1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/Target/TargetAsmInfo.h"
16 #include "llvm/Target/TargetData.h"
17 #include "llvm/Target/TargetLoweringObjectFile.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/Target/TargetSubtarget.h"
21 #include "llvm/GlobalVariable.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/MathExtras.h"
32 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
33 bool isLocal = GV->hasLocalLinkage();
34 bool isDeclaration = GV->isDeclaration();
35 // FIXME: what should we do for protected and internal visibility?
36 // For variables, is internal different from hidden?
37 bool isHidden = GV->hasHiddenVisibility();
39 if (reloc == Reloc::PIC_) {
40 if (isLocal || isHidden)
41 return TLSModel::LocalDynamic;
43 return TLSModel::GeneralDynamic;
45 if (!isDeclaration || isHidden)
46 return TLSModel::LocalExec;
48 return TLSModel::InitialExec;
53 /// InitLibcallNames - Set default libcall names.
55 static void InitLibcallNames(const char **Names) {
56 Names[RTLIB::SHL_I16] = "__ashlhi3";
57 Names[RTLIB::SHL_I32] = "__ashlsi3";
58 Names[RTLIB::SHL_I64] = "__ashldi3";
59 Names[RTLIB::SHL_I128] = "__ashlti3";
60 Names[RTLIB::SRL_I16] = "__lshrhi3";
61 Names[RTLIB::SRL_I32] = "__lshrsi3";
62 Names[RTLIB::SRL_I64] = "__lshrdi3";
63 Names[RTLIB::SRL_I128] = "__lshrti3";
64 Names[RTLIB::SRA_I16] = "__ashrhi3";
65 Names[RTLIB::SRA_I32] = "__ashrsi3";
66 Names[RTLIB::SRA_I64] = "__ashrdi3";
67 Names[RTLIB::SRA_I128] = "__ashrti3";
68 Names[RTLIB::MUL_I16] = "__mulhi3";
69 Names[RTLIB::MUL_I32] = "__mulsi3";
70 Names[RTLIB::MUL_I64] = "__muldi3";
71 Names[RTLIB::MUL_I128] = "__multi3";
72 Names[RTLIB::SDIV_I16] = "__divhi3";
73 Names[RTLIB::SDIV_I32] = "__divsi3";
74 Names[RTLIB::SDIV_I64] = "__divdi3";
75 Names[RTLIB::SDIV_I128] = "__divti3";
76 Names[RTLIB::UDIV_I16] = "__udivhi3";
77 Names[RTLIB::UDIV_I32] = "__udivsi3";
78 Names[RTLIB::UDIV_I64] = "__udivdi3";
79 Names[RTLIB::UDIV_I128] = "__udivti3";
80 Names[RTLIB::SREM_I16] = "__modhi3";
81 Names[RTLIB::SREM_I32] = "__modsi3";
82 Names[RTLIB::SREM_I64] = "__moddi3";
83 Names[RTLIB::SREM_I128] = "__modti3";
84 Names[RTLIB::UREM_I16] = "__umodhi3";
85 Names[RTLIB::UREM_I32] = "__umodsi3";
86 Names[RTLIB::UREM_I64] = "__umoddi3";
87 Names[RTLIB::UREM_I128] = "__umodti3";
88 Names[RTLIB::NEG_I32] = "__negsi2";
89 Names[RTLIB::NEG_I64] = "__negdi2";
90 Names[RTLIB::ADD_F32] = "__addsf3";
91 Names[RTLIB::ADD_F64] = "__adddf3";
92 Names[RTLIB::ADD_F80] = "__addxf3";
93 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
94 Names[RTLIB::SUB_F32] = "__subsf3";
95 Names[RTLIB::SUB_F64] = "__subdf3";
96 Names[RTLIB::SUB_F80] = "__subxf3";
97 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
98 Names[RTLIB::MUL_F32] = "__mulsf3";
99 Names[RTLIB::MUL_F64] = "__muldf3";
100 Names[RTLIB::MUL_F80] = "__mulxf3";
101 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
102 Names[RTLIB::DIV_F32] = "__divsf3";
103 Names[RTLIB::DIV_F64] = "__divdf3";
104 Names[RTLIB::DIV_F80] = "__divxf3";
105 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
106 Names[RTLIB::REM_F32] = "fmodf";
107 Names[RTLIB::REM_F64] = "fmod";
108 Names[RTLIB::REM_F80] = "fmodl";
109 Names[RTLIB::REM_PPCF128] = "fmodl";
110 Names[RTLIB::POWI_F32] = "__powisf2";
111 Names[RTLIB::POWI_F64] = "__powidf2";
112 Names[RTLIB::POWI_F80] = "__powixf2";
113 Names[RTLIB::POWI_PPCF128] = "__powitf2";
114 Names[RTLIB::SQRT_F32] = "sqrtf";
115 Names[RTLIB::SQRT_F64] = "sqrt";
116 Names[RTLIB::SQRT_F80] = "sqrtl";
117 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
118 Names[RTLIB::LOG_F32] = "logf";
119 Names[RTLIB::LOG_F64] = "log";
120 Names[RTLIB::LOG_F80] = "logl";
121 Names[RTLIB::LOG_PPCF128] = "logl";
122 Names[RTLIB::LOG2_F32] = "log2f";
123 Names[RTLIB::LOG2_F64] = "log2";
124 Names[RTLIB::LOG2_F80] = "log2l";
125 Names[RTLIB::LOG2_PPCF128] = "log2l";
126 Names[RTLIB::LOG10_F32] = "log10f";
127 Names[RTLIB::LOG10_F64] = "log10";
128 Names[RTLIB::LOG10_F80] = "log10l";
129 Names[RTLIB::LOG10_PPCF128] = "log10l";
130 Names[RTLIB::EXP_F32] = "expf";
131 Names[RTLIB::EXP_F64] = "exp";
132 Names[RTLIB::EXP_F80] = "expl";
133 Names[RTLIB::EXP_PPCF128] = "expl";
134 Names[RTLIB::EXP2_F32] = "exp2f";
135 Names[RTLIB::EXP2_F64] = "exp2";
136 Names[RTLIB::EXP2_F80] = "exp2l";
137 Names[RTLIB::EXP2_PPCF128] = "exp2l";
138 Names[RTLIB::SIN_F32] = "sinf";
139 Names[RTLIB::SIN_F64] = "sin";
140 Names[RTLIB::SIN_F80] = "sinl";
141 Names[RTLIB::SIN_PPCF128] = "sinl";
142 Names[RTLIB::COS_F32] = "cosf";
143 Names[RTLIB::COS_F64] = "cos";
144 Names[RTLIB::COS_F80] = "cosl";
145 Names[RTLIB::COS_PPCF128] = "cosl";
146 Names[RTLIB::POW_F32] = "powf";
147 Names[RTLIB::POW_F64] = "pow";
148 Names[RTLIB::POW_F80] = "powl";
149 Names[RTLIB::POW_PPCF128] = "powl";
150 Names[RTLIB::CEIL_F32] = "ceilf";
151 Names[RTLIB::CEIL_F64] = "ceil";
152 Names[RTLIB::CEIL_F80] = "ceill";
153 Names[RTLIB::CEIL_PPCF128] = "ceill";
154 Names[RTLIB::TRUNC_F32] = "truncf";
155 Names[RTLIB::TRUNC_F64] = "trunc";
156 Names[RTLIB::TRUNC_F80] = "truncl";
157 Names[RTLIB::TRUNC_PPCF128] = "truncl";
158 Names[RTLIB::RINT_F32] = "rintf";
159 Names[RTLIB::RINT_F64] = "rint";
160 Names[RTLIB::RINT_F80] = "rintl";
161 Names[RTLIB::RINT_PPCF128] = "rintl";
162 Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
163 Names[RTLIB::NEARBYINT_F64] = "nearbyint";
164 Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
165 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
166 Names[RTLIB::FLOOR_F32] = "floorf";
167 Names[RTLIB::FLOOR_F64] = "floor";
168 Names[RTLIB::FLOOR_F80] = "floorl";
169 Names[RTLIB::FLOOR_PPCF128] = "floorl";
170 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
171 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
172 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
173 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
174 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
175 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
176 Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfi8";
177 Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfi16";
178 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
179 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
180 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
181 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
182 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
183 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
184 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
185 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
186 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
187 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
188 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
189 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
190 Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfi8";
191 Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfi16";
192 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
193 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
194 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
195 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
196 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
197 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
198 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
199 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
200 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
201 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
202 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
203 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
204 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
205 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
206 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
207 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
208 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
209 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
210 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
211 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
212 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
213 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
214 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
215 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
216 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
217 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
218 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
219 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
220 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
221 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
222 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
223 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
224 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
225 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
226 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
227 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
228 Names[RTLIB::OEQ_F32] = "__eqsf2";
229 Names[RTLIB::OEQ_F64] = "__eqdf2";
230 Names[RTLIB::UNE_F32] = "__nesf2";
231 Names[RTLIB::UNE_F64] = "__nedf2";
232 Names[RTLIB::OGE_F32] = "__gesf2";
233 Names[RTLIB::OGE_F64] = "__gedf2";
234 Names[RTLIB::OLT_F32] = "__ltsf2";
235 Names[RTLIB::OLT_F64] = "__ltdf2";
236 Names[RTLIB::OLE_F32] = "__lesf2";
237 Names[RTLIB::OLE_F64] = "__ledf2";
238 Names[RTLIB::OGT_F32] = "__gtsf2";
239 Names[RTLIB::OGT_F64] = "__gtdf2";
240 Names[RTLIB::UO_F32] = "__unordsf2";
241 Names[RTLIB::UO_F64] = "__unorddf2";
242 Names[RTLIB::O_F32] = "__unordsf2";
243 Names[RTLIB::O_F64] = "__unorddf2";
244 Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
247 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
248 /// UNKNOWN_LIBCALL if there is none.
249 RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
250 if (OpVT == MVT::f32) {
251 if (RetVT == MVT::f64)
252 return FPEXT_F32_F64;
254 return UNKNOWN_LIBCALL;
257 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
258 /// UNKNOWN_LIBCALL if there is none.
259 RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
260 if (RetVT == MVT::f32) {
261 if (OpVT == MVT::f64)
262 return FPROUND_F64_F32;
263 if (OpVT == MVT::f80)
264 return FPROUND_F80_F32;
265 if (OpVT == MVT::ppcf128)
266 return FPROUND_PPCF128_F32;
267 } else if (RetVT == MVT::f64) {
268 if (OpVT == MVT::f80)
269 return FPROUND_F80_F64;
270 if (OpVT == MVT::ppcf128)
271 return FPROUND_PPCF128_F64;
273 return UNKNOWN_LIBCALL;
276 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
277 /// UNKNOWN_LIBCALL if there is none.
278 RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
279 if (OpVT == MVT::f32) {
280 if (RetVT == MVT::i8)
281 return FPTOSINT_F32_I8;
282 if (RetVT == MVT::i16)
283 return FPTOSINT_F32_I16;
284 if (RetVT == MVT::i32)
285 return FPTOSINT_F32_I32;
286 if (RetVT == MVT::i64)
287 return FPTOSINT_F32_I64;
288 if (RetVT == MVT::i128)
289 return FPTOSINT_F32_I128;
290 } else if (OpVT == MVT::f64) {
291 if (RetVT == MVT::i32)
292 return FPTOSINT_F64_I32;
293 if (RetVT == MVT::i64)
294 return FPTOSINT_F64_I64;
295 if (RetVT == MVT::i128)
296 return FPTOSINT_F64_I128;
297 } else if (OpVT == MVT::f80) {
298 if (RetVT == MVT::i32)
299 return FPTOSINT_F80_I32;
300 if (RetVT == MVT::i64)
301 return FPTOSINT_F80_I64;
302 if (RetVT == MVT::i128)
303 return FPTOSINT_F80_I128;
304 } else if (OpVT == MVT::ppcf128) {
305 if (RetVT == MVT::i32)
306 return FPTOSINT_PPCF128_I32;
307 if (RetVT == MVT::i64)
308 return FPTOSINT_PPCF128_I64;
309 if (RetVT == MVT::i128)
310 return FPTOSINT_PPCF128_I128;
312 return UNKNOWN_LIBCALL;
315 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
316 /// UNKNOWN_LIBCALL if there is none.
317 RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
318 if (OpVT == MVT::f32) {
319 if (RetVT == MVT::i8)
320 return FPTOUINT_F32_I8;
321 if (RetVT == MVT::i16)
322 return FPTOUINT_F32_I16;
323 if (RetVT == MVT::i32)
324 return FPTOUINT_F32_I32;
325 if (RetVT == MVT::i64)
326 return FPTOUINT_F32_I64;
327 if (RetVT == MVT::i128)
328 return FPTOUINT_F32_I128;
329 } else if (OpVT == MVT::f64) {
330 if (RetVT == MVT::i32)
331 return FPTOUINT_F64_I32;
332 if (RetVT == MVT::i64)
333 return FPTOUINT_F64_I64;
334 if (RetVT == MVT::i128)
335 return FPTOUINT_F64_I128;
336 } else if (OpVT == MVT::f80) {
337 if (RetVT == MVT::i32)
338 return FPTOUINT_F80_I32;
339 if (RetVT == MVT::i64)
340 return FPTOUINT_F80_I64;
341 if (RetVT == MVT::i128)
342 return FPTOUINT_F80_I128;
343 } else if (OpVT == MVT::ppcf128) {
344 if (RetVT == MVT::i32)
345 return FPTOUINT_PPCF128_I32;
346 if (RetVT == MVT::i64)
347 return FPTOUINT_PPCF128_I64;
348 if (RetVT == MVT::i128)
349 return FPTOUINT_PPCF128_I128;
351 return UNKNOWN_LIBCALL;
354 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
355 /// UNKNOWN_LIBCALL if there is none.
356 RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
357 if (OpVT == MVT::i32) {
358 if (RetVT == MVT::f32)
359 return SINTTOFP_I32_F32;
360 else if (RetVT == MVT::f64)
361 return SINTTOFP_I32_F64;
362 else if (RetVT == MVT::f80)
363 return SINTTOFP_I32_F80;
364 else if (RetVT == MVT::ppcf128)
365 return SINTTOFP_I32_PPCF128;
366 } else if (OpVT == MVT::i64) {
367 if (RetVT == MVT::f32)
368 return SINTTOFP_I64_F32;
369 else if (RetVT == MVT::f64)
370 return SINTTOFP_I64_F64;
371 else if (RetVT == MVT::f80)
372 return SINTTOFP_I64_F80;
373 else if (RetVT == MVT::ppcf128)
374 return SINTTOFP_I64_PPCF128;
375 } else if (OpVT == MVT::i128) {
376 if (RetVT == MVT::f32)
377 return SINTTOFP_I128_F32;
378 else if (RetVT == MVT::f64)
379 return SINTTOFP_I128_F64;
380 else if (RetVT == MVT::f80)
381 return SINTTOFP_I128_F80;
382 else if (RetVT == MVT::ppcf128)
383 return SINTTOFP_I128_PPCF128;
385 return UNKNOWN_LIBCALL;
388 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
389 /// UNKNOWN_LIBCALL if there is none.
390 RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
391 if (OpVT == MVT::i32) {
392 if (RetVT == MVT::f32)
393 return UINTTOFP_I32_F32;
394 else if (RetVT == MVT::f64)
395 return UINTTOFP_I32_F64;
396 else if (RetVT == MVT::f80)
397 return UINTTOFP_I32_F80;
398 else if (RetVT == MVT::ppcf128)
399 return UINTTOFP_I32_PPCF128;
400 } else if (OpVT == MVT::i64) {
401 if (RetVT == MVT::f32)
402 return UINTTOFP_I64_F32;
403 else if (RetVT == MVT::f64)
404 return UINTTOFP_I64_F64;
405 else if (RetVT == MVT::f80)
406 return UINTTOFP_I64_F80;
407 else if (RetVT == MVT::ppcf128)
408 return UINTTOFP_I64_PPCF128;
409 } else if (OpVT == MVT::i128) {
410 if (RetVT == MVT::f32)
411 return UINTTOFP_I128_F32;
412 else if (RetVT == MVT::f64)
413 return UINTTOFP_I128_F64;
414 else if (RetVT == MVT::f80)
415 return UINTTOFP_I128_F80;
416 else if (RetVT == MVT::ppcf128)
417 return UINTTOFP_I128_PPCF128;
419 return UNKNOWN_LIBCALL;
422 /// InitCmpLibcallCCs - Set default comparison libcall CC.
424 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
425 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
426 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
427 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
428 CCs[RTLIB::UNE_F32] = ISD::SETNE;
429 CCs[RTLIB::UNE_F64] = ISD::SETNE;
430 CCs[RTLIB::OGE_F32] = ISD::SETGE;
431 CCs[RTLIB::OGE_F64] = ISD::SETGE;
432 CCs[RTLIB::OLT_F32] = ISD::SETLT;
433 CCs[RTLIB::OLT_F64] = ISD::SETLT;
434 CCs[RTLIB::OLE_F32] = ISD::SETLE;
435 CCs[RTLIB::OLE_F64] = ISD::SETLE;
436 CCs[RTLIB::OGT_F32] = ISD::SETGT;
437 CCs[RTLIB::OGT_F64] = ISD::SETGT;
438 CCs[RTLIB::UO_F32] = ISD::SETNE;
439 CCs[RTLIB::UO_F64] = ISD::SETNE;
440 CCs[RTLIB::O_F32] = ISD::SETEQ;
441 CCs[RTLIB::O_F64] = ISD::SETEQ;
444 /// NOTE: The constructor takes ownership of TLOF.
445 TargetLowering::TargetLowering(TargetMachine &tm,TargetLoweringObjectFile *tlof)
446 : TM(tm), TD(TM.getTargetData()), TLOF(*tlof) {
447 // All operations default to being supported.
448 memset(OpActions, 0, sizeof(OpActions));
449 memset(LoadExtActions, 0, sizeof(LoadExtActions));
450 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
451 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
452 memset(ConvertActions, 0, sizeof(ConvertActions));
453 memset(CondCodeActions, 0, sizeof(CondCodeActions));
455 // Set default actions for various operations.
456 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
457 // Default all indexed load / store to expand.
458 for (unsigned IM = (unsigned)ISD::PRE_INC;
459 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
460 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
461 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
464 // These operations default to expand.
465 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
466 setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
469 // Most targets ignore the @llvm.prefetch intrinsic.
470 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
472 // ConstantFP nodes default to expand. Targets can either change this to
473 // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
474 // to optimize expansions for certain constants.
475 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
476 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
477 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
479 // These library functions default to expand.
480 setOperationAction(ISD::FLOG , MVT::f64, Expand);
481 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
482 setOperationAction(ISD::FLOG10,MVT::f64, Expand);
483 setOperationAction(ISD::FEXP , MVT::f64, Expand);
484 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
485 setOperationAction(ISD::FLOG , MVT::f32, Expand);
486 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
487 setOperationAction(ISD::FLOG10,MVT::f32, Expand);
488 setOperationAction(ISD::FEXP , MVT::f32, Expand);
489 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
491 // Default ISD::TRAP to expand (which turns it into abort).
492 setOperationAction(ISD::TRAP, MVT::Other, Expand);
494 IsLittleEndian = TD->isLittleEndian();
495 UsesGlobalOffsetTable = false;
496 ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
497 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
498 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
499 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
500 allowUnalignedMemoryAccesses = false;
501 benefitFromCodePlacementOpt = false;
502 UseUnderscoreSetJmp = false;
503 UseUnderscoreLongJmp = false;
504 SelectIsExpensive = false;
505 IntDivIsCheap = false;
506 Pow2DivIsCheap = false;
507 StackPointerRegisterToSaveRestore = 0;
508 ExceptionPointerRegister = 0;
509 ExceptionSelectorRegister = 0;
510 BooleanContents = UndefinedBooleanContent;
511 SchedPreferenceInfo = SchedulingForLatency;
513 JumpBufAlignment = 0;
514 IfCvtBlockSizeLimit = 2;
515 IfCvtDupBlockSizeLimit = 0;
516 PrefLoopAlignment = 0;
518 InitLibcallNames(LibcallRoutineNames);
519 InitCmpLibcallCCs(CmpLibcallCCs);
521 // Tell Legalize whether the assembler supports DEBUG_LOC.
522 const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
523 if (!TASM || !TASM->hasDotLocAndDotFile())
524 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
527 TargetLowering::~TargetLowering() {
531 /// computeRegisterProperties - Once all of the register classes are added,
532 /// this allows us to compute derived properties we expose.
533 void TargetLowering::computeRegisterProperties() {
534 assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
535 "Too many value types for ValueTypeActions to hold!");
537 // Everything defaults to needing one register.
538 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
539 NumRegistersForVT[i] = 1;
540 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
542 // ...except isVoid, which doesn't need any registers.
543 NumRegistersForVT[MVT::isVoid] = 0;
545 // Find the largest integer register class.
546 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
547 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
548 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
550 // Every integer value type larger than this largest register takes twice as
551 // many registers to represent as the previous ValueType.
552 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
553 MVT EVT = (MVT::SimpleValueType)ExpandedReg;
554 if (!EVT.isInteger())
556 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
557 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
558 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
559 ValueTypeActions.setTypeAction(EVT, Expand);
562 // Inspect all of the ValueType's smaller than the largest integer
563 // register to see which ones need promotion.
564 unsigned LegalIntReg = LargestIntReg;
565 for (unsigned IntReg = LargestIntReg - 1;
566 IntReg >= (unsigned)MVT::i1; --IntReg) {
567 MVT IVT = (MVT::SimpleValueType)IntReg;
568 if (isTypeLegal(IVT)) {
569 LegalIntReg = IntReg;
571 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
572 (MVT::SimpleValueType)LegalIntReg;
573 ValueTypeActions.setTypeAction(IVT, Promote);
577 // ppcf128 type is really two f64's.
578 if (!isTypeLegal(MVT::ppcf128)) {
579 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
580 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
581 TransformToType[MVT::ppcf128] = MVT::f64;
582 ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
585 // Decide how to handle f64. If the target does not have native f64 support,
586 // expand it to i64 and we will be generating soft float library calls.
587 if (!isTypeLegal(MVT::f64)) {
588 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
589 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
590 TransformToType[MVT::f64] = MVT::i64;
591 ValueTypeActions.setTypeAction(MVT::f64, Expand);
594 // Decide how to handle f32. If the target does not have native support for
595 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
596 if (!isTypeLegal(MVT::f32)) {
597 if (isTypeLegal(MVT::f64)) {
598 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
599 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
600 TransformToType[MVT::f32] = MVT::f64;
601 ValueTypeActions.setTypeAction(MVT::f32, Promote);
603 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
604 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
605 TransformToType[MVT::f32] = MVT::i32;
606 ValueTypeActions.setTypeAction(MVT::f32, Expand);
610 // Loop over all of the vector value types to see which need transformations.
611 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
612 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
613 MVT VT = (MVT::SimpleValueType)i;
614 if (!isTypeLegal(VT)) {
615 MVT IntermediateVT, RegisterVT;
616 unsigned NumIntermediates;
617 NumRegistersForVT[i] =
618 getVectorTypeBreakdown(VT,
619 IntermediateVT, NumIntermediates,
621 RegisterTypeForVT[i] = RegisterVT;
623 // Determine if there is a legal wider type.
624 bool IsLegalWiderType = false;
625 MVT EltVT = VT.getVectorElementType();
626 unsigned NElts = VT.getVectorNumElements();
627 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
628 MVT SVT = (MVT::SimpleValueType)nVT;
629 if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
630 SVT.getVectorNumElements() > NElts) {
631 TransformToType[i] = SVT;
632 ValueTypeActions.setTypeAction(VT, Promote);
633 IsLegalWiderType = true;
637 if (!IsLegalWiderType) {
638 MVT NVT = VT.getPow2VectorType();
640 // Type is already a power of 2. The default action is to split.
641 TransformToType[i] = MVT::Other;
642 ValueTypeActions.setTypeAction(VT, Expand);
644 TransformToType[i] = NVT;
645 ValueTypeActions.setTypeAction(VT, Promote);
652 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
657 MVT TargetLowering::getSetCCResultType(MVT VT) const {
658 return getValueType(TD->getIntPtrType());
662 /// getVectorTypeBreakdown - Vector types are broken down into some number of
663 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
664 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
665 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
667 /// This method returns the number of registers needed, and the VT for each
668 /// register. It also returns the VT and quantity of the intermediate values
669 /// before they are promoted/expanded.
671 unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
673 unsigned &NumIntermediates,
674 MVT &RegisterVT) const {
675 // Figure out the right, legal destination reg to copy into.
676 unsigned NumElts = VT.getVectorNumElements();
677 MVT EltTy = VT.getVectorElementType();
679 unsigned NumVectorRegs = 1;
681 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
682 // could break down into LHS/RHS like LegalizeDAG does.
683 if (!isPowerOf2_32(NumElts)) {
684 NumVectorRegs = NumElts;
688 // Divide the input until we get to a supported size. This will always
689 // end with a scalar if the target doesn't support vectors.
690 while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
695 NumIntermediates = NumVectorRegs;
697 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
698 if (!isTypeLegal(NewVT))
700 IntermediateVT = NewVT;
702 MVT DestVT = getRegisterType(NewVT);
704 if (DestVT.bitsLT(NewVT)) {
705 // Value is expanded, e.g. i64 -> i16.
706 return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
708 // Otherwise, promotion or legal types use the same number of registers as
709 // the vector decimated to the appropriate level.
710 return NumVectorRegs;
716 /// getWidenVectorType: given a vector type, returns the type to widen to
717 /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
718 /// If there is no vector type that we want to widen to, returns MVT::Other
719 /// When and where to widen is target dependent based on the cost of
720 /// scalarizing vs using the wider vector type.
721 MVT TargetLowering::getWidenVectorType(MVT VT) const {
722 assert(VT.isVector());
726 // Default is not to widen until moved to LegalizeTypes
730 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
731 /// function arguments in the caller parameter area. This is the actual
732 /// alignment, not its logarithm.
733 unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
734 return TD->getCallFrameTypeAlignment(Ty);
737 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
738 SelectionDAG &DAG) const {
739 if (usesGlobalOffsetTable())
740 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
745 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
746 // Assume that everything is safe in static mode.
747 if (getTargetMachine().getRelocationModel() == Reloc::Static)
750 // In dynamic-no-pic mode, assume that known defined values are safe.
751 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
753 !GA->getGlobal()->isDeclaration() &&
754 !GA->getGlobal()->isWeakForLinker())
757 // Otherwise assume nothing is safe.
761 //===----------------------------------------------------------------------===//
762 // Optimization Methods
763 //===----------------------------------------------------------------------===//
765 /// ShrinkDemandedConstant - Check to see if the specified operand of the
766 /// specified instruction is a constant integer. If so, check to see if there
767 /// are any bits set in the constant that are not demanded. If so, shrink the
768 /// constant and return true.
769 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
770 const APInt &Demanded) {
771 DebugLoc dl = Op.getDebugLoc();
773 // FIXME: ISD::SELECT, ISD::SELECT_CC
774 switch (Op.getOpcode()) {
779 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
780 if (!C) return false;
782 if (Op.getOpcode() == ISD::XOR &&
783 (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
786 // if we can expand it to have all bits set, do it
787 if (C->getAPIntValue().intersects(~Demanded)) {
788 MVT VT = Op.getValueType();
789 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
790 DAG.getConstant(Demanded &
793 return CombineTo(Op, New);
803 /// ShrinkDemandedOp - Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the
804 /// casts are free. This uses isZExtFree and ZERO_EXTEND for the widening
805 /// cast, but it could be generalized for targets with other types of
806 /// implicit widening casts.
808 TargetLowering::TargetLoweringOpt::ShrinkDemandedOp(SDValue Op,
810 const APInt &Demanded,
812 assert(Op.getNumOperands() == 2 &&
813 "ShrinkDemandedOp only supports binary operators!");
814 assert(Op.getNode()->getNumValues() == 1 &&
815 "ShrinkDemandedOp only supports nodes with one result!");
817 // Don't do this if the node has another user, which may require the
819 if (!Op.getNode()->hasOneUse())
822 // Search for the smallest integer type with free casts to and from
823 // Op's type. For expedience, just check power-of-2 integer types.
824 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
825 unsigned SmallVTBits = BitWidth - Demanded.countLeadingZeros();
826 if (!isPowerOf2_32(SmallVTBits))
827 SmallVTBits = NextPowerOf2(SmallVTBits);
828 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
829 MVT SmallVT = MVT::getIntegerVT(SmallVTBits);
830 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
831 TLI.isZExtFree(SmallVT, Op.getValueType())) {
832 // We found a type with free casts.
833 SDValue X = DAG.getNode(Op.getOpcode(), dl, SmallVT,
834 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
835 Op.getNode()->getOperand(0)),
836 DAG.getNode(ISD::TRUNCATE, dl, SmallVT,
837 Op.getNode()->getOperand(1)));
838 SDValue Z = DAG.getNode(ISD::ZERO_EXTEND, dl, Op.getValueType(), X);
839 return CombineTo(Op, Z);
845 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
846 /// DemandedMask bits of the result of Op are ever used downstream. If we can
847 /// use this information to simplify Op, create a new simplified DAG node and
848 /// return true, returning the original and new nodes in Old and New. Otherwise,
849 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
850 /// the expression (used to simplify the caller). The KnownZero/One bits may
851 /// only be accurate for those bits in the DemandedMask.
852 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
853 const APInt &DemandedMask,
856 TargetLoweringOpt &TLO,
857 unsigned Depth) const {
858 unsigned BitWidth = DemandedMask.getBitWidth();
859 assert(Op.getValueSizeInBits() == BitWidth &&
860 "Mask size mismatches value type size!");
861 APInt NewMask = DemandedMask;
862 DebugLoc dl = Op.getDebugLoc();
864 // Don't know anything.
865 KnownZero = KnownOne = APInt(BitWidth, 0);
867 // Other users may use these bits.
868 if (!Op.getNode()->hasOneUse()) {
870 // If not at the root, Just compute the KnownZero/KnownOne bits to
871 // simplify things downstream.
872 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
875 // If this is the root being simplified, allow it to have multiple uses,
876 // just set the NewMask to all bits.
877 NewMask = APInt::getAllOnesValue(BitWidth);
878 } else if (DemandedMask == 0) {
879 // Not demanding any bits from Op.
880 if (Op.getOpcode() != ISD::UNDEF)
881 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
883 } else if (Depth == 6) { // Limit search depth.
887 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
888 switch (Op.getOpcode()) {
890 // We know all of the bits for a constant!
891 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
892 KnownZero = ~KnownOne & NewMask;
893 return false; // Don't fall through, will infinitely loop.
895 // If the RHS is a constant, check to see if the LHS would be zero without
896 // using the bits from the RHS. Below, we use knowledge about the RHS to
897 // simplify the LHS, here we're using information from the LHS to simplify
899 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
900 APInt LHSZero, LHSOne;
901 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
902 LHSZero, LHSOne, Depth+1);
903 // If the LHS already has zeros where RHSC does, this and is dead.
904 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
905 return TLO.CombineTo(Op, Op.getOperand(0));
906 // If any of the set bits in the RHS are known zero on the LHS, shrink
908 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
912 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
913 KnownOne, TLO, Depth+1))
915 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
916 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
917 KnownZero2, KnownOne2, TLO, Depth+1))
919 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
921 // If all of the demanded bits are known one on one side, return the other.
922 // These bits cannot contribute to the result of the 'and'.
923 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
924 return TLO.CombineTo(Op, Op.getOperand(0));
925 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
926 return TLO.CombineTo(Op, Op.getOperand(1));
927 // If all of the demanded bits in the inputs are known zeros, return zero.
928 if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
929 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
930 // If the RHS is a constant, see if we can simplify it.
931 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
933 // If the operation can be done in a smaller type, do so.
934 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
937 // Output known-1 bits are only known if set in both the LHS & RHS.
938 KnownOne &= KnownOne2;
939 // Output known-0 are known to be clear if zero in either the LHS | RHS.
940 KnownZero |= KnownZero2;
943 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
944 KnownOne, TLO, Depth+1))
946 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
947 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
948 KnownZero2, KnownOne2, TLO, Depth+1))
950 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
952 // If all of the demanded bits are known zero on one side, return the other.
953 // These bits cannot contribute to the result of the 'or'.
954 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
955 return TLO.CombineTo(Op, Op.getOperand(0));
956 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
957 return TLO.CombineTo(Op, Op.getOperand(1));
958 // If all of the potentially set bits on one side are known to be set on
959 // the other side, just use the 'other' side.
960 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
961 return TLO.CombineTo(Op, Op.getOperand(0));
962 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
963 return TLO.CombineTo(Op, Op.getOperand(1));
964 // If the RHS is a constant, see if we can simplify it.
965 if (TLO.ShrinkDemandedConstant(Op, NewMask))
967 // If the operation can be done in a smaller type, do so.
968 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
971 // Output known-0 bits are only known if clear in both the LHS & RHS.
972 KnownZero &= KnownZero2;
973 // Output known-1 are known to be set if set in either the LHS | RHS.
974 KnownOne |= KnownOne2;
977 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
978 KnownOne, TLO, Depth+1))
980 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
981 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
982 KnownOne2, TLO, Depth+1))
984 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
986 // If all of the demanded bits are known zero on one side, return the other.
987 // These bits cannot contribute to the result of the 'xor'.
988 if ((KnownZero & NewMask) == NewMask)
989 return TLO.CombineTo(Op, Op.getOperand(0));
990 if ((KnownZero2 & NewMask) == NewMask)
991 return TLO.CombineTo(Op, Op.getOperand(1));
992 // If the operation can be done in a smaller type, do so.
993 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
996 // If all of the unknown bits are known to be zero on one side or the other
997 // (but not both) turn this into an *inclusive* or.
998 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
999 if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
1000 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
1004 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1005 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
1006 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1007 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
1009 // If all of the demanded bits on one side are known, and all of the set
1010 // bits on that side are also known to be set on the other side, turn this
1011 // into an AND, as we know the bits will be cleared.
1012 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1013 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
1014 if ((KnownOne & KnownOne2) == KnownOne) {
1015 MVT VT = Op.getValueType();
1016 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
1017 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
1018 Op.getOperand(0), ANDC));
1022 // If the RHS is a constant, see if we can simplify it.
1023 // for XOR, we prefer to force bits to 1 if they will make a -1.
1024 // if we can't force bits, try to shrink constant
1025 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1026 APInt Expanded = C->getAPIntValue() | (~NewMask);
1027 // if we can expand it to have all bits set, do it
1028 if (Expanded.isAllOnesValue()) {
1029 if (Expanded != C->getAPIntValue()) {
1030 MVT VT = Op.getValueType();
1031 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
1032 TLO.DAG.getConstant(Expanded, VT));
1033 return TLO.CombineTo(Op, New);
1035 // if it already has all the bits set, nothing to change
1036 // but don't shrink either!
1037 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
1042 KnownZero = KnownZeroOut;
1043 KnownOne = KnownOneOut;
1046 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
1047 KnownOne, TLO, Depth+1))
1049 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
1050 KnownOne2, TLO, Depth+1))
1052 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1053 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1055 // If the operands are constants, see if we can simplify them.
1056 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1059 // Only known if known in both the LHS and RHS.
1060 KnownOne &= KnownOne2;
1061 KnownZero &= KnownZero2;
1063 case ISD::SELECT_CC:
1064 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
1065 KnownOne, TLO, Depth+1))
1067 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
1068 KnownOne2, TLO, Depth+1))
1070 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1071 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
1073 // If the operands are constants, see if we can simplify them.
1074 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1077 // Only known if known in both the LHS and RHS.
1078 KnownOne &= KnownOne2;
1079 KnownZero &= KnownZero2;
1082 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1083 unsigned ShAmt = SA->getZExtValue();
1084 SDValue InOp = Op.getOperand(0);
1086 // If the shift count is an invalid immediate, don't do anything.
1087 if (ShAmt >= BitWidth)
1090 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1091 // single shift. We can do this if the bottom bits (which are shifted
1092 // out) are never demanded.
1093 if (InOp.getOpcode() == ISD::SRL &&
1094 isa<ConstantSDNode>(InOp.getOperand(1))) {
1095 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1096 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1097 unsigned Opc = ISD::SHL;
1098 int Diff = ShAmt-C1;
1105 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1106 MVT VT = Op.getValueType();
1107 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1108 InOp.getOperand(0), NewSA));
1112 if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1113 KnownZero, KnownOne, TLO, Depth+1))
1115 KnownZero <<= SA->getZExtValue();
1116 KnownOne <<= SA->getZExtValue();
1117 // low bits known zero.
1118 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1122 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1123 MVT VT = Op.getValueType();
1124 unsigned ShAmt = SA->getZExtValue();
1125 unsigned VTSize = VT.getSizeInBits();
1126 SDValue InOp = Op.getOperand(0);
1128 // If the shift count is an invalid immediate, don't do anything.
1129 if (ShAmt >= BitWidth)
1132 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1133 // single shift. We can do this if the top bits (which are shifted out)
1134 // are never demanded.
1135 if (InOp.getOpcode() == ISD::SHL &&
1136 isa<ConstantSDNode>(InOp.getOperand(1))) {
1137 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1138 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1139 unsigned Opc = ISD::SRL;
1140 int Diff = ShAmt-C1;
1147 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1148 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1149 InOp.getOperand(0), NewSA));
1153 // Compute the new bits that are at the top now.
1154 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1155 KnownZero, KnownOne, TLO, Depth+1))
1157 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1158 KnownZero = KnownZero.lshr(ShAmt);
1159 KnownOne = KnownOne.lshr(ShAmt);
1161 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1162 KnownZero |= HighBits; // High bits known zero.
1166 // If this is an arithmetic shift right and only the low-bit is set, we can
1167 // always convert this into a logical shr, even if the shift amount is
1168 // variable. The low bit of the shift cannot be an input sign bit unless
1169 // the shift amount is >= the size of the datatype, which is undefined.
1170 if (DemandedMask == 1)
1171 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1172 Op.getOperand(0), Op.getOperand(1)));
1174 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1175 MVT VT = Op.getValueType();
1176 unsigned ShAmt = SA->getZExtValue();
1178 // If the shift count is an invalid immediate, don't do anything.
1179 if (ShAmt >= BitWidth)
1182 APInt InDemandedMask = (NewMask << ShAmt);
1184 // If any of the demanded bits are produced by the sign extension, we also
1185 // demand the input sign bit.
1186 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1187 if (HighBits.intersects(NewMask))
1188 InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1190 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1191 KnownZero, KnownOne, TLO, Depth+1))
1193 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1194 KnownZero = KnownZero.lshr(ShAmt);
1195 KnownOne = KnownOne.lshr(ShAmt);
1197 // Handle the sign bit, adjusted to where it is now in the mask.
1198 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1200 // If the input sign bit is known to be zero, or if none of the top bits
1201 // are demanded, turn this into an unsigned shift right.
1202 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1203 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1206 } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1207 KnownOne |= HighBits;
1211 case ISD::SIGN_EXTEND_INREG: {
1212 MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1214 // Sign extension. Compute the demanded bits in the result that are not
1215 // present in the input.
1216 APInt NewBits = APInt::getHighBitsSet(BitWidth,
1217 BitWidth - EVT.getSizeInBits()) &
1220 // If none of the extended bits are demanded, eliminate the sextinreg.
1222 return TLO.CombineTo(Op, Op.getOperand(0));
1224 APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1225 InSignBit.zext(BitWidth);
1226 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1227 EVT.getSizeInBits()) &
1230 // Since the sign extended bits are demanded, we know that the sign
1232 InputDemandedBits |= InSignBit;
1234 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1235 KnownZero, KnownOne, TLO, Depth+1))
1237 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1239 // If the sign bit of the input is known set or clear, then we know the
1240 // top bits of the result.
1242 // If the input sign bit is known zero, convert this into a zero extension.
1243 if (KnownZero.intersects(InSignBit))
1244 return TLO.CombineTo(Op,
1245 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1247 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1248 KnownOne |= NewBits;
1249 KnownZero &= ~NewBits;
1250 } else { // Input sign bit unknown
1251 KnownZero &= ~NewBits;
1252 KnownOne &= ~NewBits;
1256 case ISD::ZERO_EXTEND: {
1257 unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1258 APInt InMask = NewMask;
1259 InMask.trunc(OperandBitWidth);
1261 // If none of the top bits are demanded, convert this into an any_extend.
1263 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1264 if (!NewBits.intersects(NewMask))
1265 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1269 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1270 KnownZero, KnownOne, TLO, Depth+1))
1272 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1273 KnownZero.zext(BitWidth);
1274 KnownOne.zext(BitWidth);
1275 KnownZero |= NewBits;
1278 case ISD::SIGN_EXTEND: {
1279 MVT InVT = Op.getOperand(0).getValueType();
1280 unsigned InBits = InVT.getSizeInBits();
1281 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
1282 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1283 APInt NewBits = ~InMask & NewMask;
1285 // If none of the top bits are demanded, convert this into an any_extend.
1287 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1291 // Since some of the sign extended bits are demanded, we know that the sign
1293 APInt InDemandedBits = InMask & NewMask;
1294 InDemandedBits |= InSignBit;
1295 InDemandedBits.trunc(InBits);
1297 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1298 KnownOne, TLO, Depth+1))
1300 KnownZero.zext(BitWidth);
1301 KnownOne.zext(BitWidth);
1303 // If the sign bit is known zero, convert this to a zero extend.
1304 if (KnownZero.intersects(InSignBit))
1305 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1309 // If the sign bit is known one, the top bits match.
1310 if (KnownOne.intersects(InSignBit)) {
1311 KnownOne |= NewBits;
1312 KnownZero &= ~NewBits;
1313 } else { // Otherwise, top bits aren't known.
1314 KnownOne &= ~NewBits;
1315 KnownZero &= ~NewBits;
1319 case ISD::ANY_EXTEND: {
1320 unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1321 APInt InMask = NewMask;
1322 InMask.trunc(OperandBitWidth);
1323 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1324 KnownZero, KnownOne, TLO, Depth+1))
1326 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1327 KnownZero.zext(BitWidth);
1328 KnownOne.zext(BitWidth);
1331 case ISD::TRUNCATE: {
1332 // Simplify the input, using demanded bit information, and compute the known
1333 // zero/one bits live out.
1334 APInt TruncMask = NewMask;
1335 TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1336 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1337 KnownZero, KnownOne, TLO, Depth+1))
1339 KnownZero.trunc(BitWidth);
1340 KnownOne.trunc(BitWidth);
1342 // If the input is only used by this truncate, see if we can shrink it based
1343 // on the known demanded bits.
1344 if (Op.getOperand(0).getNode()->hasOneUse()) {
1345 SDValue In = Op.getOperand(0);
1346 unsigned InBitWidth = In.getValueSizeInBits();
1347 switch (In.getOpcode()) {
1350 // Shrink SRL by a constant if none of the high bits shifted in are
1352 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1353 APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1354 InBitWidth - BitWidth);
1355 HighBits = HighBits.lshr(ShAmt->getZExtValue());
1356 HighBits.trunc(BitWidth);
1358 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1359 // None of the shifted in bits are needed. Add a truncate of the
1360 // shift input, then shift it.
1361 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1364 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1374 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1377 case ISD::AssertZext: {
1378 MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1379 APInt InMask = APInt::getLowBitsSet(BitWidth,
1380 VT.getSizeInBits());
1381 if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1382 KnownZero, KnownOne, TLO, Depth+1))
1384 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1385 KnownZero |= ~InMask & NewMask;
1388 case ISD::BIT_CONVERT:
1390 // If this is an FP->Int bitcast and if the sign bit is the only thing that
1391 // is demanded, turn this into a FGETSIGN.
1392 if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1393 MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1394 !MVT::isVector(Op.getOperand(0).getValueType())) {
1395 // Only do this xform if FGETSIGN is valid or if before legalize.
1396 if (!TLO.AfterLegalize ||
1397 isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1398 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1399 // place. We expect the SHL to be eliminated by other optimizations.
1400 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1402 unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1403 SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1404 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1413 // Add, Sub, and Mul don't demand any bits in positions beyond that
1414 // of the highest bit demanded of them.
1415 APInt LoMask = APInt::getLowBitsSet(BitWidth,
1416 BitWidth - NewMask.countLeadingZeros());
1417 if (SimplifyDemandedBits(Op.getOperand(0), LoMask, KnownZero2,
1418 KnownOne2, TLO, Depth+1))
1420 if (SimplifyDemandedBits(Op.getOperand(1), LoMask, KnownZero2,
1421 KnownOne2, TLO, Depth+1))
1423 // See if the operation should be performed at a smaller bit width.
1424 if (TLO.ShrinkDemandedOp(Op, BitWidth, NewMask, dl))
1429 // Just use ComputeMaskedBits to compute output bits.
1430 TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1434 // If we know the value of all of the demanded bits, return this as a
1436 if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1437 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1442 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1443 /// in Mask are known to be either zero or one and return them in the
1444 /// KnownZero/KnownOne bitsets.
1445 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1449 const SelectionDAG &DAG,
1450 unsigned Depth) const {
1451 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1452 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1453 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1454 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1455 "Should use MaskedValueIsZero if you don't know whether Op"
1456 " is a target node!");
1457 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1460 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1461 /// targets that want to expose additional information about sign bits to the
1463 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1464 unsigned Depth) const {
1465 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1466 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1467 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1468 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1469 "Should use ComputeNumSignBits if you don't know whether Op"
1470 " is a target node!");
1474 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1475 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1476 /// determine which bit is set.
1478 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1479 // A left-shift of a constant one will have exactly one bit set, because
1480 // shifting the bit off the end is undefined.
1481 if (Val.getOpcode() == ISD::SHL)
1482 if (ConstantSDNode *C =
1483 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1484 if (C->getAPIntValue() == 1)
1487 // Similarly, a right-shift of a constant sign-bit will have exactly
1489 if (Val.getOpcode() == ISD::SRL)
1490 if (ConstantSDNode *C =
1491 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1492 if (C->getAPIntValue().isSignBit())
1495 // More could be done here, though the above checks are enough
1496 // to handle some common cases.
1498 // Fall back to ComputeMaskedBits to catch other known cases.
1499 MVT OpVT = Val.getValueType();
1500 unsigned BitWidth = OpVT.getSizeInBits();
1501 APInt Mask = APInt::getAllOnesValue(BitWidth);
1502 APInt KnownZero, KnownOne;
1503 DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1504 return (KnownZero.countPopulation() == BitWidth - 1) &&
1505 (KnownOne.countPopulation() == 1);
1508 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1509 /// and cc. If it is unable to simplify it, return a null SDValue.
1511 TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1512 ISD::CondCode Cond, bool foldBooleans,
1513 DAGCombinerInfo &DCI, DebugLoc dl) const {
1514 SelectionDAG &DAG = DCI.DAG;
1516 // These setcc operations always fold.
1520 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1522 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1525 if (isa<ConstantSDNode>(N0.getNode())) {
1526 // Ensure that the constant occurs on the RHS, and fold constant
1528 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1531 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1532 const APInt &C1 = N1C->getAPIntValue();
1534 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1535 // equality comparison, then we're just comparing whether X itself is
1537 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1538 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1539 N0.getOperand(1).getOpcode() == ISD::Constant) {
1540 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1541 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1542 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1543 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1544 // (srl (ctlz x), 5) == 0 -> X != 0
1545 // (srl (ctlz x), 5) != 1 -> X != 0
1548 // (srl (ctlz x), 5) != 0 -> X == 0
1549 // (srl (ctlz x), 5) == 1 -> X == 0
1552 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1553 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1558 // If the LHS is '(and load, const)', the RHS is 0,
1559 // the test is for equality or unsigned, and all 1 bits of the const are
1560 // in the same partial word, see if we can shorten the load.
1561 if (DCI.isBeforeLegalize() &&
1562 N0.getOpcode() == ISD::AND && C1 == 0 &&
1563 N0.getNode()->hasOneUse() &&
1564 isa<LoadSDNode>(N0.getOperand(0)) &&
1565 N0.getOperand(0).getNode()->hasOneUse() &&
1566 isa<ConstantSDNode>(N0.getOperand(1))) {
1567 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1568 uint64_t bestMask = 0;
1569 unsigned bestWidth = 0, bestOffset = 0;
1570 if (!Lod->isVolatile() && Lod->isUnindexed() &&
1571 // FIXME: This uses getZExtValue() below so it only works on i64 and
1573 N0.getValueType().getSizeInBits() <= 64) {
1574 unsigned origWidth = N0.getValueType().getSizeInBits();
1575 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1576 // 8 bits, but have to be careful...
1577 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1578 origWidth = Lod->getMemoryVT().getSizeInBits();
1579 uint64_t Mask =cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1580 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1581 uint64_t newMask = (1ULL << width) - 1;
1582 for (unsigned offset=0; offset<origWidth/width; offset++) {
1583 if ((newMask & Mask) == Mask) {
1584 if (!TD->isLittleEndian())
1585 bestOffset = (origWidth/width - offset - 1) * (width/8);
1587 bestOffset = (uint64_t)offset * (width/8);
1588 bestMask = Mask >> (offset * (width/8) * 8);
1592 newMask = newMask << width;
1597 MVT newVT = MVT::getIntegerVT(bestWidth);
1598 if (newVT.isRound()) {
1599 MVT PtrType = Lod->getOperand(1).getValueType();
1600 SDValue Ptr = Lod->getBasePtr();
1601 if (bestOffset != 0)
1602 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1603 DAG.getConstant(bestOffset, PtrType));
1604 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1605 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1607 Lod->getSrcValueOffset() + bestOffset,
1609 return DAG.getSetCC(dl, VT,
1610 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1611 DAG.getConstant(bestMask, newVT)),
1612 DAG.getConstant(0LL, newVT), Cond);
1617 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1618 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1619 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1621 // If the comparison constant has bits in the upper part, the
1622 // zero-extended value could never match.
1623 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1624 C1.getBitWidth() - InSize))) {
1628 case ISD::SETEQ: return DAG.getConstant(0, VT);
1631 case ISD::SETNE: return DAG.getConstant(1, VT);
1634 // True if the sign bit of C1 is set.
1635 return DAG.getConstant(C1.isNegative(), VT);
1638 // True if the sign bit of C1 isn't set.
1639 return DAG.getConstant(C1.isNonNegative(), VT);
1645 // Otherwise, we can perform the comparison with the low bits.
1653 MVT newVT = N0.getOperand(0).getValueType();
1654 if (DCI.isBeforeLegalizeOps() ||
1655 (isOperationLegal(ISD::SETCC, newVT) &&
1656 getCondCodeAction(Cond, newVT)==Legal))
1657 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1658 DAG.getConstant(APInt(C1).trunc(InSize), newVT),
1663 break; // todo, be more careful with signed comparisons
1665 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1666 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1667 MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1668 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1669 MVT ExtDstTy = N0.getValueType();
1670 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1672 // If the extended part has any inconsistent bits, it cannot ever
1673 // compare equal. In other words, they have to be all ones or all
1676 APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1677 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1678 return DAG.getConstant(Cond == ISD::SETNE, VT);
1681 MVT Op0Ty = N0.getOperand(0).getValueType();
1682 if (Op0Ty == ExtSrcTy) {
1683 ZextOp = N0.getOperand(0);
1685 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1686 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1687 DAG.getConstant(Imm, Op0Ty));
1689 if (!DCI.isCalledByLegalizer())
1690 DCI.AddToWorklist(ZextOp.getNode());
1691 // Otherwise, make this a use of a zext.
1692 return DAG.getSetCC(dl, VT, ZextOp,
1693 DAG.getConstant(C1 & APInt::getLowBitsSet(
1698 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1699 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1701 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1702 if (N0.getOpcode() == ISD::SETCC) {
1703 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1707 // Invert the condition.
1708 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1709 CC = ISD::getSetCCInverse(CC,
1710 N0.getOperand(0).getValueType().isInteger());
1711 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1714 if ((N0.getOpcode() == ISD::XOR ||
1715 (N0.getOpcode() == ISD::AND &&
1716 N0.getOperand(0).getOpcode() == ISD::XOR &&
1717 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1718 isa<ConstantSDNode>(N0.getOperand(1)) &&
1719 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1720 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1721 // can only do this if the top bits are known zero.
1722 unsigned BitWidth = N0.getValueSizeInBits();
1723 if (DAG.MaskedValueIsZero(N0,
1724 APInt::getHighBitsSet(BitWidth,
1726 // Okay, get the un-inverted input value.
1728 if (N0.getOpcode() == ISD::XOR)
1729 Val = N0.getOperand(0);
1731 assert(N0.getOpcode() == ISD::AND &&
1732 N0.getOperand(0).getOpcode() == ISD::XOR);
1733 // ((X^1)&1)^1 -> X & 1
1734 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1735 N0.getOperand(0).getOperand(0),
1738 return DAG.getSetCC(dl, VT, Val, N1,
1739 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1744 APInt MinVal, MaxVal;
1745 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1746 if (ISD::isSignedIntSetCC(Cond)) {
1747 MinVal = APInt::getSignedMinValue(OperandBitSize);
1748 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1750 MinVal = APInt::getMinValue(OperandBitSize);
1751 MaxVal = APInt::getMaxValue(OperandBitSize);
1754 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1755 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1756 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1757 // X >= C0 --> X > (C0-1)
1758 return DAG.getSetCC(dl, VT, N0,
1759 DAG.getConstant(C1-1, N1.getValueType()),
1760 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1763 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1764 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1765 // X <= C0 --> X < (C0+1)
1766 return DAG.getSetCC(dl, VT, N0,
1767 DAG.getConstant(C1+1, N1.getValueType()),
1768 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1771 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1772 return DAG.getConstant(0, VT); // X < MIN --> false
1773 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1774 return DAG.getConstant(1, VT); // X >= MIN --> true
1775 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1776 return DAG.getConstant(0, VT); // X > MAX --> false
1777 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1778 return DAG.getConstant(1, VT); // X <= MAX --> true
1780 // Canonicalize setgt X, Min --> setne X, Min
1781 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1782 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1783 // Canonicalize setlt X, Max --> setne X, Max
1784 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1785 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1787 // If we have setult X, 1, turn it into seteq X, 0
1788 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1789 return DAG.getSetCC(dl, VT, N0,
1790 DAG.getConstant(MinVal, N0.getValueType()),
1792 // If we have setugt X, Max-1, turn it into seteq X, Max
1793 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1794 return DAG.getSetCC(dl, VT, N0,
1795 DAG.getConstant(MaxVal, N0.getValueType()),
1798 // If we have "setcc X, C0", check to see if we can shrink the immediate
1801 // SETUGT X, SINTMAX -> SETLT X, 0
1802 if (Cond == ISD::SETUGT &&
1803 C1 == APInt::getSignedMaxValue(OperandBitSize))
1804 return DAG.getSetCC(dl, VT, N0,
1805 DAG.getConstant(0, N1.getValueType()),
1808 // SETULT X, SINTMIN -> SETGT X, -1
1809 if (Cond == ISD::SETULT &&
1810 C1 == APInt::getSignedMinValue(OperandBitSize)) {
1811 SDValue ConstMinusOne =
1812 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1814 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1817 // Fold bit comparisons when we can.
1818 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1819 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1820 if (ConstantSDNode *AndRHS =
1821 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1822 MVT ShiftTy = DCI.isBeforeLegalize() ?
1823 getPointerTy() : getShiftAmountTy();
1824 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1825 // Perform the xform if the AND RHS is a single bit.
1826 if (isPowerOf2_64(AndRHS->getZExtValue())) {
1827 return DAG.getNode(ISD::SRL, dl, VT, N0,
1828 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1831 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1832 // (X & 8) == 8 --> (X & 8) >> 3
1833 // Perform the xform if C1 is a single bit.
1834 if (C1.isPowerOf2()) {
1835 return DAG.getNode(ISD::SRL, dl, VT, N0,
1836 DAG.getConstant(C1.logBase2(), ShiftTy));
1842 if (isa<ConstantFPSDNode>(N0.getNode())) {
1843 // Constant fold or commute setcc.
1844 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1845 if (O.getNode()) return O;
1846 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1847 // If the RHS of an FP comparison is a constant, simplify it away in
1849 if (CFP->getValueAPF().isNaN()) {
1850 // If an operand is known to be a nan, we can fold it.
1851 switch (ISD::getUnorderedFlavor(Cond)) {
1852 default: llvm_unreachable("Unknown flavor!");
1853 case 0: // Known false.
1854 return DAG.getConstant(0, VT);
1855 case 1: // Known true.
1856 return DAG.getConstant(1, VT);
1857 case 2: // Undefined.
1858 return DAG.getUNDEF(VT);
1862 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
1863 // constant if knowing that the operand is non-nan is enough. We prefer to
1864 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1866 if (Cond == ISD::SETO || Cond == ISD::SETUO)
1867 return DAG.getSetCC(dl, VT, N0, N0, Cond);
1871 // We can always fold X == X for integer setcc's.
1872 if (N0.getValueType().isInteger())
1873 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1874 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1875 if (UOF == 2) // FP operators that are undefined on NaNs.
1876 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1877 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1878 return DAG.getConstant(UOF, VT);
1879 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1880 // if it is not already.
1881 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1882 if (NewCond != Cond)
1883 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1886 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1887 N0.getValueType().isInteger()) {
1888 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1889 N0.getOpcode() == ISD::XOR) {
1890 // Simplify (X+Y) == (X+Z) --> Y == Z
1891 if (N0.getOpcode() == N1.getOpcode()) {
1892 if (N0.getOperand(0) == N1.getOperand(0))
1893 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1894 if (N0.getOperand(1) == N1.getOperand(1))
1895 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1896 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1897 // If X op Y == Y op X, try other combinations.
1898 if (N0.getOperand(0) == N1.getOperand(1))
1899 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1901 if (N0.getOperand(1) == N1.getOperand(0))
1902 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1907 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1908 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1909 // Turn (X+C1) == C2 --> X == C2-C1
1910 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1911 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1912 DAG.getConstant(RHSC->getAPIntValue()-
1913 LHSR->getAPIntValue(),
1914 N0.getValueType()), Cond);
1917 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1918 if (N0.getOpcode() == ISD::XOR)
1919 // If we know that all of the inverted bits are zero, don't bother
1920 // performing the inversion.
1921 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1923 DAG.getSetCC(dl, VT, N0.getOperand(0),
1924 DAG.getConstant(LHSR->getAPIntValue() ^
1925 RHSC->getAPIntValue(),
1930 // Turn (C1-X) == C2 --> X == C1-C2
1931 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1932 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1934 DAG.getSetCC(dl, VT, N0.getOperand(1),
1935 DAG.getConstant(SUBC->getAPIntValue() -
1936 RHSC->getAPIntValue(),
1943 // Simplify (X+Z) == X --> Z == 0
1944 if (N0.getOperand(0) == N1)
1945 return DAG.getSetCC(dl, VT, N0.getOperand(1),
1946 DAG.getConstant(0, N0.getValueType()), Cond);
1947 if (N0.getOperand(1) == N1) {
1948 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1949 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1950 DAG.getConstant(0, N0.getValueType()), Cond);
1951 else if (N0.getNode()->hasOneUse()) {
1952 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1953 // (Z-X) == X --> Z == X<<1
1954 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1956 DAG.getConstant(1, getShiftAmountTy()));
1957 if (!DCI.isCalledByLegalizer())
1958 DCI.AddToWorklist(SH.getNode());
1959 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1964 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1965 N1.getOpcode() == ISD::XOR) {
1966 // Simplify X == (X+Z) --> Z == 0
1967 if (N1.getOperand(0) == N0) {
1968 return DAG.getSetCC(dl, VT, N1.getOperand(1),
1969 DAG.getConstant(0, N1.getValueType()), Cond);
1970 } else if (N1.getOperand(1) == N0) {
1971 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1972 return DAG.getSetCC(dl, VT, N1.getOperand(0),
1973 DAG.getConstant(0, N1.getValueType()), Cond);
1974 } else if (N1.getNode()->hasOneUse()) {
1975 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1976 // X == (Z-X) --> X<<1 == Z
1977 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1978 DAG.getConstant(1, getShiftAmountTy()));
1979 if (!DCI.isCalledByLegalizer())
1980 DCI.AddToWorklist(SH.getNode());
1981 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1986 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1987 // Note that where y is variable and is known to have at most
1988 // one bit set (for example, if it is z&1) we cannot do this;
1989 // the expressions are not equivalent when y==0.
1990 if (N0.getOpcode() == ISD::AND)
1991 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1992 if (ValueHasExactlyOneBitSet(N1, DAG)) {
1993 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1994 SDValue Zero = DAG.getConstant(0, N1.getValueType());
1995 return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1998 if (N1.getOpcode() == ISD::AND)
1999 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
2000 if (ValueHasExactlyOneBitSet(N0, DAG)) {
2001 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2002 SDValue Zero = DAG.getConstant(0, N0.getValueType());
2003 return DAG.getSetCC(dl, VT, N1, Zero, Cond);
2008 // Fold away ALL boolean setcc's.
2010 if (N0.getValueType() == MVT::i1 && foldBooleans) {
2012 default: llvm_unreachable("Unknown integer setcc!");
2013 case ISD::SETEQ: // X == Y -> ~(X^Y)
2014 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2015 N0 = DAG.getNOT(dl, Temp, MVT::i1);
2016 if (!DCI.isCalledByLegalizer())
2017 DCI.AddToWorklist(Temp.getNode());
2019 case ISD::SETNE: // X != Y --> (X^Y)
2020 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
2022 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
2023 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
2024 Temp = DAG.getNOT(dl, N0, MVT::i1);
2025 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
2026 if (!DCI.isCalledByLegalizer())
2027 DCI.AddToWorklist(Temp.getNode());
2029 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
2030 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
2031 Temp = DAG.getNOT(dl, N1, MVT::i1);
2032 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
2033 if (!DCI.isCalledByLegalizer())
2034 DCI.AddToWorklist(Temp.getNode());
2036 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
2037 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
2038 Temp = DAG.getNOT(dl, N0, MVT::i1);
2039 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
2040 if (!DCI.isCalledByLegalizer())
2041 DCI.AddToWorklist(Temp.getNode());
2043 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
2044 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
2045 Temp = DAG.getNOT(dl, N1, MVT::i1);
2046 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
2049 if (VT != MVT::i1) {
2050 if (!DCI.isCalledByLegalizer())
2051 DCI.AddToWorklist(N0.getNode());
2052 // FIXME: If running after legalize, we probably can't do this.
2053 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
2058 // Could not fold it.
2062 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
2063 /// node is a GlobalAddress + offset.
2064 bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
2065 int64_t &Offset) const {
2066 if (isa<GlobalAddressSDNode>(N)) {
2067 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
2068 GA = GASD->getGlobal();
2069 Offset += GASD->getOffset();
2073 if (N->getOpcode() == ISD::ADD) {
2074 SDValue N1 = N->getOperand(0);
2075 SDValue N2 = N->getOperand(1);
2076 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
2077 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
2079 Offset += V->getSExtValue();
2082 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
2083 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
2085 Offset += V->getSExtValue();
2094 /// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
2095 /// location that is 'Dist' units away from the location that the 'Base' load
2096 /// is loading from.
2097 bool TargetLowering::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
2098 unsigned Bytes, int Dist,
2099 const MachineFrameInfo *MFI) const {
2100 if (LD->getChain() != Base->getChain())
2102 MVT VT = LD->getValueType(0);
2103 if (VT.getSizeInBits() / 8 != Bytes)
2106 SDValue Loc = LD->getOperand(1);
2107 SDValue BaseLoc = Base->getOperand(1);
2108 if (Loc.getOpcode() == ISD::FrameIndex) {
2109 if (BaseLoc.getOpcode() != ISD::FrameIndex)
2111 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
2112 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2113 int FS = MFI->getObjectSize(FI);
2114 int BFS = MFI->getObjectSize(BFI);
2115 if (FS != BFS || FS != (int)Bytes) return false;
2116 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2118 if (Loc.getOpcode() == ISD::ADD && Loc.getOperand(0) == BaseLoc) {
2119 ConstantSDNode *V = dyn_cast<ConstantSDNode>(Loc.getOperand(1));
2120 if (V && (V->getSExtValue() == Dist*Bytes))
2124 GlobalValue *GV1 = NULL;
2125 GlobalValue *GV2 = NULL;
2126 int64_t Offset1 = 0;
2127 int64_t Offset2 = 0;
2128 bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2129 bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2130 if (isGA1 && isGA2 && GV1 == GV2)
2131 return Offset1 == (Offset2 + Dist*Bytes);
2136 SDValue TargetLowering::
2137 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2138 // Default implementation: no optimization.
2142 //===----------------------------------------------------------------------===//
2143 // Inline Assembler Implementation Methods
2144 //===----------------------------------------------------------------------===//
2147 TargetLowering::ConstraintType
2148 TargetLowering::getConstraintType(const std::string &Constraint) const {
2149 // FIXME: lots more standard ones to handle.
2150 if (Constraint.size() == 1) {
2151 switch (Constraint[0]) {
2153 case 'r': return C_RegisterClass;
2155 case 'o': // offsetable
2156 case 'V': // not offsetable
2158 case 'i': // Simple Integer or Relocatable Constant
2159 case 'n': // Simple Integer
2160 case 's': // Relocatable Constant
2161 case 'X': // Allow ANY value.
2162 case 'I': // Target registers.
2174 if (Constraint.size() > 1 && Constraint[0] == '{' &&
2175 Constraint[Constraint.size()-1] == '}')
2180 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2181 /// with another that has more specific requirements based on the type of the
2182 /// corresponding operand.
2183 const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2184 if (ConstraintVT.isInteger())
2186 if (ConstraintVT.isFloatingPoint())
2187 return "f"; // works for many targets
2191 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2192 /// vector. If it is invalid, don't add anything to Ops.
2193 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2194 char ConstraintLetter,
2196 std::vector<SDValue> &Ops,
2197 SelectionDAG &DAG) const {
2198 switch (ConstraintLetter) {
2200 case 'X': // Allows any operand; labels (basic block) use this.
2201 if (Op.getOpcode() == ISD::BasicBlock) {
2206 case 'i': // Simple Integer or Relocatable Constant
2207 case 'n': // Simple Integer
2208 case 's': { // Relocatable Constant
2209 // These operands are interested in values of the form (GV+C), where C may
2210 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2211 // is possible and fine if either GV or C are missing.
2212 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2213 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2215 // If we have "(add GV, C)", pull out GV/C
2216 if (Op.getOpcode() == ISD::ADD) {
2217 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2218 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2219 if (C == 0 || GA == 0) {
2220 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2221 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2223 if (C == 0 || GA == 0)
2227 // If we find a valid operand, map to the TargetXXX version so that the
2228 // value itself doesn't get selected.
2229 if (GA) { // Either &GV or &GV+C
2230 if (ConstraintLetter != 'n') {
2231 int64_t Offs = GA->getOffset();
2232 if (C) Offs += C->getZExtValue();
2233 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2234 Op.getValueType(), Offs));
2238 if (C) { // just C, no GV.
2239 // Simple constants are not allowed for 's'.
2240 if (ConstraintLetter != 's') {
2241 // gcc prints these as sign extended. Sign extend value to 64 bits
2242 // now; without this it would get ZExt'd later in
2243 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2244 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2254 std::vector<unsigned> TargetLowering::
2255 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2257 return std::vector<unsigned>();
2261 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2262 getRegForInlineAsmConstraint(const std::string &Constraint,
2264 if (Constraint[0] != '{')
2265 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2266 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2268 // Remove the braces from around the name.
2269 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2271 // Figure out which register class contains this reg.
2272 const TargetRegisterInfo *RI = TM.getRegisterInfo();
2273 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2274 E = RI->regclass_end(); RCI != E; ++RCI) {
2275 const TargetRegisterClass *RC = *RCI;
2277 // If none of the the value types for this register class are valid, we
2278 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2279 bool isLegal = false;
2280 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2282 if (isTypeLegal(*I)) {
2288 if (!isLegal) continue;
2290 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2292 if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2293 return std::make_pair(*I, RC);
2297 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2300 //===----------------------------------------------------------------------===//
2301 // Constraint Selection.
2303 /// isMatchingInputConstraint - Return true of this is an input operand that is
2304 /// a matching constraint like "4".
2305 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2306 assert(!ConstraintCode.empty() && "No known constraint!");
2307 return isdigit(ConstraintCode[0]);
2310 /// getMatchedOperand - If this is an input matching constraint, this method
2311 /// returns the output operand it matches.
2312 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2313 assert(!ConstraintCode.empty() && "No known constraint!");
2314 return atoi(ConstraintCode.c_str());
2318 /// getConstraintGenerality - Return an integer indicating how general CT
2320 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2322 default: llvm_unreachable("Unknown constraint type!");
2323 case TargetLowering::C_Other:
2324 case TargetLowering::C_Unknown:
2326 case TargetLowering::C_Register:
2328 case TargetLowering::C_RegisterClass:
2330 case TargetLowering::C_Memory:
2335 /// ChooseConstraint - If there are multiple different constraints that we
2336 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2337 /// This is somewhat tricky: constraints fall into four classes:
2338 /// Other -> immediates and magic values
2339 /// Register -> one specific register
2340 /// RegisterClass -> a group of regs
2341 /// Memory -> memory
2342 /// Ideally, we would pick the most specific constraint possible: if we have
2343 /// something that fits into a register, we would pick it. The problem here
2344 /// is that if we have something that could either be in a register or in
2345 /// memory that use of the register could cause selection of *other*
2346 /// operands to fail: they might only succeed if we pick memory. Because of
2347 /// this the heuristic we use is:
2349 /// 1) If there is an 'other' constraint, and if the operand is valid for
2350 /// that constraint, use it. This makes us take advantage of 'i'
2351 /// constraints when available.
2352 /// 2) Otherwise, pick the most general constraint present. This prefers
2353 /// 'm' over 'r', for example.
2355 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2356 bool hasMemory, const TargetLowering &TLI,
2357 SDValue Op, SelectionDAG *DAG) {
2358 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2359 unsigned BestIdx = 0;
2360 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2361 int BestGenerality = -1;
2363 // Loop over the options, keeping track of the most general one.
2364 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2365 TargetLowering::ConstraintType CType =
2366 TLI.getConstraintType(OpInfo.Codes[i]);
2368 // If this is an 'other' constraint, see if the operand is valid for it.
2369 // For example, on X86 we might have an 'rI' constraint. If the operand
2370 // is an integer in the range [0..31] we want to use I (saving a load
2371 // of a register), otherwise we must use 'r'.
2372 if (CType == TargetLowering::C_Other && Op.getNode()) {
2373 assert(OpInfo.Codes[i].size() == 1 &&
2374 "Unhandled multi-letter 'other' constraint");
2375 std::vector<SDValue> ResultOps;
2376 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2378 if (!ResultOps.empty()) {
2385 // This constraint letter is more general than the previous one, use it.
2386 int Generality = getConstraintGenerality(CType);
2387 if (Generality > BestGenerality) {
2390 BestGenerality = Generality;
2394 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2395 OpInfo.ConstraintType = BestType;
2398 /// ComputeConstraintToUse - Determines the constraint code and constraint
2399 /// type to use for the specific AsmOperandInfo, setting
2400 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2401 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2404 SelectionDAG *DAG) const {
2405 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2407 // Single-letter constraints ('r') are very common.
2408 if (OpInfo.Codes.size() == 1) {
2409 OpInfo.ConstraintCode = OpInfo.Codes[0];
2410 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2412 ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2415 // 'X' matches anything.
2416 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2417 // Labels and constants are handled elsewhere ('X' is the only thing
2418 // that matches labels). For Functions, the type here is the type of
2419 // the result, which is not what we want to look at; leave them alone.
2420 Value *v = OpInfo.CallOperandVal;
2421 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
2422 OpInfo.CallOperandVal = v;
2426 // Otherwise, try to resolve it to something we know about by looking at
2427 // the actual operand type.
2428 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2429 OpInfo.ConstraintCode = Repl;
2430 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2435 //===----------------------------------------------------------------------===//
2436 // Loop Strength Reduction hooks
2437 //===----------------------------------------------------------------------===//
2439 /// isLegalAddressingMode - Return true if the addressing mode represented
2440 /// by AM is legal for this target, for a load/store of the specified type.
2441 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2442 const Type *Ty) const {
2443 // The default implementation of this implements a conservative RISCy, r+r and
2446 // Allows a sign-extended 16-bit immediate field.
2447 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2450 // No global is ever allowed as a base.
2454 // Only support r+r,
2456 case 0: // "r+i" or just "i", depending on HasBaseReg.
2459 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2461 // Otherwise we have r+r or r+i.
2464 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2466 // Allow 2*r as r+r.
2473 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2474 /// return a DAG expression to select that will generate the same value by
2475 /// multiplying by a magic number. See:
2476 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2477 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2478 std::vector<SDNode*>* Created) const {
2479 MVT VT = N->getValueType(0);
2480 DebugLoc dl= N->getDebugLoc();
2482 // Check to see if we can do this.
2483 // FIXME: We should be more aggressive here.
2484 if (!isTypeLegal(VT))
2487 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2488 APInt::ms magics = d.magic();
2490 // Multiply the numerator (operand 0) by the magic value
2491 // FIXME: We should support doing a MUL in a wider type
2493 if (isOperationLegalOrCustom(ISD::MULHS, VT))
2494 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2495 DAG.getConstant(magics.m, VT));
2496 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2497 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2499 DAG.getConstant(magics.m, VT)).getNode(), 1);
2501 return SDValue(); // No mulhs or equvialent
2502 // If d > 0 and m < 0, add the numerator
2503 if (d.isStrictlyPositive() && magics.m.isNegative()) {
2504 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2506 Created->push_back(Q.getNode());
2508 // If d < 0 and m > 0, subtract the numerator.
2509 if (d.isNegative() && magics.m.isStrictlyPositive()) {
2510 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2512 Created->push_back(Q.getNode());
2514 // Shift right algebraic if shift value is nonzero
2516 Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2517 DAG.getConstant(magics.s, getShiftAmountTy()));
2519 Created->push_back(Q.getNode());
2521 // Extract the sign bit and add it to the quotient
2523 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2524 getShiftAmountTy()));
2526 Created->push_back(T.getNode());
2527 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2530 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2531 /// return a DAG expression to select that will generate the same value by
2532 /// multiplying by a magic number. See:
2533 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2534 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2535 std::vector<SDNode*>* Created) const {
2536 MVT VT = N->getValueType(0);
2537 DebugLoc dl = N->getDebugLoc();
2539 // Check to see if we can do this.
2540 // FIXME: We should be more aggressive here.
2541 if (!isTypeLegal(VT))
2544 // FIXME: We should use a narrower constant when the upper
2545 // bits are known to be zero.
2546 ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2547 APInt::mu magics = N1C->getAPIntValue().magicu();
2549 // Multiply the numerator (operand 0) by the magic value
2550 // FIXME: We should support doing a MUL in a wider type
2552 if (isOperationLegalOrCustom(ISD::MULHU, VT))
2553 Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2554 DAG.getConstant(magics.m, VT));
2555 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2556 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2558 DAG.getConstant(magics.m, VT)).getNode(), 1);
2560 return SDValue(); // No mulhu or equvialent
2562 Created->push_back(Q.getNode());
2564 if (magics.a == 0) {
2565 assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2566 "We shouldn't generate an undefined shift!");
2567 return DAG.getNode(ISD::SRL, dl, VT, Q,
2568 DAG.getConstant(magics.s, getShiftAmountTy()));
2570 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2572 Created->push_back(NPQ.getNode());
2573 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2574 DAG.getConstant(1, getShiftAmountTy()));
2576 Created->push_back(NPQ.getNode());
2577 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2579 Created->push_back(NPQ.getNode());
2580 return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2581 DAG.getConstant(magics.s-1, getShiftAmountTy()));
2585 /// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
2586 /// node that don't prevent tail call optimization.
2587 static SDValue IgnoreHarmlessInstructions(SDValue node) {
2588 // Found call return.
2589 if (node.getOpcode() == ISD::CALL) return node;
2590 // Ignore MERGE_VALUES. Will have at least one operand.
2591 if (node.getOpcode() == ISD::MERGE_VALUES)
2592 return IgnoreHarmlessInstructions(node.getOperand(0));
2593 // Ignore ANY_EXTEND node.
2594 if (node.getOpcode() == ISD::ANY_EXTEND)
2595 return IgnoreHarmlessInstructions(node.getOperand(0));
2596 if (node.getOpcode() == ISD::TRUNCATE)
2597 return IgnoreHarmlessInstructions(node.getOperand(0));
2598 // Any other node type.
2602 bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
2604 unsigned NumOps = Ret.getNumOperands();
2605 // ISD::CALL results:(value0, ..., valuen, chain)
2606 // ISD::RET operands:(chain, value0, flag0, ..., valuen, flagn)
2608 // Check that operand of the RET node sources from the CALL node. The RET node
2609 // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
2611 // Also we need to check that there is no code in between the call and the
2612 // return. Hence we also check that the incomming chain to the return sources
2613 // from the outgoing chain of the call.
2615 IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0) &&
2616 Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))
2618 // void return: The RET node has the chain result value of the CALL node as
2621 Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))