1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetAsmInfo.h"
15 #include "llvm/Target/TargetLowering.h"
16 #include "llvm/Target/TargetSubtarget.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/MathExtras.h"
29 /// InitLibcallNames - Set default libcall names.
31 static void InitLibcallNames(const char **Names) {
32 Names[RTLIB::SHL_I32] = "__ashlsi3";
33 Names[RTLIB::SHL_I64] = "__ashldi3";
34 Names[RTLIB::SHL_I128] = "__ashlti3";
35 Names[RTLIB::SRL_I32] = "__lshrsi3";
36 Names[RTLIB::SRL_I64] = "__lshrdi3";
37 Names[RTLIB::SRL_I128] = "__lshrti3";
38 Names[RTLIB::SRA_I32] = "__ashrsi3";
39 Names[RTLIB::SRA_I64] = "__ashrdi3";
40 Names[RTLIB::SRA_I128] = "__ashrti3";
41 Names[RTLIB::MUL_I32] = "__mulsi3";
42 Names[RTLIB::MUL_I64] = "__muldi3";
43 Names[RTLIB::MUL_I128] = "__multi3";
44 Names[RTLIB::SDIV_I32] = "__divsi3";
45 Names[RTLIB::SDIV_I64] = "__divdi3";
46 Names[RTLIB::SDIV_I128] = "__divti3";
47 Names[RTLIB::UDIV_I32] = "__udivsi3";
48 Names[RTLIB::UDIV_I64] = "__udivdi3";
49 Names[RTLIB::UDIV_I128] = "__udivti3";
50 Names[RTLIB::SREM_I32] = "__modsi3";
51 Names[RTLIB::SREM_I64] = "__moddi3";
52 Names[RTLIB::SREM_I128] = "__modti3";
53 Names[RTLIB::UREM_I32] = "__umodsi3";
54 Names[RTLIB::UREM_I64] = "__umoddi3";
55 Names[RTLIB::UREM_I128] = "__umodti3";
56 Names[RTLIB::NEG_I32] = "__negsi2";
57 Names[RTLIB::NEG_I64] = "__negdi2";
58 Names[RTLIB::ADD_F32] = "__addsf3";
59 Names[RTLIB::ADD_F64] = "__adddf3";
60 Names[RTLIB::ADD_F80] = "__addxf3";
61 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
62 Names[RTLIB::SUB_F32] = "__subsf3";
63 Names[RTLIB::SUB_F64] = "__subdf3";
64 Names[RTLIB::SUB_F80] = "__subxf3";
65 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
66 Names[RTLIB::MUL_F32] = "__mulsf3";
67 Names[RTLIB::MUL_F64] = "__muldf3";
68 Names[RTLIB::MUL_F80] = "__mulxf3";
69 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
70 Names[RTLIB::DIV_F32] = "__divsf3";
71 Names[RTLIB::DIV_F64] = "__divdf3";
72 Names[RTLIB::DIV_F80] = "__divxf3";
73 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
74 Names[RTLIB::REM_F32] = "fmodf";
75 Names[RTLIB::REM_F64] = "fmod";
76 Names[RTLIB::REM_F80] = "fmodl";
77 Names[RTLIB::REM_PPCF128] = "fmodl";
78 Names[RTLIB::POWI_F32] = "__powisf2";
79 Names[RTLIB::POWI_F64] = "__powidf2";
80 Names[RTLIB::POWI_F80] = "__powixf2";
81 Names[RTLIB::POWI_PPCF128] = "__powitf2";
82 Names[RTLIB::SQRT_F32] = "sqrtf";
83 Names[RTLIB::SQRT_F64] = "sqrt";
84 Names[RTLIB::SQRT_F80] = "sqrtl";
85 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
86 Names[RTLIB::SIN_F32] = "sinf";
87 Names[RTLIB::SIN_F64] = "sin";
88 Names[RTLIB::SIN_F80] = "sinl";
89 Names[RTLIB::SIN_PPCF128] = "sinl";
90 Names[RTLIB::COS_F32] = "cosf";
91 Names[RTLIB::COS_F64] = "cos";
92 Names[RTLIB::COS_F80] = "cosl";
93 Names[RTLIB::COS_PPCF128] = "cosl";
94 Names[RTLIB::POW_F32] = "powf";
95 Names[RTLIB::POW_F64] = "pow";
96 Names[RTLIB::POW_F80] = "powl";
97 Names[RTLIB::POW_PPCF128] = "powl";
98 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
99 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
100 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
101 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
102 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
103 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
104 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
105 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
106 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
107 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
108 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
109 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
110 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
111 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
112 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
113 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
114 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
115 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
116 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
117 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
118 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
119 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
120 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
121 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
122 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
123 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
124 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
125 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
126 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
127 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
128 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
129 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
130 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
131 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
132 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
133 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
134 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
135 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
136 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
137 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
138 Names[RTLIB::OEQ_F32] = "__eqsf2";
139 Names[RTLIB::OEQ_F64] = "__eqdf2";
140 Names[RTLIB::UNE_F32] = "__nesf2";
141 Names[RTLIB::UNE_F64] = "__nedf2";
142 Names[RTLIB::OGE_F32] = "__gesf2";
143 Names[RTLIB::OGE_F64] = "__gedf2";
144 Names[RTLIB::OLT_F32] = "__ltsf2";
145 Names[RTLIB::OLT_F64] = "__ltdf2";
146 Names[RTLIB::OLE_F32] = "__lesf2";
147 Names[RTLIB::OLE_F64] = "__ledf2";
148 Names[RTLIB::OGT_F32] = "__gtsf2";
149 Names[RTLIB::OGT_F64] = "__gtdf2";
150 Names[RTLIB::UO_F32] = "__unordsf2";
151 Names[RTLIB::UO_F64] = "__unorddf2";
152 Names[RTLIB::O_F32] = "__unordsf2";
153 Names[RTLIB::O_F64] = "__unorddf2";
156 /// InitCmpLibcallCCs - Set default comparison libcall CC.
158 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
159 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
160 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
161 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
162 CCs[RTLIB::UNE_F32] = ISD::SETNE;
163 CCs[RTLIB::UNE_F64] = ISD::SETNE;
164 CCs[RTLIB::OGE_F32] = ISD::SETGE;
165 CCs[RTLIB::OGE_F64] = ISD::SETGE;
166 CCs[RTLIB::OLT_F32] = ISD::SETLT;
167 CCs[RTLIB::OLT_F64] = ISD::SETLT;
168 CCs[RTLIB::OLE_F32] = ISD::SETLE;
169 CCs[RTLIB::OLE_F64] = ISD::SETLE;
170 CCs[RTLIB::OGT_F32] = ISD::SETGT;
171 CCs[RTLIB::OGT_F64] = ISD::SETGT;
172 CCs[RTLIB::UO_F32] = ISD::SETNE;
173 CCs[RTLIB::UO_F64] = ISD::SETNE;
174 CCs[RTLIB::O_F32] = ISD::SETEQ;
175 CCs[RTLIB::O_F64] = ISD::SETEQ;
178 TargetLowering::TargetLowering(TargetMachine &tm)
179 : TM(tm), TD(TM.getTargetData()) {
180 assert(ISD::BUILTIN_OP_END <= OpActionsCapacity &&
181 "Fixed size array in TargetLowering is not large enough!");
182 // All operations default to being supported.
183 memset(OpActions, 0, sizeof(OpActions));
184 memset(LoadXActions, 0, sizeof(LoadXActions));
185 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
186 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
187 memset(ConvertActions, 0, sizeof(ConvertActions));
189 // Set default actions for various operations.
190 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
191 // Default all indexed load / store to expand.
192 for (unsigned IM = (unsigned)ISD::PRE_INC;
193 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
194 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
195 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
198 // These operations default to expand.
199 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
202 // Most targets ignore the @llvm.prefetch intrinsic.
203 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
205 // ConstantFP nodes default to expand. Targets can either change this to
206 // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
207 // to optimize expansions for certain constants.
208 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
209 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
210 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
212 // Default ISD::TRAP to expand (which turns it into abort).
213 setOperationAction(ISD::TRAP, MVT::Other, Expand);
215 IsLittleEndian = TD->isLittleEndian();
216 UsesGlobalOffsetTable = false;
217 ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
218 ShiftAmtHandling = Undefined;
219 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
220 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
221 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
222 allowUnalignedMemoryAccesses = false;
223 UseUnderscoreSetJmp = false;
224 UseUnderscoreLongJmp = false;
225 SelectIsExpensive = false;
226 IntDivIsCheap = false;
227 Pow2DivIsCheap = false;
228 StackPointerRegisterToSaveRestore = 0;
229 ExceptionPointerRegister = 0;
230 ExceptionSelectorRegister = 0;
231 SetCCResultContents = UndefinedSetCCResult;
232 SchedPreferenceInfo = SchedulingForLatency;
234 JumpBufAlignment = 0;
235 IfCvtBlockSizeLimit = 2;
236 IfCvtDupBlockSizeLimit = 0;
237 PrefLoopAlignment = 0;
239 InitLibcallNames(LibcallRoutineNames);
240 InitCmpLibcallCCs(CmpLibcallCCs);
242 // Tell Legalize whether the assembler supports DEBUG_LOC.
243 if (!TM.getTargetAsmInfo()->hasDotLocAndDotFile())
244 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
247 TargetLowering::~TargetLowering() {}
249 /// computeRegisterProperties - Once all of the register classes are added,
250 /// this allows us to compute derived properties we expose.
251 void TargetLowering::computeRegisterProperties() {
252 assert(MVT::LAST_VALUETYPE <= 32 &&
253 "Too many value types for ValueTypeActions to hold!");
255 // Everything defaults to needing one register.
256 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
257 NumRegistersForVT[i] = 1;
258 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
260 // ...except isVoid, which doesn't need any registers.
261 NumRegistersForVT[MVT::isVoid] = 0;
263 // Find the largest integer register class.
264 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
265 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
266 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
268 // Every integer value type larger than this largest register takes twice as
269 // many registers to represent as the previous ValueType.
270 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
271 MVT EVT = (MVT::SimpleValueType)ExpandedReg;
272 if (!EVT.isInteger())
274 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
275 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
276 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
277 ValueTypeActions.setTypeAction(EVT, Expand);
280 // Inspect all of the ValueType's smaller than the largest integer
281 // register to see which ones need promotion.
282 unsigned LegalIntReg = LargestIntReg;
283 for (unsigned IntReg = LargestIntReg - 1;
284 IntReg >= (unsigned)MVT::i1; --IntReg) {
285 MVT IVT = (MVT::SimpleValueType)IntReg;
286 if (isTypeLegal(IVT)) {
287 LegalIntReg = IntReg;
289 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
290 (MVT::SimpleValueType)LegalIntReg;
291 ValueTypeActions.setTypeAction(IVT, Promote);
295 // ppcf128 type is really two f64's.
296 if (!isTypeLegal(MVT::ppcf128)) {
297 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
298 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
299 TransformToType[MVT::ppcf128] = MVT::f64;
300 ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
303 // Decide how to handle f64. If the target does not have native f64 support,
304 // expand it to i64 and we will be generating soft float library calls.
305 if (!isTypeLegal(MVT::f64)) {
306 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
307 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
308 TransformToType[MVT::f64] = MVT::i64;
309 ValueTypeActions.setTypeAction(MVT::f64, Expand);
312 // Decide how to handle f32. If the target does not have native support for
313 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
314 if (!isTypeLegal(MVT::f32)) {
315 if (isTypeLegal(MVT::f64)) {
316 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
317 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
318 TransformToType[MVT::f32] = MVT::f64;
319 ValueTypeActions.setTypeAction(MVT::f32, Promote);
321 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
322 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
323 TransformToType[MVT::f32] = MVT::i32;
324 ValueTypeActions.setTypeAction(MVT::f32, Expand);
328 // Loop over all of the vector value types to see which need transformations.
329 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
330 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
331 MVT VT = (MVT::SimpleValueType)i;
332 if (!isTypeLegal(VT)) {
333 MVT IntermediateVT, RegisterVT;
334 unsigned NumIntermediates;
335 NumRegistersForVT[i] =
336 getVectorTypeBreakdown(VT,
337 IntermediateVT, NumIntermediates,
339 RegisterTypeForVT[i] = RegisterVT;
340 TransformToType[i] = MVT::Other; // this isn't actually used
341 ValueTypeActions.setTypeAction(VT, Expand);
346 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
351 MVT TargetLowering::getSetCCResultType(const SDOperand &) const {
352 return getValueType(TD->getIntPtrType());
356 /// getVectorTypeBreakdown - Vector types are broken down into some number of
357 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
358 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
359 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
361 /// This method returns the number of registers needed, and the VT for each
362 /// register. It also returns the VT and quantity of the intermediate values
363 /// before they are promoted/expanded.
365 unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
367 unsigned &NumIntermediates,
368 MVT &RegisterVT) const {
369 // Figure out the right, legal destination reg to copy into.
370 unsigned NumElts = VT.getVectorNumElements();
371 MVT EltTy = VT.getVectorElementType();
373 unsigned NumVectorRegs = 1;
375 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
376 // could break down into LHS/RHS like LegalizeDAG does.
377 if (!isPowerOf2_32(NumElts)) {
378 NumVectorRegs = NumElts;
382 // Divide the input until we get to a supported size. This will always
383 // end with a scalar if the target doesn't support vectors.
384 while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
389 NumIntermediates = NumVectorRegs;
391 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
392 if (!isTypeLegal(NewVT))
394 IntermediateVT = NewVT;
396 MVT DestVT = getTypeToTransformTo(NewVT);
398 if (DestVT.bitsLT(NewVT)) {
399 // Value is expanded, e.g. i64 -> i16.
400 return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
402 // Otherwise, promotion or legal types use the same number of registers as
403 // the vector decimated to the appropriate level.
404 return NumVectorRegs;
410 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
411 /// function arguments in the caller parameter area. This is the actual
412 /// alignment, not its logarithm.
413 unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
414 return TD->getCallFrameTypeAlignment(Ty);
417 SDOperand TargetLowering::getPICJumpTableRelocBase(SDOperand Table,
418 SelectionDAG &DAG) const {
419 if (usesGlobalOffsetTable())
420 return DAG.getNode(ISD::GLOBAL_OFFSET_TABLE, getPointerTy());
424 //===----------------------------------------------------------------------===//
425 // Optimization Methods
426 //===----------------------------------------------------------------------===//
428 /// ShrinkDemandedConstant - Check to see if the specified operand of the
429 /// specified instruction is a constant integer. If so, check to see if there
430 /// are any bits set in the constant that are not demanded. If so, shrink the
431 /// constant and return true.
432 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDOperand Op,
433 const APInt &Demanded) {
434 // FIXME: ISD::SELECT, ISD::SELECT_CC
435 switch(Op.getOpcode()) {
440 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
441 if (C->getAPIntValue().intersects(~Demanded)) {
442 MVT VT = Op.getValueType();
443 SDOperand New = DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
444 DAG.getConstant(Demanded &
447 return CombineTo(Op, New);
454 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
455 /// DemandedMask bits of the result of Op are ever used downstream. If we can
456 /// use this information to simplify Op, create a new simplified DAG node and
457 /// return true, returning the original and new nodes in Old and New. Otherwise,
458 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
459 /// the expression (used to simplify the caller). The KnownZero/One bits may
460 /// only be accurate for those bits in the DemandedMask.
461 bool TargetLowering::SimplifyDemandedBits(SDOperand Op,
462 const APInt &DemandedMask,
465 TargetLoweringOpt &TLO,
466 unsigned Depth) const {
467 unsigned BitWidth = DemandedMask.getBitWidth();
468 assert(Op.getValueSizeInBits() == BitWidth &&
469 "Mask size mismatches value type size!");
470 APInt NewMask = DemandedMask;
472 // Don't know anything.
473 KnownZero = KnownOne = APInt(BitWidth, 0);
475 // Other users may use these bits.
476 if (!Op.Val->hasOneUse()) {
478 // If not at the root, Just compute the KnownZero/KnownOne bits to
479 // simplify things downstream.
480 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
483 // If this is the root being simplified, allow it to have multiple uses,
484 // just set the NewMask to all bits.
485 NewMask = APInt::getAllOnesValue(BitWidth);
486 } else if (DemandedMask == 0) {
487 // Not demanding any bits from Op.
488 if (Op.getOpcode() != ISD::UNDEF)
489 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::UNDEF, Op.getValueType()));
491 } else if (Depth == 6) { // Limit search depth.
495 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
496 switch (Op.getOpcode()) {
498 // We know all of the bits for a constant!
499 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
500 KnownZero = ~KnownOne & NewMask;
501 return false; // Don't fall through, will infinitely loop.
503 // If the RHS is a constant, check to see if the LHS would be zero without
504 // using the bits from the RHS. Below, we use knowledge about the RHS to
505 // simplify the LHS, here we're using information from the LHS to simplify
507 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
508 APInt LHSZero, LHSOne;
509 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
510 LHSZero, LHSOne, Depth+1);
511 // If the LHS already has zeros where RHSC does, this and is dead.
512 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
513 return TLO.CombineTo(Op, Op.getOperand(0));
514 // If any of the set bits in the RHS are known zero on the LHS, shrink
516 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
520 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
521 KnownOne, TLO, Depth+1))
523 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
524 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
525 KnownZero2, KnownOne2, TLO, Depth+1))
527 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
529 // If all of the demanded bits are known one on one side, return the other.
530 // These bits cannot contribute to the result of the 'and'.
531 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
532 return TLO.CombineTo(Op, Op.getOperand(0));
533 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
534 return TLO.CombineTo(Op, Op.getOperand(1));
535 // If all of the demanded bits in the inputs are known zeros, return zero.
536 if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
537 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
538 // If the RHS is a constant, see if we can simplify it.
539 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
542 // Output known-1 bits are only known if set in both the LHS & RHS.
543 KnownOne &= KnownOne2;
544 // Output known-0 are known to be clear if zero in either the LHS | RHS.
545 KnownZero |= KnownZero2;
548 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
549 KnownOne, TLO, Depth+1))
551 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
552 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
553 KnownZero2, KnownOne2, TLO, Depth+1))
555 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
557 // If all of the demanded bits are known zero on one side, return the other.
558 // These bits cannot contribute to the result of the 'or'.
559 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
560 return TLO.CombineTo(Op, Op.getOperand(0));
561 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
562 return TLO.CombineTo(Op, Op.getOperand(1));
563 // If all of the potentially set bits on one side are known to be set on
564 // the other side, just use the 'other' side.
565 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
566 return TLO.CombineTo(Op, Op.getOperand(0));
567 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
568 return TLO.CombineTo(Op, Op.getOperand(1));
569 // If the RHS is a constant, see if we can simplify it.
570 if (TLO.ShrinkDemandedConstant(Op, NewMask))
573 // Output known-0 bits are only known if clear in both the LHS & RHS.
574 KnownZero &= KnownZero2;
575 // Output known-1 are known to be set if set in either the LHS | RHS.
576 KnownOne |= KnownOne2;
579 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
580 KnownOne, TLO, Depth+1))
582 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
583 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
584 KnownOne2, TLO, Depth+1))
586 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
588 // If all of the demanded bits are known zero on one side, return the other.
589 // These bits cannot contribute to the result of the 'xor'.
590 if ((KnownZero & NewMask) == NewMask)
591 return TLO.CombineTo(Op, Op.getOperand(0));
592 if ((KnownZero2 & NewMask) == NewMask)
593 return TLO.CombineTo(Op, Op.getOperand(1));
595 // If all of the unknown bits are known to be zero on one side or the other
596 // (but not both) turn this into an *inclusive* or.
597 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
598 if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
599 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, Op.getValueType(),
603 // Output known-0 bits are known if clear or set in both the LHS & RHS.
604 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
605 // Output known-1 are known to be set if set in only one of the LHS, RHS.
606 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
608 // If all of the demanded bits on one side are known, and all of the set
609 // bits on that side are also known to be set on the other side, turn this
610 // into an AND, as we know the bits will be cleared.
611 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
612 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
613 if ((KnownOne & KnownOne2) == KnownOne) {
614 MVT VT = Op.getValueType();
615 SDOperand ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
616 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, VT, Op.getOperand(0),
621 // If the RHS is a constant, see if we can simplify it.
622 // for XOR, we prefer to force bits to 1 if they will make a -1.
623 // if we can't force bits, try to shrink constant
624 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
625 APInt Expanded = C->getAPIntValue() | (~NewMask);
626 // if we can expand it to have all bits set, do it
627 if (Expanded.isAllOnesValue()) {
628 if (Expanded != C->getAPIntValue()) {
629 MVT VT = Op.getValueType();
630 SDOperand New = TLO.DAG.getNode(Op.getOpcode(), VT, Op.getOperand(0),
631 TLO.DAG.getConstant(Expanded, VT));
632 return TLO.CombineTo(Op, New);
634 // if it already has all the bits set, nothing to change
635 // but don't shrink either!
636 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
641 KnownZero = KnownZeroOut;
642 KnownOne = KnownOneOut;
645 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
646 KnownOne, TLO, Depth+1))
648 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
649 KnownOne2, TLO, Depth+1))
651 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
652 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
654 // If the operands are constants, see if we can simplify them.
655 if (TLO.ShrinkDemandedConstant(Op, NewMask))
658 // Only known if known in both the LHS and RHS.
659 KnownOne &= KnownOne2;
660 KnownZero &= KnownZero2;
663 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
664 KnownOne, TLO, Depth+1))
666 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
667 KnownOne2, TLO, Depth+1))
669 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
670 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
672 // If the operands are constants, see if we can simplify them.
673 if (TLO.ShrinkDemandedConstant(Op, NewMask))
676 // Only known if known in both the LHS and RHS.
677 KnownOne &= KnownOne2;
678 KnownZero &= KnownZero2;
681 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
682 unsigned ShAmt = SA->getValue();
683 SDOperand InOp = Op.getOperand(0);
685 // If the shift count is an invalid immediate, don't do anything.
686 if (ShAmt >= BitWidth)
689 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
690 // single shift. We can do this if the bottom bits (which are shifted
691 // out) are never demanded.
692 if (InOp.getOpcode() == ISD::SRL &&
693 isa<ConstantSDNode>(InOp.getOperand(1))) {
694 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
695 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
696 unsigned Opc = ISD::SHL;
704 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
705 MVT VT = Op.getValueType();
706 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
707 InOp.getOperand(0), NewSA));
711 if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
712 KnownZero, KnownOne, TLO, Depth+1))
714 KnownZero <<= SA->getValue();
715 KnownOne <<= SA->getValue();
716 // low bits known zero.
717 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getValue());
721 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
722 MVT VT = Op.getValueType();
723 unsigned ShAmt = SA->getValue();
724 unsigned VTSize = VT.getSizeInBits();
725 SDOperand InOp = Op.getOperand(0);
727 // If the shift count is an invalid immediate, don't do anything.
728 if (ShAmt >= BitWidth)
731 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
732 // single shift. We can do this if the top bits (which are shifted out)
733 // are never demanded.
734 if (InOp.getOpcode() == ISD::SHL &&
735 isa<ConstantSDNode>(InOp.getOperand(1))) {
736 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
737 unsigned C1 = cast<ConstantSDNode>(InOp.getOperand(1))->getValue();
738 unsigned Opc = ISD::SRL;
746 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
747 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, VT,
748 InOp.getOperand(0), NewSA));
752 // Compute the new bits that are at the top now.
753 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
754 KnownZero, KnownOne, TLO, Depth+1))
756 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
757 KnownZero = KnownZero.lshr(ShAmt);
758 KnownOne = KnownOne.lshr(ShAmt);
760 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
761 KnownZero |= HighBits; // High bits known zero.
765 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
766 MVT VT = Op.getValueType();
767 unsigned ShAmt = SA->getValue();
769 // If the shift count is an invalid immediate, don't do anything.
770 if (ShAmt >= BitWidth)
773 APInt InDemandedMask = (NewMask << ShAmt);
775 // If any of the demanded bits are produced by the sign extension, we also
776 // demand the input sign bit.
777 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
778 if (HighBits.intersects(NewMask))
779 InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
781 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
782 KnownZero, KnownOne, TLO, Depth+1))
784 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
785 KnownZero = KnownZero.lshr(ShAmt);
786 KnownOne = KnownOne.lshr(ShAmt);
788 // Handle the sign bit, adjusted to where it is now in the mask.
789 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
791 // If the input sign bit is known to be zero, or if none of the top bits
792 // are demanded, turn this into an unsigned shift right.
793 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
794 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, VT, Op.getOperand(0),
796 } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
797 KnownOne |= HighBits;
801 case ISD::SIGN_EXTEND_INREG: {
802 MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
804 // Sign extension. Compute the demanded bits in the result that are not
805 // present in the input.
806 APInt NewBits = APInt::getHighBitsSet(BitWidth,
807 BitWidth - EVT.getSizeInBits()) &
810 // If none of the extended bits are demanded, eliminate the sextinreg.
812 return TLO.CombineTo(Op, Op.getOperand(0));
814 APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
815 InSignBit.zext(BitWidth);
816 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
817 EVT.getSizeInBits()) &
820 // Since the sign extended bits are demanded, we know that the sign
822 InputDemandedBits |= InSignBit;
824 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
825 KnownZero, KnownOne, TLO, Depth+1))
827 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
829 // If the sign bit of the input is known set or clear, then we know the
830 // top bits of the result.
832 // If the input sign bit is known zero, convert this into a zero extension.
833 if (KnownZero.intersects(InSignBit))
834 return TLO.CombineTo(Op,
835 TLO.DAG.getZeroExtendInReg(Op.getOperand(0), EVT));
837 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
839 KnownZero &= ~NewBits;
840 } else { // Input sign bit unknown
841 KnownZero &= ~NewBits;
842 KnownOne &= ~NewBits;
846 case ISD::ZERO_EXTEND: {
847 unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
848 APInt InMask = NewMask;
849 InMask.trunc(OperandBitWidth);
851 // If none of the top bits are demanded, convert this into an any_extend.
853 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
854 if (!NewBits.intersects(NewMask))
855 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND,
859 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
860 KnownZero, KnownOne, TLO, Depth+1))
862 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
863 KnownZero.zext(BitWidth);
864 KnownOne.zext(BitWidth);
865 KnownZero |= NewBits;
868 case ISD::SIGN_EXTEND: {
869 MVT InVT = Op.getOperand(0).getValueType();
870 unsigned InBits = InVT.getSizeInBits();
871 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
872 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
873 APInt NewBits = ~InMask & NewMask;
875 // If none of the top bits are demanded, convert this into an any_extend.
877 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND,Op.getValueType(),
880 // Since some of the sign extended bits are demanded, we know that the sign
882 APInt InDemandedBits = InMask & NewMask;
883 InDemandedBits |= InSignBit;
884 InDemandedBits.trunc(InBits);
886 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
887 KnownOne, TLO, Depth+1))
889 KnownZero.zext(BitWidth);
890 KnownOne.zext(BitWidth);
892 // If the sign bit is known zero, convert this to a zero extend.
893 if (KnownZero.intersects(InSignBit))
894 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND,
898 // If the sign bit is known one, the top bits match.
899 if (KnownOne.intersects(InSignBit)) {
901 KnownZero &= ~NewBits;
902 } else { // Otherwise, top bits aren't known.
903 KnownOne &= ~NewBits;
904 KnownZero &= ~NewBits;
908 case ISD::ANY_EXTEND: {
909 unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
910 APInt InMask = NewMask;
911 InMask.trunc(OperandBitWidth);
912 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
913 KnownZero, KnownOne, TLO, Depth+1))
915 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
916 KnownZero.zext(BitWidth);
917 KnownOne.zext(BitWidth);
920 case ISD::TRUNCATE: {
921 // Simplify the input, using demanded bit information, and compute the known
922 // zero/one bits live out.
923 APInt TruncMask = NewMask;
924 TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
925 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
926 KnownZero, KnownOne, TLO, Depth+1))
928 KnownZero.trunc(BitWidth);
929 KnownOne.trunc(BitWidth);
931 // If the input is only used by this truncate, see if we can shrink it based
932 // on the known demanded bits.
933 if (Op.getOperand(0).Val->hasOneUse()) {
934 SDOperand In = Op.getOperand(0);
935 unsigned InBitWidth = In.getValueSizeInBits();
936 switch (In.getOpcode()) {
939 // Shrink SRL by a constant if none of the high bits shifted in are
941 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
942 APInt HighBits = APInt::getHighBitsSet(InBitWidth,
943 InBitWidth - BitWidth);
944 HighBits = HighBits.lshr(ShAmt->getValue());
945 HighBits.trunc(BitWidth);
947 if (ShAmt->getValue() < BitWidth && !(HighBits & NewMask)) {
948 // None of the shifted in bits are needed. Add a truncate of the
949 // shift input, then shift it.
950 SDOperand NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE,
953 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL,Op.getValueType(),
954 NewTrunc, In.getOperand(1)));
961 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
964 case ISD::AssertZext: {
965 MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
966 APInt InMask = APInt::getLowBitsSet(BitWidth,
968 if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
969 KnownZero, KnownOne, TLO, Depth+1))
971 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
972 KnownZero |= ~InMask & NewMask;
975 case ISD::BIT_CONVERT:
977 // If this is an FP->Int bitcast and if the sign bit is the only thing that
978 // is demanded, turn this into a FGETSIGN.
979 if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
980 MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
981 !MVT::isVector(Op.getOperand(0).getValueType())) {
982 // Only do this xform if FGETSIGN is valid or if before legalize.
983 if (!TLO.AfterLegalize ||
984 isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
985 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
986 // place. We expect the SHL to be eliminated by other optimizations.
987 SDOperand Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
989 unsigned ShVal = Op.getValueType().getSizeInBits()-1;
990 SDOperand ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
991 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
998 // Just use ComputeMaskedBits to compute output bits.
999 TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1003 // If we know the value of all of the demanded bits, return this as a
1005 if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1006 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1011 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1012 /// in Mask are known to be either zero or one and return them in the
1013 /// KnownZero/KnownOne bitsets.
1014 void TargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
1018 const SelectionDAG &DAG,
1019 unsigned Depth) const {
1020 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1021 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1022 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1023 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1024 "Should use MaskedValueIsZero if you don't know whether Op"
1025 " is a target node!");
1026 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1029 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1030 /// targets that want to expose additional information about sign bits to the
1032 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDOperand Op,
1033 unsigned Depth) const {
1034 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1035 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1036 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1037 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1038 "Should use ComputeNumSignBits if you don't know whether Op"
1039 " is a target node!");
1044 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1045 /// and cc. If it is unable to simplify it, return a null SDOperand.
1047 TargetLowering::SimplifySetCC(MVT VT, SDOperand N0, SDOperand N1,
1048 ISD::CondCode Cond, bool foldBooleans,
1049 DAGCombinerInfo &DCI) const {
1050 SelectionDAG &DAG = DCI.DAG;
1052 // These setcc operations always fold.
1056 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1058 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1061 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val)) {
1062 const APInt &C1 = N1C->getAPIntValue();
1063 if (isa<ConstantSDNode>(N0.Val)) {
1064 return DAG.FoldSetCC(VT, N0, N1, Cond);
1066 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1067 // equality comparison, then we're just comparing whether X itself is
1069 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1070 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1071 N0.getOperand(1).getOpcode() == ISD::Constant) {
1072 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getValue();
1073 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1074 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1075 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1076 // (srl (ctlz x), 5) == 0 -> X != 0
1077 // (srl (ctlz x), 5) != 1 -> X != 0
1080 // (srl (ctlz x), 5) != 0 -> X == 0
1081 // (srl (ctlz x), 5) == 1 -> X == 0
1084 SDOperand Zero = DAG.getConstant(0, N0.getValueType());
1085 return DAG.getSetCC(VT, N0.getOperand(0).getOperand(0),
1090 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1091 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1092 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1094 // If the comparison constant has bits in the upper part, the
1095 // zero-extended value could never match.
1096 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1097 C1.getBitWidth() - InSize))) {
1101 case ISD::SETEQ: return DAG.getConstant(0, VT);
1104 case ISD::SETNE: return DAG.getConstant(1, VT);
1107 // True if the sign bit of C1 is set.
1108 return DAG.getConstant(C1.isNegative(), VT);
1111 // True if the sign bit of C1 isn't set.
1112 return DAG.getConstant(C1.isNonNegative(), VT);
1118 // Otherwise, we can perform the comparison with the low bits.
1126 return DAG.getSetCC(VT, N0.getOperand(0),
1127 DAG.getConstant(APInt(C1).trunc(InSize),
1128 N0.getOperand(0).getValueType()),
1131 break; // todo, be more careful with signed comparisons
1133 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1134 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1135 MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1136 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1137 MVT ExtDstTy = N0.getValueType();
1138 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1140 // If the extended part has any inconsistent bits, it cannot ever
1141 // compare equal. In other words, they have to be all ones or all
1144 APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1145 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1146 return DAG.getConstant(Cond == ISD::SETNE, VT);
1149 MVT Op0Ty = N0.getOperand(0).getValueType();
1150 if (Op0Ty == ExtSrcTy) {
1151 ZextOp = N0.getOperand(0);
1153 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1154 ZextOp = DAG.getNode(ISD::AND, Op0Ty, N0.getOperand(0),
1155 DAG.getConstant(Imm, Op0Ty));
1157 if (!DCI.isCalledByLegalizer())
1158 DCI.AddToWorklist(ZextOp.Val);
1159 // Otherwise, make this a use of a zext.
1160 return DAG.getSetCC(VT, ZextOp,
1161 DAG.getConstant(C1 & APInt::getLowBitsSet(
1166 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1167 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1169 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1170 if (N0.getOpcode() == ISD::SETCC) {
1171 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getValue() != 1);
1175 // Invert the condition.
1176 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1177 CC = ISD::getSetCCInverse(CC,
1178 N0.getOperand(0).getValueType().isInteger());
1179 return DAG.getSetCC(VT, N0.getOperand(0), N0.getOperand(1), CC);
1182 if ((N0.getOpcode() == ISD::XOR ||
1183 (N0.getOpcode() == ISD::AND &&
1184 N0.getOperand(0).getOpcode() == ISD::XOR &&
1185 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1186 isa<ConstantSDNode>(N0.getOperand(1)) &&
1187 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1188 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1189 // can only do this if the top bits are known zero.
1190 unsigned BitWidth = N0.getValueSizeInBits();
1191 if (DAG.MaskedValueIsZero(N0,
1192 APInt::getHighBitsSet(BitWidth,
1194 // Okay, get the un-inverted input value.
1196 if (N0.getOpcode() == ISD::XOR)
1197 Val = N0.getOperand(0);
1199 assert(N0.getOpcode() == ISD::AND &&
1200 N0.getOperand(0).getOpcode() == ISD::XOR);
1201 // ((X^1)&1)^1 -> X & 1
1202 Val = DAG.getNode(ISD::AND, N0.getValueType(),
1203 N0.getOperand(0).getOperand(0),
1206 return DAG.getSetCC(VT, Val, N1,
1207 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1212 APInt MinVal, MaxVal;
1213 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1214 if (ISD::isSignedIntSetCC(Cond)) {
1215 MinVal = APInt::getSignedMinValue(OperandBitSize);
1216 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1218 MinVal = APInt::getMinValue(OperandBitSize);
1219 MaxVal = APInt::getMaxValue(OperandBitSize);
1222 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1223 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1224 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1225 // X >= C0 --> X > (C0-1)
1226 return DAG.getSetCC(VT, N0, DAG.getConstant(C1-1, N1.getValueType()),
1227 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1230 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1231 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1232 // X <= C0 --> X < (C0+1)
1233 return DAG.getSetCC(VT, N0, DAG.getConstant(C1+1, N1.getValueType()),
1234 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1237 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1238 return DAG.getConstant(0, VT); // X < MIN --> false
1239 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1240 return DAG.getConstant(1, VT); // X >= MIN --> true
1241 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1242 return DAG.getConstant(0, VT); // X > MAX --> false
1243 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1244 return DAG.getConstant(1, VT); // X <= MAX --> true
1246 // Canonicalize setgt X, Min --> setne X, Min
1247 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1248 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1249 // Canonicalize setlt X, Max --> setne X, Max
1250 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1251 return DAG.getSetCC(VT, N0, N1, ISD::SETNE);
1253 // If we have setult X, 1, turn it into seteq X, 0
1254 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1255 return DAG.getSetCC(VT, N0, DAG.getConstant(MinVal, N0.getValueType()),
1257 // If we have setugt X, Max-1, turn it into seteq X, Max
1258 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1259 return DAG.getSetCC(VT, N0, DAG.getConstant(MaxVal, N0.getValueType()),
1262 // If we have "setcc X, C0", check to see if we can shrink the immediate
1265 // SETUGT X, SINTMAX -> SETLT X, 0
1266 if (Cond == ISD::SETUGT && OperandBitSize != 1 &&
1267 C1 == (~0ULL >> (65-OperandBitSize)))
1268 return DAG.getSetCC(VT, N0, DAG.getConstant(0, N1.getValueType()),
1271 // FIXME: Implement the rest of these.
1273 // Fold bit comparisons when we can.
1274 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1275 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1276 if (ConstantSDNode *AndRHS =
1277 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1278 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1279 // Perform the xform if the AND RHS is a single bit.
1280 if (isPowerOf2_64(AndRHS->getValue())) {
1281 return DAG.getNode(ISD::SRL, VT, N0,
1282 DAG.getConstant(Log2_64(AndRHS->getValue()),
1283 getShiftAmountTy()));
1285 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getValue()) {
1286 // (X & 8) == 8 --> (X & 8) >> 3
1287 // Perform the xform if C1 is a single bit.
1288 if (C1.isPowerOf2()) {
1289 return DAG.getNode(ISD::SRL, VT, N0,
1290 DAG.getConstant(C1.logBase2(), getShiftAmountTy()));
1295 } else if (isa<ConstantSDNode>(N0.Val)) {
1296 // Ensure that the constant occurs on the RHS.
1297 return DAG.getSetCC(VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1300 if (isa<ConstantFPSDNode>(N0.Val)) {
1301 // Constant fold or commute setcc.
1302 SDOperand O = DAG.FoldSetCC(VT, N0, N1, Cond);
1303 if (O.Val) return O;
1304 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.Val)) {
1305 // If the RHS of an FP comparison is a constant, simplify it away in
1307 if (CFP->getValueAPF().isNaN()) {
1308 // If an operand is known to be a nan, we can fold it.
1309 switch (ISD::getUnorderedFlavor(Cond)) {
1310 default: assert(0 && "Unknown flavor!");
1311 case 0: // Known false.
1312 return DAG.getConstant(0, VT);
1313 case 1: // Known true.
1314 return DAG.getConstant(1, VT);
1315 case 2: // Undefined.
1316 return DAG.getNode(ISD::UNDEF, VT);
1320 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
1321 // constant if knowing that the operand is non-nan is enough. We prefer to
1322 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1324 if (Cond == ISD::SETO || Cond == ISD::SETUO)
1325 return DAG.getSetCC(VT, N0, N0, Cond);
1329 // We can always fold X == X for integer setcc's.
1330 if (N0.getValueType().isInteger())
1331 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1332 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1333 if (UOF == 2) // FP operators that are undefined on NaNs.
1334 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1335 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1336 return DAG.getConstant(UOF, VT);
1337 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1338 // if it is not already.
1339 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1340 if (NewCond != Cond)
1341 return DAG.getSetCC(VT, N0, N1, NewCond);
1344 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1345 N0.getValueType().isInteger()) {
1346 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1347 N0.getOpcode() == ISD::XOR) {
1348 // Simplify (X+Y) == (X+Z) --> Y == Z
1349 if (N0.getOpcode() == N1.getOpcode()) {
1350 if (N0.getOperand(0) == N1.getOperand(0))
1351 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(1), Cond);
1352 if (N0.getOperand(1) == N1.getOperand(1))
1353 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(0), Cond);
1354 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1355 // If X op Y == Y op X, try other combinations.
1356 if (N0.getOperand(0) == N1.getOperand(1))
1357 return DAG.getSetCC(VT, N0.getOperand(1), N1.getOperand(0), Cond);
1358 if (N0.getOperand(1) == N1.getOperand(0))
1359 return DAG.getSetCC(VT, N0.getOperand(0), N1.getOperand(1), Cond);
1363 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1364 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1365 // Turn (X+C1) == C2 --> X == C2-C1
1366 if (N0.getOpcode() == ISD::ADD && N0.Val->hasOneUse()) {
1367 return DAG.getSetCC(VT, N0.getOperand(0),
1368 DAG.getConstant(RHSC->getValue()-LHSR->getValue(),
1369 N0.getValueType()), Cond);
1372 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1373 if (N0.getOpcode() == ISD::XOR)
1374 // If we know that all of the inverted bits are zero, don't bother
1375 // performing the inversion.
1376 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1378 DAG.getSetCC(VT, N0.getOperand(0),
1379 DAG.getConstant(LHSR->getAPIntValue() ^
1380 RHSC->getAPIntValue(),
1385 // Turn (C1-X) == C2 --> X == C1-C2
1386 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1387 if (N0.getOpcode() == ISD::SUB && N0.Val->hasOneUse()) {
1389 DAG.getSetCC(VT, N0.getOperand(1),
1390 DAG.getConstant(SUBC->getAPIntValue() -
1391 RHSC->getAPIntValue(),
1398 // Simplify (X+Z) == X --> Z == 0
1399 if (N0.getOperand(0) == N1)
1400 return DAG.getSetCC(VT, N0.getOperand(1),
1401 DAG.getConstant(0, N0.getValueType()), Cond);
1402 if (N0.getOperand(1) == N1) {
1403 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1404 return DAG.getSetCC(VT, N0.getOperand(0),
1405 DAG.getConstant(0, N0.getValueType()), Cond);
1406 else if (N0.Val->hasOneUse()) {
1407 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1408 // (Z-X) == X --> Z == X<<1
1409 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(),
1411 DAG.getConstant(1, getShiftAmountTy()));
1412 if (!DCI.isCalledByLegalizer())
1413 DCI.AddToWorklist(SH.Val);
1414 return DAG.getSetCC(VT, N0.getOperand(0), SH, Cond);
1419 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1420 N1.getOpcode() == ISD::XOR) {
1421 // Simplify X == (X+Z) --> Z == 0
1422 if (N1.getOperand(0) == N0) {
1423 return DAG.getSetCC(VT, N1.getOperand(1),
1424 DAG.getConstant(0, N1.getValueType()), Cond);
1425 } else if (N1.getOperand(1) == N0) {
1426 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1427 return DAG.getSetCC(VT, N1.getOperand(0),
1428 DAG.getConstant(0, N1.getValueType()), Cond);
1429 } else if (N1.Val->hasOneUse()) {
1430 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1431 // X == (Z-X) --> X<<1 == Z
1432 SDOperand SH = DAG.getNode(ISD::SHL, N1.getValueType(), N0,
1433 DAG.getConstant(1, getShiftAmountTy()));
1434 if (!DCI.isCalledByLegalizer())
1435 DCI.AddToWorklist(SH.Val);
1436 return DAG.getSetCC(VT, SH, N1.getOperand(0), Cond);
1442 // Fold away ALL boolean setcc's.
1444 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1446 default: assert(0 && "Unknown integer setcc!");
1447 case ISD::SETEQ: // X == Y -> (X^Y)^1
1448 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1449 N0 = DAG.getNode(ISD::XOR, MVT::i1, Temp, DAG.getConstant(1, MVT::i1));
1450 if (!DCI.isCalledByLegalizer())
1451 DCI.AddToWorklist(Temp.Val);
1453 case ISD::SETNE: // X != Y --> (X^Y)
1454 N0 = DAG.getNode(ISD::XOR, MVT::i1, N0, N1);
1456 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> X^1 & Y
1457 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> X^1 & Y
1458 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1459 N0 = DAG.getNode(ISD::AND, MVT::i1, N1, Temp);
1460 if (!DCI.isCalledByLegalizer())
1461 DCI.AddToWorklist(Temp.Val);
1463 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> Y^1 & X
1464 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> Y^1 & X
1465 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1466 N0 = DAG.getNode(ISD::AND, MVT::i1, N0, Temp);
1467 if (!DCI.isCalledByLegalizer())
1468 DCI.AddToWorklist(Temp.Val);
1470 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> X^1 | Y
1471 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> X^1 | Y
1472 Temp = DAG.getNode(ISD::XOR, MVT::i1, N0, DAG.getConstant(1, MVT::i1));
1473 N0 = DAG.getNode(ISD::OR, MVT::i1, N1, Temp);
1474 if (!DCI.isCalledByLegalizer())
1475 DCI.AddToWorklist(Temp.Val);
1477 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> Y^1 | X
1478 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> Y^1 | X
1479 Temp = DAG.getNode(ISD::XOR, MVT::i1, N1, DAG.getConstant(1, MVT::i1));
1480 N0 = DAG.getNode(ISD::OR, MVT::i1, N0, Temp);
1483 if (VT != MVT::i1) {
1484 if (!DCI.isCalledByLegalizer())
1485 DCI.AddToWorklist(N0.Val);
1486 // FIXME: If running after legalize, we probably can't do this.
1487 N0 = DAG.getNode(ISD::ZERO_EXTEND, VT, N0);
1492 // Could not fold it.
1496 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1497 /// node is a GlobalAddress + offset.
1498 bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1499 int64_t &Offset) const {
1500 if (isa<GlobalAddressSDNode>(N)) {
1501 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1502 GA = GASD->getGlobal();
1503 Offset += GASD->getOffset();
1507 if (N->getOpcode() == ISD::ADD) {
1508 SDOperand N1 = N->getOperand(0);
1509 SDOperand N2 = N->getOperand(1);
1510 if (isGAPlusOffset(N1.Val, GA, Offset)) {
1511 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1513 Offset += V->getSignExtended();
1516 } else if (isGAPlusOffset(N2.Val, GA, Offset)) {
1517 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1519 Offset += V->getSignExtended();
1528 /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1529 /// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1530 /// location that the 'Base' load is loading from.
1531 bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1532 unsigned Bytes, int Dist,
1533 const MachineFrameInfo *MFI) const {
1534 if (LD->getOperand(0).Val != Base->getOperand(0).Val)
1536 MVT VT = LD->getValueType(0);
1537 if (VT.getSizeInBits() / 8 != Bytes)
1540 SDOperand Loc = LD->getOperand(1);
1541 SDOperand BaseLoc = Base->getOperand(1);
1542 if (Loc.getOpcode() == ISD::FrameIndex) {
1543 if (BaseLoc.getOpcode() != ISD::FrameIndex)
1545 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
1546 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
1547 int FS = MFI->getObjectSize(FI);
1548 int BFS = MFI->getObjectSize(BFI);
1549 if (FS != BFS || FS != (int)Bytes) return false;
1550 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
1553 GlobalValue *GV1 = NULL;
1554 GlobalValue *GV2 = NULL;
1555 int64_t Offset1 = 0;
1556 int64_t Offset2 = 0;
1557 bool isGA1 = isGAPlusOffset(Loc.Val, GV1, Offset1);
1558 bool isGA2 = isGAPlusOffset(BaseLoc.Val, GV2, Offset2);
1559 if (isGA1 && isGA2 && GV1 == GV2)
1560 return Offset1 == (Offset2 + Dist*Bytes);
1565 SDOperand TargetLowering::
1566 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
1567 // Default implementation: no optimization.
1571 //===----------------------------------------------------------------------===//
1572 // Inline Assembler Implementation Methods
1573 //===----------------------------------------------------------------------===//
1576 TargetLowering::ConstraintType
1577 TargetLowering::getConstraintType(const std::string &Constraint) const {
1578 // FIXME: lots more standard ones to handle.
1579 if (Constraint.size() == 1) {
1580 switch (Constraint[0]) {
1582 case 'r': return C_RegisterClass;
1584 case 'o': // offsetable
1585 case 'V': // not offsetable
1587 case 'i': // Simple Integer or Relocatable Constant
1588 case 'n': // Simple Integer
1589 case 's': // Relocatable Constant
1590 case 'X': // Allow ANY value.
1591 case 'I': // Target registers.
1603 if (Constraint.size() > 1 && Constraint[0] == '{' &&
1604 Constraint[Constraint.size()-1] == '}')
1609 /// LowerXConstraint - try to replace an X constraint, which matches anything,
1610 /// with another that has more specific requirements based on the type of the
1611 /// corresponding operand.
1612 const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
1613 if (ConstraintVT.isInteger())
1615 if (ConstraintVT.isFloatingPoint())
1616 return "f"; // works for many targets
1620 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
1621 /// vector. If it is invalid, don't add anything to Ops.
1622 void TargetLowering::LowerAsmOperandForConstraint(SDOperand Op,
1623 char ConstraintLetter,
1624 std::vector<SDOperand> &Ops,
1625 SelectionDAG &DAG) const {
1626 switch (ConstraintLetter) {
1628 case 'X': // Allows any operand; labels (basic block) use this.
1629 if (Op.getOpcode() == ISD::BasicBlock) {
1634 case 'i': // Simple Integer or Relocatable Constant
1635 case 'n': // Simple Integer
1636 case 's': { // Relocatable Constant
1637 // These operands are interested in values of the form (GV+C), where C may
1638 // be folded in as an offset of GV, or it may be explicitly added. Also, it
1639 // is possible and fine if either GV or C are missing.
1640 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1641 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
1643 // If we have "(add GV, C)", pull out GV/C
1644 if (Op.getOpcode() == ISD::ADD) {
1645 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
1646 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
1647 if (C == 0 || GA == 0) {
1648 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
1649 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
1651 if (C == 0 || GA == 0)
1655 // If we find a valid operand, map to the TargetXXX version so that the
1656 // value itself doesn't get selected.
1657 if (GA) { // Either &GV or &GV+C
1658 if (ConstraintLetter != 'n') {
1659 int64_t Offs = GA->getOffset();
1660 if (C) Offs += C->getValue();
1661 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
1662 Op.getValueType(), Offs));
1666 if (C) { // just C, no GV.
1667 // Simple constants are not allowed for 's'.
1668 if (ConstraintLetter != 's') {
1669 Ops.push_back(DAG.getTargetConstant(C->getValue(), Op.getValueType()));
1678 std::vector<unsigned> TargetLowering::
1679 getRegClassForInlineAsmConstraint(const std::string &Constraint,
1681 return std::vector<unsigned>();
1685 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
1686 getRegForInlineAsmConstraint(const std::string &Constraint,
1688 if (Constraint[0] != '{')
1689 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1690 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
1692 // Remove the braces from around the name.
1693 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
1695 // Figure out which register class contains this reg.
1696 const TargetRegisterInfo *RI = TM.getRegisterInfo();
1697 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
1698 E = RI->regclass_end(); RCI != E; ++RCI) {
1699 const TargetRegisterClass *RC = *RCI;
1701 // If none of the the value types for this register class are valid, we
1702 // can't use it. For example, 64-bit reg classes on 32-bit targets.
1703 bool isLegal = false;
1704 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1706 if (isTypeLegal(*I)) {
1712 if (!isLegal) continue;
1714 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
1716 if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
1717 return std::make_pair(*I, RC);
1721 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
1724 //===----------------------------------------------------------------------===//
1725 // Constraint Selection.
1727 /// getConstraintGenerality - Return an integer indicating how general CT
1729 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
1731 default: assert(0 && "Unknown constraint type!");
1732 case TargetLowering::C_Other:
1733 case TargetLowering::C_Unknown:
1735 case TargetLowering::C_Register:
1737 case TargetLowering::C_RegisterClass:
1739 case TargetLowering::C_Memory:
1744 /// ChooseConstraint - If there are multiple different constraints that we
1745 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
1746 /// This is somewhat tricky: constraints fall into four classes:
1747 /// Other -> immediates and magic values
1748 /// Register -> one specific register
1749 /// RegisterClass -> a group of regs
1750 /// Memory -> memory
1751 /// Ideally, we would pick the most specific constraint possible: if we have
1752 /// something that fits into a register, we would pick it. The problem here
1753 /// is that if we have something that could either be in a register or in
1754 /// memory that use of the register could cause selection of *other*
1755 /// operands to fail: they might only succeed if we pick memory. Because of
1756 /// this the heuristic we use is:
1758 /// 1) If there is an 'other' constraint, and if the operand is valid for
1759 /// that constraint, use it. This makes us take advantage of 'i'
1760 /// constraints when available.
1761 /// 2) Otherwise, pick the most general constraint present. This prefers
1762 /// 'm' over 'r', for example.
1764 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
1765 const TargetLowering &TLI,
1766 SDOperand Op, SelectionDAG *DAG) {
1767 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
1768 unsigned BestIdx = 0;
1769 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
1770 int BestGenerality = -1;
1772 // Loop over the options, keeping track of the most general one.
1773 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
1774 TargetLowering::ConstraintType CType =
1775 TLI.getConstraintType(OpInfo.Codes[i]);
1777 // If this is an 'other' constraint, see if the operand is valid for it.
1778 // For example, on X86 we might have an 'rI' constraint. If the operand
1779 // is an integer in the range [0..31] we want to use I (saving a load
1780 // of a register), otherwise we must use 'r'.
1781 if (CType == TargetLowering::C_Other && Op.Val) {
1782 assert(OpInfo.Codes[i].size() == 1 &&
1783 "Unhandled multi-letter 'other' constraint");
1784 std::vector<SDOperand> ResultOps;
1785 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0],
1787 if (!ResultOps.empty()) {
1794 // This constraint letter is more general than the previous one, use it.
1795 int Generality = getConstraintGenerality(CType);
1796 if (Generality > BestGenerality) {
1799 BestGenerality = Generality;
1803 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
1804 OpInfo.ConstraintType = BestType;
1807 /// ComputeConstraintToUse - Determines the constraint code and constraint
1808 /// type to use for the specific AsmOperandInfo, setting
1809 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
1810 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
1812 SelectionDAG *DAG) const {
1813 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
1815 // Single-letter constraints ('r') are very common.
1816 if (OpInfo.Codes.size() == 1) {
1817 OpInfo.ConstraintCode = OpInfo.Codes[0];
1818 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1820 ChooseConstraint(OpInfo, *this, Op, DAG);
1823 // 'X' matches anything.
1824 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
1825 // Labels and constants are handled elsewhere ('X' is the only thing
1826 // that matches labels).
1827 if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
1828 isa<ConstantInt>(OpInfo.CallOperandVal))
1831 // Otherwise, try to resolve it to something we know about by looking at
1832 // the actual operand type.
1833 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
1834 OpInfo.ConstraintCode = Repl;
1835 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
1840 //===----------------------------------------------------------------------===//
1841 // Loop Strength Reduction hooks
1842 //===----------------------------------------------------------------------===//
1844 /// isLegalAddressingMode - Return true if the addressing mode represented
1845 /// by AM is legal for this target, for a load/store of the specified type.
1846 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
1847 const Type *Ty) const {
1848 // The default implementation of this implements a conservative RISCy, r+r and
1851 // Allows a sign-extended 16-bit immediate field.
1852 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1855 // No global is ever allowed as a base.
1859 // Only support r+r,
1861 case 0: // "r+i" or just "i", depending on HasBaseReg.
1864 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
1866 // Otherwise we have r+r or r+i.
1869 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
1871 // Allow 2*r as r+r.
1878 // Magic for divide replacement
1881 int64_t m; // magic number
1882 int64_t s; // shift amount
1886 uint64_t m; // magic number
1887 int64_t a; // add indicator
1888 int64_t s; // shift amount
1891 /// magic - calculate the magic numbers required to codegen an integer sdiv as
1892 /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1894 static ms magic32(int32_t d) {
1896 uint32_t ad, anc, delta, q1, r1, q2, r2, t;
1897 const uint32_t two31 = 0x80000000U;
1901 t = two31 + ((uint32_t)d >> 31);
1902 anc = t - 1 - t%ad; // absolute value of nc
1903 p = 31; // initialize p
1904 q1 = two31/anc; // initialize q1 = 2p/abs(nc)
1905 r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1906 q2 = two31/ad; // initialize q2 = 2p/abs(d)
1907 r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
1910 q1 = 2*q1; // update q1 = 2p/abs(nc)
1911 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1912 if (r1 >= anc) { // must be unsigned comparison
1916 q2 = 2*q2; // update q2 = 2p/abs(d)
1917 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1918 if (r2 >= ad) { // must be unsigned comparison
1923 } while (q1 < delta || (q1 == delta && r1 == 0));
1925 mag.m = (int32_t)(q2 + 1); // make sure to sign extend
1926 if (d < 0) mag.m = -mag.m; // resulting magic number
1927 mag.s = p - 32; // resulting shift
1931 /// magicu - calculate the magic numbers required to codegen an integer udiv as
1932 /// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
1933 static mu magicu32(uint32_t d) {
1935 uint32_t nc, delta, q1, r1, q2, r2;
1937 magu.a = 0; // initialize "add" indicator
1939 p = 31; // initialize p
1940 q1 = 0x80000000/nc; // initialize q1 = 2p/nc
1941 r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
1942 q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
1943 r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
1946 if (r1 >= nc - r1 ) {
1947 q1 = 2*q1 + 1; // update q1
1948 r1 = 2*r1 - nc; // update r1
1951 q1 = 2*q1; // update q1
1952 r1 = 2*r1; // update r1
1954 if (r2 + 1 >= d - r2) {
1955 if (q2 >= 0x7FFFFFFF) magu.a = 1;
1956 q2 = 2*q2 + 1; // update q2
1957 r2 = 2*r2 + 1 - d; // update r2
1960 if (q2 >= 0x80000000) magu.a = 1;
1961 q2 = 2*q2; // update q2
1962 r2 = 2*r2 + 1; // update r2
1965 } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
1966 magu.m = q2 + 1; // resulting magic number
1967 magu.s = p - 32; // resulting shift
1971 /// magic - calculate the magic numbers required to codegen an integer sdiv as
1972 /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
1974 static ms magic64(int64_t d) {
1976 uint64_t ad, anc, delta, q1, r1, q2, r2, t;
1977 const uint64_t two63 = 9223372036854775808ULL; // 2^63
1980 ad = d >= 0 ? d : -d;
1981 t = two63 + ((uint64_t)d >> 63);
1982 anc = t - 1 - t%ad; // absolute value of nc
1983 p = 63; // initialize p
1984 q1 = two63/anc; // initialize q1 = 2p/abs(nc)
1985 r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
1986 q2 = two63/ad; // initialize q2 = 2p/abs(d)
1987 r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
1990 q1 = 2*q1; // update q1 = 2p/abs(nc)
1991 r1 = 2*r1; // update r1 = rem(2p/abs(nc))
1992 if (r1 >= anc) { // must be unsigned comparison
1996 q2 = 2*q2; // update q2 = 2p/abs(d)
1997 r2 = 2*r2; // update r2 = rem(2p/abs(d))
1998 if (r2 >= ad) { // must be unsigned comparison
2003 } while (q1 < delta || (q1 == delta && r1 == 0));
2006 if (d < 0) mag.m = -mag.m; // resulting magic number
2007 mag.s = p - 64; // resulting shift
2011 /// magicu - calculate the magic numbers required to codegen an integer udiv as
2012 /// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
2013 static mu magicu64(uint64_t d)
2016 uint64_t nc, delta, q1, r1, q2, r2;
2018 magu.a = 0; // initialize "add" indicator
2020 p = 63; // initialize p
2021 q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
2022 r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
2023 q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
2024 r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
2027 if (r1 >= nc - r1 ) {
2028 q1 = 2*q1 + 1; // update q1
2029 r1 = 2*r1 - nc; // update r1
2032 q1 = 2*q1; // update q1
2033 r1 = 2*r1; // update r1
2035 if (r2 + 1 >= d - r2) {
2036 if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
2037 q2 = 2*q2 + 1; // update q2
2038 r2 = 2*r2 + 1 - d; // update r2
2041 if (q2 >= 0x8000000000000000ull) magu.a = 1;
2042 q2 = 2*q2; // update q2
2043 r2 = 2*r2 + 1; // update r2
2046 } while (p < 128 && (q1 < delta || (q1 == delta && r1 == 0)));
2047 magu.m = q2 + 1; // resulting magic number
2048 magu.s = p - 64; // resulting shift
2052 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2053 /// return a DAG expression to select that will generate the same value by
2054 /// multiplying by a magic number. See:
2055 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2056 SDOperand TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2057 std::vector<SDNode*>* Created) const {
2058 MVT VT = N->getValueType(0);
2060 // Check to see if we can do this.
2061 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2062 return SDOperand(); // BuildSDIV only operates on i32 or i64
2064 int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getSignExtended();
2065 ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
2067 // Multiply the numerator (operand 0) by the magic value
2069 if (isOperationLegal(ISD::MULHS, VT))
2070 Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
2071 DAG.getConstant(magics.m, VT));
2072 else if (isOperationLegal(ISD::SMUL_LOHI, VT))
2073 Q = SDOperand(DAG.getNode(ISD::SMUL_LOHI, DAG.getVTList(VT, VT),
2075 DAG.getConstant(magics.m, VT)).Val, 1);
2077 return SDOperand(); // No mulhs or equvialent
2078 // If d > 0 and m < 0, add the numerator
2079 if (d > 0 && magics.m < 0) {
2080 Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
2082 Created->push_back(Q.Val);
2084 // If d < 0 and m > 0, subtract the numerator.
2085 if (d < 0 && magics.m > 0) {
2086 Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
2088 Created->push_back(Q.Val);
2090 // Shift right algebraic if shift value is nonzero
2092 Q = DAG.getNode(ISD::SRA, VT, Q,
2093 DAG.getConstant(magics.s, getShiftAmountTy()));
2095 Created->push_back(Q.Val);
2097 // Extract the sign bit and add it to the quotient
2099 DAG.getNode(ISD::SRL, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2100 getShiftAmountTy()));
2102 Created->push_back(T.Val);
2103 return DAG.getNode(ISD::ADD, VT, Q, T);
2106 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2107 /// return a DAG expression to select that will generate the same value by
2108 /// multiplying by a magic number. See:
2109 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2110 SDOperand TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2111 std::vector<SDNode*>* Created) const {
2112 MVT VT = N->getValueType(0);
2114 // Check to see if we can do this.
2115 if (!isTypeLegal(VT) || (VT != MVT::i32 && VT != MVT::i64))
2116 return SDOperand(); // BuildUDIV only operates on i32 or i64
2118 uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
2119 mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
2121 // Multiply the numerator (operand 0) by the magic value
2123 if (isOperationLegal(ISD::MULHU, VT))
2124 Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
2125 DAG.getConstant(magics.m, VT));
2126 else if (isOperationLegal(ISD::UMUL_LOHI, VT))
2127 Q = SDOperand(DAG.getNode(ISD::UMUL_LOHI, DAG.getVTList(VT, VT),
2129 DAG.getConstant(magics.m, VT)).Val, 1);
2131 return SDOperand(); // No mulhu or equvialent
2133 Created->push_back(Q.Val);
2135 if (magics.a == 0) {
2136 return DAG.getNode(ISD::SRL, VT, Q,
2137 DAG.getConstant(magics.s, getShiftAmountTy()));
2139 SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
2141 Created->push_back(NPQ.Val);
2142 NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
2143 DAG.getConstant(1, getShiftAmountTy()));
2145 Created->push_back(NPQ.Val);
2146 NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
2148 Created->push_back(NPQ.Val);
2149 return DAG.getNode(ISD::SRL, VT, NPQ,
2150 DAG.getConstant(magics.s-1, getShiftAmountTy()));