1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This implements the TargetLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Target/TargetAsmInfo.h"
15 #include "llvm/Target/TargetLowering.h"
16 #include "llvm/Target/TargetSubtarget.h"
17 #include "llvm/Target/TargetData.h"
18 #include "llvm/Target/TargetMachine.h"
19 #include "llvm/Target/TargetRegisterInfo.h"
20 #include "llvm/GlobalVariable.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/SelectionDAG.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/ADT/STLExtras.h"
26 #include "llvm/Support/MathExtras.h"
30 TLSModel::Model getTLSModel(const GlobalValue *GV, Reloc::Model reloc) {
31 bool isLocal = GV->hasLocalLinkage();
32 bool isDeclaration = GV->isDeclaration();
33 // FIXME: what should we do for protected and internal visibility?
34 // For variables, is internal different from hidden?
35 bool isHidden = GV->hasHiddenVisibility();
37 if (reloc == Reloc::PIC_) {
38 if (isLocal || isHidden)
39 return TLSModel::LocalDynamic;
41 return TLSModel::GeneralDynamic;
43 if (!isDeclaration || isHidden)
44 return TLSModel::LocalExec;
46 return TLSModel::InitialExec;
51 /// InitLibcallNames - Set default libcall names.
53 static void InitLibcallNames(const char **Names) {
54 Names[RTLIB::SHL_I16] = "__ashli16";
55 Names[RTLIB::SHL_I32] = "__ashlsi3";
56 Names[RTLIB::SHL_I64] = "__ashldi3";
57 Names[RTLIB::SHL_I128] = "__ashlti3";
58 Names[RTLIB::SRL_I16] = "__lshri16";
59 Names[RTLIB::SRL_I32] = "__lshrsi3";
60 Names[RTLIB::SRL_I64] = "__lshrdi3";
61 Names[RTLIB::SRL_I128] = "__lshrti3";
62 Names[RTLIB::SRA_I16] = "__ashri16";
63 Names[RTLIB::SRA_I32] = "__ashrsi3";
64 Names[RTLIB::SRA_I64] = "__ashrdi3";
65 Names[RTLIB::SRA_I128] = "__ashrti3";
66 Names[RTLIB::MUL_I16] = "__muli16";
67 Names[RTLIB::MUL_I32] = "__mulsi3";
68 Names[RTLIB::MUL_I64] = "__muldi3";
69 Names[RTLIB::MUL_I128] = "__multi3";
70 Names[RTLIB::SDIV_I32] = "__divsi3";
71 Names[RTLIB::SDIV_I64] = "__divdi3";
72 Names[RTLIB::SDIV_I128] = "__divti3";
73 Names[RTLIB::UDIV_I32] = "__udivsi3";
74 Names[RTLIB::UDIV_I64] = "__udivdi3";
75 Names[RTLIB::UDIV_I128] = "__udivti3";
76 Names[RTLIB::SREM_I32] = "__modsi3";
77 Names[RTLIB::SREM_I64] = "__moddi3";
78 Names[RTLIB::SREM_I128] = "__modti3";
79 Names[RTLIB::UREM_I32] = "__umodsi3";
80 Names[RTLIB::UREM_I64] = "__umoddi3";
81 Names[RTLIB::UREM_I128] = "__umodti3";
82 Names[RTLIB::NEG_I32] = "__negsi2";
83 Names[RTLIB::NEG_I64] = "__negdi2";
84 Names[RTLIB::ADD_F32] = "__addsf3";
85 Names[RTLIB::ADD_F64] = "__adddf3";
86 Names[RTLIB::ADD_F80] = "__addxf3";
87 Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
88 Names[RTLIB::SUB_F32] = "__subsf3";
89 Names[RTLIB::SUB_F64] = "__subdf3";
90 Names[RTLIB::SUB_F80] = "__subxf3";
91 Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
92 Names[RTLIB::MUL_F32] = "__mulsf3";
93 Names[RTLIB::MUL_F64] = "__muldf3";
94 Names[RTLIB::MUL_F80] = "__mulxf3";
95 Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
96 Names[RTLIB::DIV_F32] = "__divsf3";
97 Names[RTLIB::DIV_F64] = "__divdf3";
98 Names[RTLIB::DIV_F80] = "__divxf3";
99 Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
100 Names[RTLIB::REM_F32] = "fmodf";
101 Names[RTLIB::REM_F64] = "fmod";
102 Names[RTLIB::REM_F80] = "fmodl";
103 Names[RTLIB::REM_PPCF128] = "fmodl";
104 Names[RTLIB::POWI_F32] = "__powisf2";
105 Names[RTLIB::POWI_F64] = "__powidf2";
106 Names[RTLIB::POWI_F80] = "__powixf2";
107 Names[RTLIB::POWI_PPCF128] = "__powitf2";
108 Names[RTLIB::SQRT_F32] = "sqrtf";
109 Names[RTLIB::SQRT_F64] = "sqrt";
110 Names[RTLIB::SQRT_F80] = "sqrtl";
111 Names[RTLIB::SQRT_PPCF128] = "sqrtl";
112 Names[RTLIB::LOG_F32] = "logf";
113 Names[RTLIB::LOG_F64] = "log";
114 Names[RTLIB::LOG_F80] = "logl";
115 Names[RTLIB::LOG_PPCF128] = "logl";
116 Names[RTLIB::LOG2_F32] = "log2f";
117 Names[RTLIB::LOG2_F64] = "log2";
118 Names[RTLIB::LOG2_F80] = "log2l";
119 Names[RTLIB::LOG2_PPCF128] = "log2l";
120 Names[RTLIB::LOG10_F32] = "log10f";
121 Names[RTLIB::LOG10_F64] = "log10";
122 Names[RTLIB::LOG10_F80] = "log10l";
123 Names[RTLIB::LOG10_PPCF128] = "log10l";
124 Names[RTLIB::EXP_F32] = "expf";
125 Names[RTLIB::EXP_F64] = "exp";
126 Names[RTLIB::EXP_F80] = "expl";
127 Names[RTLIB::EXP_PPCF128] = "expl";
128 Names[RTLIB::EXP2_F32] = "exp2f";
129 Names[RTLIB::EXP2_F64] = "exp2";
130 Names[RTLIB::EXP2_F80] = "exp2l";
131 Names[RTLIB::EXP2_PPCF128] = "exp2l";
132 Names[RTLIB::SIN_F32] = "sinf";
133 Names[RTLIB::SIN_F64] = "sin";
134 Names[RTLIB::SIN_F80] = "sinl";
135 Names[RTLIB::SIN_PPCF128] = "sinl";
136 Names[RTLIB::COS_F32] = "cosf";
137 Names[RTLIB::COS_F64] = "cos";
138 Names[RTLIB::COS_F80] = "cosl";
139 Names[RTLIB::COS_PPCF128] = "cosl";
140 Names[RTLIB::POW_F32] = "powf";
141 Names[RTLIB::POW_F64] = "pow";
142 Names[RTLIB::POW_F80] = "powl";
143 Names[RTLIB::POW_PPCF128] = "powl";
144 Names[RTLIB::CEIL_F32] = "ceilf";
145 Names[RTLIB::CEIL_F64] = "ceil";
146 Names[RTLIB::CEIL_F80] = "ceill";
147 Names[RTLIB::CEIL_PPCF128] = "ceill";
148 Names[RTLIB::TRUNC_F32] = "truncf";
149 Names[RTLIB::TRUNC_F64] = "trunc";
150 Names[RTLIB::TRUNC_F80] = "truncl";
151 Names[RTLIB::TRUNC_PPCF128] = "truncl";
152 Names[RTLIB::RINT_F32] = "rintf";
153 Names[RTLIB::RINT_F64] = "rint";
154 Names[RTLIB::RINT_F80] = "rintl";
155 Names[RTLIB::RINT_PPCF128] = "rintl";
156 Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
157 Names[RTLIB::NEARBYINT_F64] = "nearbyint";
158 Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
159 Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
160 Names[RTLIB::FLOOR_F32] = "floorf";
161 Names[RTLIB::FLOOR_F64] = "floor";
162 Names[RTLIB::FLOOR_F80] = "floorl";
163 Names[RTLIB::FLOOR_PPCF128] = "floorl";
164 Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
165 Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
166 Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
167 Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
168 Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
169 Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
170 Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
171 Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
172 Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
173 Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
174 Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
175 Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
176 Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
177 Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
178 Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
179 Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
180 Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
181 Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
182 Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
183 Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
184 Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
185 Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
186 Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
187 Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
188 Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
189 Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
190 Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
191 Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
192 Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
193 Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
194 Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
195 Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
196 Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
197 Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
198 Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
199 Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
200 Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
201 Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
202 Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
203 Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
204 Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
205 Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
206 Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
207 Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
208 Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
209 Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
210 Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
211 Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
212 Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
213 Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
214 Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
215 Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
216 Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
217 Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
218 Names[RTLIB::OEQ_F32] = "__eqsf2";
219 Names[RTLIB::OEQ_F64] = "__eqdf2";
220 Names[RTLIB::UNE_F32] = "__nesf2";
221 Names[RTLIB::UNE_F64] = "__nedf2";
222 Names[RTLIB::OGE_F32] = "__gesf2";
223 Names[RTLIB::OGE_F64] = "__gedf2";
224 Names[RTLIB::OLT_F32] = "__ltsf2";
225 Names[RTLIB::OLT_F64] = "__ltdf2";
226 Names[RTLIB::OLE_F32] = "__lesf2";
227 Names[RTLIB::OLE_F64] = "__ledf2";
228 Names[RTLIB::OGT_F32] = "__gtsf2";
229 Names[RTLIB::OGT_F64] = "__gtdf2";
230 Names[RTLIB::UO_F32] = "__unordsf2";
231 Names[RTLIB::UO_F64] = "__unorddf2";
232 Names[RTLIB::O_F32] = "__unordsf2";
233 Names[RTLIB::O_F64] = "__unorddf2";
236 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
237 /// UNKNOWN_LIBCALL if there is none.
238 RTLIB::Libcall RTLIB::getFPEXT(MVT OpVT, MVT RetVT) {
239 if (OpVT == MVT::f32) {
240 if (RetVT == MVT::f64)
241 return FPEXT_F32_F64;
243 return UNKNOWN_LIBCALL;
246 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
247 /// UNKNOWN_LIBCALL if there is none.
248 RTLIB::Libcall RTLIB::getFPROUND(MVT OpVT, MVT RetVT) {
249 if (RetVT == MVT::f32) {
250 if (OpVT == MVT::f64)
251 return FPROUND_F64_F32;
252 if (OpVT == MVT::f80)
253 return FPROUND_F80_F32;
254 if (OpVT == MVT::ppcf128)
255 return FPROUND_PPCF128_F32;
256 } else if (RetVT == MVT::f64) {
257 if (OpVT == MVT::f80)
258 return FPROUND_F80_F64;
259 if (OpVT == MVT::ppcf128)
260 return FPROUND_PPCF128_F64;
262 return UNKNOWN_LIBCALL;
265 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
266 /// UNKNOWN_LIBCALL if there is none.
267 RTLIB::Libcall RTLIB::getFPTOSINT(MVT OpVT, MVT RetVT) {
268 if (OpVT == MVT::f32) {
269 if (RetVT == MVT::i32)
270 return FPTOSINT_F32_I32;
271 if (RetVT == MVT::i64)
272 return FPTOSINT_F32_I64;
273 if (RetVT == MVT::i128)
274 return FPTOSINT_F32_I128;
275 } else if (OpVT == MVT::f64) {
276 if (RetVT == MVT::i32)
277 return FPTOSINT_F64_I32;
278 if (RetVT == MVT::i64)
279 return FPTOSINT_F64_I64;
280 if (RetVT == MVT::i128)
281 return FPTOSINT_F64_I128;
282 } else if (OpVT == MVT::f80) {
283 if (RetVT == MVT::i32)
284 return FPTOSINT_F80_I32;
285 if (RetVT == MVT::i64)
286 return FPTOSINT_F80_I64;
287 if (RetVT == MVT::i128)
288 return FPTOSINT_F80_I128;
289 } else if (OpVT == MVT::ppcf128) {
290 if (RetVT == MVT::i32)
291 return FPTOSINT_PPCF128_I32;
292 if (RetVT == MVT::i64)
293 return FPTOSINT_PPCF128_I64;
294 if (RetVT == MVT::i128)
295 return FPTOSINT_PPCF128_I128;
297 return UNKNOWN_LIBCALL;
300 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
301 /// UNKNOWN_LIBCALL if there is none.
302 RTLIB::Libcall RTLIB::getFPTOUINT(MVT OpVT, MVT RetVT) {
303 if (OpVT == MVT::f32) {
304 if (RetVT == MVT::i32)
305 return FPTOUINT_F32_I32;
306 if (RetVT == MVT::i64)
307 return FPTOUINT_F32_I64;
308 if (RetVT == MVT::i128)
309 return FPTOUINT_F32_I128;
310 } else if (OpVT == MVT::f64) {
311 if (RetVT == MVT::i32)
312 return FPTOUINT_F64_I32;
313 if (RetVT == MVT::i64)
314 return FPTOUINT_F64_I64;
315 if (RetVT == MVT::i128)
316 return FPTOUINT_F64_I128;
317 } else if (OpVT == MVT::f80) {
318 if (RetVT == MVT::i32)
319 return FPTOUINT_F80_I32;
320 if (RetVT == MVT::i64)
321 return FPTOUINT_F80_I64;
322 if (RetVT == MVT::i128)
323 return FPTOUINT_F80_I128;
324 } else if (OpVT == MVT::ppcf128) {
325 if (RetVT == MVT::i32)
326 return FPTOUINT_PPCF128_I32;
327 if (RetVT == MVT::i64)
328 return FPTOUINT_PPCF128_I64;
329 if (RetVT == MVT::i128)
330 return FPTOUINT_PPCF128_I128;
332 return UNKNOWN_LIBCALL;
335 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
336 /// UNKNOWN_LIBCALL if there is none.
337 RTLIB::Libcall RTLIB::getSINTTOFP(MVT OpVT, MVT RetVT) {
338 if (OpVT == MVT::i32) {
339 if (RetVT == MVT::f32)
340 return SINTTOFP_I32_F32;
341 else if (RetVT == MVT::f64)
342 return SINTTOFP_I32_F64;
343 else if (RetVT == MVT::f80)
344 return SINTTOFP_I32_F80;
345 else if (RetVT == MVT::ppcf128)
346 return SINTTOFP_I32_PPCF128;
347 } else if (OpVT == MVT::i64) {
348 if (RetVT == MVT::f32)
349 return SINTTOFP_I64_F32;
350 else if (RetVT == MVT::f64)
351 return SINTTOFP_I64_F64;
352 else if (RetVT == MVT::f80)
353 return SINTTOFP_I64_F80;
354 else if (RetVT == MVT::ppcf128)
355 return SINTTOFP_I64_PPCF128;
356 } else if (OpVT == MVT::i128) {
357 if (RetVT == MVT::f32)
358 return SINTTOFP_I128_F32;
359 else if (RetVT == MVT::f64)
360 return SINTTOFP_I128_F64;
361 else if (RetVT == MVT::f80)
362 return SINTTOFP_I128_F80;
363 else if (RetVT == MVT::ppcf128)
364 return SINTTOFP_I128_PPCF128;
366 return UNKNOWN_LIBCALL;
369 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
370 /// UNKNOWN_LIBCALL if there is none.
371 RTLIB::Libcall RTLIB::getUINTTOFP(MVT OpVT, MVT RetVT) {
372 if (OpVT == MVT::i32) {
373 if (RetVT == MVT::f32)
374 return UINTTOFP_I32_F32;
375 else if (RetVT == MVT::f64)
376 return UINTTOFP_I32_F64;
377 else if (RetVT == MVT::f80)
378 return UINTTOFP_I32_F80;
379 else if (RetVT == MVT::ppcf128)
380 return UINTTOFP_I32_PPCF128;
381 } else if (OpVT == MVT::i64) {
382 if (RetVT == MVT::f32)
383 return UINTTOFP_I64_F32;
384 else if (RetVT == MVT::f64)
385 return UINTTOFP_I64_F64;
386 else if (RetVT == MVT::f80)
387 return UINTTOFP_I64_F80;
388 else if (RetVT == MVT::ppcf128)
389 return UINTTOFP_I64_PPCF128;
390 } else if (OpVT == MVT::i128) {
391 if (RetVT == MVT::f32)
392 return UINTTOFP_I128_F32;
393 else if (RetVT == MVT::f64)
394 return UINTTOFP_I128_F64;
395 else if (RetVT == MVT::f80)
396 return UINTTOFP_I128_F80;
397 else if (RetVT == MVT::ppcf128)
398 return UINTTOFP_I128_PPCF128;
400 return UNKNOWN_LIBCALL;
403 /// InitCmpLibcallCCs - Set default comparison libcall CC.
405 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
406 memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
407 CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
408 CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
409 CCs[RTLIB::UNE_F32] = ISD::SETNE;
410 CCs[RTLIB::UNE_F64] = ISD::SETNE;
411 CCs[RTLIB::OGE_F32] = ISD::SETGE;
412 CCs[RTLIB::OGE_F64] = ISD::SETGE;
413 CCs[RTLIB::OLT_F32] = ISD::SETLT;
414 CCs[RTLIB::OLT_F64] = ISD::SETLT;
415 CCs[RTLIB::OLE_F32] = ISD::SETLE;
416 CCs[RTLIB::OLE_F64] = ISD::SETLE;
417 CCs[RTLIB::OGT_F32] = ISD::SETGT;
418 CCs[RTLIB::OGT_F64] = ISD::SETGT;
419 CCs[RTLIB::UO_F32] = ISD::SETNE;
420 CCs[RTLIB::UO_F64] = ISD::SETNE;
421 CCs[RTLIB::O_F32] = ISD::SETEQ;
422 CCs[RTLIB::O_F64] = ISD::SETEQ;
425 TargetLowering::TargetLowering(TargetMachine &tm)
426 : TM(tm), TD(TM.getTargetData()) {
427 // All operations default to being supported.
428 memset(OpActions, 0, sizeof(OpActions));
429 memset(LoadExtActions, 0, sizeof(LoadExtActions));
430 memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
431 memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
432 memset(ConvertActions, 0, sizeof(ConvertActions));
433 memset(CondCodeActions, 0, sizeof(CondCodeActions));
435 // Set default actions for various operations.
436 for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
437 // Default all indexed load / store to expand.
438 for (unsigned IM = (unsigned)ISD::PRE_INC;
439 IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
440 setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
441 setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
444 // These operations default to expand.
445 setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
448 // Most targets ignore the @llvm.prefetch intrinsic.
449 setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
451 // ConstantFP nodes default to expand. Targets can either change this to
452 // Legal, in which case all fp constants are legal, or use addLegalFPImmediate
453 // to optimize expansions for certain constants.
454 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
455 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
456 setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
458 // These library functions default to expand.
459 setOperationAction(ISD::FLOG , MVT::f64, Expand);
460 setOperationAction(ISD::FLOG2, MVT::f64, Expand);
461 setOperationAction(ISD::FLOG10,MVT::f64, Expand);
462 setOperationAction(ISD::FEXP , MVT::f64, Expand);
463 setOperationAction(ISD::FEXP2, MVT::f64, Expand);
464 setOperationAction(ISD::FLOG , MVT::f32, Expand);
465 setOperationAction(ISD::FLOG2, MVT::f32, Expand);
466 setOperationAction(ISD::FLOG10,MVT::f32, Expand);
467 setOperationAction(ISD::FEXP , MVT::f32, Expand);
468 setOperationAction(ISD::FEXP2, MVT::f32, Expand);
470 // Default ISD::TRAP to expand (which turns it into abort).
471 setOperationAction(ISD::TRAP, MVT::Other, Expand);
473 IsLittleEndian = TD->isLittleEndian();
474 UsesGlobalOffsetTable = false;
475 ShiftAmountTy = PointerTy = getValueType(TD->getIntPtrType());
476 ShiftAmtHandling = Undefined;
477 memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
478 memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
479 maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
480 allowUnalignedMemoryAccesses = false;
481 UseUnderscoreSetJmp = false;
482 UseUnderscoreLongJmp = false;
483 SelectIsExpensive = false;
484 IntDivIsCheap = false;
485 Pow2DivIsCheap = false;
486 StackPointerRegisterToSaveRestore = 0;
487 ExceptionPointerRegister = 0;
488 ExceptionSelectorRegister = 0;
489 BooleanContents = UndefinedBooleanContent;
490 SchedPreferenceInfo = SchedulingForLatency;
492 JumpBufAlignment = 0;
493 IfCvtBlockSizeLimit = 2;
494 IfCvtDupBlockSizeLimit = 0;
495 PrefLoopAlignment = 0;
497 InitLibcallNames(LibcallRoutineNames);
498 InitCmpLibcallCCs(CmpLibcallCCs);
500 // Tell Legalize whether the assembler supports DEBUG_LOC.
501 const TargetAsmInfo *TASM = TM.getTargetAsmInfo();
502 if (!TASM || !TASM->hasDotLocAndDotFile())
503 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
506 TargetLowering::~TargetLowering() {}
508 /// computeRegisterProperties - Once all of the register classes are added,
509 /// this allows us to compute derived properties we expose.
510 void TargetLowering::computeRegisterProperties() {
511 assert(MVT::LAST_VALUETYPE <= 32 &&
512 "Too many value types for ValueTypeActions to hold!");
514 // Everything defaults to needing one register.
515 for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
516 NumRegistersForVT[i] = 1;
517 RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
519 // ...except isVoid, which doesn't need any registers.
520 NumRegistersForVT[MVT::isVoid] = 0;
522 // Find the largest integer register class.
523 unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
524 for (; RegClassForVT[LargestIntReg] == 0; --LargestIntReg)
525 assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
527 // Every integer value type larger than this largest register takes twice as
528 // many registers to represent as the previous ValueType.
529 for (unsigned ExpandedReg = LargestIntReg + 1; ; ++ExpandedReg) {
530 MVT EVT = (MVT::SimpleValueType)ExpandedReg;
531 if (!EVT.isInteger())
533 NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
534 RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
535 TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
536 ValueTypeActions.setTypeAction(EVT, Expand);
539 // Inspect all of the ValueType's smaller than the largest integer
540 // register to see which ones need promotion.
541 unsigned LegalIntReg = LargestIntReg;
542 for (unsigned IntReg = LargestIntReg - 1;
543 IntReg >= (unsigned)MVT::i1; --IntReg) {
544 MVT IVT = (MVT::SimpleValueType)IntReg;
545 if (isTypeLegal(IVT)) {
546 LegalIntReg = IntReg;
548 RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
549 (MVT::SimpleValueType)LegalIntReg;
550 ValueTypeActions.setTypeAction(IVT, Promote);
554 // ppcf128 type is really two f64's.
555 if (!isTypeLegal(MVT::ppcf128)) {
556 NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
557 RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
558 TransformToType[MVT::ppcf128] = MVT::f64;
559 ValueTypeActions.setTypeAction(MVT::ppcf128, Expand);
562 // Decide how to handle f64. If the target does not have native f64 support,
563 // expand it to i64 and we will be generating soft float library calls.
564 if (!isTypeLegal(MVT::f64)) {
565 NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
566 RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
567 TransformToType[MVT::f64] = MVT::i64;
568 ValueTypeActions.setTypeAction(MVT::f64, Expand);
571 // Decide how to handle f32. If the target does not have native support for
572 // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
573 if (!isTypeLegal(MVT::f32)) {
574 if (isTypeLegal(MVT::f64)) {
575 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
576 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
577 TransformToType[MVT::f32] = MVT::f64;
578 ValueTypeActions.setTypeAction(MVT::f32, Promote);
580 NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
581 RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
582 TransformToType[MVT::f32] = MVT::i32;
583 ValueTypeActions.setTypeAction(MVT::f32, Expand);
587 // Loop over all of the vector value types to see which need transformations.
588 for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
589 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
590 MVT VT = (MVT::SimpleValueType)i;
591 if (!isTypeLegal(VT)) {
592 MVT IntermediateVT, RegisterVT;
593 unsigned NumIntermediates;
594 NumRegistersForVT[i] =
595 getVectorTypeBreakdown(VT,
596 IntermediateVT, NumIntermediates,
598 RegisterTypeForVT[i] = RegisterVT;
600 // Determine if there is a legal wider type.
601 bool IsLegalWiderType = false;
602 MVT EltVT = VT.getVectorElementType();
603 unsigned NElts = VT.getVectorNumElements();
604 for (unsigned nVT = i+1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
605 MVT SVT = (MVT::SimpleValueType)nVT;
606 if (isTypeLegal(SVT) && SVT.getVectorElementType() == EltVT &&
607 SVT.getVectorNumElements() > NElts) {
608 TransformToType[i] = SVT;
609 ValueTypeActions.setTypeAction(VT, Promote);
610 IsLegalWiderType = true;
614 if (!IsLegalWiderType) {
615 MVT NVT = VT.getPow2VectorType();
617 // Type is already a power of 2. The default action is to split.
618 TransformToType[i] = MVT::Other;
619 ValueTypeActions.setTypeAction(VT, Expand);
621 TransformToType[i] = NVT;
622 ValueTypeActions.setTypeAction(VT, Promote);
629 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
634 MVT TargetLowering::getSetCCResultType(MVT VT) const {
635 return getValueType(TD->getIntPtrType());
639 /// getVectorTypeBreakdown - Vector types are broken down into some number of
640 /// legal first class types. For example, MVT::v8f32 maps to 2 MVT::v4f32
641 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
642 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
644 /// This method returns the number of registers needed, and the VT for each
645 /// register. It also returns the VT and quantity of the intermediate values
646 /// before they are promoted/expanded.
648 unsigned TargetLowering::getVectorTypeBreakdown(MVT VT,
650 unsigned &NumIntermediates,
651 MVT &RegisterVT) const {
652 // Figure out the right, legal destination reg to copy into.
653 unsigned NumElts = VT.getVectorNumElements();
654 MVT EltTy = VT.getVectorElementType();
656 unsigned NumVectorRegs = 1;
658 // FIXME: We don't support non-power-of-2-sized vectors for now. Ideally we
659 // could break down into LHS/RHS like LegalizeDAG does.
660 if (!isPowerOf2_32(NumElts)) {
661 NumVectorRegs = NumElts;
665 // Divide the input until we get to a supported size. This will always
666 // end with a scalar if the target doesn't support vectors.
667 while (NumElts > 1 && !isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
672 NumIntermediates = NumVectorRegs;
674 MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
675 if (!isTypeLegal(NewVT))
677 IntermediateVT = NewVT;
679 MVT DestVT = getTypeToTransformTo(NewVT);
681 if (DestVT.bitsLT(NewVT)) {
682 // Value is expanded, e.g. i64 -> i16.
683 return NumVectorRegs*(NewVT.getSizeInBits()/DestVT.getSizeInBits());
685 // Otherwise, promotion or legal types use the same number of registers as
686 // the vector decimated to the appropriate level.
687 return NumVectorRegs;
693 /// getWidenVectorType: given a vector type, returns the type to widen to
694 /// (e.g., v7i8 to v8i8). If the vector type is legal, it returns itself.
695 /// If there is no vector type that we want to widen to, returns MVT::Other
696 /// When and where to widen is target dependent based on the cost of
697 /// scalarizing vs using the wider vector type.
698 MVT TargetLowering::getWidenVectorType(MVT VT) const {
699 assert(VT.isVector());
703 // Default is not to widen until moved to LegalizeTypes
707 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
708 /// function arguments in the caller parameter area. This is the actual
709 /// alignment, not its logarithm.
710 unsigned TargetLowering::getByValTypeAlignment(const Type *Ty) const {
711 return TD->getCallFrameTypeAlignment(Ty);
714 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
715 SelectionDAG &DAG) const {
716 if (usesGlobalOffsetTable())
717 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy());
722 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
723 // Assume that everything is safe in static mode.
724 if (getTargetMachine().getRelocationModel() == Reloc::Static)
727 // In dynamic-no-pic mode, assume that known defined values are safe.
728 if (getTargetMachine().getRelocationModel() == Reloc::DynamicNoPIC &&
730 !GA->getGlobal()->isDeclaration() &&
731 !GA->getGlobal()->isWeakForLinker())
734 // Otherwise assume nothing is safe.
738 //===----------------------------------------------------------------------===//
739 // Optimization Methods
740 //===----------------------------------------------------------------------===//
742 /// ShrinkDemandedConstant - Check to see if the specified operand of the
743 /// specified instruction is a constant integer. If so, check to see if there
744 /// are any bits set in the constant that are not demanded. If so, shrink the
745 /// constant and return true.
746 bool TargetLowering::TargetLoweringOpt::ShrinkDemandedConstant(SDValue Op,
747 const APInt &Demanded) {
748 DebugLoc dl = Op.getDebugLoc();
750 // FIXME: ISD::SELECT, ISD::SELECT_CC
751 switch (Op.getOpcode()) {
756 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
757 if (!C) return false;
759 if (Op.getOpcode() == ISD::XOR &&
760 (C->getAPIntValue() | (~Demanded)).isAllOnesValue())
763 // if we can expand it to have all bits set, do it
764 if (C->getAPIntValue().intersects(~Demanded)) {
765 MVT VT = Op.getValueType();
766 SDValue New = DAG.getNode(Op.getOpcode(), dl, VT, Op.getOperand(0),
767 DAG.getConstant(Demanded &
770 return CombineTo(Op, New);
780 /// SimplifyDemandedBits - Look at Op. At this point, we know that only the
781 /// DemandedMask bits of the result of Op are ever used downstream. If we can
782 /// use this information to simplify Op, create a new simplified DAG node and
783 /// return true, returning the original and new nodes in Old and New. Otherwise,
784 /// analyze the expression and return a mask of KnownOne and KnownZero bits for
785 /// the expression (used to simplify the caller). The KnownZero/One bits may
786 /// only be accurate for those bits in the DemandedMask.
787 bool TargetLowering::SimplifyDemandedBits(SDValue Op,
788 const APInt &DemandedMask,
791 TargetLoweringOpt &TLO,
792 unsigned Depth) const {
793 unsigned BitWidth = DemandedMask.getBitWidth();
794 assert(Op.getValueSizeInBits() == BitWidth &&
795 "Mask size mismatches value type size!");
796 APInt NewMask = DemandedMask;
797 DebugLoc dl = Op.getDebugLoc();
799 // Don't know anything.
800 KnownZero = KnownOne = APInt(BitWidth, 0);
802 // Other users may use these bits.
803 if (!Op.getNode()->hasOneUse()) {
805 // If not at the root, Just compute the KnownZero/KnownOne bits to
806 // simplify things downstream.
807 TLO.DAG.ComputeMaskedBits(Op, DemandedMask, KnownZero, KnownOne, Depth);
810 // If this is the root being simplified, allow it to have multiple uses,
811 // just set the NewMask to all bits.
812 NewMask = APInt::getAllOnesValue(BitWidth);
813 } else if (DemandedMask == 0) {
814 // Not demanding any bits from Op.
815 if (Op.getOpcode() != ISD::UNDEF)
816 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(Op.getValueType()));
818 } else if (Depth == 6) { // Limit search depth.
822 APInt KnownZero2, KnownOne2, KnownZeroOut, KnownOneOut;
823 switch (Op.getOpcode()) {
825 // We know all of the bits for a constant!
826 KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue() & NewMask;
827 KnownZero = ~KnownOne & NewMask;
828 return false; // Don't fall through, will infinitely loop.
830 // If the RHS is a constant, check to see if the LHS would be zero without
831 // using the bits from the RHS. Below, we use knowledge about the RHS to
832 // simplify the LHS, here we're using information from the LHS to simplify
834 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
835 APInt LHSZero, LHSOne;
836 TLO.DAG.ComputeMaskedBits(Op.getOperand(0), NewMask,
837 LHSZero, LHSOne, Depth+1);
838 // If the LHS already has zeros where RHSC does, this and is dead.
839 if ((LHSZero & NewMask) == (~RHSC->getAPIntValue() & NewMask))
840 return TLO.CombineTo(Op, Op.getOperand(0));
841 // If any of the set bits in the RHS are known zero on the LHS, shrink
843 if (TLO.ShrinkDemandedConstant(Op, ~LHSZero & NewMask))
847 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
848 KnownOne, TLO, Depth+1))
850 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
851 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownZero & NewMask,
852 KnownZero2, KnownOne2, TLO, Depth+1))
854 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
856 // If all of the demanded bits are known one on one side, return the other.
857 // These bits cannot contribute to the result of the 'and'.
858 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
859 return TLO.CombineTo(Op, Op.getOperand(0));
860 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
861 return TLO.CombineTo(Op, Op.getOperand(1));
862 // If all of the demanded bits in the inputs are known zeros, return zero.
863 if ((NewMask & (KnownZero|KnownZero2)) == NewMask)
864 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, Op.getValueType()));
865 // If the RHS is a constant, see if we can simplify it.
866 if (TLO.ShrinkDemandedConstant(Op, ~KnownZero2 & NewMask))
869 // Output known-1 bits are only known if set in both the LHS & RHS.
870 KnownOne &= KnownOne2;
871 // Output known-0 are known to be clear if zero in either the LHS | RHS.
872 KnownZero |= KnownZero2;
875 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
876 KnownOne, TLO, Depth+1))
878 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
879 if (SimplifyDemandedBits(Op.getOperand(0), ~KnownOne & NewMask,
880 KnownZero2, KnownOne2, TLO, Depth+1))
882 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
884 // If all of the demanded bits are known zero on one side, return the other.
885 // These bits cannot contribute to the result of the 'or'.
886 if ((NewMask & ~KnownOne2 & KnownZero) == (~KnownOne2 & NewMask))
887 return TLO.CombineTo(Op, Op.getOperand(0));
888 if ((NewMask & ~KnownOne & KnownZero2) == (~KnownOne & NewMask))
889 return TLO.CombineTo(Op, Op.getOperand(1));
890 // If all of the potentially set bits on one side are known to be set on
891 // the other side, just use the 'other' side.
892 if ((NewMask & ~KnownZero & KnownOne2) == (~KnownZero & NewMask))
893 return TLO.CombineTo(Op, Op.getOperand(0));
894 if ((NewMask & ~KnownZero2 & KnownOne) == (~KnownZero2 & NewMask))
895 return TLO.CombineTo(Op, Op.getOperand(1));
896 // If the RHS is a constant, see if we can simplify it.
897 if (TLO.ShrinkDemandedConstant(Op, NewMask))
900 // Output known-0 bits are only known if clear in both the LHS & RHS.
901 KnownZero &= KnownZero2;
902 // Output known-1 are known to be set if set in either the LHS | RHS.
903 KnownOne |= KnownOne2;
906 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero,
907 KnownOne, TLO, Depth+1))
909 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
910 if (SimplifyDemandedBits(Op.getOperand(0), NewMask, KnownZero2,
911 KnownOne2, TLO, Depth+1))
913 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
915 // If all of the demanded bits are known zero on one side, return the other.
916 // These bits cannot contribute to the result of the 'xor'.
917 if ((KnownZero & NewMask) == NewMask)
918 return TLO.CombineTo(Op, Op.getOperand(0));
919 if ((KnownZero2 & NewMask) == NewMask)
920 return TLO.CombineTo(Op, Op.getOperand(1));
922 // If all of the unknown bits are known to be zero on one side or the other
923 // (but not both) turn this into an *inclusive* or.
924 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
925 if ((NewMask & ~KnownZero & ~KnownZero2) == 0)
926 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, Op.getValueType(),
930 // Output known-0 bits are known if clear or set in both the LHS & RHS.
931 KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
932 // Output known-1 are known to be set if set in only one of the LHS, RHS.
933 KnownOneOut = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
935 // If all of the demanded bits on one side are known, and all of the set
936 // bits on that side are also known to be set on the other side, turn this
937 // into an AND, as we know the bits will be cleared.
938 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
939 if ((NewMask & (KnownZero|KnownOne)) == NewMask) { // all known
940 if ((KnownOne & KnownOne2) == KnownOne) {
941 MVT VT = Op.getValueType();
942 SDValue ANDC = TLO.DAG.getConstant(~KnownOne & NewMask, VT);
943 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT,
944 Op.getOperand(0), ANDC));
948 // If the RHS is a constant, see if we can simplify it.
949 // for XOR, we prefer to force bits to 1 if they will make a -1.
950 // if we can't force bits, try to shrink constant
951 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
952 APInt Expanded = C->getAPIntValue() | (~NewMask);
953 // if we can expand it to have all bits set, do it
954 if (Expanded.isAllOnesValue()) {
955 if (Expanded != C->getAPIntValue()) {
956 MVT VT = Op.getValueType();
957 SDValue New = TLO.DAG.getNode(Op.getOpcode(), dl,VT, Op.getOperand(0),
958 TLO.DAG.getConstant(Expanded, VT));
959 return TLO.CombineTo(Op, New);
961 // if it already has all the bits set, nothing to change
962 // but don't shrink either!
963 } else if (TLO.ShrinkDemandedConstant(Op, NewMask)) {
968 KnownZero = KnownZeroOut;
969 KnownOne = KnownOneOut;
972 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero,
973 KnownOne, TLO, Depth+1))
975 if (SimplifyDemandedBits(Op.getOperand(1), NewMask, KnownZero2,
976 KnownOne2, TLO, Depth+1))
978 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
979 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
981 // If the operands are constants, see if we can simplify them.
982 if (TLO.ShrinkDemandedConstant(Op, NewMask))
985 // Only known if known in both the LHS and RHS.
986 KnownOne &= KnownOne2;
987 KnownZero &= KnownZero2;
990 if (SimplifyDemandedBits(Op.getOperand(3), NewMask, KnownZero,
991 KnownOne, TLO, Depth+1))
993 if (SimplifyDemandedBits(Op.getOperand(2), NewMask, KnownZero2,
994 KnownOne2, TLO, Depth+1))
996 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
997 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
999 // If the operands are constants, see if we can simplify them.
1000 if (TLO.ShrinkDemandedConstant(Op, NewMask))
1003 // Only known if known in both the LHS and RHS.
1004 KnownOne &= KnownOne2;
1005 KnownZero &= KnownZero2;
1008 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1009 unsigned ShAmt = SA->getZExtValue();
1010 SDValue InOp = Op.getOperand(0);
1012 // If the shift count is an invalid immediate, don't do anything.
1013 if (ShAmt >= BitWidth)
1016 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1017 // single shift. We can do this if the bottom bits (which are shifted
1018 // out) are never demanded.
1019 if (InOp.getOpcode() == ISD::SRL &&
1020 isa<ConstantSDNode>(InOp.getOperand(1))) {
1021 if (ShAmt && (NewMask & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1022 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1023 unsigned Opc = ISD::SHL;
1024 int Diff = ShAmt-C1;
1031 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1032 MVT VT = Op.getValueType();
1033 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1034 InOp.getOperand(0), NewSA));
1038 if (SimplifyDemandedBits(Op.getOperand(0), NewMask.lshr(ShAmt),
1039 KnownZero, KnownOne, TLO, Depth+1))
1041 KnownZero <<= SA->getZExtValue();
1042 KnownOne <<= SA->getZExtValue();
1043 // low bits known zero.
1044 KnownZero |= APInt::getLowBitsSet(BitWidth, SA->getZExtValue());
1048 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1049 MVT VT = Op.getValueType();
1050 unsigned ShAmt = SA->getZExtValue();
1051 unsigned VTSize = VT.getSizeInBits();
1052 SDValue InOp = Op.getOperand(0);
1054 // If the shift count is an invalid immediate, don't do anything.
1055 if (ShAmt >= BitWidth)
1058 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1059 // single shift. We can do this if the top bits (which are shifted out)
1060 // are never demanded.
1061 if (InOp.getOpcode() == ISD::SHL &&
1062 isa<ConstantSDNode>(InOp.getOperand(1))) {
1063 if (ShAmt && (NewMask & APInt::getHighBitsSet(VTSize, ShAmt)) == 0) {
1064 unsigned C1= cast<ConstantSDNode>(InOp.getOperand(1))->getZExtValue();
1065 unsigned Opc = ISD::SRL;
1066 int Diff = ShAmt-C1;
1073 TLO.DAG.getConstant(Diff, Op.getOperand(1).getValueType());
1074 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT,
1075 InOp.getOperand(0), NewSA));
1079 // Compute the new bits that are at the top now.
1080 if (SimplifyDemandedBits(InOp, (NewMask << ShAmt),
1081 KnownZero, KnownOne, TLO, Depth+1))
1083 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1084 KnownZero = KnownZero.lshr(ShAmt);
1085 KnownOne = KnownOne.lshr(ShAmt);
1087 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1088 KnownZero |= HighBits; // High bits known zero.
1092 // If this is an arithmetic shift right and only the low-bit is set, we can
1093 // always convert this into a logical shr, even if the shift amount is
1094 // variable. The low bit of the shift cannot be an input sign bit unless
1095 // the shift amount is >= the size of the datatype, which is undefined.
1096 if (DemandedMask == 1)
1097 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, Op.getValueType(),
1098 Op.getOperand(0), Op.getOperand(1)));
1100 if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1101 MVT VT = Op.getValueType();
1102 unsigned ShAmt = SA->getZExtValue();
1104 // If the shift count is an invalid immediate, don't do anything.
1105 if (ShAmt >= BitWidth)
1108 APInt InDemandedMask = (NewMask << ShAmt);
1110 // If any of the demanded bits are produced by the sign extension, we also
1111 // demand the input sign bit.
1112 APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
1113 if (HighBits.intersects(NewMask))
1114 InDemandedMask |= APInt::getSignBit(VT.getSizeInBits());
1116 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedMask,
1117 KnownZero, KnownOne, TLO, Depth+1))
1119 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1120 KnownZero = KnownZero.lshr(ShAmt);
1121 KnownOne = KnownOne.lshr(ShAmt);
1123 // Handle the sign bit, adjusted to where it is now in the mask.
1124 APInt SignBit = APInt::getSignBit(BitWidth).lshr(ShAmt);
1126 // If the input sign bit is known to be zero, or if none of the top bits
1127 // are demanded, turn this into an unsigned shift right.
1128 if (KnownZero.intersects(SignBit) || (HighBits & ~NewMask) == HighBits) {
1129 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT,
1132 } else if (KnownOne.intersects(SignBit)) { // New bits are known one.
1133 KnownOne |= HighBits;
1137 case ISD::SIGN_EXTEND_INREG: {
1138 MVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1140 // Sign extension. Compute the demanded bits in the result that are not
1141 // present in the input.
1142 APInt NewBits = APInt::getHighBitsSet(BitWidth,
1143 BitWidth - EVT.getSizeInBits()) &
1146 // If none of the extended bits are demanded, eliminate the sextinreg.
1148 return TLO.CombineTo(Op, Op.getOperand(0));
1150 APInt InSignBit = APInt::getSignBit(EVT.getSizeInBits());
1151 InSignBit.zext(BitWidth);
1152 APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth,
1153 EVT.getSizeInBits()) &
1156 // Since the sign extended bits are demanded, we know that the sign
1158 InputDemandedBits |= InSignBit;
1160 if (SimplifyDemandedBits(Op.getOperand(0), InputDemandedBits,
1161 KnownZero, KnownOne, TLO, Depth+1))
1163 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1165 // If the sign bit of the input is known set or clear, then we know the
1166 // top bits of the result.
1168 // If the input sign bit is known zero, convert this into a zero extension.
1169 if (KnownZero.intersects(InSignBit))
1170 return TLO.CombineTo(Op,
1171 TLO.DAG.getZeroExtendInReg(Op.getOperand(0),dl,EVT));
1173 if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
1174 KnownOne |= NewBits;
1175 KnownZero &= ~NewBits;
1176 } else { // Input sign bit unknown
1177 KnownZero &= ~NewBits;
1178 KnownOne &= ~NewBits;
1182 case ISD::ZERO_EXTEND: {
1183 unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1184 APInt InMask = NewMask;
1185 InMask.trunc(OperandBitWidth);
1187 // If none of the top bits are demanded, convert this into an any_extend.
1189 APInt::getHighBitsSet(BitWidth, BitWidth - OperandBitWidth) & NewMask;
1190 if (!NewBits.intersects(NewMask))
1191 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1195 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1196 KnownZero, KnownOne, TLO, Depth+1))
1198 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1199 KnownZero.zext(BitWidth);
1200 KnownOne.zext(BitWidth);
1201 KnownZero |= NewBits;
1204 case ISD::SIGN_EXTEND: {
1205 MVT InVT = Op.getOperand(0).getValueType();
1206 unsigned InBits = InVT.getSizeInBits();
1207 APInt InMask = APInt::getLowBitsSet(BitWidth, InBits);
1208 APInt InSignBit = APInt::getBitsSet(BitWidth, InBits - 1, InBits);
1209 APInt NewBits = ~InMask & NewMask;
1211 // If none of the top bits are demanded, convert this into an any_extend.
1213 return TLO.CombineTo(Op,TLO.DAG.getNode(ISD::ANY_EXTEND, dl,
1217 // Since some of the sign extended bits are demanded, we know that the sign
1219 APInt InDemandedBits = InMask & NewMask;
1220 InDemandedBits |= InSignBit;
1221 InDemandedBits.trunc(InBits);
1223 if (SimplifyDemandedBits(Op.getOperand(0), InDemandedBits, KnownZero,
1224 KnownOne, TLO, Depth+1))
1226 KnownZero.zext(BitWidth);
1227 KnownOne.zext(BitWidth);
1229 // If the sign bit is known zero, convert this to a zero extend.
1230 if (KnownZero.intersects(InSignBit))
1231 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::ZERO_EXTEND, dl,
1235 // If the sign bit is known one, the top bits match.
1236 if (KnownOne.intersects(InSignBit)) {
1237 KnownOne |= NewBits;
1238 KnownZero &= ~NewBits;
1239 } else { // Otherwise, top bits aren't known.
1240 KnownOne &= ~NewBits;
1241 KnownZero &= ~NewBits;
1245 case ISD::ANY_EXTEND: {
1246 unsigned OperandBitWidth = Op.getOperand(0).getValueSizeInBits();
1247 APInt InMask = NewMask;
1248 InMask.trunc(OperandBitWidth);
1249 if (SimplifyDemandedBits(Op.getOperand(0), InMask,
1250 KnownZero, KnownOne, TLO, Depth+1))
1252 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1253 KnownZero.zext(BitWidth);
1254 KnownOne.zext(BitWidth);
1257 case ISD::TRUNCATE: {
1258 // Simplify the input, using demanded bit information, and compute the known
1259 // zero/one bits live out.
1260 APInt TruncMask = NewMask;
1261 TruncMask.zext(Op.getOperand(0).getValueSizeInBits());
1262 if (SimplifyDemandedBits(Op.getOperand(0), TruncMask,
1263 KnownZero, KnownOne, TLO, Depth+1))
1265 KnownZero.trunc(BitWidth);
1266 KnownOne.trunc(BitWidth);
1268 // If the input is only used by this truncate, see if we can shrink it based
1269 // on the known demanded bits.
1270 if (Op.getOperand(0).getNode()->hasOneUse()) {
1271 SDValue In = Op.getOperand(0);
1272 unsigned InBitWidth = In.getValueSizeInBits();
1273 switch (In.getOpcode()) {
1276 // Shrink SRL by a constant if none of the high bits shifted in are
1278 if (ConstantSDNode *ShAmt = dyn_cast<ConstantSDNode>(In.getOperand(1))){
1279 APInt HighBits = APInt::getHighBitsSet(InBitWidth,
1280 InBitWidth - BitWidth);
1281 HighBits = HighBits.lshr(ShAmt->getZExtValue());
1282 HighBits.trunc(BitWidth);
1284 if (ShAmt->getZExtValue() < BitWidth && !(HighBits & NewMask)) {
1285 // None of the shifted in bits are needed. Add a truncate of the
1286 // shift input, then shift it.
1287 SDValue NewTrunc = TLO.DAG.getNode(ISD::TRUNCATE, dl,
1290 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl,
1300 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1303 case ISD::AssertZext: {
1304 MVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1305 APInt InMask = APInt::getLowBitsSet(BitWidth,
1306 VT.getSizeInBits());
1307 if (SimplifyDemandedBits(Op.getOperand(0), InMask & NewMask,
1308 KnownZero, KnownOne, TLO, Depth+1))
1310 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
1311 KnownZero |= ~InMask & NewMask;
1314 case ISD::BIT_CONVERT:
1316 // If this is an FP->Int bitcast and if the sign bit is the only thing that
1317 // is demanded, turn this into a FGETSIGN.
1318 if (NewMask == MVT::getIntegerVTSignBit(Op.getValueType()) &&
1319 MVT::isFloatingPoint(Op.getOperand(0).getValueType()) &&
1320 !MVT::isVector(Op.getOperand(0).getValueType())) {
1321 // Only do this xform if FGETSIGN is valid or if before legalize.
1322 if (!TLO.AfterLegalize ||
1323 isOperationLegal(ISD::FGETSIGN, Op.getValueType())) {
1324 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1325 // place. We expect the SHL to be eliminated by other optimizations.
1326 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, Op.getValueType(),
1328 unsigned ShVal = Op.getValueType().getSizeInBits()-1;
1329 SDValue ShAmt = TLO.DAG.getConstant(ShVal, getShiftAmountTy());
1330 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SHL, Op.getValueType(),
1337 // Just use ComputeMaskedBits to compute output bits.
1338 TLO.DAG.ComputeMaskedBits(Op, NewMask, KnownZero, KnownOne, Depth);
1342 // If we know the value of all of the demanded bits, return this as a
1344 if ((NewMask & (KnownZero|KnownOne)) == NewMask)
1345 return TLO.CombineTo(Op, TLO.DAG.getConstant(KnownOne, Op.getValueType()));
1350 /// computeMaskedBitsForTargetNode - Determine which of the bits specified
1351 /// in Mask are known to be either zero or one and return them in the
1352 /// KnownZero/KnownOne bitsets.
1353 void TargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
1357 const SelectionDAG &DAG,
1358 unsigned Depth) const {
1359 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1360 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1361 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1362 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1363 "Should use MaskedValueIsZero if you don't know whether Op"
1364 " is a target node!");
1365 KnownZero = KnownOne = APInt(Mask.getBitWidth(), 0);
1368 /// ComputeNumSignBitsForTargetNode - This method can be implemented by
1369 /// targets that want to expose additional information about sign bits to the
1371 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
1372 unsigned Depth) const {
1373 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
1374 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
1375 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
1376 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
1377 "Should use ComputeNumSignBits if you don't know whether Op"
1378 " is a target node!");
1382 /// ValueHasExactlyOneBitSet - Test if the given value is known to have exactly
1383 /// one bit set. This differs from ComputeMaskedBits in that it doesn't need to
1384 /// determine which bit is set.
1386 static bool ValueHasExactlyOneBitSet(SDValue Val, const SelectionDAG &DAG) {
1387 // A left-shift of a constant one will have exactly one bit set, because
1388 // shifting the bit off the end is undefined.
1389 if (Val.getOpcode() == ISD::SHL)
1390 if (ConstantSDNode *C =
1391 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1392 if (C->getAPIntValue() == 1)
1395 // Similarly, a right-shift of a constant sign-bit will have exactly
1397 if (Val.getOpcode() == ISD::SRL)
1398 if (ConstantSDNode *C =
1399 dyn_cast<ConstantSDNode>(Val.getNode()->getOperand(0)))
1400 if (C->getAPIntValue().isSignBit())
1403 // More could be done here, though the above checks are enough
1404 // to handle some common cases.
1406 // Fall back to ComputeMaskedBits to catch other known cases.
1407 MVT OpVT = Val.getValueType();
1408 unsigned BitWidth = OpVT.getSizeInBits();
1409 APInt Mask = APInt::getAllOnesValue(BitWidth);
1410 APInt KnownZero, KnownOne;
1411 DAG.ComputeMaskedBits(Val, Mask, KnownZero, KnownOne);
1412 return (KnownZero.countPopulation() == BitWidth - 1) &&
1413 (KnownOne.countPopulation() == 1);
1416 /// SimplifySetCC - Try to simplify a setcc built with the specified operands
1417 /// and cc. If it is unable to simplify it, return a null SDValue.
1419 TargetLowering::SimplifySetCC(MVT VT, SDValue N0, SDValue N1,
1420 ISD::CondCode Cond, bool foldBooleans,
1421 DAGCombinerInfo &DCI, DebugLoc dl) const {
1422 SelectionDAG &DAG = DCI.DAG;
1424 // These setcc operations always fold.
1428 case ISD::SETFALSE2: return DAG.getConstant(0, VT);
1430 case ISD::SETTRUE2: return DAG.getConstant(1, VT);
1433 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
1434 const APInt &C1 = N1C->getAPIntValue();
1435 if (isa<ConstantSDNode>(N0.getNode())) {
1436 return DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1438 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
1439 // equality comparison, then we're just comparing whether X itself is
1441 if (N0.getOpcode() == ISD::SRL && (C1 == 0 || C1 == 1) &&
1442 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
1443 N0.getOperand(1).getOpcode() == ISD::Constant) {
1444 unsigned ShAmt = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1445 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1446 ShAmt == Log2_32(N0.getValueType().getSizeInBits())) {
1447 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
1448 // (srl (ctlz x), 5) == 0 -> X != 0
1449 // (srl (ctlz x), 5) != 1 -> X != 0
1452 // (srl (ctlz x), 5) != 0 -> X == 0
1453 // (srl (ctlz x), 5) == 1 -> X == 0
1456 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1457 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
1462 // If the LHS is '(and load, const)', the RHS is 0,
1463 // the test is for equality or unsigned, and all 1 bits of the const are
1464 // in the same partial word, see if we can shorten the load.
1465 if (DCI.isBeforeLegalize() &&
1466 N0.getOpcode() == ISD::AND && C1 == 0 &&
1467 N0.getNode()->hasOneUse() &&
1468 isa<LoadSDNode>(N0.getOperand(0)) &&
1469 N0.getOperand(0).getNode()->hasOneUse() &&
1470 isa<ConstantSDNode>(N0.getOperand(1))) {
1471 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
1472 uint64_t Mask = cast<ConstantSDNode>(N0.getOperand(1))->getZExtValue();
1473 uint64_t bestMask = 0;
1474 unsigned bestWidth = 0, bestOffset = 0;
1475 if (!Lod->isVolatile() && Lod->isUnindexed()) {
1476 unsigned origWidth = N0.getValueType().getSizeInBits();
1477 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
1478 // 8 bits, but have to be careful...
1479 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
1480 origWidth = Lod->getMemoryVT().getSizeInBits();
1481 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
1482 uint64_t newMask = (1ULL << width) - 1;
1483 for (unsigned offset=0; offset<origWidth/width; offset++) {
1484 if ((newMask & Mask)==Mask) {
1485 if (!TD->isLittleEndian())
1486 bestOffset = (origWidth/width - offset - 1) * (width/8);
1488 bestOffset = (uint64_t)offset * (width/8);
1489 bestMask = Mask >> (offset * (width/8) * 8);
1493 newMask = newMask << width;
1498 MVT newVT = MVT::getIntegerVT(bestWidth);
1499 if (newVT.isRound()) {
1500 MVT PtrType = Lod->getOperand(1).getValueType();
1501 SDValue Ptr = Lod->getBasePtr();
1502 if (bestOffset != 0)
1503 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
1504 DAG.getConstant(bestOffset, PtrType));
1505 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
1506 SDValue NewLoad = DAG.getLoad(newVT, dl, Lod->getChain(), Ptr,
1508 Lod->getSrcValueOffset() + bestOffset,
1510 return DAG.getSetCC(dl, VT,
1511 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
1512 DAG.getConstant(bestMask, newVT)),
1513 DAG.getConstant(0LL, newVT), Cond);
1518 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
1519 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
1520 unsigned InSize = N0.getOperand(0).getValueType().getSizeInBits();
1522 // If the comparison constant has bits in the upper part, the
1523 // zero-extended value could never match.
1524 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
1525 C1.getBitWidth() - InSize))) {
1529 case ISD::SETEQ: return DAG.getConstant(0, VT);
1532 case ISD::SETNE: return DAG.getConstant(1, VT);
1535 // True if the sign bit of C1 is set.
1536 return DAG.getConstant(C1.isNegative(), VT);
1539 // True if the sign bit of C1 isn't set.
1540 return DAG.getConstant(C1.isNonNegative(), VT);
1546 // Otherwise, we can perform the comparison with the low bits.
1554 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1555 DAG.getConstant(APInt(C1).trunc(InSize),
1556 N0.getOperand(0).getValueType()),
1559 break; // todo, be more careful with signed comparisons
1561 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
1562 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1563 MVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
1564 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
1565 MVT ExtDstTy = N0.getValueType();
1566 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
1568 // If the extended part has any inconsistent bits, it cannot ever
1569 // compare equal. In other words, they have to be all ones or all
1572 APInt::getHighBitsSet(ExtDstTyBits, ExtDstTyBits - ExtSrcTyBits);
1573 if ((C1 & ExtBits) != 0 && (C1 & ExtBits) != ExtBits)
1574 return DAG.getConstant(Cond == ISD::SETNE, VT);
1577 MVT Op0Ty = N0.getOperand(0).getValueType();
1578 if (Op0Ty == ExtSrcTy) {
1579 ZextOp = N0.getOperand(0);
1581 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
1582 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
1583 DAG.getConstant(Imm, Op0Ty));
1585 if (!DCI.isCalledByLegalizer())
1586 DCI.AddToWorklist(ZextOp.getNode());
1587 // Otherwise, make this a use of a zext.
1588 return DAG.getSetCC(dl, VT, ZextOp,
1589 DAG.getConstant(C1 & APInt::getLowBitsSet(
1594 } else if ((N1C->isNullValue() || N1C->getAPIntValue() == 1) &&
1595 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
1597 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
1598 if (N0.getOpcode() == ISD::SETCC) {
1599 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (N1C->getZExtValue() != 1);
1603 // Invert the condition.
1604 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
1605 CC = ISD::getSetCCInverse(CC,
1606 N0.getOperand(0).getValueType().isInteger());
1607 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
1610 if ((N0.getOpcode() == ISD::XOR ||
1611 (N0.getOpcode() == ISD::AND &&
1612 N0.getOperand(0).getOpcode() == ISD::XOR &&
1613 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
1614 isa<ConstantSDNode>(N0.getOperand(1)) &&
1615 cast<ConstantSDNode>(N0.getOperand(1))->getAPIntValue() == 1) {
1616 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
1617 // can only do this if the top bits are known zero.
1618 unsigned BitWidth = N0.getValueSizeInBits();
1619 if (DAG.MaskedValueIsZero(N0,
1620 APInt::getHighBitsSet(BitWidth,
1622 // Okay, get the un-inverted input value.
1624 if (N0.getOpcode() == ISD::XOR)
1625 Val = N0.getOperand(0);
1627 assert(N0.getOpcode() == ISD::AND &&
1628 N0.getOperand(0).getOpcode() == ISD::XOR);
1629 // ((X^1)&1)^1 -> X & 1
1630 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
1631 N0.getOperand(0).getOperand(0),
1634 return DAG.getSetCC(dl, VT, Val, N1,
1635 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
1640 APInt MinVal, MaxVal;
1641 unsigned OperandBitSize = N1C->getValueType(0).getSizeInBits();
1642 if (ISD::isSignedIntSetCC(Cond)) {
1643 MinVal = APInt::getSignedMinValue(OperandBitSize);
1644 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
1646 MinVal = APInt::getMinValue(OperandBitSize);
1647 MaxVal = APInt::getMaxValue(OperandBitSize);
1650 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
1651 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
1652 if (C1 == MinVal) return DAG.getConstant(1, VT); // X >= MIN --> true
1653 // X >= C0 --> X > (C0-1)
1654 return DAG.getSetCC(dl, VT, N0,
1655 DAG.getConstant(C1-1, N1.getValueType()),
1656 (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT);
1659 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
1660 if (C1 == MaxVal) return DAG.getConstant(1, VT); // X <= MAX --> true
1661 // X <= C0 --> X < (C0+1)
1662 return DAG.getSetCC(dl, VT, N0,
1663 DAG.getConstant(C1+1, N1.getValueType()),
1664 (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT);
1667 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal)
1668 return DAG.getConstant(0, VT); // X < MIN --> false
1669 if ((Cond == ISD::SETGE || Cond == ISD::SETUGE) && C1 == MinVal)
1670 return DAG.getConstant(1, VT); // X >= MIN --> true
1671 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal)
1672 return DAG.getConstant(0, VT); // X > MAX --> false
1673 if ((Cond == ISD::SETLE || Cond == ISD::SETULE) && C1 == MaxVal)
1674 return DAG.getConstant(1, VT); // X <= MAX --> true
1676 // Canonicalize setgt X, Min --> setne X, Min
1677 if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MinVal)
1678 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1679 // Canonicalize setlt X, Max --> setne X, Max
1680 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MaxVal)
1681 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
1683 // If we have setult X, 1, turn it into seteq X, 0
1684 if ((Cond == ISD::SETLT || Cond == ISD::SETULT) && C1 == MinVal+1)
1685 return DAG.getSetCC(dl, VT, N0,
1686 DAG.getConstant(MinVal, N0.getValueType()),
1688 // If we have setugt X, Max-1, turn it into seteq X, Max
1689 else if ((Cond == ISD::SETGT || Cond == ISD::SETUGT) && C1 == MaxVal-1)
1690 return DAG.getSetCC(dl, VT, N0,
1691 DAG.getConstant(MaxVal, N0.getValueType()),
1694 // If we have "setcc X, C0", check to see if we can shrink the immediate
1697 // SETUGT X, SINTMAX -> SETLT X, 0
1698 if (Cond == ISD::SETUGT &&
1699 C1 == APInt::getSignedMaxValue(OperandBitSize))
1700 return DAG.getSetCC(dl, VT, N0,
1701 DAG.getConstant(0, N1.getValueType()),
1704 // SETULT X, SINTMIN -> SETGT X, -1
1705 if (Cond == ISD::SETULT &&
1706 C1 == APInt::getSignedMinValue(OperandBitSize)) {
1707 SDValue ConstMinusOne =
1708 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize),
1710 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
1713 // Fold bit comparisons when we can.
1714 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1715 VT == N0.getValueType() && N0.getOpcode() == ISD::AND)
1716 if (ConstantSDNode *AndRHS =
1717 dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1718 MVT ShiftTy = DCI.isBeforeLegalize() ?
1719 getPointerTy() : getShiftAmountTy();
1720 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
1721 // Perform the xform if the AND RHS is a single bit.
1722 if (isPowerOf2_64(AndRHS->getZExtValue())) {
1723 return DAG.getNode(ISD::SRL, dl, VT, N0,
1724 DAG.getConstant(Log2_64(AndRHS->getZExtValue()),
1727 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getZExtValue()) {
1728 // (X & 8) == 8 --> (X & 8) >> 3
1729 // Perform the xform if C1 is a single bit.
1730 if (C1.isPowerOf2()) {
1731 return DAG.getNode(ISD::SRL, dl, VT, N0,
1732 DAG.getConstant(C1.logBase2(), ShiftTy));
1737 } else if (isa<ConstantSDNode>(N0.getNode())) {
1738 // Ensure that the constant occurs on the RHS.
1739 return DAG.getSetCC(dl, VT, N1, N0, ISD::getSetCCSwappedOperands(Cond));
1742 if (isa<ConstantFPSDNode>(N0.getNode())) {
1743 // Constant fold or commute setcc.
1744 SDValue O = DAG.FoldSetCC(VT, N0, N1, Cond, dl);
1745 if (O.getNode()) return O;
1746 } else if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
1747 // If the RHS of an FP comparison is a constant, simplify it away in
1749 if (CFP->getValueAPF().isNaN()) {
1750 // If an operand is known to be a nan, we can fold it.
1751 switch (ISD::getUnorderedFlavor(Cond)) {
1752 default: assert(0 && "Unknown flavor!");
1753 case 0: // Known false.
1754 return DAG.getConstant(0, VT);
1755 case 1: // Known true.
1756 return DAG.getConstant(1, VT);
1757 case 2: // Undefined.
1758 return DAG.getUNDEF(VT);
1762 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
1763 // constant if knowing that the operand is non-nan is enough. We prefer to
1764 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
1766 if (Cond == ISD::SETO || Cond == ISD::SETUO)
1767 return DAG.getSetCC(dl, VT, N0, N0, Cond);
1771 // We can always fold X == X for integer setcc's.
1772 if (N0.getValueType().isInteger())
1773 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1774 unsigned UOF = ISD::getUnorderedFlavor(Cond);
1775 if (UOF == 2) // FP operators that are undefined on NaNs.
1776 return DAG.getConstant(ISD::isTrueWhenEqual(Cond), VT);
1777 if (UOF == unsigned(ISD::isTrueWhenEqual(Cond)))
1778 return DAG.getConstant(UOF, VT);
1779 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
1780 // if it is not already.
1781 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
1782 if (NewCond != Cond)
1783 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
1786 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
1787 N0.getValueType().isInteger()) {
1788 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
1789 N0.getOpcode() == ISD::XOR) {
1790 // Simplify (X+Y) == (X+Z) --> Y == Z
1791 if (N0.getOpcode() == N1.getOpcode()) {
1792 if (N0.getOperand(0) == N1.getOperand(0))
1793 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
1794 if (N0.getOperand(1) == N1.getOperand(1))
1795 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
1796 if (DAG.isCommutativeBinOp(N0.getOpcode())) {
1797 // If X op Y == Y op X, try other combinations.
1798 if (N0.getOperand(0) == N1.getOperand(1))
1799 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
1801 if (N0.getOperand(1) == N1.getOperand(0))
1802 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
1807 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(N1)) {
1808 if (ConstantSDNode *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
1809 // Turn (X+C1) == C2 --> X == C2-C1
1810 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
1811 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1812 DAG.getConstant(RHSC->getAPIntValue()-
1813 LHSR->getAPIntValue(),
1814 N0.getValueType()), Cond);
1817 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
1818 if (N0.getOpcode() == ISD::XOR)
1819 // If we know that all of the inverted bits are zero, don't bother
1820 // performing the inversion.
1821 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
1823 DAG.getSetCC(dl, VT, N0.getOperand(0),
1824 DAG.getConstant(LHSR->getAPIntValue() ^
1825 RHSC->getAPIntValue(),
1830 // Turn (C1-X) == C2 --> X == C1-C2
1831 if (ConstantSDNode *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
1832 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
1834 DAG.getSetCC(dl, VT, N0.getOperand(1),
1835 DAG.getConstant(SUBC->getAPIntValue() -
1836 RHSC->getAPIntValue(),
1843 // Simplify (X+Z) == X --> Z == 0
1844 if (N0.getOperand(0) == N1)
1845 return DAG.getSetCC(dl, VT, N0.getOperand(1),
1846 DAG.getConstant(0, N0.getValueType()), Cond);
1847 if (N0.getOperand(1) == N1) {
1848 if (DAG.isCommutativeBinOp(N0.getOpcode()))
1849 return DAG.getSetCC(dl, VT, N0.getOperand(0),
1850 DAG.getConstant(0, N0.getValueType()), Cond);
1851 else if (N0.getNode()->hasOneUse()) {
1852 assert(N0.getOpcode() == ISD::SUB && "Unexpected operation!");
1853 // (Z-X) == X --> Z == X<<1
1854 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(),
1856 DAG.getConstant(1, getShiftAmountTy()));
1857 if (!DCI.isCalledByLegalizer())
1858 DCI.AddToWorklist(SH.getNode());
1859 return DAG.getSetCC(dl, VT, N0.getOperand(0), SH, Cond);
1864 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
1865 N1.getOpcode() == ISD::XOR) {
1866 // Simplify X == (X+Z) --> Z == 0
1867 if (N1.getOperand(0) == N0) {
1868 return DAG.getSetCC(dl, VT, N1.getOperand(1),
1869 DAG.getConstant(0, N1.getValueType()), Cond);
1870 } else if (N1.getOperand(1) == N0) {
1871 if (DAG.isCommutativeBinOp(N1.getOpcode())) {
1872 return DAG.getSetCC(dl, VT, N1.getOperand(0),
1873 DAG.getConstant(0, N1.getValueType()), Cond);
1874 } else if (N1.getNode()->hasOneUse()) {
1875 assert(N1.getOpcode() == ISD::SUB && "Unexpected operation!");
1876 // X == (Z-X) --> X<<1 == Z
1877 SDValue SH = DAG.getNode(ISD::SHL, dl, N1.getValueType(), N0,
1878 DAG.getConstant(1, getShiftAmountTy()));
1879 if (!DCI.isCalledByLegalizer())
1880 DCI.AddToWorklist(SH.getNode());
1881 return DAG.getSetCC(dl, VT, SH, N1.getOperand(0), Cond);
1886 // Simplify x&y == y to x&y != 0 if y has exactly one bit set.
1887 // Note that where y is variable and is known to have at most
1888 // one bit set (for example, if it is z&1) we cannot do this;
1889 // the expressions are not equivalent when y==0.
1890 if (N0.getOpcode() == ISD::AND)
1891 if (N0.getOperand(0) == N1 || N0.getOperand(1) == N1) {
1892 if (ValueHasExactlyOneBitSet(N1, DAG)) {
1893 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1894 SDValue Zero = DAG.getConstant(0, N1.getValueType());
1895 return DAG.getSetCC(dl, VT, N0, Zero, Cond);
1898 if (N1.getOpcode() == ISD::AND)
1899 if (N1.getOperand(0) == N0 || N1.getOperand(1) == N0) {
1900 if (ValueHasExactlyOneBitSet(N0, DAG)) {
1901 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
1902 SDValue Zero = DAG.getConstant(0, N0.getValueType());
1903 return DAG.getSetCC(dl, VT, N1, Zero, Cond);
1908 // Fold away ALL boolean setcc's.
1910 if (N0.getValueType() == MVT::i1 && foldBooleans) {
1912 default: assert(0 && "Unknown integer setcc!");
1913 case ISD::SETEQ: // X == Y -> ~(X^Y)
1914 Temp = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1915 N0 = DAG.getNOT(dl, Temp, MVT::i1);
1916 if (!DCI.isCalledByLegalizer())
1917 DCI.AddToWorklist(Temp.getNode());
1919 case ISD::SETNE: // X != Y --> (X^Y)
1920 N0 = DAG.getNode(ISD::XOR, dl, MVT::i1, N0, N1);
1922 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
1923 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
1924 Temp = DAG.getNOT(dl, N0, MVT::i1);
1925 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N1, Temp);
1926 if (!DCI.isCalledByLegalizer())
1927 DCI.AddToWorklist(Temp.getNode());
1929 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
1930 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
1931 Temp = DAG.getNOT(dl, N1, MVT::i1);
1932 N0 = DAG.getNode(ISD::AND, dl, MVT::i1, N0, Temp);
1933 if (!DCI.isCalledByLegalizer())
1934 DCI.AddToWorklist(Temp.getNode());
1936 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
1937 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
1938 Temp = DAG.getNOT(dl, N0, MVT::i1);
1939 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N1, Temp);
1940 if (!DCI.isCalledByLegalizer())
1941 DCI.AddToWorklist(Temp.getNode());
1943 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
1944 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
1945 Temp = DAG.getNOT(dl, N1, MVT::i1);
1946 N0 = DAG.getNode(ISD::OR, dl, MVT::i1, N0, Temp);
1949 if (VT != MVT::i1) {
1950 if (!DCI.isCalledByLegalizer())
1951 DCI.AddToWorklist(N0.getNode());
1952 // FIXME: If running after legalize, we probably can't do this.
1953 N0 = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, N0);
1958 // Could not fold it.
1962 /// isGAPlusOffset - Returns true (and the GlobalValue and the offset) if the
1963 /// node is a GlobalAddress + offset.
1964 bool TargetLowering::isGAPlusOffset(SDNode *N, GlobalValue* &GA,
1965 int64_t &Offset) const {
1966 if (isa<GlobalAddressSDNode>(N)) {
1967 GlobalAddressSDNode *GASD = cast<GlobalAddressSDNode>(N);
1968 GA = GASD->getGlobal();
1969 Offset += GASD->getOffset();
1973 if (N->getOpcode() == ISD::ADD) {
1974 SDValue N1 = N->getOperand(0);
1975 SDValue N2 = N->getOperand(1);
1976 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
1977 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N2);
1979 Offset += V->getSExtValue();
1982 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
1983 ConstantSDNode *V = dyn_cast<ConstantSDNode>(N1);
1985 Offset += V->getSExtValue();
1994 /// isConsecutiveLoad - Return true if LD (which must be a LoadSDNode) is
1995 /// loading 'Bytes' bytes from a location that is 'Dist' units away from the
1996 /// location that the 'Base' load is loading from.
1997 bool TargetLowering::isConsecutiveLoad(SDNode *LD, SDNode *Base,
1998 unsigned Bytes, int Dist,
1999 const MachineFrameInfo *MFI) const {
2000 if (LD->getOperand(0).getNode() != Base->getOperand(0).getNode())
2002 MVT VT = LD->getValueType(0);
2003 if (VT.getSizeInBits() / 8 != Bytes)
2006 SDValue Loc = LD->getOperand(1);
2007 SDValue BaseLoc = Base->getOperand(1);
2008 if (Loc.getOpcode() == ISD::FrameIndex) {
2009 if (BaseLoc.getOpcode() != ISD::FrameIndex)
2011 int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
2012 int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
2013 int FS = MFI->getObjectSize(FI);
2014 int BFS = MFI->getObjectSize(BFI);
2015 if (FS != BFS || FS != (int)Bytes) return false;
2016 return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
2019 GlobalValue *GV1 = NULL;
2020 GlobalValue *GV2 = NULL;
2021 int64_t Offset1 = 0;
2022 int64_t Offset2 = 0;
2023 bool isGA1 = isGAPlusOffset(Loc.getNode(), GV1, Offset1);
2024 bool isGA2 = isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
2025 if (isGA1 && isGA2 && GV1 == GV2)
2026 return Offset1 == (Offset2 + Dist*Bytes);
2031 SDValue TargetLowering::
2032 PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const {
2033 // Default implementation: no optimization.
2037 //===----------------------------------------------------------------------===//
2038 // Inline Assembler Implementation Methods
2039 //===----------------------------------------------------------------------===//
2042 TargetLowering::ConstraintType
2043 TargetLowering::getConstraintType(const std::string &Constraint) const {
2044 // FIXME: lots more standard ones to handle.
2045 if (Constraint.size() == 1) {
2046 switch (Constraint[0]) {
2048 case 'r': return C_RegisterClass;
2050 case 'o': // offsetable
2051 case 'V': // not offsetable
2053 case 'i': // Simple Integer or Relocatable Constant
2054 case 'n': // Simple Integer
2055 case 's': // Relocatable Constant
2056 case 'X': // Allow ANY value.
2057 case 'I': // Target registers.
2069 if (Constraint.size() > 1 && Constraint[0] == '{' &&
2070 Constraint[Constraint.size()-1] == '}')
2075 /// LowerXConstraint - try to replace an X constraint, which matches anything,
2076 /// with another that has more specific requirements based on the type of the
2077 /// corresponding operand.
2078 const char *TargetLowering::LowerXConstraint(MVT ConstraintVT) const{
2079 if (ConstraintVT.isInteger())
2081 if (ConstraintVT.isFloatingPoint())
2082 return "f"; // works for many targets
2086 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
2087 /// vector. If it is invalid, don't add anything to Ops.
2088 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
2089 char ConstraintLetter,
2091 std::vector<SDValue> &Ops,
2092 SelectionDAG &DAG) const {
2093 switch (ConstraintLetter) {
2095 case 'X': // Allows any operand; labels (basic block) use this.
2096 if (Op.getOpcode() == ISD::BasicBlock) {
2101 case 'i': // Simple Integer or Relocatable Constant
2102 case 'n': // Simple Integer
2103 case 's': { // Relocatable Constant
2104 // These operands are interested in values of the form (GV+C), where C may
2105 // be folded in as an offset of GV, or it may be explicitly added. Also, it
2106 // is possible and fine if either GV or C are missing.
2107 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2108 GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Op);
2110 // If we have "(add GV, C)", pull out GV/C
2111 if (Op.getOpcode() == ISD::ADD) {
2112 C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2113 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(0));
2114 if (C == 0 || GA == 0) {
2115 C = dyn_cast<ConstantSDNode>(Op.getOperand(0));
2116 GA = dyn_cast<GlobalAddressSDNode>(Op.getOperand(1));
2118 if (C == 0 || GA == 0)
2122 // If we find a valid operand, map to the TargetXXX version so that the
2123 // value itself doesn't get selected.
2124 if (GA) { // Either &GV or &GV+C
2125 if (ConstraintLetter != 'n') {
2126 int64_t Offs = GA->getOffset();
2127 if (C) Offs += C->getZExtValue();
2128 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(),
2129 Op.getValueType(), Offs));
2133 if (C) { // just C, no GV.
2134 // Simple constants are not allowed for 's'.
2135 if (ConstraintLetter != 's') {
2136 // gcc prints these as sign extended. Sign extend value to 64 bits
2137 // now; without this it would get ZExt'd later in
2138 // ScheduleDAGSDNodes::EmitNode, which is very generic.
2139 Ops.push_back(DAG.getTargetConstant(C->getAPIntValue().getSExtValue(),
2149 std::vector<unsigned> TargetLowering::
2150 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2152 return std::vector<unsigned>();
2156 std::pair<unsigned, const TargetRegisterClass*> TargetLowering::
2157 getRegForInlineAsmConstraint(const std::string &Constraint,
2159 if (Constraint[0] != '{')
2160 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2161 assert(*(Constraint.end()-1) == '}' && "Not a brace enclosed constraint?");
2163 // Remove the braces from around the name.
2164 std::string RegName(Constraint.begin()+1, Constraint.end()-1);
2166 // Figure out which register class contains this reg.
2167 const TargetRegisterInfo *RI = TM.getRegisterInfo();
2168 for (TargetRegisterInfo::regclass_iterator RCI = RI->regclass_begin(),
2169 E = RI->regclass_end(); RCI != E; ++RCI) {
2170 const TargetRegisterClass *RC = *RCI;
2172 // If none of the the value types for this register class are valid, we
2173 // can't use it. For example, 64-bit reg classes on 32-bit targets.
2174 bool isLegal = false;
2175 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
2177 if (isTypeLegal(*I)) {
2183 if (!isLegal) continue;
2185 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
2187 if (StringsEqualNoCase(RegName, RI->get(*I).AsmName))
2188 return std::make_pair(*I, RC);
2192 return std::pair<unsigned, const TargetRegisterClass*>(0, 0);
2195 //===----------------------------------------------------------------------===//
2196 // Constraint Selection.
2198 /// isMatchingInputConstraint - Return true of this is an input operand that is
2199 /// a matching constraint like "4".
2200 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
2201 assert(!ConstraintCode.empty() && "No known constraint!");
2202 return isdigit(ConstraintCode[0]);
2205 /// getMatchedOperand - If this is an input matching constraint, this method
2206 /// returns the output operand it matches.
2207 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
2208 assert(!ConstraintCode.empty() && "No known constraint!");
2209 return atoi(ConstraintCode.c_str());
2213 /// getConstraintGenerality - Return an integer indicating how general CT
2215 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
2217 default: assert(0 && "Unknown constraint type!");
2218 case TargetLowering::C_Other:
2219 case TargetLowering::C_Unknown:
2221 case TargetLowering::C_Register:
2223 case TargetLowering::C_RegisterClass:
2225 case TargetLowering::C_Memory:
2230 /// ChooseConstraint - If there are multiple different constraints that we
2231 /// could pick for this operand (e.g. "imr") try to pick the 'best' one.
2232 /// This is somewhat tricky: constraints fall into four classes:
2233 /// Other -> immediates and magic values
2234 /// Register -> one specific register
2235 /// RegisterClass -> a group of regs
2236 /// Memory -> memory
2237 /// Ideally, we would pick the most specific constraint possible: if we have
2238 /// something that fits into a register, we would pick it. The problem here
2239 /// is that if we have something that could either be in a register or in
2240 /// memory that use of the register could cause selection of *other*
2241 /// operands to fail: they might only succeed if we pick memory. Because of
2242 /// this the heuristic we use is:
2244 /// 1) If there is an 'other' constraint, and if the operand is valid for
2245 /// that constraint, use it. This makes us take advantage of 'i'
2246 /// constraints when available.
2247 /// 2) Otherwise, pick the most general constraint present. This prefers
2248 /// 'm' over 'r', for example.
2250 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
2251 bool hasMemory, const TargetLowering &TLI,
2252 SDValue Op, SelectionDAG *DAG) {
2253 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
2254 unsigned BestIdx = 0;
2255 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
2256 int BestGenerality = -1;
2258 // Loop over the options, keeping track of the most general one.
2259 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
2260 TargetLowering::ConstraintType CType =
2261 TLI.getConstraintType(OpInfo.Codes[i]);
2263 // If this is an 'other' constraint, see if the operand is valid for it.
2264 // For example, on X86 we might have an 'rI' constraint. If the operand
2265 // is an integer in the range [0..31] we want to use I (saving a load
2266 // of a register), otherwise we must use 'r'.
2267 if (CType == TargetLowering::C_Other && Op.getNode()) {
2268 assert(OpInfo.Codes[i].size() == 1 &&
2269 "Unhandled multi-letter 'other' constraint");
2270 std::vector<SDValue> ResultOps;
2271 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i][0], hasMemory,
2273 if (!ResultOps.empty()) {
2280 // This constraint letter is more general than the previous one, use it.
2281 int Generality = getConstraintGenerality(CType);
2282 if (Generality > BestGenerality) {
2285 BestGenerality = Generality;
2289 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
2290 OpInfo.ConstraintType = BestType;
2293 /// ComputeConstraintToUse - Determines the constraint code and constraint
2294 /// type to use for the specific AsmOperandInfo, setting
2295 /// OpInfo.ConstraintCode and OpInfo.ConstraintType.
2296 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
2299 SelectionDAG *DAG) const {
2300 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
2302 // Single-letter constraints ('r') are very common.
2303 if (OpInfo.Codes.size() == 1) {
2304 OpInfo.ConstraintCode = OpInfo.Codes[0];
2305 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2307 ChooseConstraint(OpInfo, hasMemory, *this, Op, DAG);
2310 // 'X' matches anything.
2311 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
2312 // Labels and constants are handled elsewhere ('X' is the only thing
2313 // that matches labels).
2314 if (isa<BasicBlock>(OpInfo.CallOperandVal) ||
2315 isa<ConstantInt>(OpInfo.CallOperandVal))
2318 // Otherwise, try to resolve it to something we know about by looking at
2319 // the actual operand type.
2320 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
2321 OpInfo.ConstraintCode = Repl;
2322 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
2327 //===----------------------------------------------------------------------===//
2328 // Loop Strength Reduction hooks
2329 //===----------------------------------------------------------------------===//
2331 /// isLegalAddressingMode - Return true if the addressing mode represented
2332 /// by AM is legal for this target, for a load/store of the specified type.
2333 bool TargetLowering::isLegalAddressingMode(const AddrMode &AM,
2334 const Type *Ty) const {
2335 // The default implementation of this implements a conservative RISCy, r+r and
2338 // Allows a sign-extended 16-bit immediate field.
2339 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2342 // No global is ever allowed as a base.
2346 // Only support r+r,
2348 case 0: // "r+i" or just "i", depending on HasBaseReg.
2351 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
2353 // Otherwise we have r+r or r+i.
2356 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
2358 // Allow 2*r as r+r.
2366 APInt m; // magic number
2367 bool a; // add indicator
2368 unsigned s; // shift amount
2371 /// magicu - calculate the magic numbers required to codegen an integer udiv as
2372 /// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
2373 static mu magicu(const APInt& d) {
2375 APInt nc, delta, q1, r1, q2, r2;
2377 magu.a = 0; // initialize "add" indicator
2378 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2379 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2380 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2382 nc = allOnes - (-d).urem(d);
2383 p = d.getBitWidth() - 1; // initialize p
2384 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
2385 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
2386 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
2387 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
2390 if (r1.uge(nc - r1)) {
2391 q1 = q1 + q1 + 1; // update q1
2392 r1 = r1 + r1 - nc; // update r1
2395 q1 = q1+q1; // update q1
2396 r1 = r1+r1; // update r1
2398 if ((r2 + 1).uge(d - r2)) {
2399 if (q2.uge(signedMax)) magu.a = 1;
2400 q2 = q2+q2 + 1; // update q2
2401 r2 = r2+r2 + 1 - d; // update r2
2404 if (q2.uge(signedMin)) magu.a = 1;
2405 q2 = q2+q2; // update q2
2406 r2 = r2+r2 + 1; // update r2
2409 } while (p < d.getBitWidth()*2 &&
2410 (q1.ult(delta) || (q1 == delta && r1 == 0)));
2411 magu.m = q2 + 1; // resulting magic number
2412 magu.s = p - d.getBitWidth(); // resulting shift
2416 // Magic for divide replacement
2418 APInt m; // magic number
2419 unsigned s; // shift amount
2422 /// magic - calculate the magic numbers required to codegen an integer sdiv as
2423 /// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
2425 static ms magic(const APInt& d) {
2427 APInt ad, anc, delta, q1, r1, q2, r2, t;
2428 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
2429 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
2430 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
2434 t = signedMin + (d.lshr(d.getBitWidth() - 1));
2435 anc = t - 1 - t.urem(ad); // absolute value of nc
2436 p = d.getBitWidth() - 1; // initialize p
2437 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
2438 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
2439 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
2440 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
2443 q1 = q1<<1; // update q1 = 2p/abs(nc)
2444 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
2445 if (r1.uge(anc)) { // must be unsigned comparison
2449 q2 = q2<<1; // update q2 = 2p/abs(d)
2450 r2 = r2<<1; // update r2 = rem(2p/abs(d))
2451 if (r2.uge(ad)) { // must be unsigned comparison
2456 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
2459 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
2460 mag.s = p - d.getBitWidth(); // resulting shift
2464 /// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
2465 /// return a DAG expression to select that will generate the same value by
2466 /// multiplying by a magic number. See:
2467 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2468 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
2469 std::vector<SDNode*>* Created) const {
2470 MVT VT = N->getValueType(0);
2471 DebugLoc dl= N->getDebugLoc();
2473 // Check to see if we can do this.
2474 // FIXME: We should be more aggressive here.
2475 if (!isTypeLegal(VT))
2478 APInt d = cast<ConstantSDNode>(N->getOperand(1))->getAPIntValue();
2479 ms magics = magic(d);
2481 // Multiply the numerator (operand 0) by the magic value
2482 // FIXME: We should support doing a MUL in a wider type
2484 if (isOperationLegalOrCustom(ISD::MULHS, VT))
2485 Q = DAG.getNode(ISD::MULHS, dl, VT, N->getOperand(0),
2486 DAG.getConstant(magics.m, VT));
2487 else if (isOperationLegalOrCustom(ISD::SMUL_LOHI, VT))
2488 Q = SDValue(DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT),
2490 DAG.getConstant(magics.m, VT)).getNode(), 1);
2492 return SDValue(); // No mulhs or equvialent
2493 // If d > 0 and m < 0, add the numerator
2494 if (d.isStrictlyPositive() && magics.m.isNegative()) {
2495 Q = DAG.getNode(ISD::ADD, dl, VT, Q, N->getOperand(0));
2497 Created->push_back(Q.getNode());
2499 // If d < 0 and m > 0, subtract the numerator.
2500 if (d.isNegative() && magics.m.isStrictlyPositive()) {
2501 Q = DAG.getNode(ISD::SUB, dl, VT, Q, N->getOperand(0));
2503 Created->push_back(Q.getNode());
2505 // Shift right algebraic if shift value is nonzero
2507 Q = DAG.getNode(ISD::SRA, dl, VT, Q,
2508 DAG.getConstant(magics.s, getShiftAmountTy()));
2510 Created->push_back(Q.getNode());
2512 // Extract the sign bit and add it to the quotient
2514 DAG.getNode(ISD::SRL, dl, VT, Q, DAG.getConstant(VT.getSizeInBits()-1,
2515 getShiftAmountTy()));
2517 Created->push_back(T.getNode());
2518 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
2521 /// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
2522 /// return a DAG expression to select that will generate the same value by
2523 /// multiplying by a magic number. See:
2524 /// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
2525 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
2526 std::vector<SDNode*>* Created) const {
2527 MVT VT = N->getValueType(0);
2528 DebugLoc dl = N->getDebugLoc();
2530 // Check to see if we can do this.
2531 // FIXME: We should be more aggressive here.
2532 if (!isTypeLegal(VT))
2535 // FIXME: We should use a narrower constant when the upper
2536 // bits are known to be zero.
2537 ConstantSDNode *N1C = cast<ConstantSDNode>(N->getOperand(1));
2538 mu magics = magicu(N1C->getAPIntValue());
2540 // Multiply the numerator (operand 0) by the magic value
2541 // FIXME: We should support doing a MUL in a wider type
2543 if (isOperationLegalOrCustom(ISD::MULHU, VT))
2544 Q = DAG.getNode(ISD::MULHU, dl, VT, N->getOperand(0),
2545 DAG.getConstant(magics.m, VT));
2546 else if (isOperationLegalOrCustom(ISD::UMUL_LOHI, VT))
2547 Q = SDValue(DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT),
2549 DAG.getConstant(magics.m, VT)).getNode(), 1);
2551 return SDValue(); // No mulhu or equvialent
2553 Created->push_back(Q.getNode());
2555 if (magics.a == 0) {
2556 assert(magics.s < N1C->getAPIntValue().getBitWidth() &&
2557 "We shouldn't generate an undefined shift!");
2558 return DAG.getNode(ISD::SRL, dl, VT, Q,
2559 DAG.getConstant(magics.s, getShiftAmountTy()));
2561 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N->getOperand(0), Q);
2563 Created->push_back(NPQ.getNode());
2564 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ,
2565 DAG.getConstant(1, getShiftAmountTy()));
2567 Created->push_back(NPQ.getNode());
2568 NPQ = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
2570 Created->push_back(NPQ.getNode());
2571 return DAG.getNode(ISD::SRL, dl, VT, NPQ,
2572 DAG.getConstant(magics.s-1, getShiftAmountTy()));
2576 /// IgnoreHarmlessInstructions - Ignore instructions between a CALL and RET
2577 /// node that don't prevent tail call optimization.
2578 static SDValue IgnoreHarmlessInstructions(SDValue node) {
2579 // Found call return.
2580 if (node.getOpcode() == ISD::CALL) return node;
2581 // Ignore MERGE_VALUES. Will have at least one operand.
2582 if (node.getOpcode() == ISD::MERGE_VALUES)
2583 return IgnoreHarmlessInstructions(node.getOperand(0));
2584 // Ignore ANY_EXTEND node.
2585 if (node.getOpcode() == ISD::ANY_EXTEND)
2586 return IgnoreHarmlessInstructions(node.getOperand(0));
2587 if (node.getOpcode() == ISD::TRUNCATE)
2588 return IgnoreHarmlessInstructions(node.getOperand(0));
2589 // Any other node type.
2593 bool TargetLowering::CheckTailCallReturnConstraints(CallSDNode *TheCall,
2595 unsigned NumOps = Ret.getNumOperands();
2596 // ISD::CALL results:(value0, ..., valuen, chain)
2597 // ISD::RET operands:(chain, value0, flag0, ..., valuen, flagn)
2599 // Check that operand of the RET node sources from the CALL node. The RET node
2600 // has at least two operands. Operand 0 holds the chain. Operand 1 holds the
2603 IgnoreHarmlessInstructions(Ret.getOperand(1)) == SDValue(TheCall,0))
2605 // void return: The RET node has the chain result value of the CALL node as
2608 Ret.getOperand(0) == SDValue(TheCall, TheCall->getNumValues()-1))