1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetAsmInfo.h"
15 #include "llvm/Target/TargetLowering.h"
16 #include "llvm/Target/TargetSubtarget.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/MathExtras.h"
30 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
31 bool isLocal = GV->hasLocalLinkage();
32 bool isDeclaration = GV->isDeclaration();
33 // FIXME: what should we do for protected and internal visibility?
34 // For variables, is internal different from hidden?
35 bool isHidden = GV->hasHiddenVisibility();
37 if (reloc == Reloc::PIC_) {
38 if (isLocal || isHidden)
39 return TLSModel::LocalDynamic;
41 return TLSModel::GeneralDynamic;
43 if (!isDeclaration || isHidden)
44 return TLSModel::LocalExec;
46 return TLSModel::InitialExec;
51 /// InitLibcallNames - Set default libcall names.
53 static void InitLibcallNames(const char **Names) {
54 Names[RTLIB::SHL_I16] = "__ashlhi3";
55 Names[RTLIB::SHL_I32] = "__ashlsi3";
56 Names[RTLIB::SHL_I64] = "__ashldi3";
57 Names[RTLIB::SHL_I128] = "__ashlti3";
58 Names[RTLIB::SRL_I16] = "__lshrhi3";
59 Names[RTLIB::SRL_I32] = "__lshrsi3";
60 Names[RTLIB::SRL_I64] = "__lshrdi3";
61 Names[RTLIB::SRL_I128] = "__lshrti3";
62 Names[RTLIB::SRA_I16] = "__ashrhi3";
63 Names[RTLIB::SRA_I32] = "__ashrsi3";
64 Names[RTLIB::SRA_I64] = "__ashrdi3";
65 Names[RTLIB::SRA_I128] = "__ashrti3";
66 Names[RTLIB::MUL_I16] = "__mulhi3";
67 Names[RTLIB::MUL_I32] = "__mulsi3";
68 Names[RTLIB::MUL_I64] = "__muldi3";
69 Names[RTLIB::MUL_I128] = "__multi3";
70 Names[RTLIB::SDIV_I16] = "__divhi3";
71 Names[RTLIB::SDIV_I32] = "__divsi3";
72 Names[RTLIB::SDIV_I64] = "__divdi3";
73 Names[RTLIB::SDIV_I128] = "__divti3";
74 Names[RTLIB::UDIV_I16] = "__udivhi3";
75 Names[RTLIB::UDIV_I32] = "__udivsi3";
76 Names[RTLIB::UDIV_I64] = "__udivdi3";
77 Names[RTLIB::UDIV_I128] = "__udivti3";
78 Names[RTLIB::SREM_I16] = "__modhi3";
79 Names[RTLIB::SREM_I32] = "__modsi3";
80 Names[RTLIB::SREM_I64] = "__moddi3";
81 Names[RTLIB::SREM_I128] = "__modti3";
82 Names[RTLIB::UREM_I16] = "__umodhi3";
83 Names[RTLIB::UREM_I32] = "__umodsi3";
84 Names[RTLIB::UREM_I64] = "__umoddi3";
85 Names[RTLIB::UREM_I128] = "__umodti3";
86 Names[RTLIB::NEG_I32] = "__negsi2";
87 Names[RTLIB::NEG_I64] = "__negdi2";
88 Names[RTLIB::ADD_F32] = "__addsf3";
89 Names[RTLIB::ADD_F64] = "__adddf3";
90 Names[RTLIB::ADD_F80] = "__addxf3";
91 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
92 Names[RTLIB::SUB_F32] = "__subsf3";
93 Names[RTLIB::SUB_F64] = "__subdf3";
94 Names[RTLIB::SUB_F80] = "__subxf3";
95 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
96 Names[RTLIB::MUL_F32] = "__mulsf3";
97 Names[RTLIB::MUL_F64] = "__muldf3";
98 Names[RTLIB::MUL_F80] = "__mulxf3";
99 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
100 Names[RTLIB::DIV_F32] = "__divsf3";
101 Names[RTLIB::DIV_F64] = "__divdf3";
102 Names[RTLIB::DIV_F80] = "__divxf3";
103 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
104 Names[RTLIB::REM_F32] = "fmodf";
105 Names[RTLIB::REM_F64] = "fmod";
106 Names[RTLIB::REM_F80] = "fmodl";
107 Names[RTLIB::REM_PPCF128] = "fmodl";
108 Names[RTLIB::POWI_F32] = "__powisf2";
109 Names[RTLIB::POWI_F64] = "__powidf2";
110 Names[RTLIB::POWI_F80] = "__powixf2";
111 Names[RTLIB::POWI_PPCF128] = "__powitf2";
112 Names[RTLIB::SQRT_F32] = "sqrtf";
113 Names[RTLIB::SQRT_F64] = "sqrt";
114 Names[RTLIB::SQRT_F80] = "sqrtl";
115 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
116 Names[RTLIB::LOG_F32] = "logf";
117 Names[RTLIB::LOG_F64] = "log";
118 Names[RTLIB::LOG_F80] = "logl";
119 Names[RTLIB::LOG_PPCF128] = "logl";
120 Names[RTLIB::LOG2_F32] = "log2f";
121 Names[RTLIB::LOG2_F64] = "log2";
122 Names[RTLIB::LOG2_F80] = "log2l";
123 Names[RTLIB::LOG2_PPCF128] = "log2l";
124 Names[RTLIB::LOG10_F32] = "log10f";
125 Names[RTLIB::LOG10_F64] = "log10";
126 Names[RTLIB::LOG10_F80] = "log10l";
127 Names[RTLIB::LOG10_PPCF128] = "log10l";
128 Names[RTLIB::EXP_F32] = "expf";
129 Names[RTLIB::EXP_F64] = "exp";
130 Names[RTLIB::EXP_F80] = "expl";
131 Names[RTLIB::EXP_PPCF128] = "expl";
132 Names[RTLIB::EXP2_F32] = "exp2f";
133 Names[RTLIB::EXP2_F64] = "exp2";
134 Names[RTLIB::EXP2_F80] = "exp2l";
135 Names[RTLIB::EXP2_PPCF128] = "exp2l";
136 Names[RTLIB::SIN_F32] = "sinf";
137 Names[RTLIB::SIN_F64] = "sin";
138 Names[RTLIB::SIN_F80] = "sinl";
139 Names[RTLIB::SIN_PPCF128] = "sinl";
140 Names[RTLIB::COS_F32] = "cosf";
141 Names[RTLIB::COS_F64] = "cos";
142 Names[RTLIB::COS_F80] = "cosl";
143 Names[RTLIB::COS_PPCF128] = "cosl";
144 Names[RTLIB::POW_F32] = "powf";
145 Names[RTLIB::POW_F64] = "pow";
146 Names[RTLIB::POW_F80] = "powl";
147 Names[RTLIB::POW_PPCF128] = "powl";
148 Names[RTLIB::CEIL_F32] = "ceilf";
149 Names[RTLIB::CEIL_F64] = "ceil";
150 Names[RTLIB::CEIL_F80] = "ceill";
151 Names[RTLIB::CEIL_PPCF128] = "ceill";
152 Names[RTLIB::TRUNC_F32] = "truncf";
153 Names[RTLIB::TRUNC_F64] = "trunc";
154 Names[RTLIB::TRUNC_F80] = "truncl";
155 Names[RTLIB::TRUNC_PPCF128] = "truncl";
156 Names[RTLIB::RINT_F32] = "rintf";
157 Names[RTLIB::RINT_F64] = "rint";
158 Names[RTLIB::RINT_F80] = "rintl";
159 Names[RTLIB::RINT_PPCF128] = "rintl";
160 Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
161 Names[RTLIB::NEARBYINT_F64] = "nearbyint";
162 Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
163 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
164 Names[RTLIB::FLOOR_F32] = "floorf";
165 Names[RTLIB::FLOOR_F64] = "floor";
166 Names[RTLIB::FLOOR_F80] = "floorl";
167 Names[RTLIB::FLOOR_PPCF128] = "floorl";
168 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
169 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
170 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
171 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
172 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
173 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
174 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
175 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
176 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
177 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
178 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
179 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
180 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
181 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
182 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
183 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
184 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
185 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
186 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
187 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
188 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
189 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
190 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
191 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
192 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
193 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
194 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
195 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
196 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
197 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
198 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
199 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
200 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
201 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
202 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
203 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
204 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
205 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
206 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
207 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
208 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
209 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
210 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
211 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
212 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
213 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
214 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
215 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
216 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
217 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
218 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
219 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
220 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
221 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
222 Names[RTLIB::OEQ_F32] = "__eqsf2";
223 Names[RTLIB::OEQ_F64] = "__eqdf2";
224 Names[RTLIB::UNE_F32] = "__nesf2";
225 Names[RTLIB::UNE_F64] = "__nedf2";
226 Names[RTLIB::OGE_F32] = "__gesf2";
227 Names[RTLIB::OGE_F64] = "__gedf2";
228 Names[RTLIB::OLT_F32] = "__ltsf2";
229 Names[RTLIB::OLT_F64] = "__ltdf2";
230 Names[RTLIB::OLE_F32] = "__lesf2";
231 Names[RTLIB::OLE_F64] = "__ledf2";
232 Names[RTLIB::OGT_F32] = "__gtsf2";
233 Names[RTLIB::OGT_F64] = "__gtdf2";
234 Names[RTLIB::UO_F32] = "__unordsf2";
235 Names[RTLIB::UO_F64] = "__unorddf2";
236 Names[RTLIB::O_F32] = "__unordsf2";
237 Names[RTLIB::O_F64] = "__unorddf2";
238 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
241 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
242 /// UNKNOWN_LIBCALL if there is none.
243 RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
244 if (OpVT == MVT::f32) {
245 if (RetVT == MVT::f64)
246 return FPEXT_F32_F64;
248 return UNKNOWN_LIBCALL;
251 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
252 /// UNKNOWN_LIBCALL if there is none.
253 RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
254 if (RetVT == MVT::f32) {
255 if (OpVT == MVT::f64)
256 return FPROUND_F64_F32;
257 if (OpVT == MVT::f80)
258 return FPROUND_F80_F32;
259 if (OpVT == MVT::ppcf128)
260 return FPROUND_PPCF128_F32;
261 } else if (RetVT == MVT::f64) {
262 if (OpVT == MVT::f80)
263 return FPROUND_F80_F64;
264 if (OpVT == MVT::ppcf128)
265 return FPROUND_PPCF128_F64;
267 return UNKNOWN_LIBCALL;
270 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
271 /// UNKNOWN_LIBCALL if there is none.
272 RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
273 if (OpVT == MVT::f32) {
274 if (RetVT == MVT::i32)
275 return FPTOSINT_F32_I32;
276 if (RetVT == MVT::i64)
277 return FPTOSINT_F32_I64;
278 if (RetVT == MVT::i128)
279 return FPTOSINT_F32_I128;
280 } else if (OpVT == MVT::f64) {
281 if (RetVT == MVT::i32)
282 return FPTOSINT_F64_I32;
283 if (RetVT == MVT::i64)
284 return FPTOSINT_F64_I64;
285 if (RetVT == MVT::i128)
286 return FPTOSINT_F64_I128;
287 } else if (OpVT == MVT::f80) {
288 if (RetVT == MVT::i32)
289 return FPTOSINT_F80_I32;
290 if (RetVT == MVT::i64)
291 return FPTOSINT_F80_I64;
292 if (RetVT == MVT::i128)
293 return FPTOSINT_F80_I128;
294 } else if (OpVT == MVT::ppcf128) {
295 if (RetVT == MVT::i32)
296 return FPTOSINT_PPCF128_I32;
297 if (RetVT == MVT::i64)
298 return FPTOSINT_PPCF128_I64;
299 if (RetVT == MVT::i128)
300 return FPTOSINT_PPCF128_I128;
302 return UNKNOWN_LIBCALL;
305 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
306 /// UNKNOWN_LIBCALL if there is none.
307 RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
308 if (OpVT == MVT::f32) {
309 if (RetVT == MVT::i32)
310 return FPTOUINT_F32_I32;
311 if (RetVT == MVT::i64)
312 return FPTOUINT_F32_I64;
313 if (RetVT == MVT::i128)
314 return FPTOUINT_F32_I128;
315 } else if (OpVT == MVT::f64) {
316 if (RetVT == MVT::i32)
317 return FPTOUINT_F64_I32;
318 if (RetVT == MVT::i64)
319 return FPTOUINT_F64_I64;
320 if (RetVT == MVT::i128)
321 return FPTOUINT_F64_I128;
322 } else if (OpVT == MVT::f80) {
323 if (RetVT == MVT::i32)
324 return FPTOUINT_F80_I32;
325 if (RetVT == MVT::i64)
326 return FPTOUINT_F80_I64;
327 if (RetVT == MVT::i128)
328 return FPTOUINT_F80_I128;
329 } else if (OpVT == MVT::ppcf128) {
330 if (RetVT == MVT::i32)
331 return FPTOUINT_PPCF128_I32;
332 if (RetVT == MVT::i64)
333 return FPTOUINT_PPCF128_I64;
334 if (RetVT == MVT::i128)
335 return FPTOUINT_PPCF128_I128;
337 return UNKNOWN_LIBCALL;
340 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
341 /// UNKNOWN_LIBCALL if there is none.
342 RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
343 if (OpVT == MVT::i32) {
344 if (RetVT == MVT::f32)
345 return SINTTOFP_I32_F32;
346 else if (RetVT == MVT::f64)
347 return SINTTOFP_I32_F64;
348 else if (RetVT == MVT::f80)
349 return SINTTOFP_I32_F80;
350 else if (RetVT == MVT::ppcf128)
351 return SINTTOFP_I32_PPCF128;
352 } else if (OpVT == MVT::i64) {
353 if (RetVT == MVT::f32)
354 return SINTTOFP_I64_F32;
355 else if (RetVT == MVT::f64)
356 return SINTTOFP_I64_F64;
357 else if (RetVT == MVT::f80)
358 return SINTTOFP_I64_F80;
359 else if (RetVT == MVT::ppcf128)
360 return SINTTOFP_I64_PPCF128;
361 } else if (OpVT == MVT::i128) {
362 if (RetVT == MVT::f32)
363 return SINTTOFP_I128_F32;
364 else if (RetVT == MVT::f64)
365 return SINTTOFP_I128_F64;
366 else if (RetVT == MVT::f80)
367 return SINTTOFP_I128_F80;
368 else if (RetVT == MVT::ppcf128)
369 return SINTTOFP_I128_PPCF128;
371 return UNKNOWN_LIBCALL;
374 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
375 /// UNKNOWN_LIBCALL if there is none.
376 RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
377 if (OpVT == MVT::i32) {
378 if (RetVT == MVT::f32)
379 return UINTTOFP_I32_F32;
380 else if (RetVT == MVT::f64)
381 return UINTTOFP_I32_F64;
382 else if (RetVT == MVT::f80)
383 return UINTTOFP_I32_F80;
384 else if (RetVT == MVT::ppcf128)
385 return UINTTOFP_I32_PPCF128;
386 } else if (OpVT == MVT::i64) {
387 if (RetVT == MVT::f32)
388 return UINTTOFP_I64_F32;
389 else if (RetVT == MVT::f64)
390 return UINTTOFP_I64_F64;
391 else if (RetVT == MVT::f80)
392 return UINTTOFP_I64_F80;
393 else if (RetVT == MVT::ppcf128)
394 return UINTTOFP_I64_PPCF128;
395 } else if (OpVT == MVT::i128) {
396 if (RetVT == MVT::f32)
397 return UINTTOFP_I128_F32;
398 else if (RetVT == MVT::f64)
399 return UINTTOFP_I128_F64;
400 else if (RetVT == MVT::f80)
401 return UINTTOFP_I128_F80;
402 else if (RetVT == MVT::ppcf128)
403 return UINTTOFP_I128_PPCF128;
405 return UNKNOWN_LIBCALL;
408 /// InitCmpLibcallCCs - Set default comparison libcall CC.
410 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
411 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
412 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
413 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
414 CCs[RTLIB::UNE_F32] = ISD::SETNE;
415 CCs[RTLIB::UNE_F64] = ISD::SETNE;
416 CCs[RTLIB::OGE_F32] = ISD::SETGE;
417 CCs[RTLIB::OGE_F64] = ISD::SETGE;
418 CCs[RTLIB::OLT_F32] = ISD::SETLT;
419 CCs[RTLIB::OLT_F64] = ISD::SETLT;
420 CCs[RTLIB::OLE_F32] = ISD::SETLE;
421 CCs[RTLIB::OLE_F64] = ISD::SETLE;
422 CCs[RTLIB::OGT_F32] = ISD::SETGT;
423 CCs[RTLIB::OGT_F64] = ISD::SETGT;
424 CCs[RTLIB::UO_F32] = ISD::SETNE;
425 CCs[RTLIB::UO_F64] = ISD::SETNE;
426 CCs[RTLIB::O_F32] = ISD::SETEQ;
427 CCs[RTLIB::O_F64] = ISD::SETEQ;
430 TargetLowering::TargetLowering(TargetMachine &tm)
431 : TM(tm), TD(TM.getTargetData()) {
432 // All operations default to being supported.
433 memset(OpActions, 0, sizeof(OpActions));
434 memset(LoadExtActions, 0, sizeof(LoadExtActions));
435 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
436 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
437 memset(ConvertActions, 0, sizeof(ConvertActions));
438 memset(CondCodeActions, 0, sizeof(CondCodeActions));
440 // Set default actions for various operations.
441 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
442 // Default all indexed load / store to expand.
443 for (unsigned IM = (unsigned)ISD::PRE_INC;
444 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
445 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
446 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
449 // These operations default to expand.
450 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
451 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
454 // Most targets ignore the @llvm.prefetch intrinsic.
455 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
457 // ConstantFP nodes default to expand. Targets can either change this to
458 // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
459 // to optimize expansions for certain constants.
460 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
461 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
462 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
464 // These library functions default to expand.
465 setOperationAction(ISD::FLOG , MVT::f64, Expand);
466 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
467 setOperationAction(ISD::FLOG10,MVT::f64, Expand);
468 setOperationAction(ISD::FEXP , MVT::f64, Expand);
469 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
470 setOperationAction(ISD::FLOG , MVT::f32, Expand);
471 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
472 setOperationAction(ISD::FLOG10,MVT::f32, Expand);
473 setOperationAction(ISD::FEXP , MVT::f32, Expand);
474 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
476 // Default ISD::TRAP to expand (which turns it into abort).
477 setOperationAction(ISD::TRAP, MVT::Other, Expand);
479 IsLittleEndian = TD->isLittleEndian();
480 UsesGlobalOffsetTable = false;
481 ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
482 ShiftAmtHandling = Undefined;
483 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
484 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
485 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
486 allowUnalignedMemoryAccesses = false;
487 benefitFromCodePlacementOpt = false;
488 UseUnderscoreSetJmp = false;
489 UseUnderscoreLongJmp = false;
490 SelectIsExpensive = false;
491 IntDivIsCheap = false;
492 Pow2DivIsCheap = false;
493 StackPointerRegisterToSaveRestore = 0;
494 ExceptionPointerRegister = 0;
495 ExceptionSelectorRegister = 0;
496 BooleanContents = UndefinedBooleanContent;
497 SchedPreferenceInfo = SchedulingForLatency;
499 JumpBufAlignment = 0;
500 IfCvtBlockSizeLimit = 2;
501 IfCvtDupBlockSizeLimit = 0;
502 PrefLoopAlignment = 0;
504 InitLibcallNames(LibcallRoutineNames);
505 InitCmpLibcallCCs(CmpLibcallCCs);
507 // Tell Legalize whether the assembler supports DEBUG_LOC.
508 const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
509 if (!TASM || !TASM->hasDotLocAndDotFile())
510 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
513 TargetLowering::~TargetLowering() {}
515 /// computeRegisterProperties - Once all of the register classes are added,
516 /// this allows us to compute derived properties we expose.
517 void TargetLowering::computeRegisterProperties() {
518 assert(MVT::LAST_VALUETYPE <= 32 &&
519 "Too many value types for ValueTypeActions to hold!");
521 // Everything defaults to needing one register.
522 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
523 NumRegistersForVT[i] = 1;
524 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
526 // ...except isVoid, which doesn't need any registers.
527 NumRegistersForVT[MVT::isVoid] = 0;
529 // Find the largest integer register class.
530 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
531 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
532 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
534 // Every integer value type larger than this largest register takes twice as
535 // many registers to represent as the previous ValueType.
536 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
537 MVT EVT = (MVT::SimpleValueType)ExpandedReg;
538 if (!EVT.isInteger())
540 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
541 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
542 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
543 ValueTypeActions.setTypeAction(EVT, Expand);
546 // Inspect all of the ValueType's smaller than the largest integer
547 // register to see which ones need promotion.
548 unsigned LegalIntReg = LargestIntReg;
549 for (unsigned IntReg = LargestIntReg - 1;
550 IntReg >= (unsigned)MVT::i1; --IntReg) {
551 MVT IVT = (MVT::SimpleValueType)IntReg;
552 if (isTypeLegal(IVT)) {
553 LegalIntReg = IntReg;
555 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
556 (MVT::SimpleValueType)LegalIntReg;
557 ValueTypeActions.setTypeAction(IVT, Promote);
561 // ppcf128 type is really two f64's.
562 if (!isTypeLegal(MVT::ppcf128)) {
563 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
564 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
565 TransformToType[MVT::ppcf128] = MVT::f64;
566 ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
569 // Decide how to handle f64. If the target does not have native f64 support,
570 // expand it to i64 and we will be generating soft float library calls.
571 if (!isTypeLegal(MVT::f64)) {
572 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
573 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
574 TransformToType[MVT::f64] = MVT::i64;
575 ValueTypeActions.setTypeAction(MVT::f64, Expand);
578 // Decide how to handle f32. If the target does not have native support for
579 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
580 if (!isTypeLegal(MVT::f32)) {
581 if (isTypeLegal(MVT::f64)) {
582 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
583 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
584 TransformToType[MVT::f32] = MVT::f64;
585 ValueTypeActions.setTypeAction(MVT::f32, Promote);
587 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
588 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
589 TransformToType[MVT::f32] = MVT::i32;
590 ValueTypeActions.setTypeAction(MVT::f32, Expand);
594 // Loop over all of the vector value types to see which need transformations.
595 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
596 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
597 MVT VT = (MVT::SimpleValueType)i;
598 if (!isTypeLegal(VT)) {
599 MVT IntermediateVT, RegisterVT;
600 unsigned NumIntermediates;
601 NumRegistersForVT[i] =
602 getVectorTypeBreakdown(VT,
603 IntermediateVT, NumIntermediates,
605 RegisterTypeForVT[i] = RegisterVT;
607 // Determine if there is a legal wider type.
608 bool IsLegalWiderType = false;
609 MVT EltVT = VT.getVectorElementType();
610 unsigned NElts = VT.getVectorNumElements();
611 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
612 MVT SVT = (MVT::SimpleValueType)nVT;
613 if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
614 SVT.getVectorNumElements() > NElts) {
615 TransformToType[i] = SVT;
616 ValueTypeActions.setTypeAction(VT, Promote);
617 IsLegalWiderType = true;
621 if (!IsLegalWiderType) {
622 MVT NVT = VT.getPow2VectorType();
624 // Type is already a power of 2. The default action is to split.
625 TransformToType[i] = MVT::Other;
626 ValueTypeActions.setTypeAction(VT, Expand);
628 TransformToType[i] = NVT;
629 ValueTypeActions.setTypeAction(VT, Promote);
636 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
641 MVT TargetLowering::getSetCCResultType(MVT VT) const {
642 return getValueType(TD->getIntPtrType());
646 /// getVectorTypeBreakdown - Vector types are broken down into some number of
647 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
648 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
649 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
651 /// This method returns the number of registers needed, and the VT for each
652 /// register. It also returns the VT and quantity of the intermediate values
653 /// before they are promoted/expanded.
655 unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
657 unsigned &NumIntermediates,
658 MVT &RegisterVT) const {
659 // Figure out the right, legal destination reg to copy into.
660 unsigned NumElts = VT.getVectorNumElements();
661 MVT EltTy = VT.getVectorElementType();
663 unsigned NumVectorRegs = 1;
665 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
666 // could break down into LHS/RHS like LegalizeDAG does.
667 if (!isPowerOf2_32(NumElts)) {
668 NumVectorRegs = NumElts;
672 // Divide the input until we get to a supported size. This will always
673 // end with a scalar if the target doesn't support vectors.
674 while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
679 NumIntermediates = NumVectorRegs;
681 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
682 if (!isTypeLegal(NewVT))
684 IntermediateVT = NewVT;
686 MVT DestVT = getRegisterType(NewVT);
688 if (DestVT.bitsLT(NewVT)) {
689 // Value is expanded, e.g. i64 -> i16.
690 return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
692 // Otherwise, promotion or legal types use the same number of registers as
693 // the vector decimated to the appropriate level.
694 return NumVectorRegs;
700 /// getWidenVectorType: given a vector type, returns the type to widen to
701 /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
702 /// If there is no vector type that we want to widen to, returns MVT::Other
703 /// When and where to widen is target dependent based on the cost of
704 /// scalarizing vs using the wider vector type.
705 MVT TargetLowering::getWidenVectorType(MVT VT) const {
706 assert(VT.isVector());
710 // Default is not to widen until moved to LegalizeTypes
714 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
715 /// function arguments in the caller parameter area. This is the actual
716 /// alignment, not its logarithm.
717 unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
718 return TD->getCallFrameTypeAlignment(Ty);
721 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
722 SelectionDAG &DAG) const {
723 if (usesGlobalOffsetTable())
724 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
729 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
730 // Assume that everything is safe in static mode.
731 if (getTargetMachine().getRelocationModel() == Reloc::Static)
734 // In dynamic-no-pic mode, assume that known defined values are safe.
735 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
737 !GA->getGlobal()->isDeclaration() &&
738 !GA->getGlobal()->isWeakForLinker())
741 // Otherwise assume nothing is safe.
745 //===----------------------------------------------------------------------===//
746 // Optimization Methods
747 //===----------------------------------------------------------------------===//
749 /// ShrinkDemandedConstant - Check to see if the specified operand of the
750 /// specified instruction is a constant integer. If so, check to see if there
751 /// are any bits set in the constant that are not demanded. If so, shrink the
752 /// constant and return true.
753 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
754 const APInt &Demanded) {
755 DebugLoc dl = Op.getDebugLoc();
757 // FIXME: ISD::SELECT, ISD::SELECT_CC
758 switch (Op.getOpcode()) {
763 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
764 if (!C) return false;
766 if (Op.getOpcode() == ISD::XOR &&
767 (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
770 // if we can expand it to have all bits set, do it
771 if (C->getAPIntValue().intersects(~Demanded)) {
772 MVT VT = Op.getValueType();
773 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
774 DAG.getConstant(Demanded &
777 return CombineTo(Op, New);
787 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
788 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
789 /// cast, but it could be generalized for targets with other types of
790 /// implicit widening casts.
792 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
794 const APInt &Demanded,
796 assert(Op.getNumOperands() == 2 &&
797 "ShrinkDemandedOp only supports binary operators!");
798 assert(Op.getNode()->getNumValues() == 1 &&
799 "ShrinkDemandedOp only supports nodes with one result!");
801 // Don't do this if the node has another user, which may require the
803 if (!Op.getNode()->hasOneUse())
806 // Search for the smallest integer type with free casts to and from
807 // Op's type. For expedience, just check power-of-2 integer types.
808 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
809 unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
810 if (!isPowerOf2_32(SmallVTBits))
811 SmallVTBits = NextPowerOf2(SmallVTBits);
812 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
813 MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
814 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
815 TLI.isZExtFree(SmallVT, Op.getValueType())) {
816 // We found a type with free casts.
817 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
818 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
819 Op.getNode()->getOperand(0)),
820 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
821 Op.getNode()->getOperand(1)));
822 SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
823 return CombineTo(Op, Z);
829 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
830 /// DemandedMask bits of the result of Op are ever used downstream. If we can
831 /// use this information to simplify Op, create a new simplified DAG node and
832 /// return true, returning the original and new nodes in Old and New. Otherwise,
833 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
834 /// the expression (used to simplify the caller). The KnownZero/One bits may
835 /// only be accurate for those bits in the DemandedMask.
836 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
837 const APInt &DemandedMask,
840 TargetLoweringOpt &TLO,
841 unsigned Depth) const {
842 unsigned BitWidth = DemandedMask.getBitWidth();
843 assert(Op.getValueSizeInBits() == BitWidth &&
844 "Mask size mismatches value type size!");
845 APInt NewMask = DemandedMask;
846 DebugLoc dl = Op.getDebugLoc();
848 // Don't know anything.
849 KnownZero = KnownOne = APInt(BitWidth, 0);
851 // Other users may use these bits.
852 if (!Op.getNode()->hasOneUse()) {
854 // If not at the root, Just compute the KnownZero/KnownOne bits to
855 // simplify things downstream.
856 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
859 // If this is the root being simplified, allow it to have multiple uses,
860 // just set the NewMask to all bits.
861 NewMask = APInt::getAllOnesValue(BitWidth);
862 } else if (DemandedMask == 0) {
863 // Not demanding any bits from Op.
864 if (Op.getOpcode() != ISD::UNDEF)
865 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
867 } else if (Depth == 6) { // Limit search depth.
871 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
872 switch (Op.getOpcode()) {
874 // We know all of the bits for a constant!
875 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
876 KnownZero = ~KnownOne & NewMask;
877 return false; // Don't fall through, will infinitely loop.
879 // If the RHS is a constant, check to see if the LHS would be zero without
880 // using the bits from the RHS. Below, we use knowledge about the RHS to
881 // simplify the LHS, here we're using information from the LHS to simplify
883 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
884 APInt LHSZero, LHSOne;
885 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
886 LHSZero, LHSOne, Depth+1);
887 // If the LHS already has zeros where RHSC does, this and is dead.
888 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
889 return TLO.CombineTo(Op, Op.getOperand(0));
890 // If any of the set bits in the RHS are known zero on the LHS, shrink
892 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
896 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
897 KnownOne, TLO, Depth+1))
899 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
900 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
901 KnownZero2, KnownOne2, TLO, Depth+1))
903 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
905 // If all of the demanded bits are known one on one side, return the other.
906 // These bits cannot contribute to the result of the 'and'.
907 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
908 return TLO.CombineTo(Op, Op.getOperand(0));
909 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
910 return TLO.CombineTo(Op, Op.getOperand(1));
911 // If all of the demanded bits in the inputs are known zeros, return zero.
912 if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
913 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
914 // If the RHS is a constant, see if we can simplify it.
915 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
917 // If the operation can be done in a smaller type, do so.
918 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
921 // Output known-1 bits are only known if set in both the LHS & RHS.
922 KnownOne &= KnownOne2;
923 // Output known-0 are known to be clear if zero in either the LHS | RHS.
924 KnownZero |= KnownZero2;
927 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
928 KnownOne, TLO, Depth+1))
930 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
931 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
932 KnownZero2, KnownOne2, TLO, Depth+1))
934 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
936 // If all of the demanded bits are known zero on one side, return the other.
937 // These bits cannot contribute to the result of the 'or'.
938 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
939 return TLO.CombineTo(Op, Op.getOperand(0));
940 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
941 return TLO.CombineTo(Op, Op.getOperand(1));
942 // If all of the potentially set bits on one side are known to be set on
943 // the other side, just use the 'other' side.
944 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
945 return TLO.CombineTo(Op, Op.getOperand(0));
946 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
947 return TLO.CombineTo(Op, Op.getOperand(1));
948 // If the RHS is a constant, see if we can simplify it.
949 if (TLO.ShrinkDemandedConstant(Op, NewMask))
951 // If the operation can be done in a smaller type, do so.
952 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
955 // Output known-0 bits are only known if clear in both the LHS & RHS.
956 KnownZero &= KnownZero2;
957 // Output known-1 are known to be set if set in either the LHS | RHS.
958 KnownOne |= KnownOne2;
961 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
962 KnownOne, TLO, Depth+1))
964 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
965 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
966 KnownOne2, TLO, Depth+1))
968 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
970 // If all of the demanded bits are known zero on one side, return the other.
971 // These bits cannot contribute to the result of the 'xor'.
972 if ((KnownZero & NewMask) == NewMask)
973 return TLO.CombineTo(Op, Op.getOperand(0));
974 if ((KnownZero2 & NewMask) == NewMask)
975 return TLO.CombineTo(Op, Op.getOperand(1));
976 // If the operation can be done in a smaller type, do so.
977 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
980 // If all of the unknown bits are known to be zero on one side or the other
981 // (but not both) turn this into an *inclusive* or.
982 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
983 if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
984 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
988 // Output known-0 bits are known if clear or set in both the LHS & RHS.
989 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
990 // Output known-1 are known to be set if set in only one of the LHS, RHS.
991 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
993 // If all of the demanded bits on one side are known, and all of the set
994 // bits on that side are also known to be set on the other side, turn this
995 // into an AND, as we know the bits will be cleared.
996 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
997 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
998 if ((KnownOne & KnownOne2) == KnownOne) {
999 MVT VT = Op.getValueType();
1000 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1001 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1002 Op.getOperand(0), ANDC));
1006 // If the RHS is a constant, see if we can simplify it.
1007 // for XOR, we prefer to force bits to 1 if they will make a -1.
1008 // if we can't force bits, try to shrink constant
1009 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1010 APInt Expanded = C->getAPIntValue() | (~NewMask);
1011 // if we can expand it to have all bits set, do it
1012 if (Expanded.isAllOnesValue()) {
1013 if (Expanded != C->getAPIntValue()) {
1014 MVT VT = Op.getValueType();
1015 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1016 TLO.DAG.getConstant(Expanded, VT));
1017 return TLO.CombineTo(Op, New);
1019 // if it already has all the bits set, nothing to change
1020 // but don't shrink either!
1021 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1026 KnownZero = KnownZeroOut;
1027 KnownOne = KnownOneOut;
1030 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1031 KnownOne, TLO, Depth+1))
1033 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1034 KnownOne2, TLO, Depth+1))
1036 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1037 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1039 // If the operands are constants, see if we can simplify them.
1040 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1043 // Only known if known in both the LHS and RHS.
1044 KnownOne &= KnownOne2;
1045 KnownZero &= KnownZero2;
1047 case ISD::SELECT_CC:
1048 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1049 KnownOne, TLO, Depth+1))
1051 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1052 KnownOne2, TLO, Depth+1))
1054 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1055 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1057 // If the operands are constants, see if we can simplify them.
1058 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1061 // Only known if known in both the LHS and RHS.
1062 KnownOne &= KnownOne2;
1063 KnownZero &= KnownZero2;
1066 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1067 unsigned ShAmt = SA->getZExtValue();
1068 SDValue InOp = Op.getOperand(0);
1070 // If the shift count is an invalid immediate, don't do anything.
1071 if (ShAmt >= BitWidth)
1074 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1075 // single shift. We can do this if the bottom bits (which are shifted
1076 // out) are never demanded.
1077 if (InOp.getOpcode() == ISD::SRL &&
1078 isa<ConstantSDNode>(InOp.getOperand(1))) {
1079 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1080 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1081 unsigned Opc = ISD::SHL;
1082 int Diff = ShAmt-C1;
1089 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1090 MVT VT = Op.getValueType();
1091 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1092 InOp.getOperand(0), NewSA));
1096 if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1097 KnownZero, KnownOne, TLO, Depth+1))
1099 KnownZero <<= SA->getZExtValue();
1100 KnownOne <<= SA->getZExtValue();
1101 // low bits known zero.
1102 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1106 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1107 MVT VT = Op.getValueType();
1108 unsigned ShAmt = SA->getZExtValue();
1109 unsigned VTSize = VT.getSizeInBits();
1110 SDValue InOp = Op.getOperand(0);
1112 // If the shift count is an invalid immediate, don't do anything.
1113 if (ShAmt >= BitWidth)
1116 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1117 // single shift. We can do this if the top bits (which are shifted out)
1118 // are never demanded.
1119 if (InOp.getOpcode() == ISD::SHL &&
1120 isa<ConstantSDNode>(InOp.getOperand(1))) {
1121 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1122 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1123 unsigned Opc = ISD::SRL;
1124 int Diff = ShAmt-C1;
1131 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1132 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1133 InOp.getOperand(0), NewSA));
1137 // Compute the new bits that are at the top now.
1138 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1139 KnownZero, KnownOne, TLO, Depth+1))
1141 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1142 KnownZero = KnownZero.lshr(ShAmt);
1143 KnownOne = KnownOne.lshr(ShAmt);
1145 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1146 KnownZero |= HighBits; // High bits known zero.
1150 // If this is an arithmetic shift right and only the low-bit is set, we can
1151 // always convert this into a logical shr, even if the shift amount is
1152 // variable. The low bit of the shift cannot be an input sign bit unless
1153 // the shift amount is >= the size of the datatype, which is undefined.
1154 if (DemandedMask == 1)
1155 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1156 Op.getOperand(0), Op.getOperand(1)));
1158 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1159 MVT VT = Op.getValueType();
1160 unsigned ShAmt = SA->getZExtValue();
1162 // If the shift count is an invalid immediate, don't do anything.
1163 if (ShAmt >= BitWidth)
1166 APInt InDemandedMask = (NewMask << ShAmt);
1168 // If any of the demanded bits are produced by the sign extension, we also
1169 // demand the input sign bit.
1170 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1171 if (HighBits.intersects(NewMask))
1172 InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1174 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1175 KnownZero, KnownOne, TLO, Depth+1))
1177 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1178 KnownZero = KnownZero.lshr(ShAmt);
1179 KnownOne = KnownOne.lshr(ShAmt);
1181 // Handle the sign bit, adjusted to where it is now in the mask.
1182 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1184 // If the input sign bit is known to be zero, or if none of the top bits
1185 // are demanded, turn this into an unsigned shift right.
1186 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1187 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1190 } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1191 KnownOne |= HighBits;
1195 case ISD::SIGN_EXTEND_INREG: {
1196 MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1198 // Sign extension. Compute the demanded bits in the result that are not
1199 // present in the input.
1200 APInt NewBits = APInt::getHighBitsSet(BitWidth,
1201 BitWidth - EVT.getSizeInBits()) &
1204 // If none of the extended bits are demanded, eliminate the sextinreg.
1206 return TLO.CombineTo(Op, Op.getOperand(0));
1208 APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1209 InSignBit.zext(BitWidth);
1210 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1211 EVT.getSizeInBits()) &
1214 // Since the sign extended bits are demanded, we know that the sign
1216 InputDemandedBits |= InSignBit;
1218 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1219 KnownZero, KnownOne, TLO, Depth+1))
1221 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1223 // If the sign bit of the input is known set or clear, then we know the
1224 // top bits of the result.
1226 // If the input sign bit is known zero, convert this into a zero extension.
1227 if (KnownZero.intersects(InSignBit))
1228 return TLO.CombineTo(Op,
1229 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1231 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1232 KnownOne |= NewBits;
1233 KnownZero &= ~NewBits;
1234 } else { // Input sign bit unknown
1235 KnownZero &= ~NewBits;
1236 KnownOne &= ~NewBits;
1240 case ISD::ZERO_EXTEND: {
1241 unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1242 APInt InMask = NewMask;
1243 InMask.trunc(OperandBitWidth);
1245 // If none of the top bits are demanded, convert this into an any_extend.
1247 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1248 if (!NewBits.intersects(NewMask))
1249 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1253 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1254 KnownZero, KnownOne, TLO, Depth+1))
1256 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1257 KnownZero.zext(BitWidth);
1258 KnownOne.zext(BitWidth);
1259 KnownZero |= NewBits;
1262 case ISD::SIGN_EXTEND: {
1263 MVT InVT = Op.getOperand(0).getValueType();
1264 unsigned InBits = InVT.getSizeInBits();
1265 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
1266 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1267 APInt NewBits = ~InMask & NewMask;
1269 // If none of the top bits are demanded, convert this into an any_extend.
1271 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1275 // Since some of the sign extended bits are demanded, we know that the sign
1277 APInt InDemandedBits = InMask & NewMask;
1278 InDemandedBits |= InSignBit;
1279 InDemandedBits.trunc(InBits);
1281 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1282 KnownOne, TLO, Depth+1))
1284 KnownZero.zext(BitWidth);
1285 KnownOne.zext(BitWidth);
1287 // If the sign bit is known zero, convert this to a zero extend.
1288 if (KnownZero.intersects(InSignBit))
1289 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1293 // If the sign bit is known one, the top bits match.
1294 if (KnownOne.intersects(InSignBit)) {
1295 KnownOne |= NewBits;
1296 KnownZero &= ~NewBits;
1297 } else { // Otherwise, top bits aren't known.
1298 KnownOne &= ~NewBits;
1299 KnownZero &= ~NewBits;
1303 case ISD::ANY_EXTEND: {
1304 unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1305 APInt InMask = NewMask;
1306 InMask.trunc(OperandBitWidth);
1307 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1308 KnownZero, KnownOne, TLO, Depth+1))
1310 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1311 KnownZero.zext(BitWidth);
1312 KnownOne.zext(BitWidth);
1315 case ISD::TRUNCATE: {
1316 // Simplify the input, using demanded bit information, and compute the known
1317 // zero/one bits live out.
1318 APInt TruncMask = NewMask;
1319 TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1320 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1321 KnownZero, KnownOne, TLO, Depth+1))
1323 KnownZero.trunc(BitWidth);
1324 KnownOne.trunc(BitWidth);
1326 // If the input is only used by this truncate, see if we can shrink it based
1327 // on the known demanded bits.
1328 if (Op.getOperand(0).getNode()->hasOneUse()) {
1329 SDValue In = Op.getOperand(0);
1330 unsigned InBitWidth = In.getValueSizeInBits();
1331 switch (In.getOpcode()) {
1334 // Shrink SRL by a constant if none of the high bits shifted in are
1336 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1337 APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1338 InBitWidth - BitWidth);
1339 HighBits = HighBits.lshr(ShAmt->getZExtValue());
1340 HighBits.trunc(BitWidth);
1342 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1343 // None of the shifted in bits are needed. Add a truncate of the
1344 // shift input, then shift it.
1345 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1348 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1358 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1361 case ISD::AssertZext: {
1362 MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1363 APInt InMask = APInt::getLowBitsSet(BitWidth,
1364 VT.getSizeInBits());
1365 if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1366 KnownZero, KnownOne, TLO, Depth+1))
1368 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1369 KnownZero |= ~InMask & NewMask;
1372 case ISD::BIT_CONVERT:
1374 // If this is an FP->Int bitcast and if the sign bit is the only thing that
1375 // is demanded, turn this into a FGETSIGN.
1376 if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1377 MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1378 !MVT::isVector(Op.getOperand(0).getValueType())) {
1379 // Only do this xform if FGETSIGN is valid or if before legalize.
1380 if (!TLO.AfterLegalize ||
1381 isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1382 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1383 // place. We expect the SHL to be eliminated by other optimizations.
1384 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1386 unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1387 SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1388 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1397 // Add, Sub, and Mul don't demand any bits in positions beyond that
1398 // of the highest bit demanded of them.
1399 APInt LoMask = APInt::getLowBitsSet(BitWidth,
1400 BitWidth - NewMask.countLeadingZeros());
1401 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1402 KnownOne2, TLO, Depth+1))
1404 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1405 KnownOne2, TLO, Depth+1))
1407 // See if the operation should be performed at a smaller bit width.
1408 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1413 // Just use ComputeMaskedBits to compute output bits.
1414 TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1418 // If we know the value of all of the demanded bits, return this as a
1420 if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1421 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1426 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1427 /// in Mask are known to be either zero or one and return them in the
1428 /// KnownZero/KnownOne bitsets.
1429 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1433 const SelectionDAG &DAG,
1434 unsigned Depth) const {
1435 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1436 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1437 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1438 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1439 "Should use MaskedValueIsZero if you don't know whether Op"
1440 " is a target node!");
1441 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1444 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1445 /// targets that want to expose additional information about sign bits to the
1447 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1448 unsigned Depth) const {
1449 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1450 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1451 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1452 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1453 "Should use ComputeNumSignBits if you don't know whether Op"
1454 " is a target node!");
1458 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1459 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1460 /// determine which bit is set.
1462 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1463 // A left-shift of a constant one will have exactly one bit set, because
1464 // shifting the bit off the end is undefined.
1465 if (Val.getOpcode() == ISD::SHL)
1466 if (ConstantSDNode *C =
1467 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1468 if (C->getAPIntValue() == 1)
1471 // Similarly, a right-shift of a constant sign-bit will have exactly
1473 if (Val.getOpcode() == ISD::SRL)
1474 if (ConstantSDNode *C =
1475 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1476 if (C->getAPIntValue().isSignBit())
1479 // More could be done here, though the above checks are enough
1480 // to handle some common cases.
1482 // Fall back to ComputeMaskedBits to catch other known cases.
1483 MVT OpVT = Val.getValueType();
1484 unsigned BitWidth = OpVT.getSizeInBits();
1485 APInt Mask = APInt::getAllOnesValue(BitWidth);
1486 APInt KnownZero, KnownOne;
1487 DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1488 return (KnownZero.countPopulation() == BitWidth - 1) &&
1489 (KnownOne.countPopulation() == 1);
1492 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1493 /// and cc. If it is unable to simplify it, return a null SDValue.
1495 TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1496 ISD::CondCode Cond, bool foldBooleans,
1497 DAGCombinerInfo &DCI, DebugLoc dl) const {
1498 SelectionDAG &DAG = DCI.DAG;
1500 // These setcc operations always fold.
1504 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1506 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1509 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1510 const APInt &C1 = N1C->getAPIntValue();
1511 if (isa<ConstantSDNode>(N0.getNode())) {
1512 return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1514 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1515 // equality comparison, then we're just comparing whether X itself is
1517 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1518 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1519 N0.getOperand(1).getOpcode() == ISD::Constant) {
1520 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1521 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1522 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1523 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1524 // (srl (ctlz x), 5) == 0 -> X != 0
1525 // (srl (ctlz x), 5) != 1 -> X != 0
1528 // (srl (ctlz x), 5) != 0 -> X == 0
1529 // (srl (ctlz x), 5) == 1 -> X == 0
1532 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1533 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1538 // If the LHS is '(and load, const)', the RHS is 0,
1539 // the test is for equality or unsigned, and all 1 bits of the const are
1540 // in the same partial word, see if we can shorten the load.
1541 if (DCI.isBeforeLegalize() &&
1542 N0.getOpcode() == ISD::AND && C1 == 0 &&
1543 N0.getNode()->hasOneUse() &&
1544 isa<LoadSDNode>(N0.getOperand(0)) &&
1545 N0.getOperand(0).getNode()->hasOneUse() &&
1546 isa<ConstantSDNode>(N0.getOperand(1))) {
1547 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1548 uint64_t bestMask = 0;
1549 unsigned bestWidth = 0, bestOffset = 0;
1550 if (!Lod->isVolatile() && Lod->isUnindexed() &&
1551 // FIXME: This uses getZExtValue() below so it only works on i64 and
1553 N0.getValueType().getSizeInBits() <= 64) {
1554 unsigned origWidth = N0.getValueType().getSizeInBits();
1555 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1556 // 8 bits, but have to be careful...
1557 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1558 origWidth = Lod->getMemoryVT().getSizeInBits();
1559 uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1560 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1561 uint64_t newMask = (1ULL << width) - 1;
1562 for (unsigned offset=0; offset<origWidth/width; offset++) {
1563 if ((newMask & Mask) == Mask) {
1564 if (!TD->isLittleEndian())
1565 bestOffset = (origWidth/width - offset - 1) * (width/8);
1567 bestOffset = (uint64_t)offset * (width/8);
1568 bestMask = Mask >> (offset * (width/8) * 8);
1572 newMask = newMask << width;
1577 MVT newVT = MVT::getIntegerVT(bestWidth);
1578 if (newVT.isRound()) {
1579 MVT PtrType = Lod->getOperand(1).getValueType();
1580 SDValue Ptr = Lod->getBasePtr();
1581 if (bestOffset != 0)
1582 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1583 DAG.getConstant(bestOffset, PtrType));
1584 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1585 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1587 Lod->getSrcValueOffset() + bestOffset,
1589 return DAG.getSetCC(dl, VT,
1590 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1591 DAG.getConstant(bestMask, newVT)),
1592 DAG.getConstant(0LL, newVT), Cond);
1597 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1598 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1599 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1601 // If the comparison constant has bits in the upper part, the
1602 // zero-extended value could never match.
1603 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1604 C1.getBitWidth() - InSize))) {
1608 case ISD::SETEQ: return DAG.getConstant(0, VT);
1611 case ISD::SETNE: return DAG.getConstant(1, VT);
1614 // True if the sign bit of C1 is set.
1615 return DAG.getConstant(C1.isNegative(), VT);
1618 // True if the sign bit of C1 isn't set.
1619 return DAG.getConstant(C1.isNonNegative(), VT);
1625 // Otherwise, we can perform the comparison with the low bits.
1633 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1634 DAG.getConstant(APInt(C1).trunc(InSize),
1635 N0.getOperand(0).getValueType()),
1638 break; // todo, be more careful with signed comparisons
1640 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1641 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1642 MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1643 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1644 MVT ExtDstTy = N0.getValueType();
1645 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1647 // If the extended part has any inconsistent bits, it cannot ever
1648 // compare equal. In other words, they have to be all ones or all
1651 APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1652 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1653 return DAG.getConstant(Cond == ISD::SETNE, VT);
1656 MVT Op0Ty = N0.getOperand(0).getValueType();
1657 if (Op0Ty == ExtSrcTy) {
1658 ZextOp = N0.getOperand(0);
1660 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1661 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1662 DAG.getConstant(Imm, Op0Ty));
1664 if (!DCI.isCalledByLegalizer())
1665 DCI.AddToWorklist(ZextOp.getNode());
1666 // Otherwise, make this a use of a zext.
1667 return DAG.getSetCC(dl, VT, ZextOp,
1668 DAG.getConstant(C1 & APInt::getLowBitsSet(
1673 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1674 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1676 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1677 if (N0.getOpcode() == ISD::SETCC) {
1678 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1682 // Invert the condition.
1683 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1684 CC = ISD::getSetCCInverse(CC,
1685 N0.getOperand(0).getValueType().isInteger());
1686 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1689 if ((N0.getOpcode() == ISD::XOR ||
1690 (N0.getOpcode() == ISD::AND &&
1691 N0.getOperand(0).getOpcode() == ISD::XOR &&
1692 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1693 isa<ConstantSDNode>(N0.getOperand(1)) &&
1694 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1695 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1696 // can only do this if the top bits are known zero.
1697 unsigned BitWidth = N0.getValueSizeInBits();
1698 if (DAG.MaskedValueIsZero(N0,
1699 APInt::getHighBitsSet(BitWidth,
1701 // Okay, get the un-inverted input value.
1703 if (N0.getOpcode() == ISD::XOR)
1704 Val = N0.getOperand(0);
1706 assert(N0.getOpcode() == ISD::AND &&
1707 N0.getOperand(0).getOpcode() == ISD::XOR);
1708 // ((X^1)&1)^1 -> X & 1
1709 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1710 N0.getOperand(0).getOperand(0),
1713 return DAG.getSetCC(dl, VT, Val, N1,
1714 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1719 APInt MinVal, MaxVal;
1720 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1721 if (ISD::isSignedIntSetCC(Cond)) {
1722 MinVal = APInt::getSignedMinValue(OperandBitSize);
1723 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1725 MinVal = APInt::getMinValue(OperandBitSize);
1726 MaxVal = APInt::getMaxValue(OperandBitSize);
1729 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1730 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1731 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1732 // X >= C0 --> X > (C0-1)
1733 return DAG.getSetCC(dl, VT, N0,
1734 DAG.getConstant(C1-1, N1.getValueType()),
1735 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1738 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1739 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1740 // X <= C0 --> X < (C0+1)
1741 return DAG.getSetCC(dl, VT, N0,
1742 DAG.getConstant(C1+1, N1.getValueType()),
1743 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1746 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1747 return DAG.getConstant(0, VT); // X < MIN --> false
1748 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1749 return DAG.getConstant(1, VT); // X >= MIN --> true
1750 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1751 return DAG.getConstant(0, VT); // X > MAX --> false
1752 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1753 return DAG.getConstant(1, VT); // X <= MAX --> true
1755 // Canonicalize setgt X, Min --> setne X, Min
1756 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1757 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1758 // Canonicalize setlt X, Max --> setne X, Max
1759 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1760 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1762 // If we have setult X, 1, turn it into seteq X, 0
1763 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1764 return DAG.getSetCC(dl, VT, N0,
1765 DAG.getConstant(MinVal, N0.getValueType()),
1767 // If we have setugt X, Max-1, turn it into seteq X, Max
1768 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1769 return DAG.getSetCC(dl, VT, N0,
1770 DAG.getConstant(MaxVal, N0.getValueType()),
1773 // If we have "setcc X, C0", check to see if we can shrink the immediate
1776 // SETUGT X, SINTMAX -> SETLT X, 0
1777 if (Cond == ISD::SETUGT &&
1778 C1 == APInt::getSignedMaxValue(OperandBitSize))
1779 return DAG.getSetCC(dl, VT, N0,
1780 DAG.getConstant(0, N1.getValueType()),
1783 // SETULT X, SINTMIN -> SETGT X, -1
1784 if (Cond == ISD::SETULT &&
1785 C1 == APInt::getSignedMinValue(OperandBitSize)) {
1786 SDValue ConstMinusOne =
1787 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1789 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1792 // Fold bit comparisons when we can.
1793 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1794 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1795 if (ConstantSDNode *AndRHS =
1796 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1797 MVT ShiftTy = DCI.isBeforeLegalize() ?
1798 getPointerTy() : getShiftAmountTy();
1799 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1800 // Perform the xform if the AND RHS is a single bit.
1801 if (isPowerOf2_64(AndRHS->getZExtValue())) {
1802 return DAG.getNode(ISD::SRL, dl, VT, N0,
1803 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1806 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1807 // (X & 8) == 8 --> (X & 8) >> 3
1808 // Perform the xform if C1 is a single bit.
1809 if (C1.isPowerOf2()) {
1810 return DAG.getNode(ISD::SRL, dl, VT, N0,
1811 DAG.getConstant(C1.logBase2(), ShiftTy));
1816 } else if (isa<ConstantSDNode>(N0.getNode())) {
1817 // Ensure that the constant occurs on the RHS.
1818 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1821 if (isa<ConstantFPSDNode>(N0.getNode())) {
1822 // Constant fold or commute setcc.
1823 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1824 if (O.getNode()) return O;
1825 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1826 // If the RHS of an FP comparison is a constant, simplify it away in
1828 if (CFP->getValueAPF().isNaN()) {
1829 // If an operand is known to be a nan, we can fold it.
1830 switch (ISD::getUnorderedFlavor(Cond)) {
1831 default: assert(0 && "Unknown flavor!");
1832 case 0: // Known false.
1833 return DAG.getConstant(0, VT);
1834 case 1: // Known true.
1835 return DAG.getConstant(1, VT);
1836 case 2: // Undefined.
1837 return DAG.getUNDEF(VT);
1841 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
1842 // constant if knowing that the operand is non-nan is enough. We prefer to
1843 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1845 if (Cond == ISD::SETO || Cond == ISD::SETUO)
1846 return DAG.getSetCC(dl, VT, N0, N0, Cond);
1850 // We can always fold X == X for integer setcc's.
1851 if (N0.getValueType().isInteger())
1852 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1853 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1854 if (UOF == 2) // FP operators that are undefined on NaNs.
1855 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1856 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1857 return DAG.getConstant(UOF, VT);
1858 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1859 // if it is not already.
1860 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1861 if (NewCond != Cond)
1862 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1865 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1866 N0.getValueType().isInteger()) {
1867 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1868 N0.getOpcode() == ISD::XOR) {
1869 // Simplify (X+Y) == (X+Z) --> Y == Z
1870 if (N0.getOpcode() == N1.getOpcode()) {
1871 if (N0.getOperand(0) == N1.getOperand(0))
1872 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1873 if (N0.getOperand(1) == N1.getOperand(1))
1874 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1875 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1876 // If X op Y == Y op X, try other combinations.
1877 if (N0.getOperand(0) == N1.getOperand(1))
1878 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1880 if (N0.getOperand(1) == N1.getOperand(0))
1881 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1886 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1887 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1888 // Turn (X+C1) == C2 --> X == C2-C1
1889 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1890 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1891 DAG.getConstant(RHSC->getAPIntValue()-
1892 LHSR->getAPIntValue(),
1893 N0.getValueType()), Cond);
1896 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1897 if (N0.getOpcode() == ISD::XOR)
1898 // If we know that all of the inverted bits are zero, don't bother
1899 // performing the inversion.
1900 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1902 DAG.getSetCC(dl, VT, N0.getOperand(0),
1903 DAG.getConstant(LHSR->getAPIntValue() ^
1904 RHSC->getAPIntValue(),
1909 // Turn (C1-X) == C2 --> X == C1-C2
1910 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1911 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1913 DAG.getSetCC(dl, VT, N0.getOperand(1),
1914 DAG.getConstant(SUBC->getAPIntValue() -
1915 RHSC->getAPIntValue(),
1922 // Simplify (X+Z) == X --> Z == 0
1923 if (N0.getOperand(0) == N1)
1924 return DAG.getSetCC(dl, VT, N0.getOperand(1),
1925 DAG.getConstant(0, N0.getValueType()), Cond);
1926 if (N0.getOperand(1) == N1) {
1927 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1928 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1929 DAG.getConstant(0, N0.getValueType()), Cond);
1930 else if (N0.getNode()->hasOneUse()) {
1931 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1932 // (Z-X) == X --> Z == X<<1
1933 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1935 DAG.getConstant(1, getShiftAmountTy()));
1936 if (!DCI.isCalledByLegalizer())
1937 DCI.AddToWorklist(SH.getNode());
1938 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1943 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1944 N1.getOpcode() == ISD::XOR) {
1945 // Simplify X == (X+Z) --> Z == 0
1946 if (N1.getOperand(0) == N0) {
1947 return DAG.getSetCC(dl, VT, N1.getOperand(1),
1948 DAG.getConstant(0, N1.getValueType()), Cond);
1949 } else if (N1.getOperand(1) == N0) {
1950 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1951 return DAG.getSetCC(dl, VT, N1.getOperand(0),
1952 DAG.getConstant(0, N1.getValueType()), Cond);
1953 } else if (N1.getNode()->hasOneUse()) {
1954 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1955 // X == (Z-X) --> X<<1 == Z
1956 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1957 DAG.getConstant(1, getShiftAmountTy()));
1958 if (!DCI.isCalledByLegalizer())
1959 DCI.AddToWorklist(SH.getNode());
1960 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1965 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1966 // Note that where y is variable and is known to have at most
1967 // one bit set (for example, if it is z&1) we cannot do this;
1968 // the expressions are not equivalent when y==0.
1969 if (N0.getOpcode() == ISD::AND)
1970 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1971 if (ValueHasExactlyOneBitSet(N1, DAG)) {
1972 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1973 SDValue Zero = DAG.getConstant(0, N1.getValueType());
1974 return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1977 if (N1.getOpcode() == ISD::AND)
1978 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1979 if (ValueHasExactlyOneBitSet(N0, DAG)) {
1980 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1981 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1982 return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1987 // Fold away ALL boolean setcc's.
1989 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1991 default: assert(0 && "Unknown integer setcc!");
1992 case ISD::SETEQ: // X == Y -> ~(X^Y)
1993 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1994 N0 = DAG.getNOT(dl, Temp, MVT::i1);
1995 if (!DCI.isCalledByLegalizer())
1996 DCI.AddToWorklist(Temp.getNode());
1998 case ISD::SETNE: // X != Y --> (X^Y)
1999 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2001 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2002 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2003 Temp = DAG.getNOT(dl, N0, MVT::i1);
2004 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2005 if (!DCI.isCalledByLegalizer())
2006 DCI.AddToWorklist(Temp.getNode());
2008 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2009 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2010 Temp = DAG.getNOT(dl, N1, MVT::i1);
2011 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2012 if (!DCI.isCalledByLegalizer())
2013 DCI.AddToWorklist(Temp.getNode());
2015 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2016 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2017 Temp = DAG.getNOT(dl, N0, MVT::i1);
2018 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2019 if (!DCI.isCalledByLegalizer())
2020 DCI.AddToWorklist(Temp.getNode());
2022 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2023 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2024 Temp = DAG.getNOT(dl, N1, MVT::i1);
2025 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2028 if (VT != MVT::i1) {
2029 if (!DCI.isCalledByLegalizer())
2030 DCI.AddToWorklist(N0.getNode());
2031 // FIXME: If running after legalize, we probably can't do this.
2032 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2037 // Could not fold it.
2041 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2042 /// node is a GlobalAddress + offset.
2043 bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2044 int64_t &Offset) const {
2045 if (isa<GlobalAddressSDNode>(N)) {
2046 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2047 GA = GASD->getGlobal();
2048 Offset += GASD->getOffset();
2052 if (N->getOpcode() == ISD::ADD) {
2053 SDValue N1 = N->getOperand(0);
2054 SDValue N2 = N->getOperand(1);
2055 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2056 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2058 Offset += V->getSExtValue();
2061 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2062 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2064 Offset += V->getSExtValue();
2073 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
2074 /// location that is 'Dist' units away from the location that the 'Base' load
2075 /// is loading from.
2076 bool TargetLowering::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
2077 unsigned Bytes, int Dist,
2078 const MachineFrameInfo *MFI) const {
2079 if (LD->getChain() != Base->getChain())
2081 MVT VT = LD->getValueType(0);
2082 if (VT.getSizeInBits() / 8 != Bytes)
2085 SDValue Loc = LD->getOperand(1);
2086 SDValue BaseLoc = Base->getOperand(1);
2087 if (Loc.getOpcode() == ISD::FrameIndex) {
2088 if (BaseLoc.getOpcode() != ISD::FrameIndex)
2090 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
2091 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2092 int FS = MFI->getObjectSize(FI);
2093 int BFS = MFI->getObjectSize(BFI);
2094 if (FS != BFS || FS != (int)Bytes) return false;
2095 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2097 if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
2098 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
2099 if (V && (V->getSExtValue() == Dist*Bytes))
2103 GlobalValue *GV1 = NULL;
2104 GlobalValue *GV2 = NULL;
2105 int64_t Offset1 = 0;
2106 int64_t Offset2 = 0;
2107 bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2108 bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2109 if (isGA1 && isGA2 && GV1 == GV2)
2110 return Offset1 == (Offset2 + Dist*Bytes);
2115 SDValue TargetLowering::
2116 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2117 // Default implementation: no optimization.
2121 //===----------------------------------------------------------------------===//
2122 // Inline Assembler Implementation Methods
2123 //===----------------------------------------------------------------------===//
2126 TargetLowering::ConstraintType
2127 TargetLowering::getConstraintType(const std::string &Constraint) const {
2128 // FIXME: lots more standard ones to handle.
2129 if (Constraint.size() == 1) {
2130 switch (Constraint[0]) {
2132 case 'r': return C_RegisterClass;
2134 case 'o': // offsetable
2135 case 'V': // not offsetable
2137 case 'i': // Simple Integer or Relocatable Constant
2138 case 'n': // Simple Integer
2139 case 's': // Relocatable Constant
2140 case 'X': // Allow ANY value.
2141 case 'I': // Target registers.
2153 if (Constraint.size() > 1 && Constraint[0] == '{' &&
2154 Constraint[Constraint.size()-1] == '}')
2159 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2160 /// with another that has more specific requirements based on the type of the
2161 /// corresponding operand.
2162 const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2163 if (ConstraintVT.isInteger())
2165 if (ConstraintVT.isFloatingPoint())
2166 return "f"; // works for many targets
2170 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2171 /// vector. If it is invalid, don't add anything to Ops.
2172 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2173 char ConstraintLetter,
2175 std::vector<SDValue> &Ops,
2176 SelectionDAG &DAG) const {
2177 switch (ConstraintLetter) {
2179 case 'X': // Allows any operand; labels (basic block) use this.
2180 if (Op.getOpcode() == ISD::BasicBlock) {
2185 case 'i': // Simple Integer or Relocatable Constant
2186 case 'n': // Simple Integer
2187 case 's': { // Relocatable Constant
2188 // These operands are interested in values of the form (GV+C), where C may
2189 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2190 // is possible and fine if either GV or C are missing.
2191 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2192 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2194 // If we have "(add GV, C)", pull out GV/C
2195 if (Op.getOpcode() == ISD::ADD) {
2196 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2197 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2198 if (C == 0 || GA == 0) {
2199 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2200 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2202 if (C == 0 || GA == 0)
2206 // If we find a valid operand, map to the TargetXXX version so that the
2207 // value itself doesn't get selected.
2208 if (GA) { // Either &GV or &GV+C
2209 if (ConstraintLetter != 'n') {
2210 int64_t Offs = GA->getOffset();
2211 if (C) Offs += C->getZExtValue();
2212 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2213 Op.getValueType(), Offs));
2217 if (C) { // just C, no GV.
2218 // Simple constants are not allowed for 's'.
2219 if (ConstraintLetter != 's') {
2220 // gcc prints these as sign extended. Sign extend value to 64 bits
2221 // now; without this it would get ZExt'd later in
2222 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2223 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2233 std::vector<unsigned> TargetLowering::
2234 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2236 return std::vector<unsigned>();
2240 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2241 getRegForInlineAsmConstraint(const std::string &Constraint,
2243 if (Constraint[0] != '{')
2244 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2245 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2247 // Remove the braces from around the name.
2248 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2250 // Figure out which register class contains this reg.
2251 const TargetRegisterInfo *RI = TM.getRegisterInfo();
2252 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2253 E = RI->regclass_end(); RCI != E; ++RCI) {
2254 const TargetRegisterClass *RC = *RCI;
2256 // If none of the the value types for this register class are valid, we
2257 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2258 bool isLegal = false;
2259 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2261 if (isTypeLegal(*I)) {
2267 if (!isLegal) continue;
2269 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2271 if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2272 return std::make_pair(*I, RC);
2276 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2279 //===----------------------------------------------------------------------===//
2280 // Constraint Selection.
2282 /// isMatchingInputConstraint - Return true of this is an input operand that is
2283 /// a matching constraint like "4".
2284 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2285 assert(!ConstraintCode.empty() && "No known constraint!");
2286 return isdigit(ConstraintCode[0]);
2289 /// getMatchedOperand - If this is an input matching constraint, this method
2290 /// returns the output operand it matches.
2291 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2292 assert(!ConstraintCode.empty() && "No known constraint!");
2293 return atoi(ConstraintCode.c_str());
2297 /// getConstraintGenerality - Return an integer indicating how general CT
2299 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2301 default: assert(0 && "Unknown constraint type!");
2302 case TargetLowering::C_Other:
2303 case TargetLowering::C_Unknown:
2305 case TargetLowering::C_Register:
2307 case TargetLowering::C_RegisterClass:
2309 case TargetLowering::C_Memory:
2314 /// ChooseConstraint - If there are multiple different constraints that we
2315 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2316 /// This is somewhat tricky: constraints fall into four classes:
2317 /// Other -> immediates and magic values
2318 /// Register -> one specific register
2319 /// RegisterClass -> a group of regs
2320 /// Memory -> memory
2321 /// Ideally, we would pick the most specific constraint possible: if we have
2322 /// something that fits into a register, we would pick it. The problem here
2323 /// is that if we have something that could either be in a register or in
2324 /// memory that use of the register could cause selection of *other*
2325 /// operands to fail: they might only succeed if we pick memory. Because of
2326 /// this the heuristic we use is:
2328 /// 1) If there is an 'other' constraint, and if the operand is valid for
2329 /// that constraint, use it. This makes us take advantage of 'i'
2330 /// constraints when available.
2331 /// 2) Otherwise, pick the most general constraint present. This prefers
2332 /// 'm' over 'r', for example.
2334 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2335 bool hasMemory, const TargetLowering &TLI,
2336 SDValue Op, SelectionDAG *DAG) {
2337 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2338 unsigned BestIdx = 0;
2339 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2340 int BestGenerality = -1;
2342 // Loop over the options, keeping track of the most general one.
2343 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2344 TargetLowering::ConstraintType CType =
2345 TLI.getConstraintType(OpInfo.Codes[i]);
2347 // If this is an 'other' constraint, see if the operand is valid for it.
2348 // For example, on X86 we might have an 'rI' constraint. If the operand
2349 // is an integer in the range [0..31] we want to use I (saving a load
2350 // of a register), otherwise we must use 'r'.
2351 if (CType == TargetLowering::C_Other && Op.getNode()) {
2352 assert(OpInfo.Codes[i].size() == 1 &&
2353 "Unhandled multi-letter 'other' constraint");
2354 std::vector<SDValue> ResultOps;
2355 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2357 if (!ResultOps.empty()) {
2364 // This constraint letter is more general than the previous one, use it.
2365 int Generality = getConstraintGenerality(CType);
2366 if (Generality > BestGenerality) {
2369 BestGenerality = Generality;
2373 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2374 OpInfo.ConstraintType = BestType;
2377 /// ComputeConstraintToUse - Determines the constraint code and constraint
2378 /// type to use for the specific AsmOperandInfo, setting
2379 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2380 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2383 SelectionDAG *DAG) const {
2384 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2386 // Single-letter constraints ('r') are very common.
2387 if (OpInfo.Codes.size() == 1) {
2388 OpInfo.ConstraintCode = OpInfo.Codes[0];
2389 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2391 ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2394 // 'X' matches anything.
2395 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2396 // Labels and constants are handled elsewhere ('X' is the only thing
2397 // that matches labels).
2398 if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2399 isa<ConstantInt>(OpInfo.CallOperandVal))
2402 // Otherwise, try to resolve it to something we know about by looking at
2403 // the actual operand type.
2404 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2405 OpInfo.ConstraintCode = Repl;
2406 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2411 //===----------------------------------------------------------------------===//
2412 // Loop Strength Reduction hooks
2413 //===----------------------------------------------------------------------===//
2415 /// isLegalAddressingMode - Return true if the addressing mode represented
2416 /// by AM is legal for this target, for a load/store of the specified type.
2417 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2418 const Type *Ty) const {
2419 // The default implementation of this implements a conservative RISCy, r+r and
2422 // Allows a sign-extended 16-bit immediate field.
2423 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2426 // No global is ever allowed as a base.
2430 // Only support r+r,
2432 case 0: // "r+i" or just "i", depending on HasBaseReg.
2435 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2437 // Otherwise we have r+r or r+i.
2440 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2442 // Allow 2*r as r+r.
2449 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2450 /// return a DAG expression to select that will generate the same value by
2451 /// multiplying by a magic number. See:
2452 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2453 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2454 std::vector<SDNode*>* Created) const {
2455 MVT VT = N->getValueType(0);
2456 DebugLoc dl= N->getDebugLoc();
2458 // Check to see if we can do this.
2459 // FIXME: We should be more aggressive here.
2460 if (!isTypeLegal(VT))
2463 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2464 APInt::ms magics = d.magic();
2466 // Multiply the numerator (operand 0) by the magic value
2467 // FIXME: We should support doing a MUL in a wider type
2469 if (isOperationLegalOrCustom(ISD::MULHS, VT))
2470 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2471 DAG.getConstant(magics.m, VT));
2472 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2473 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2475 DAG.getConstant(magics.m, VT)).getNode(), 1);
2477 return SDValue(); // No mulhs or equvialent
2478 // If d > 0 and m < 0, add the numerator
2479 if (d.isStrictlyPositive() && magics.m.isNegative()) {
2480 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2482 Created->push_back(Q.getNode());
2484 // If d < 0 and m > 0, subtract the numerator.
2485 if (d.isNegative() && magics.m.isStrictlyPositive()) {
2486 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2488 Created->push_back(Q.getNode());
2490 // Shift right algebraic if shift value is nonzero
2492 Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2493 DAG.getConstant(magics.s, getShiftAmountTy()));
2495 Created->push_back(Q.getNode());
2497 // Extract the sign bit and add it to the quotient
2499 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2500 getShiftAmountTy()));
2502 Created->push_back(T.getNode());
2503 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2506 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2507 /// return a DAG expression to select that will generate the same value by
2508 /// multiplying by a magic number. See:
2509 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2510 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2511 std::vector<SDNode*>* Created) const {
2512 MVT VT = N->getValueType(0);
2513 DebugLoc dl = N->getDebugLoc();
2515 // Check to see if we can do this.
2516 // FIXME: We should be more aggressive here.
2517 if (!isTypeLegal(VT))
2520 // FIXME: We should use a narrower constant when the upper
2521 // bits are known to be zero.
2522 ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2523 APInt::mu magics = N1C->getAPIntValue().magicu();
2525 // Multiply the numerator (operand 0) by the magic value
2526 // FIXME: We should support doing a MUL in a wider type
2528 if (isOperationLegalOrCustom(ISD::MULHU, VT))
2529 Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2530 DAG.getConstant(magics.m, VT));
2531 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2532 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2534 DAG.getConstant(magics.m, VT)).getNode(), 1);
2536 return SDValue(); // No mulhu or equvialent
2538 Created->push_back(Q.getNode());
2540 if (magics.a == 0) {
2541 assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2542 "We shouldn't generate an undefined shift!");
2543 return DAG.getNode(ISD::SRL, dl, VT, Q,
2544 DAG.getConstant(magics.s, getShiftAmountTy()));
2546 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2548 Created->push_back(NPQ.getNode());
2549 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2550 DAG.getConstant(1, getShiftAmountTy()));
2552 Created->push_back(NPQ.getNode());
2553 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2555 Created->push_back(NPQ.getNode());
2556 return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2557 DAG.getConstant(magics.s-1, getShiftAmountTy()));
2561 /// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
2562 /// node that don't prevent tail call optimization.
2563 static SDValue IgnoreHarmlessInstructions(SDValue node) {
2564 // Found call return.
2565 if (node.getOpcode() == ISD::CALL) return node;
2566 // Ignore MERGE_VALUES. Will have at least one operand.
2567 if (node.getOpcode() == ISD::MERGE_VALUES)
2568 return IgnoreHarmlessInstructions(node.getOperand(0));
2569 // Ignore ANY_EXTEND node.
2570 if (node.getOpcode() == ISD::ANY_EXTEND)
2571 return IgnoreHarmlessInstructions(node.getOperand(0));
2572 if (node.getOpcode() == ISD::TRUNCATE)
2573 return IgnoreHarmlessInstructions(node.getOperand(0));
2574 // Any other node type.
2578 bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
2580 unsigned NumOps = Ret.getNumOperands();
2581 // ISD::CALL results:(value0, ..., valuen, chain)
2582 // ISD::RET operands:(chain, value0, flag0, ..., valuen, flagn)
2584 // Check that operand of the RET node sources from the CALL node. The RET node
2585 // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
2587 // Also we need to check that there is no code in between the call and the
2588 // return. Hence we also check that the incomming chain to the return sources
2589 // from the outgoing chain of the call.
2591 IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0) &&
2592 Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2594 // void return: The RET node has the chain result value of the CALL node as
2597 Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))