5018 getValue(I.getArgOperand(1)),
5019 getValue(I.getArgOperand(2))));
5021 case Intrinsic::fmuladd: {
5022 EVT VT = TLI->getValueType(I.getType());
5023 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5024 TLI->isFMAFasterThanFMulAndFAdd(VT)) {
5025 setValue(&I, DAG.getNode(ISD::FMA, sdl,
5026 getValue(I.getArgOperand(0)).getValueType(),
5027 getValue(I.getArgOperand(0)),
5028 getValue(I.getArgOperand(1)),
5029 getValue(I.getArgOperand(2))));
5031 SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5032 getValue(I.getArgOperand(0)).getValueType(),
5033 getValue(I.getArgOperand(0)),
5034 getValue(I.getArgOperand(1)));
5035 SDValue Add = DAG.getNode(ISD::FADD, sdl,
5036 getValue(I.getArgOperand(0)).getValueType(),
5038 getValue(I.getArgOperand(2)));
5043 case Intrinsic::convert_to_fp16:
5044 setValue(&I, DAG.getNode(ISD::FP32_TO_FP16, sdl,
5045 MVT::i16, getValue(I.getArgOperand(0))));
5047 case Intrinsic::convert_from_fp16:
5048 setValue(&I, DAG.getNode(ISD::FP16_TO_FP32, sdl,
5049 MVT::f32, getValue(I.getArgOperand(0))));
5051 case Intrinsic::pcmarker: {
5052 SDValue Tmp = getValue(I.getArgOperand(0));
5053 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5056 case Intrinsic::readcyclecounter: {
5057 SDValue Op = getRoot();
5058 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5059 DAG.getVTList(MVT::i64, MVT::Other),
5062 DAG.setRoot(Res.getValue(1));
5065 case Intrinsic::bswap:
5066 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5067 getValue(I.getArgOperand(0)).getValueType(),
5068 getValue(I.getArgOperand(0))));
5070 case Intrinsic::cttz: {
5071 SDValue Arg = getValue(I.getArgOperand(0));
5072 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5073 EVT Ty = Arg.getValueType();
5074 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5078 case Intrinsic::ctlz: {
5079 SDValue Arg = getValue(I.getArgOperand(0));
5080 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5081 EVT Ty = Arg.getValueType();
5082 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5086 case Intrinsic::ctpop: {
5087 SDValue Arg = getValue(I.getArgOperand(0));
5088 EVT Ty = Arg.getValueType();
5089 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5092 case Intrinsic::stacksave: {
5093 SDValue Op = getRoot();
5094 Res = DAG.getNode(ISD::STACKSAVE, sdl,
5095 DAG.getVTList(TLI->getPointerTy(), MVT::Other), &Op, 1);
5097 DAG.setRoot(Res.getValue(1));
5100 case Intrinsic::stackrestore: {
5101 Res = getValue(I.getArgOperand(0));
5102 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5105 case Intrinsic::stackprotector: {
5106 // Emit code into the DAG to store the stack guard onto the stack.
5107 MachineFunction &MF = DAG.getMachineFunction();
5108 MachineFrameInfo *MFI = MF.getFrameInfo();
5109 EVT PtrTy = TLI->getPointerTy();
5111 SDValue Src = getValue(I.getArgOperand(0)); // The guard's value.
5112 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5114 int FI = FuncInfo.StaticAllocaMap[Slot];
5115 MFI->setStackProtectorIndex(FI);
5117 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5119 // Store the stack protector onto the stack.
5120 Res = DAG.getStore(getRoot(), sdl, Src, FIN,
5121 MachinePointerInfo::getFixedStack(FI),
5127 case Intrinsic::objectsize: {
5128 // If we don't know by now, we're never going to know.
5129 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5131 assert(CI && "Non-constant type in __builtin_object_size?");
5133 SDValue Arg = getValue(I.getCalledValue());
5134 EVT Ty = Arg.getValueType();
5137 Res = DAG.getConstant(-1ULL, Ty);
5139 Res = DAG.getConstant(0, Ty);
5144 case Intrinsic::annotation:
5145 case Intrinsic::ptr_annotation:
5146 // Drop the intrinsic, but forward the value
5147 setValue(&I, getValue(I.getOperand(0)));
5149 case Intrinsic::var_annotation:
5150 // Discard annotate attributes
5153 case Intrinsic::init_trampoline: {
5154 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5158 Ops[1] = getValue(I.getArgOperand(0));
5159 Ops[2] = getValue(I.getArgOperand(1));
5160 Ops[3] = getValue(I.getArgOperand(2));
5161 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5162 Ops[5] = DAG.getSrcValue(F);
5164 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops, 6);
5169 case Intrinsic::adjust_trampoline: {
5170 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5171 TLI->getPointerTy(),
5172 getValue(I.getArgOperand(0))));
5175 case Intrinsic::gcroot:
5177 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5178 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5180 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5181 GFI->addStackRoot(FI->getIndex(), TypeMap);
5184 case Intrinsic::gcread:
5185 case Intrinsic::gcwrite:
5186 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5187 case Intrinsic::flt_rounds:
5188 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5191 case Intrinsic::expect: {
5192 // Just replace __builtin_expect(exp, c) with EXP.
5193 setValue(&I, getValue(I.getArgOperand(0)));
5197 case Intrinsic::debugtrap:
5198 case Intrinsic::trap: {
5199 StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5200 if (TrapFuncName.empty()) {
5201 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5202 ISD::TRAP : ISD::DEBUGTRAP;
5203 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5206 TargetLowering::ArgListTy Args;
5208 CallLoweringInfo CLI(getRoot(), I.getType(),
5209 false, false, false, false, 0, CallingConv::C,
5210 /*isTailCall=*/false,
5211 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
5212 DAG.getExternalSymbol(TrapFuncName.data(),
5213 TLI->getPointerTy()),
5215 std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5216 DAG.setRoot(Result.second);
5220 case Intrinsic::uadd_with_overflow:
5221 case Intrinsic::sadd_with_overflow:
5222 case Intrinsic::usub_with_overflow:
5223 case Intrinsic::ssub_with_overflow:
5224 case Intrinsic::umul_with_overflow:
5225 case Intrinsic::smul_with_overflow: {
5227 switch (Intrinsic) {
5228 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5229 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5230 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5231 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5232 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5233 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5234 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5236 SDValue Op1 = getValue(I.getArgOperand(0));
5237 SDValue Op2 = getValue(I.getArgOperand(1));
5239 SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5240 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5243 case Intrinsic::prefetch: {
5245 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5247 Ops[1] = getValue(I.getArgOperand(0));
5248 Ops[2] = getValue(I.getArgOperand(1));
5249 Ops[3] = getValue(I.getArgOperand(2));
5250 Ops[4] = getValue(I.getArgOperand(3));
5251 DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5252 DAG.getVTList(MVT::Other),
5254 EVT::getIntegerVT(*Context, 8),
5255 MachinePointerInfo(I.getArgOperand(0)),
5257 false, /* volatile */
5259 rw==1)); /* write */
5262 case Intrinsic::lifetime_start:
5263 case Intrinsic::lifetime_end: {
5264 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5265 // Stack coloring is not enabled in O0, discard region information.
5266 if (TM.getOptLevel() == CodeGenOpt::None)
5269 SmallVector<Value *, 4> Allocas;
5270 GetUnderlyingObjects(I.getArgOperand(1), Allocas, TD);
5272 for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5273 E = Allocas.end(); Object != E; ++Object) {
5274 AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5276 // Could not find an Alloca.
5277 if (!LifetimeObject)
5280 int FI = FuncInfo.StaticAllocaMap[LifetimeObject];
5284 Ops[1] = DAG.getFrameIndex(FI, TLI->getPointerTy(), true);
5285 unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5287 Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops, 2);
5292 case Intrinsic::invariant_start:
5293 // Discard region information.
5294 setValue(&I, DAG.getUNDEF(TLI->getPointerTy()));
5296 case Intrinsic::invariant_end:
5297 // Discard region information.
5299 case Intrinsic::stackprotectorcheck: {
5300 // Do not actually emit anything for this basic block. Instead we initialize
5301 // the stack protector descriptor and export the guard variable so we can
5302 // access it in FinishBasicBlock.
5303 const BasicBlock *BB = I.getParent();
5304 SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5305 ExportFromCurrentBlock(SPDescriptor.getGuard());
5307 // Flush our exports since we are going to process a terminator.
5308 (void)getControlRoot();
5311 case Intrinsic::donothing:
5317 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5319 MachineBasicBlock *LandingPad) {
5320 PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5321 FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5322 Type *RetTy = FTy->getReturnType();
5323 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5324 MCSymbol *BeginLabel = 0;
5326 TargetLowering::ArgListTy Args;
5327 TargetLowering::ArgListEntry Entry;
5328 Args.reserve(CS.arg_size());
5330 // Check whether the function can return without sret-demotion.
5331 SmallVector<ISD::OutputArg, 4> Outs;
5332 const TargetLowering *TLI = TM.getTargetLowering();
5333 GetReturnInfo(RetTy, CS.getAttributes(), Outs, *TLI);
5335 bool CanLowerReturn = TLI->CanLowerReturn(CS.getCallingConv(),
5336 DAG.getMachineFunction(),
5337 FTy->isVarArg(), Outs,
5340 SDValue DemoteStackSlot;
5341 int DemoteStackIdx = -100;
5343 if (!CanLowerReturn) {
5344 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(
5345 FTy->getReturnType());
5346 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(
5347 FTy->getReturnType());
5348 MachineFunction &MF = DAG.getMachineFunction();
5349 DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
5350 Type *StackSlotPtrType = PointerType::getUnqual(FTy->getReturnType());
5352 DemoteStackSlot = DAG.getFrameIndex(DemoteStackIdx, TLI->getPointerTy());
5353 Entry.Node = DemoteStackSlot;
5354 Entry.Ty = StackSlotPtrType;
5355 Entry.isSExt = false;
5356 Entry.isZExt = false;
5357 Entry.isInReg = false;
5358 Entry.isSRet = true;
5359 Entry.isNest = false;
5360 Entry.isByVal = false;
5361 Entry.isReturned = false;
5362 Entry.Alignment = Align;
5363 Args.push_back(Entry);
5364 RetTy = Type::getVoidTy(FTy->getContext());
5367 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5369 const Value *V = *i;
5372 if (V->getType()->isEmptyTy())
5375 SDValue ArgNode = getValue(V);
5376 Entry.Node = ArgNode; Entry.Ty = V->getType();
5378 unsigned attrInd = i - CS.arg_begin() + 1;
5379 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
5380 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
5381 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
5382 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
5383 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
5384 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
5385 Entry.isReturned = CS.paramHasAttr(attrInd, Attribute::Returned);
5386 Entry.Alignment = CS.getParamAlignment(attrInd);
5387 Args.push_back(Entry);
5391 // Insert a label before the invoke call to mark the try range. This can be
5392 // used to detect deletion of the invoke via the MachineModuleInfo.
5393 BeginLabel = MMI.getContext().CreateTempSymbol();
5395 // For SjLj, keep track of which landing pads go with which invokes
5396 // so as to maintain the ordering of pads in the LSDA.
5397 unsigned CallSiteIndex = MMI.getCurrentCallSite();
5398 if (CallSiteIndex) {
5399 MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5400 LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5402 // Now that the call site is handled, stop tracking it.
5403 MMI.setCurrentCallSite(0);
5406 // Both PendingLoads and PendingExports must be flushed here;
5407 // this call might not return.
5409 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5412 // Check if target-independent constraints permit a tail call here.
5413 // Target-dependent constraints are checked within TLI->LowerCallTo.
5414 if (isTailCall && !isInTailCallPosition(CS, *TLI))
5418 CallLoweringInfo CLI(getRoot(), RetTy, FTy, isTailCall, Callee, Args, DAG,
5420 std::pair<SDValue,SDValue> Result = TLI->LowerCallTo(CLI);
5421 assert((isTailCall || Result.second.getNode()) &&
5422 "Non-null chain expected with non-tail call!");
5423 assert((Result.second.getNode() || !Result.first.getNode()) &&
5424 "Null value expected with tail call!");
5425 if (Result.first.getNode()) {
5426 setValue(CS.getInstruction(), Result.first);
5427 } else if (!CanLowerReturn && Result.second.getNode()) {
5428 // The instruction result is the result of loading from the
5429 // hidden sret parameter.
5430 SmallVector<EVT, 1> PVTs;
5431 Type *PtrRetTy = PointerType::getUnqual(FTy->getReturnType());
5433 ComputeValueVTs(*TLI, PtrRetTy, PVTs);
5434 assert(PVTs.size() == 1 && "Pointers should fit in one register");
5435 EVT PtrVT = PVTs[0];
5437 SmallVector<EVT, 4> RetTys;
5438 SmallVector<uint64_t, 4> Offsets;
5439 RetTy = FTy->getReturnType();
5440 ComputeValueVTs(*TLI, RetTy, RetTys, &Offsets);
5442 unsigned NumValues = RetTys.size();
5443 SmallVector<SDValue, 4> Values(NumValues);
5444 SmallVector<SDValue, 4> Chains(NumValues);
5446 for (unsigned i = 0; i < NumValues; ++i) {
5447 SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT,
5449 DAG.getConstant(Offsets[i], PtrVT));
5450 SDValue L = DAG.getLoad(RetTys[i], getCurSDLoc(), Result.second, Add,
5451 MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]),
5452 false, false, false, 1);
5454 Chains[i] = L.getValue(1);
5457 SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
5458 MVT::Other, &Chains[0], NumValues);
5459 PendingLoads.push_back(Chain);
5461 setValue(CS.getInstruction(),
5462 DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
5463 DAG.getVTList(&RetTys[0], RetTys.size()),
5464 &Values[0], Values.size()));
5467 if (!Result.second.getNode()) {
5468 // As a special case, a null chain means that a tail call has been emitted and
5469 // the DAG root is already updated.
5472 // Since there's no actual continuation from this block, nothing can be
5473 // relying on us setting vregs for them.
5474 PendingExports.clear();
5476 DAG.setRoot(Result.second);
5480 // Insert a label at the end of the invoke call to mark the try range. This
5481 // can be used to detect deletion of the invoke via the MachineModuleInfo.
5482 MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5483 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5485 // Inform MachineModuleInfo of range.
5486 MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5490 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5491 /// value is equal or not-equal to zero.
5492 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5493 for (Value::const_use_iterator UI = V->use_begin(), E = V->use_end();
5495 if (const ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
5496 if (IC->isEquality())
5497 if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5498 if (C->isNullValue())
5500 // Unknown instruction.
5506 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5508 SelectionDAGBuilder &Builder) {
5510 // Check to see if this load can be trivially constant folded, e.g. if the
5511 // input is from a string literal.
5512 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5513 // Cast pointer to the type we really want to load.
5514 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5515 PointerType::getUnqual(LoadTy));
5517 if (const Constant *LoadCst =
5518 ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5520 return Builder.getValue(LoadCst);
5523 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
5524 // still constant memory, the input chain can be the entry node.
5526 bool ConstantMemory = false;
5528 // Do not serialize (non-volatile) loads of constant memory with anything.
5529 if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5530 Root = Builder.DAG.getEntryNode();
5531 ConstantMemory = true;
5533 // Do not serialize non-volatile loads against each other.
5534 Root = Builder.DAG.getRoot();
5537 SDValue Ptr = Builder.getValue(PtrVal);
5538 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5539 Ptr, MachinePointerInfo(PtrVal),
5541 false /*nontemporal*/,
5542 false /*isinvariant*/, 1 /* align=1 */);
5544 if (!ConstantMemory)
5545 Builder.PendingLoads.push_back(LoadVal.getValue(1));
5549 /// processIntegerCallValue - Record the value for an instruction that
5550 /// produces an integer result, converting the type where necessary.
5551 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5554 EVT VT = TM.getTargetLowering()->getValueType(I.getType(), true);
5556 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5558 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5559 setValue(&I, Value);
5562 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5563 /// If so, return true and lower it, otherwise return false and it will be
5564 /// lowered like a normal call.
5565 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5566 // Verify that the prototype makes sense. int memcmp(void*,void*,size_t)
5567 if (I.getNumArgOperands() != 3)
5570 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5571 if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5572 !I.getArgOperand(2)->getType()->isIntegerTy() ||
5573 !I.getType()->isIntegerTy())
5576 const Value *Size = I.getArgOperand(2);
5577 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5578 if (CSize && CSize->getZExtValue() == 0) {
5579 EVT CallVT = TM.getTargetLowering()->getValueType(I.getType(), true);
5580 setValue(&I, DAG.getConstant(0, CallVT));
5584 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5585 std::pair<SDValue, SDValue> Res =
5586 TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5587 getValue(LHS), getValue(RHS), getValue(Size),
5588 MachinePointerInfo(LHS),
5589 MachinePointerInfo(RHS));
5590 if (Res.first.getNode()) {
5591 processIntegerCallValue(I, Res.first, true);
5592 PendingLoads.push_back(Res.second);
5596 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
5597 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
5598 if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5599 bool ActuallyDoIt = true;
5602 switch (CSize->getZExtValue()) {
5604 LoadVT = MVT::Other;
5606 ActuallyDoIt = false;
5610 LoadTy = Type::getInt16Ty(CSize->getContext());
5614 LoadTy = Type::getInt32Ty(CSize->getContext());
5618 LoadTy = Type::getInt64Ty(CSize->getContext());
5622 LoadVT = MVT::v4i32;
5623 LoadTy = Type::getInt32Ty(CSize->getContext());
5624 LoadTy = VectorType::get(LoadTy, 4);
5629 // This turns into unaligned loads. We only do this if the target natively
5630 // supports the MVT we'll be loading or if it is small enough (<= 4) that
5631 // we'll only produce a small number of byte loads.
5633 // Require that we can find a legal MVT, and only do this if the target
5634 // supports unaligned loads of that type. Expanding into byte loads would
5636 const TargetLowering *TLI = TM.getTargetLowering();
5637 if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5638 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5639 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5640 if (!TLI->isTypeLegal(LoadVT) ||!TLI->allowsUnalignedMemoryAccesses(LoadVT))
5641 ActuallyDoIt = false;
5645 SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5646 SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5648 SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5650 processIntegerCallValue(I, Res, false);
5659 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5660 /// form. If so, return true and lower it, otherwise return false and it
5661 /// will be lowered like a normal call.
5662 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5663 // Verify that the prototype makes sense. void *memchr(void *, int, size_t)
5664 if (I.getNumArgOperands() != 3)
5667 const Value *Src = I.getArgOperand(0);
5668 const Value *Char = I.getArgOperand(1);
5669 const Value *Length = I.getArgOperand(2);
5670 if (!Src->getType()->isPointerTy() ||
5671 !Char->getType()->isIntegerTy() ||
5672 !Length->getType()->isIntegerTy() ||
5673 !I.getType()->isPointerTy())
5676 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5677 std::pair<SDValue, SDValue> Res =
5678 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5679 getValue(Src), getValue(Char), getValue(Length),
5680 MachinePointerInfo(Src));
5681 if (Res.first.getNode()) {
5682 setValue(&I, Res.first);
5683 PendingLoads.push_back(Res.second);
5690 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5691 /// optimized form. If so, return true and lower it, otherwise return false
5692 /// and it will be lowered like a normal call.
5693 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5694 // Verify that the prototype makes sense. char *strcpy(char *, char *)
5695 if (I.getNumArgOperands() != 2)
5698 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5699 if (!Arg0->getType()->isPointerTy() ||
5700 !Arg1->getType()->isPointerTy() ||
5701 !I.getType()->isPointerTy())
5704 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5705 std::pair<SDValue, SDValue> Res =
5706 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5707 getValue(Arg0), getValue(Arg1),
5708 MachinePointerInfo(Arg0),
5709 MachinePointerInfo(Arg1), isStpcpy);
5710 if (Res.first.getNode()) {
5711 setValue(&I, Res.first);
5712 DAG.setRoot(Res.second);
5719 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5720 /// If so, return true and lower it, otherwise return false and it will be
5721 /// lowered like a normal call.
5722 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5723 // Verify that the prototype makes sense. int strcmp(void*,void*)
5724 if (I.getNumArgOperands() != 2)
5727 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5728 if (!Arg0->getType()->isPointerTy() ||
5729 !Arg1->getType()->isPointerTy() ||
5730 !I.getType()->isIntegerTy())
5733 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5734 std::pair<SDValue, SDValue> Res =
5735 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5736 getValue(Arg0), getValue(Arg1),
5737 MachinePointerInfo(Arg0),
5738 MachinePointerInfo(Arg1));
5739 if (Res.first.getNode()) {
5740 processIntegerCallValue(I, Res.first, true);
5741 PendingLoads.push_back(Res.second);
5748 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
5749 /// form. If so, return true and lower it, otherwise return false and it
5750 /// will be lowered like a normal call.
5751 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
5752 // Verify that the prototype makes sense. size_t strlen(char *)
5753 if (I.getNumArgOperands() != 1)
5756 const Value *Arg0 = I.getArgOperand(0);
5757 if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
5760 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5761 std::pair<SDValue, SDValue> Res =
5762 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
5763 getValue(Arg0), MachinePointerInfo(Arg0));
5764 if (Res.first.getNode()) {
5765 processIntegerCallValue(I, Res.first, false);
5766 PendingLoads.push_back(Res.second);
5773 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
5774 /// form. If so, return true and lower it, otherwise return false and it
5775 /// will be lowered like a normal call.
5776 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
5777 // Verify that the prototype makes sense. size_t strnlen(char *, size_t)
5778 if (I.getNumArgOperands() != 2)
5781 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5782 if (!Arg0->getType()->isPointerTy() ||
5783 !Arg1->getType()->isIntegerTy() ||
5784 !I.getType()->isIntegerTy())
5787 const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5788 std::pair<SDValue, SDValue> Res =
5789 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
5790 getValue(Arg0), getValue(Arg1),
5791 MachinePointerInfo(Arg0));
5792 if (Res.first.getNode()) {
5793 processIntegerCallValue(I, Res.first, false);
5794 PendingLoads.push_back(Res.second);
5801 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
5802 /// operation (as expected), translate it to an SDNode with the specified opcode
5803 /// and return true.
5804 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
5806 // Sanity check that it really is a unary floating-point call.
5807 if (I.getNumArgOperands() != 1 ||
5808 !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
5809 I.getType() != I.getArgOperand(0)->getType() ||
5810 !I.onlyReadsMemory())
5813 SDValue Tmp = getValue(I.getArgOperand(0));
5814 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
5818 void SelectionDAGBuilder::visitCall(const CallInst &I) {
5819 // Handle inline assembly differently.
5820 if (isa<InlineAsm>(I.getCalledValue())) {
5825 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5826 ComputeUsesVAFloatArgument(I, &MMI);
5828 const char *RenameFn = 0;
5829 if (Function *F = I.getCalledFunction()) {
5830 if (F->isDeclaration()) {
5831 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
5832 if (unsigned IID = II->getIntrinsicID(F)) {
5833 RenameFn = visitIntrinsicCall(I, IID);
5838 if (unsigned IID = F->getIntrinsicID()) {
5839 RenameFn = visitIntrinsicCall(I, IID);
5845 // Check for well-known libc/libm calls. If the function is internal, it
5846 // can't be a library call.
5848 if (!F->hasLocalLinkage() && F->hasName() &&
5849 LibInfo->getLibFunc(F->getName(), Func) &&
5850 LibInfo->hasOptimizedCodeGen(Func)) {
5853 case LibFunc::copysign:
5854 case LibFunc::copysignf:
5855 case LibFunc::copysignl:
5856 if (I.getNumArgOperands() == 2 && // Basic sanity checks.
5857 I.getArgOperand(0)->getType()->isFloatingPointTy() &&
5858 I.getType() == I.getArgOperand(0)->getType() &&
5859 I.getType() == I.getArgOperand(1)->getType() &&
5860 I.onlyReadsMemory()) {
5861 SDValue LHS = getValue(I.getArgOperand(0));
5862 SDValue RHS = getValue(I.getArgOperand(1));
5863 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
5864 LHS.getValueType(), LHS, RHS));
5869 case LibFunc::fabsf:
5870 case LibFunc::fabsl:
5871 if (visitUnaryFloatCall(I, ISD::FABS))
5877 if (visitUnaryFloatCall(I, ISD::FSIN))
5883 if (visitUnaryFloatCall(I, ISD::FCOS))
5887 case LibFunc::sqrtf:
5888 case LibFunc::sqrtl:
5889 case LibFunc::sqrt_finite:
5890 case LibFunc::sqrtf_finite:
5891 case LibFunc::sqrtl_finite:
5892 if (visitUnaryFloatCall(I, ISD::FSQRT))
5895 case LibFunc::floor:
5896 case LibFunc::floorf:
5897 case LibFunc::floorl:
5898 if (visitUnaryFloatCall(I, ISD::FFLOOR))
5901 case LibFunc::nearbyint:
5902 case LibFunc::nearbyintf:
5903 case LibFunc::nearbyintl:
5904 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
5908 case LibFunc::ceilf:
5909 case LibFunc::ceill:
5910 if (visitUnaryFloatCall(I, ISD::FCEIL))
5914 case LibFunc::rintf:
5915 case LibFunc::rintl:
5916 if (visitUnaryFloatCall(I, ISD::FRINT))
5919 case LibFunc::round:
5920 case LibFunc::roundf:
5921 case LibFunc::roundl:
5922 if (visitUnaryFloatCall(I, ISD::FROUND))
5925 case LibFunc::trunc:
5926 case LibFunc::truncf:
5927 case LibFunc::truncl:
5928 if (visitUnaryFloatCall(I, ISD::FTRUNC))
5932 case LibFunc::log2f:
5933 case LibFunc::log2l:
5934 if (visitUnaryFloatCall(I, ISD::FLOG2))
5938 case LibFunc::exp2f:
5939 case LibFunc::exp2l:
5940 if (visitUnaryFloatCall(I, ISD::FEXP2))
5943 case LibFunc::memcmp:
5944 if (visitMemCmpCall(I))
5947 case LibFunc::memchr:
5948 if (visitMemChrCall(I))
5951 case LibFunc::strcpy:
5952 if (visitStrCpyCall(I, false))
5955 case LibFunc::stpcpy:
5956 if (visitStrCpyCall(I, true))
5959 case LibFunc::strcmp:
5960 if (visitStrCmpCall(I))
5963 case LibFunc::strlen:
5964 if (visitStrLenCall(I))
5967 case LibFunc::strnlen:
5968 if (visitStrNLenCall(I))
5977 Callee = getValue(I.getCalledValue());
5979 Callee = DAG.getExternalSymbol(RenameFn,
5980 TM.getTargetLowering()->getPointerTy());
5982 // Check if we can potentially perform a tail call. More detailed checking is
5983 // be done within LowerCallTo, after more information about the call is known.
5984 LowerCallTo(&I, Callee, I.isTailCall());
5989 /// AsmOperandInfo - This contains information for each constraint that we are
5991 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
5993 /// CallOperand - If this is the result output operand or a clobber
5994 /// this is null, otherwise it is the incoming operand to the CallInst.
5995 /// This gets modified as the asm is processed.
5996 SDValue CallOperand;
5998 /// AssignedRegs - If this is a register or register class operand, this
5999 /// contains the set of register corresponding to the operand.
6000 RegsForValue AssignedRegs;
6002 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6003 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
6006 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6007 /// corresponds to. If there is no Value* for this operand, it returns
6009 EVT getCallOperandValEVT(LLVMContext &Context,
6010 const TargetLowering &TLI,
6011 const DataLayout *TD) const {
6012 if (CallOperandVal == 0) return MVT::Other;
6014 if (isa<BasicBlock>(CallOperandVal))
6015 return TLI.getPointerTy();
6017 llvm::Type *OpTy = CallOperandVal->getType();
6019 // FIXME: code duplicated from TargetLowering::ParseConstraints().
6020 // If this is an indirect operand, the operand is a pointer to the
6023 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6025 report_fatal_error("Indirect operand for inline asm not a pointer!");
6026 OpTy = PtrTy->getElementType();
6029 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6030 if (StructType *STy = dyn_cast<StructType>(OpTy))
6031 if (STy->getNumElements() == 1)
6032 OpTy = STy->getElementType(0);
6034 // If OpTy is not a single value, it may be a struct/union that we
6035 // can tile with integers.
6036 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6037 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
6046 OpTy = IntegerType::get(Context, BitSize);
6051 return TLI.getValueType(OpTy, true);
6055 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6057 } // end anonymous namespace
6059 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6060 /// specified operand. We prefer to assign virtual registers, to allow the
6061 /// register allocator to handle the assignment process. However, if the asm
6062 /// uses features that we can't model on machineinstrs, we have SDISel do the
6063 /// allocation. This produces generally horrible, but correct, code.
6065 /// OpInfo describes the operand.
6067 static void GetRegistersForValue(SelectionDAG &DAG,
6068 const TargetLowering &TLI,
6070 SDISelAsmOperandInfo &OpInfo) {
6071 LLVMContext &Context = *DAG.getContext();
6073 MachineFunction &MF = DAG.getMachineFunction();
6074 SmallVector<unsigned, 4> Regs;
6076 // If this is a constraint for a single physreg, or a constraint for a
6077 // register class, find it.
6078 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6079 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6080 OpInfo.ConstraintVT);
6082 unsigned NumRegs = 1;
6083 if (OpInfo.ConstraintVT != MVT::Other) {
6084 // If this is a FP input in an integer register (or visa versa) insert a bit
6085 // cast of the input value. More generally, handle any case where the input
6086 // value disagrees with the register class we plan to stick this in.
6087 if (OpInfo.Type == InlineAsm::isInput &&
6088 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6089 // Try to convert to the first EVT that the reg class contains. If the
6090 // types are identical size, use a bitcast to convert (e.g. two differing
6092 MVT RegVT = *PhysReg.second->vt_begin();
6093 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
6094 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6095 RegVT, OpInfo.CallOperand);
6096 OpInfo.ConstraintVT = RegVT;
6097 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6098 // If the input is a FP value and we want it in FP registers, do a
6099 // bitcast to the corresponding integer type. This turns an f64 value
6100 // into i64, which can be passed with two i32 values on a 32-bit
6102 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6103 OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6104 RegVT, OpInfo.CallOperand);
6105 OpInfo.ConstraintVT = RegVT;
6109 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6113 EVT ValueVT = OpInfo.ConstraintVT;
6115 // If this is a constraint for a specific physical register, like {r17},
6117 if (unsigned AssignedReg = PhysReg.first) {
6118 const TargetRegisterClass *RC = PhysReg.second;
6119 if (OpInfo.ConstraintVT == MVT::Other)
6120 ValueVT = *RC->vt_begin();
6122 // Get the actual register value type. This is important, because the user
6123 // may have asked for (e.g.) the AX register in i32 type. We need to
6124 // remember that AX is actually i16 to get the right extension.
6125 RegVT = *RC->vt_begin();
6127 // This is a explicit reference to a physical register.
6128 Regs.push_back(AssignedReg);
6130 // If this is an expanded reference, add the rest of the regs to Regs.
6132 TargetRegisterClass::iterator I = RC->begin();
6133 for (; *I != AssignedReg; ++I)
6134 assert(I != RC->end() && "Didn't find reg!");
6136 // Already added the first reg.
6138 for (; NumRegs; --NumRegs, ++I) {
6139 assert(I != RC->end() && "Ran out of registers to allocate!");
6144 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6148 // Otherwise, if this was a reference to an LLVM register class, create vregs
6149 // for this reference.
6150 if (const TargetRegisterClass *RC = PhysReg.second) {
6151 RegVT = *RC->vt_begin();
6152 if (OpInfo.ConstraintVT == MVT::Other)
6155 // Create the appropriate number of virtual registers.
6156 MachineRegisterInfo &RegInfo = MF.getRegInfo();
6157 for (; NumRegs; --NumRegs)
6158 Regs.push_back(RegInfo.createVirtualRegister(RC));
6160 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6164 // Otherwise, we couldn't allocate enough registers for this.
6167 /// visitInlineAsm - Handle a call to an InlineAsm object.
6169 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6170 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6172 /// ConstraintOperands - Information about all of the constraints.
6173 SDISelAsmOperandInfoVector ConstraintOperands;
6175 const TargetLowering *TLI = TM.getTargetLowering();
6176 TargetLowering::AsmOperandInfoVector
6177 TargetConstraints = TLI->ParseConstraints(CS);
6179 bool hasMemory = false;
6181 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
6182 unsigned ResNo = 0; // ResNo - The result number of the next output.
6183 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6184 ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6185 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6187 MVT OpVT = MVT::Other;
6189 // Compute the value type for each operand.
6190 switch (OpInfo.Type) {
6191 case InlineAsm::isOutput:
6192 // Indirect outputs just consume an argument.
6193 if (OpInfo.isIndirect) {
6194 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6198 // The return value of the call is this value. As such, there is no
6199 // corresponding argument.
6200 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6201 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6202 OpVT = TLI->getSimpleValueType(STy->getElementType(ResNo));
6204 assert(ResNo == 0 && "Asm only has one result!");
6205 OpVT = TLI->getSimpleValueType(CS.getType());
6209 case InlineAsm::isInput:
6210 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6212 case InlineAsm::isClobber:
6217 // If this is an input or an indirect output, process the call argument.
6218 // BasicBlocks are labels, currently appearing only in asm's.
6219 if (OpInfo.CallOperandVal) {
6220 if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6221 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6223 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6226 OpVT = OpInfo.getCallOperandValEVT(*DAG.getContext(), *TLI, TD).
6230 OpInfo.ConstraintVT = OpVT;
6232 // Indirect operand accesses access memory.
6233 if (OpInfo.isIndirect)
6236 for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6237 TargetLowering::ConstraintType
6238 CType = TLI->getConstraintType(OpInfo.Codes[j]);
6239 if (CType == TargetLowering::C_Memory) {
6247 SDValue Chain, Flag;
6249 // We won't need to flush pending loads if this asm doesn't touch
6250 // memory and is nonvolatile.
6251 if (hasMemory || IA->hasSideEffects())
6254 Chain = DAG.getRoot();
6256 // Second pass over the constraints: compute which constraint option to use
6257 // and assign registers to constraints that want a specific physreg.
6258 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6259 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6261 // If this is an output operand with a matching input operand, look up the
6262 // matching input. If their types mismatch, e.g. one is an integer, the
6263 // other is floating point, or their sizes are different, flag it as an
6265 if (OpInfo.hasMatchingInput()) {
6266 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6268 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6269 std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6270 TLI->getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6271 OpInfo.ConstraintVT);
6272 std::pair<unsigned, const TargetRegisterClass*> InputRC =
6273 TLI->getRegForInlineAsmConstraint(Input.ConstraintCode,
6274 Input.ConstraintVT);
6275 if ((OpInfo.ConstraintVT.isInteger() !=
6276 Input.ConstraintVT.isInteger()) ||
6277 (MatchRC.second != InputRC.second)) {
6278 report_fatal_error("Unsupported asm: input constraint"
6279 " with a matching output constraint of"
6280 " incompatible type!");
6282 Input.ConstraintVT = OpInfo.ConstraintVT;
6286 // Compute the constraint code and ConstraintType to use.
6287 TLI->ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6289 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6290 OpInfo.Type == InlineAsm::isClobber)
6293 // If this is a memory input, and if the operand is not indirect, do what we
6294 // need to to provide an address for the memory input.
6295 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6296 !OpInfo.isIndirect) {
6297 assert((OpInfo.isMultipleAlternative ||
6298 (OpInfo.Type == InlineAsm::isInput)) &&
6299 "Can only indirectify direct input operands!");
6301 // Memory operands really want the address of the value. If we don't have
6302 // an indirect input, put it in the constpool if we can, otherwise spill
6303 // it to a stack slot.
6304 // TODO: This isn't quite right. We need to handle these according to
6305 // the addressing mode that the constraint wants. Also, this may take
6306 // an additional register for the computation and we don't want that
6309 // If the operand is a float, integer, or vector constant, spill to a
6310 // constant pool entry to get its address.
6311 const Value *OpVal = OpInfo.CallOperandVal;
6312 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6313 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6314 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6315 TLI->getPointerTy());
6317 // Otherwise, create a stack slot and emit a store to it before the
6319 Type *Ty = OpVal->getType();
6320 uint64_t TySize = TLI->getDataLayout()->getTypeAllocSize(Ty);
6321 unsigned Align = TLI->getDataLayout()->getPrefTypeAlignment(Ty);
6322 MachineFunction &MF = DAG.getMachineFunction();
6323 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6324 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI->getPointerTy());
6325 Chain = DAG.getStore(Chain, getCurSDLoc(),
6326 OpInfo.CallOperand, StackSlot,
6327 MachinePointerInfo::getFixedStack(SSFI),
6329 OpInfo.CallOperand = StackSlot;
6332 // There is no longer a Value* corresponding to this operand.
6333 OpInfo.CallOperandVal = 0;
6335 // It is now an indirect operand.
6336 OpInfo.isIndirect = true;
6339 // If this constraint is for a specific register, allocate it before
6341 if (OpInfo.ConstraintType == TargetLowering::C_Register)
6342 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6345 // Second pass - Loop over all of the operands, assigning virtual or physregs
6346 // to register class operands.
6347 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6348 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6350 // C_Register operands have already been allocated, Other/Memory don't need
6352 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6353 GetRegistersForValue(DAG, *TLI, getCurSDLoc(), OpInfo);
6356 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6357 std::vector<SDValue> AsmNodeOperands;
6358 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
6359 AsmNodeOperands.push_back(
6360 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6361 TLI->getPointerTy()));
6363 // If we have a !srcloc metadata node associated with it, we want to attach
6364 // this to the ultimately generated inline asm machineinstr. To do this, we
6365 // pass in the third operand as this (potentially null) inline asm MDNode.
6366 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6367 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6369 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6370 // bits as operand 3.
6371 unsigned ExtraInfo = 0;
6372 if (IA->hasSideEffects())
6373 ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6374 if (IA->isAlignStack())
6375 ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6376 // Set the asm dialect.
6377 ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6379 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6380 for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6381 TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6383 // Compute the constraint code and ConstraintType to use.
6384 TLI->ComputeConstraintToUse(OpInfo, SDValue());
6386 // Ideally, we would only check against memory constraints. However, the
6387 // meaning of an other constraint can be target-specific and we can't easily
6388 // reason about it. Therefore, be conservative and set MayLoad/MayStore
6389 // for other constriants as well.
6390 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6391 OpInfo.ConstraintType == TargetLowering::C_Other) {
6392 if (OpInfo.Type == InlineAsm::isInput)
6393 ExtraInfo |= InlineAsm::Extra_MayLoad;
6394 else if (OpInfo.Type == InlineAsm::isOutput)
6395 ExtraInfo |= InlineAsm::Extra_MayStore;
6396 else if (OpInfo.Type == InlineAsm::isClobber)
6397 ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6401 AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6402 TLI->getPointerTy()));
6404 // Loop over all of the inputs, copying the operand values into the
6405 // appropriate registers and processing the output regs.
6406 RegsForValue RetValRegs;
6408 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6409 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6411 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6412 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6414 switch (OpInfo.Type) {
6415 case InlineAsm::isOutput: {
6416 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6417 OpInfo.ConstraintType != TargetLowering::C_Register) {
6418 // Memory output, or 'other' output (e.g. 'X' constraint).
6419 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6421 // Add information to the INLINEASM node to know about this output.
6422 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6423 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6424 TLI->getPointerTy()));
6425 AsmNodeOperands.push_back(OpInfo.CallOperand);
6429 // Otherwise, this is a register or register class output.
6431 // Copy the output from the appropriate register. Find a register that
6433 if (OpInfo.AssignedRegs.Regs.empty()) {
6434 LLVMContext &Ctx = *DAG.getContext();
6435 Ctx.emitError(CS.getInstruction(),
6436 "couldn't allocate output register for constraint '" +
6437 Twine(OpInfo.ConstraintCode) + "'");
6441 // If this is an indirect operand, store through the pointer after the
6443 if (OpInfo.isIndirect) {
6444 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6445 OpInfo.CallOperandVal));
6447 // This is the result value of the call.
6448 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6449 // Concatenate this output onto the outputs list.
6450 RetValRegs.append(OpInfo.AssignedRegs);
6453 // Add information to the INLINEASM node to know that this register is
6456 .AddInlineAsmOperands(OpInfo.isEarlyClobber
6457 ? InlineAsm::Kind_RegDefEarlyClobber
6458 : InlineAsm::Kind_RegDef,
6459 false, 0, DAG, AsmNodeOperands);
6462 case InlineAsm::isInput: {
6463 SDValue InOperandVal = OpInfo.CallOperand;
6465 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
6466 // If this is required to match an output register we have already set,
6467 // just use its register.
6468 unsigned OperandNo = OpInfo.getMatchedOperand();
6470 // Scan until we find the definition we already emitted of this operand.
6471 // When we find it, create a RegsForValue operand.
6472 unsigned CurOp = InlineAsm::Op_FirstOperand;
6473 for (; OperandNo; --OperandNo) {
6474 // Advance to the next operand.
6476 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6477 assert((InlineAsm::isRegDefKind(OpFlag) ||
6478 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6479 InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6480 CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6484 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6485 if (InlineAsm::isRegDefKind(OpFlag) ||
6486 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6487 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6488 if (OpInfo.isIndirect) {
6489 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6490 LLVMContext &Ctx = *DAG.getContext();
6491 Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6492 " don't know how to handle tied "
6493 "indirect register inputs");
6497 RegsForValue MatchedRegs;
6498 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6499 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6500 MatchedRegs.RegVTs.push_back(RegVT);
6501 MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6502 for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6504 if (const TargetRegisterClass *RC = TLI->getRegClassFor(RegVT))
6505 MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6507 LLVMContext &Ctx = *DAG.getContext();
6508 Ctx.emitError(CS.getInstruction(),
6509 "inline asm error: This value"
6510 " type register class is not natively supported!");
6514 // Use the produced MatchedRegs object to
6515 MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6516 Chain, &Flag, CS.getInstruction());
6517 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6518 true, OpInfo.getMatchedOperand(),
6519 DAG, AsmNodeOperands);
6523 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6524 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6525 "Unexpected number of operands");
6526 // Add information to the INLINEASM node to know about this input.
6527 // See InlineAsm.h isUseOperandTiedToDef.
6528 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6529 OpInfo.getMatchedOperand());
6530 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6531 TLI->getPointerTy()));
6532 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6536 // Treat indirect 'X' constraint as memory.
6537 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6539 OpInfo.ConstraintType = TargetLowering::C_Memory;
6541 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6542 std::vector<SDValue> Ops;
6543 TLI->LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6546 LLVMContext &Ctx = *DAG.getContext();
6547 Ctx.emitError(CS.getInstruction(),
6548 "invalid operand for inline asm constraint '" +
6549 Twine(OpInfo.ConstraintCode) + "'");
6553 // Add information to the INLINEASM node to know about this input.
6554 unsigned ResOpType =
6555 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6556 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6557 TLI->getPointerTy()));
6558 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6562 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6563 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6564 assert(InOperandVal.getValueType() == TLI->getPointerTy() &&
6565 "Memory operands expect pointer values");
6567 // Add information to the INLINEASM node to know about this input.
6568 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6569 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6570 TLI->getPointerTy()));
6571 AsmNodeOperands.push_back(InOperandVal);
6575 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6576 OpInfo.ConstraintType == TargetLowering::C_Register) &&
6577 "Unknown constraint type!");
6579 // TODO: Support this.
6580 if (OpInfo.isIndirect) {
6581 LLVMContext &Ctx = *DAG.getContext();
6582 Ctx.emitError(CS.getInstruction(),
6583 "Don't know how to handle indirect register inputs yet "
6584 "for constraint '" +
6585 Twine(OpInfo.ConstraintCode) + "'");
6589 // Copy the input into the appropriate registers.
6590 if (OpInfo.AssignedRegs.Regs.empty()) {
6591 LLVMContext &Ctx = *DAG.getContext();
6592 Ctx.emitError(CS.getInstruction(),
6593 "couldn't allocate input reg for constraint '" +
6594 Twine(OpInfo.ConstraintCode) + "'");
6598 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6599 Chain, &Flag, CS.getInstruction());
6601 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6602 DAG, AsmNodeOperands);
6605 case InlineAsm::isClobber: {
6606 // Add the clobbered value to the operand list, so that the register
6607 // allocator is aware that the physreg got clobbered.
6608 if (!OpInfo.AssignedRegs.Regs.empty())
6609 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6617 // Finish up input operands. Set the input chain and add the flag last.
6618 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6619 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6621 Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6622 DAG.getVTList(MVT::Other, MVT::Glue),
6623 &AsmNodeOperands[0], AsmNodeOperands.size());
6624 Flag = Chain.getValue(1);
6626 // If this asm returns a register value, copy the result from that register
6627 // and set it as the value of the call.
6628 if (!RetValRegs.Regs.empty()) {
6629 SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6630 Chain, &Flag, CS.getInstruction());
6632 // FIXME: Why don't we do this for inline asms with MRVs?
6633 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6634 EVT ResultType = TLI->getValueType(CS.getType());
6636 // If any of the results of the inline asm is a vector, it may have the
6637 // wrong width/num elts. This can happen for register classes that can
6638 // contain multiple different value types. The preg or vreg allocated may
6639 // not have the same VT as was expected. Convert it to the right type
6640 // with bit_convert.
6641 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6642 Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6645 } else if (ResultType != Val.getValueType() &&
6646 ResultType.isInteger() && Val.getValueType().isInteger()) {
6647 // If a result value was tied to an input value, the computed result may
6648 // have a wider width than the expected result. Extract the relevant
6650 Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6653 assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6656 setValue(CS.getInstruction(), Val);
6657 // Don't need to use this as a chain in this case.
6658 if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6662 std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6664 // Process indirect outputs, first output all of the flagged copies out of
6666 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6667 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6668 const Value *Ptr = IndirectStoresToEmit[i].second;
6669 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6671 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6674 // Emit the non-flagged stores from the physregs.
6675 SmallVector<SDValue, 8> OutChains;
6676 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6677 SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6678 StoresToEmit[i].first,
6679 getValue(StoresToEmit[i].second),
6680 MachinePointerInfo(StoresToEmit[i].second),
6682 OutChains.push_back(Val);
6685 if (!OutChains.empty())
6686 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
6687 &OutChains[0], OutChains.size());
6692 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6693 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6694 MVT::Other, getRoot(),
6695 getValue(I.getArgOperand(0)),
6696 DAG.getSrcValue(I.getArgOperand(0))));
6699 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6700 const TargetLowering *TLI = TM.getTargetLowering();
6701 const DataLayout &TD = *TLI->getDataLayout();
6702 SDValue V = DAG.getVAArg(TLI->getValueType(I.getType()), getCurSDLoc(),
6703 getRoot(), getValue(I.getOperand(0)),
6704 DAG.getSrcValue(I.getOperand(0)),
6705 TD.getABITypeAlignment(I.getType()));
6707 DAG.setRoot(V.getValue(1));
6710 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
6711 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
6712 MVT::Other, getRoot(),
6713 getValue(I.getArgOperand(0)),
6714 DAG.getSrcValue(I.getArgOperand(0))));
6717 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
6718 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
6719 MVT::Other, getRoot(),
6720 getValue(I.getArgOperand(0)),
6721 getValue(I.getArgOperand(1)),
6722 DAG.getSrcValue(I.getArgOperand(0)),
6723 DAG.getSrcValue(I.getArgOperand(1))));
6726 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
6727 /// implementation, which just calls LowerCall.
6728 /// FIXME: When all targets are
6729 /// migrated to using LowerCall, this hook should be integrated into SDISel.
6730 std::pair<SDValue, SDValue>
6731 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
6732 // Handle the incoming return values from the call.
6734 SmallVector<EVT, 4> RetTys;
6735 ComputeValueVTs(*this, CLI.RetTy, RetTys);
6736 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6738 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6739 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6740 for (unsigned i = 0; i != NumRegs; ++i) {
6741 ISD::InputArg MyFlags;
6742 MyFlags.VT = RegisterVT;
6743 MyFlags.Used = CLI.IsReturnValueUsed;
6745 MyFlags.Flags.setSExt();
6747 MyFlags.Flags.setZExt();
6749 MyFlags.Flags.setInReg();
6750 CLI.Ins.push_back(MyFlags);
6754 // Handle all of the outgoing arguments.
6756 CLI.OutVals.clear();
6757 ArgListTy &Args = CLI.Args;
6758 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
6759 SmallVector<EVT, 4> ValueVTs;
6760 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
6761 for (unsigned Value = 0, NumValues = ValueVTs.size();
6762 Value != NumValues; ++Value) {
6763 EVT VT = ValueVTs[Value];
6764 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
6765 SDValue Op = SDValue(Args[i].Node.getNode(),
6766 Args[i].Node.getResNo() + Value);
6767 ISD::ArgFlagsTy Flags;
6768 unsigned OriginalAlignment =
6769 getDataLayout()->getABITypeAlignment(ArgTy);
6775 if (Args[i].isInReg)
6779 if (Args[i].isByVal) {
6781 PointerType *Ty = cast<PointerType>(Args[i].Ty);
6782 Type *ElementTy = Ty->getElementType();
6783 Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
6784 // For ByVal, alignment should come from FE. BE will guess if this
6785 // info is not there but there are cases it cannot get right.
6786 unsigned FrameAlign;
6787 if (Args[i].Alignment)
6788 FrameAlign = Args[i].Alignment;
6790 FrameAlign = getByValTypeAlignment(ElementTy);
6791 Flags.setByValAlign(FrameAlign);
6795 Flags.setOrigAlign(OriginalAlignment);
6797 MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
6798 unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
6799 SmallVector<SDValue, 4> Parts(NumParts);
6800 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
6803 ExtendKind = ISD::SIGN_EXTEND;
6804 else if (Args[i].isZExt)
6805 ExtendKind = ISD::ZERO_EXTEND;
6807 // Conservatively only handle 'returned' on non-vectors for now
6808 if (Args[i].isReturned && !Op.getValueType().isVector()) {
6809 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
6810 "unexpected use of 'returned'");
6811 // Before passing 'returned' to the target lowering code, ensure that
6812 // either the register MVT and the actual EVT are the same size or that
6813 // the return value and argument are extended in the same way; in these
6814 // cases it's safe to pass the argument register value unchanged as the
6815 // return register value (although it's at the target's option whether
6817 // TODO: allow code generation to take advantage of partially preserved
6818 // registers rather than clobbering the entire register when the
6819 // parameter extension method is not compatible with the return
6821 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
6822 (ExtendKind != ISD::ANY_EXTEND &&
6823 CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
6824 Flags.setReturned();
6827 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts,
6828 PartVT, CLI.CS ? CLI.CS->getInstruction() : 0, ExtendKind);
6830 for (unsigned j = 0; j != NumParts; ++j) {
6831 // if it isn't first piece, alignment must be 1
6832 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(),
6833 i < CLI.NumFixedArgs,
6834 i, j*Parts[j].getValueType().getStoreSize());
6835 if (NumParts > 1 && j == 0)
6836 MyFlags.Flags.setSplit();
6838 MyFlags.Flags.setOrigAlign(1);
6840 CLI.Outs.push_back(MyFlags);
6841 CLI.OutVals.push_back(Parts[j]);
6846 SmallVector<SDValue, 4> InVals;
6847 CLI.Chain = LowerCall(CLI, InVals);
6849 // Verify that the target's LowerCall behaved as expected.
6850 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
6851 "LowerCall didn't return a valid chain!");
6852 assert((!CLI.IsTailCall || InVals.empty()) &&
6853 "LowerCall emitted a return value for a tail call!");
6854 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
6855 "LowerCall didn't emit the correct number of values!");
6857 // For a tail call, the return value is merely live-out and there aren't
6858 // any nodes in the DAG representing it. Return a special value to
6859 // indicate that a tail call has been emitted and no more Instructions
6860 // should be processed in the current block.
6861 if (CLI.IsTailCall) {
6862 CLI.DAG.setRoot(CLI.Chain);
6863 return std::make_pair(SDValue(), SDValue());
6866 DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
6867 assert(InVals[i].getNode() &&
6868 "LowerCall emitted a null value!");
6869 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
6870 "LowerCall emitted a value with the wrong type!");
6873 // Collect the legal value parts into potentially illegal values
6874 // that correspond to the original function's return values.
6875 ISD::NodeType AssertOp = ISD::DELETED_NODE;
6877 AssertOp = ISD::AssertSext;
6878 else if (CLI.RetZExt)
6879 AssertOp = ISD::AssertZext;
6880 SmallVector<SDValue, 4> ReturnValues;
6881 unsigned CurReg = 0;
6882 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
6884 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
6885 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
6887 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
6888 NumRegs, RegisterVT, VT, NULL,
6893 // For a function returning void, there is no return value. We can't create
6894 // such a node, so we just return a null return value in that case. In
6895 // that case, nothing will actually look at the value.
6896 if (ReturnValues.empty())
6897 return std::make_pair(SDValue(), CLI.Chain);
6899 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
6900 CLI.DAG.getVTList(&RetTys[0], RetTys.size()),
6901 &ReturnValues[0], ReturnValues.size());
6902 return std::make_pair(Res, CLI.Chain);
6905 void TargetLowering::LowerOperationWrapper(SDNode *N,
6906 SmallVectorImpl<SDValue> &Results,
6907 SelectionDAG &DAG) const {
6908 SDValue Res = LowerOperation(SDValue(N, 0), DAG);
6910 Results.push_back(Res);
6913 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
6914 llvm_unreachable("LowerOperation not implemented for this target!");
6918 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
6919 SDValue Op = getNonRegisterValue(V);
6920 assert((Op.getOpcode() != ISD::CopyFromReg ||
6921 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
6922 "Copy from a reg to the same reg!");
6923 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
6925 const TargetLowering *TLI = TM.getTargetLowering();
6926 RegsForValue RFV(V->getContext(), *TLI, Reg, V->getType());
6927 SDValue Chain = DAG.getEntryNode();
6928 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, 0, V);
6929 PendingExports.push_back(Chain);
6932 #include "llvm/CodeGen/SelectionDAGISel.h"
6934 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
6935 /// entry block, return true. This includes arguments used by switches, since
6936 /// the switch may expand into multiple basic blocks.
6937 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
6938 // With FastISel active, we may be splitting blocks, so force creation
6939 // of virtual registers for all non-dead arguments.
6941 return A->use_empty();
6943 const BasicBlock *Entry = A->getParent()->begin();
6944 for (Value::const_use_iterator UI = A->use_begin(), E = A->use_end();
6946 const User *U = *UI;
6947 if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
6948 return false; // Use not in entry block.
6953 void SelectionDAGISel::LowerArguments(const Function &F) {
6954 SelectionDAG &DAG = SDB->DAG;
6955 SDLoc dl = SDB->getCurSDLoc();
6956 const TargetLowering *TLI = getTargetLowering();
6957 const DataLayout *TD = TLI->getDataLayout();
6958 SmallVector<ISD::InputArg, 16> Ins;
6960 if (!FuncInfo->CanLowerReturn) {
6961 // Put in an sret pointer parameter before all the other parameters.
6962 SmallVector<EVT, 1> ValueVTs;
6963 ComputeValueVTs(*getTargetLowering(),
6964 PointerType::getUnqual(F.getReturnType()), ValueVTs);
6966 // NOTE: Assuming that a pointer will never break down to more than one VT
6968 ISD::ArgFlagsTy Flags;
6970 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
6971 ISD::InputArg RetArg(Flags, RegisterVT, true, 0, 0);
6972 Ins.push_back(RetArg);
6975 // Set up the incoming argument description vector.
6977 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
6978 I != E; ++I, ++Idx) {
6979 SmallVector<EVT, 4> ValueVTs;
6980 ComputeValueVTs(*TLI, I->getType(), ValueVTs);
6981 bool isArgValueUsed = !I->use_empty();
6982 for (unsigned Value = 0, NumValues = ValueVTs.size();
6983 Value != NumValues; ++Value) {
6984 EVT VT = ValueVTs[Value];
6985 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
6986 ISD::ArgFlagsTy Flags;
6987 unsigned OriginalAlignment =
6988 TD->getABITypeAlignment(ArgTy);
6990 if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
6992 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
6994 if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
6996 if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
6998 if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal)) {
7000 PointerType *Ty = cast<PointerType>(I->getType());
7001 Type *ElementTy = Ty->getElementType();
7002 Flags.setByValSize(TD->getTypeAllocSize(ElementTy));
7003 // For ByVal, alignment should be passed from FE. BE will guess if
7004 // this info is not there but there are cases it cannot get right.
7005 unsigned FrameAlign;
7006 if (F.getParamAlignment(Idx))
7007 FrameAlign = F.getParamAlignment(Idx);
7009 FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7010 Flags.setByValAlign(FrameAlign);
7012 if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7014 Flags.setOrigAlign(OriginalAlignment);
7016 MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7017 unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7018 for (unsigned i = 0; i != NumRegs; ++i) {
7019 ISD::InputArg MyFlags(Flags, RegisterVT, isArgValueUsed,
7020 Idx-1, i*RegisterVT.getStoreSize());
7021 if (NumRegs > 1 && i == 0)
7022 MyFlags.Flags.setSplit();
7023 // if it isn't first piece, alignment must be 1
7025 MyFlags.Flags.setOrigAlign(1);
7026 Ins.push_back(MyFlags);
7031 // Call the target to set up the argument values.
7032 SmallVector<SDValue, 8> InVals;
7033 SDValue NewRoot = TLI->LowerFormalArguments(DAG.getRoot(), F.getCallingConv(),
7037 // Verify that the target's LowerFormalArguments behaved as expected.
7038 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7039 "LowerFormalArguments didn't return a valid chain!");
7040 assert(InVals.size() == Ins.size() &&
7041 "LowerFormalArguments didn't emit the correct number of values!");
7043 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7044 assert(InVals[i].getNode() &&
7045 "LowerFormalArguments emitted a null value!");
7046 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7047 "LowerFormalArguments emitted a value with the wrong type!");
7051 // Update the DAG with the new chain value resulting from argument lowering.
7052 DAG.setRoot(NewRoot);
7054 // Set up the argument values.
7057 if (!FuncInfo->CanLowerReturn) {
7058 // Create a virtual register for the sret pointer, and put in a copy
7059 // from the sret argument into it.
7060 SmallVector<EVT, 1> ValueVTs;
7061 ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7062 MVT VT = ValueVTs[0].getSimpleVT();
7063 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7064 ISD::NodeType AssertOp = ISD::DELETED_NODE;
7065 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7066 RegVT, VT, NULL, AssertOp);
7068 MachineFunction& MF = SDB->DAG.getMachineFunction();
7069 MachineRegisterInfo& RegInfo = MF.getRegInfo();
7070 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7071 FuncInfo->DemoteRegister = SRetReg;
7072 NewRoot = SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(),
7074 DAG.setRoot(NewRoot);
7076 // i indexes lowered arguments. Bump it past the hidden sret argument.
7077 // Idx indexes LLVM arguments. Don't touch it.
7081 for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7083 SmallVector<SDValue, 4> ArgValues;
7084 SmallVector<EVT, 4> ValueVTs;
7085 ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7086 unsigned NumValues = ValueVTs.size();
7088 // If this argument is unused then remember its value. It is used to generate
7089 // debugging information.
7090 if (I->use_empty() && NumValues) {
7091 SDB->setUnusedArgValue(I, InVals[i]);
7093 // Also remember any frame index for use in FastISel.
7094 if (FrameIndexSDNode *FI =
7095 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7096 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7099 for (unsigned Val = 0; Val != NumValues; ++Val) {
7100 EVT VT = ValueVTs[Val];
7101 MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7102 unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7104 if (!I->use_empty()) {
7105 ISD::NodeType AssertOp = ISD::DELETED_NODE;
7106 if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7107 AssertOp = ISD::AssertSext;
7108 else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7109 AssertOp = ISD::AssertZext;
7111 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7112 NumParts, PartVT, VT,
7119 // We don't need to do anything else for unused arguments.
7120 if (ArgValues.empty())
7123 // Note down frame index.
7124 if (FrameIndexSDNode *FI =
7125 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7126 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7128 SDValue Res = DAG.getMergeValues(&ArgValues[0], NumValues,
7129 SDB->getCurSDLoc());
7131 SDB->setValue(I, Res);
7132 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7133 if (LoadSDNode *LNode =
7134 dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7135 if (FrameIndexSDNode *FI =
7136 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7137 FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7140 // If this argument is live outside of the entry block, insert a copy from
7141 // wherever we got it to the vreg that other BB's will reference it as.
7142 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7143 // If we can, though, try to skip creating an unnecessary vreg.
7144 // FIXME: This isn't very clean... it would be nice to make this more
7145 // general. It's also subtly incompatible with the hacks FastISel
7147 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7148 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7149 FuncInfo->ValueMap[I] = Reg;
7153 if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7154 FuncInfo->InitializeRegForValue(I);
7155 SDB->CopyToExportRegsIfNeeded(I);
7159 assert(i == InVals.size() && "Argument register count mismatch!");
7161 // Finally, if the target has anything special to do, allow it to do so.
7162 // FIXME: this should insert code into the DAG!
7163 EmitFunctionEntryCode();
7166 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
7167 /// ensure constants are generated when needed. Remember the virtual registers
7168 /// that need to be added to the Machine PHI nodes as input. We cannot just
7169 /// directly add them, because expansion might result in multiple MBB's for one
7170 /// BB. As such, the start of the BB might correspond to a different MBB than
7174 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7175 const TerminatorInst *TI = LLVMBB->getTerminator();
7177 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7179 // Check successor nodes' PHI nodes that expect a constant to be available
7181 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7182 const BasicBlock *SuccBB = TI->getSuccessor(succ);
7183 if (!isa<PHINode>(SuccBB->begin())) continue;
7184 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7186 // If this terminator has multiple identical successors (common for
7187 // switches), only handle each succ once.
7188 if (!SuccsHandled.insert(SuccMBB)) continue;
7190 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7192 // At this point we know that there is a 1-1 correspondence between LLVM PHI
7193 // nodes and Machine PHI nodes, but the incoming operands have not been
7195 for (BasicBlock::const_iterator I = SuccBB->begin();
7196 const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7197 // Ignore dead phi's.
7198 if (PN->use_empty()) continue;
7201 if (PN->getType()->isEmptyTy())
7205 const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7207 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7208 unsigned &RegOut = ConstantsOut[C];
7210 RegOut = FuncInfo.CreateRegs(C->getType());
7211 CopyValueToVirtualRegister(C, RegOut);
7215 DenseMap<const Value *, unsigned>::iterator I =
7216 FuncInfo.ValueMap.find(PHIOp);
7217 if (I != FuncInfo.ValueMap.end())
7220 assert(isa<AllocaInst>(PHIOp) &&
7221 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7222 "Didn't codegen value into a register!??");
7223 Reg = FuncInfo.CreateRegs(PHIOp->getType());
7224 CopyValueToVirtualRegister(PHIOp, Reg);
7228 // Remember that this register needs to added to the machine PHI node as
7229 // the input for this MBB.
7230 SmallVector<EVT, 4> ValueVTs;
7231 const TargetLowering *TLI = TM.getTargetLowering();
7232 ComputeValueVTs(*TLI, PN->getType(), ValueVTs);
7233 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7234 EVT VT = ValueVTs[vti];
7235 unsigned NumRegisters = TLI->getNumRegisters(*DAG.getContext(), VT);
7236 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7237 FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7238 Reg += NumRegisters;
7243 ConstantsOut.clear();
7246 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7249 SelectionDAGBuilder::StackProtectorDescriptor::
7250 AddSuccessorMBB(const BasicBlock *BB,
7251 MachineBasicBlock *ParentMBB,
7252 MachineBasicBlock *SuccMBB) {
7253 // If SuccBB has not been created yet, create it.
7255 MachineFunction *MF = ParentMBB->getParent();
7256 MachineFunction::iterator BBI = ParentMBB;
7257 SuccMBB = MF->CreateMachineBasicBlock(BB);
7258 MF->insert(++BBI, SuccMBB);
7260 // Add it as a successor of ParentMBB.
7261 ParentMBB->addSuccessor(SuccMBB);