1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
28 //===----------------------------------------------------------------------===//
30 #define DEBUG_TYPE "twoaddrinstr"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/Function.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFunctionPass.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/Analysis/AliasAnalysis.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include "llvm/Target/TargetInstrInfo.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include "llvm/Target/TargetOptions.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/ADT/BitVector.h"
44 #include "llvm/ADT/DenseMap.h"
45 #include "llvm/ADT/SmallSet.h"
46 #include "llvm/ADT/Statistic.h"
47 #include "llvm/ADT/STLExtras.h"
50 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
51 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce");
52 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted");
53 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
54 STATISTIC(Num3AddrSunk, "Number of 3-address instructions sunk");
55 STATISTIC(NumReMats, "Number of instructions re-materialized");
56 STATISTIC(NumDeletes, "Number of dead instructions deleted");
59 class TwoAddressInstructionPass : public MachineFunctionPass {
60 const TargetInstrInfo *TII;
61 const TargetRegisterInfo *TRI;
62 MachineRegisterInfo *MRI;
66 // DistanceMap - Keep track the distance of a MI from the start of the
67 // current basic block.
68 DenseMap<MachineInstr*, unsigned> DistanceMap;
70 // SrcRegMap - A map from virtual registers to physical registers which
71 // are likely targets to be coalesced to due to copies from physical
72 // registers to virtual registers. e.g. v1024 = move r0.
73 DenseMap<unsigned, unsigned> SrcRegMap;
75 // DstRegMap - A map from virtual registers to physical registers which
76 // are likely targets to be coalesced to due to copies to physical
77 // registers from virtual registers. e.g. r1 = move v1024.
78 DenseMap<unsigned, unsigned> DstRegMap;
80 bool Sink3AddrInstruction(MachineBasicBlock *MBB, MachineInstr *MI,
82 MachineBasicBlock::iterator OldPos);
84 bool isProfitableToReMat(unsigned Reg, const TargetRegisterClass *RC,
85 MachineInstr *MI, MachineInstr *DefMI,
86 MachineBasicBlock *MBB, unsigned Loc);
88 bool NoUseAfterLastDef(unsigned Reg, MachineBasicBlock *MBB, unsigned Dist,
91 MachineInstr *FindLastUseInMBB(unsigned Reg, MachineBasicBlock *MBB,
94 bool isProfitableToCommute(unsigned regB, unsigned regC,
95 MachineInstr *MI, MachineBasicBlock *MBB,
98 bool CommuteInstruction(MachineBasicBlock::iterator &mi,
99 MachineFunction::iterator &mbbi,
100 unsigned RegB, unsigned RegC, unsigned Dist);
102 bool isProfitableToConv3Addr(unsigned RegA);
104 bool ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
105 MachineBasicBlock::iterator &nmi,
106 MachineFunction::iterator &mbbi,
107 unsigned RegB, unsigned Dist);
109 typedef std::pair<std::pair<unsigned, bool>, MachineInstr*> NewKill;
110 bool canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
111 SmallVector<NewKill, 4> &NewKills,
112 MachineBasicBlock *MBB, unsigned Dist);
113 bool DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
114 MachineBasicBlock::iterator &nmi,
115 MachineFunction::iterator &mbbi, unsigned Dist);
117 bool TryInstructionTransform(MachineBasicBlock::iterator &mi,
118 MachineBasicBlock::iterator &nmi,
119 MachineFunction::iterator &mbbi,
120 unsigned SrcIdx, unsigned DstIdx,
123 void ProcessCopy(MachineInstr *MI, MachineBasicBlock *MBB,
124 SmallPtrSet<MachineInstr*, 8> &Processed);
127 static char ID; // Pass identification, replacement for typeid
128 TwoAddressInstructionPass() : MachineFunctionPass(&ID) {}
130 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
131 AU.setPreservesCFG();
132 AU.addRequired<AliasAnalysis>();
133 AU.addPreserved<LiveVariables>();
134 AU.addPreservedID(MachineLoopInfoID);
135 AU.addPreservedID(MachineDominatorsID);
137 AU.addPreservedID(StrongPHIEliminationID);
139 AU.addPreservedID(PHIEliminationID);
140 MachineFunctionPass::getAnalysisUsage(AU);
143 /// runOnMachineFunction - Pass entry point.
144 bool runOnMachineFunction(MachineFunction&);
148 char TwoAddressInstructionPass::ID = 0;
149 static RegisterPass<TwoAddressInstructionPass>
150 X("twoaddressinstruction", "Two-Address instruction pass");
152 const PassInfo *const llvm::TwoAddressInstructionPassID = &X;
154 /// Sink3AddrInstruction - A two-address instruction has been converted to a
155 /// three-address instruction to avoid clobbering a register. Try to sink it
156 /// past the instruction that would kill the above mentioned register to reduce
157 /// register pressure.
158 bool TwoAddressInstructionPass::Sink3AddrInstruction(MachineBasicBlock *MBB,
159 MachineInstr *MI, unsigned SavedReg,
160 MachineBasicBlock::iterator OldPos) {
161 // Check if it's safe to move this instruction.
162 bool SeenStore = true; // Be conservative.
163 if (!MI->isSafeToMove(TII, AA, SeenStore))
167 SmallSet<unsigned, 4> UseRegs;
169 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
170 const MachineOperand &MO = MI->getOperand(i);
173 unsigned MOReg = MO.getReg();
176 if (MO.isUse() && MOReg != SavedReg)
177 UseRegs.insert(MO.getReg());
181 // Don't try to move it if it implicitly defines a register.
184 // For now, don't move any instructions that define multiple registers.
186 DefReg = MO.getReg();
189 // Find the instruction that kills SavedReg.
190 MachineInstr *KillMI = NULL;
191 for (MachineRegisterInfo::use_nodbg_iterator
192 UI = MRI->use_nodbg_begin(SavedReg),
193 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
194 MachineOperand &UseMO = UI.getOperand();
197 KillMI = UseMO.getParent();
201 if (!KillMI || KillMI->getParent() != MBB || KillMI == MI)
204 // If any of the definitions are used by another instruction between the
205 // position and the kill use, then it's not safe to sink it.
207 // FIXME: This can be sped up if there is an easy way to query whether an
208 // instruction is before or after another instruction. Then we can use
209 // MachineRegisterInfo def / use instead.
210 MachineOperand *KillMO = NULL;
211 MachineBasicBlock::iterator KillPos = KillMI;
214 unsigned NumVisited = 0;
215 for (MachineBasicBlock::iterator I = llvm::next(OldPos); I != KillPos; ++I) {
216 MachineInstr *OtherMI = I;
217 // DBG_VALUE cannot be counted against the limit.
218 if (OtherMI->isDebugValue())
220 if (NumVisited > 30) // FIXME: Arbitrary limit to reduce compile time cost.
223 for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
224 MachineOperand &MO = OtherMI->getOperand(i);
227 unsigned MOReg = MO.getReg();
234 if (OtherMI == KillMI && MOReg == SavedReg)
235 // Save the operand that kills the register. We want to unset the kill
236 // marker if we can sink MI past it.
238 else if (UseRegs.count(MOReg))
239 // One of the uses is killed before the destination.
245 // Update kill and LV information.
246 KillMO->setIsKill(false);
247 KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
248 KillMO->setIsKill(true);
251 LV->replaceKillInstruction(SavedReg, KillMI, MI);
253 // Move instruction to its destination.
255 MBB->insert(KillPos, MI);
261 /// isTwoAddrUse - Return true if the specified MI is using the specified
262 /// register as a two-address operand.
263 static bool isTwoAddrUse(MachineInstr *UseMI, unsigned Reg) {
264 const TargetInstrDesc &TID = UseMI->getDesc();
265 for (unsigned i = 0, e = TID.getNumOperands(); i != e; ++i) {
266 MachineOperand &MO = UseMI->getOperand(i);
267 if (MO.isReg() && MO.getReg() == Reg &&
268 (MO.isDef() || UseMI->isRegTiedToDefOperand(i)))
269 // Earlier use is a two-address one.
275 /// isProfitableToReMat - Return true if the heuristics determines it is likely
276 /// to be profitable to re-materialize the definition of Reg rather than copy
279 TwoAddressInstructionPass::isProfitableToReMat(unsigned Reg,
280 const TargetRegisterClass *RC,
281 MachineInstr *MI, MachineInstr *DefMI,
282 MachineBasicBlock *MBB, unsigned Loc) {
283 bool OtherUse = false;
284 for (MachineRegisterInfo::use_nodbg_iterator UI = MRI->use_nodbg_begin(Reg),
285 UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
286 MachineOperand &UseMO = UI.getOperand();
287 MachineInstr *UseMI = UseMO.getParent();
288 MachineBasicBlock *UseMBB = UseMI->getParent();
290 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
291 if (DI != DistanceMap.end() && DI->second == Loc)
292 continue; // Current use.
294 // There is at least one other use in the MBB that will clobber the
296 if (isTwoAddrUse(UseMI, Reg))
301 // If other uses in MBB are not two-address uses, then don't remat.
305 // No other uses in the same block, remat if it's defined in the same
306 // block so it does not unnecessarily extend the live range.
307 return MBB == DefMI->getParent();
310 /// NoUseAfterLastDef - Return true if there are no intervening uses between the
311 /// last instruction in the MBB that defines the specified register and the
312 /// two-address instruction which is being processed. It also returns the last
313 /// def location by reference
314 bool TwoAddressInstructionPass::NoUseAfterLastDef(unsigned Reg,
315 MachineBasicBlock *MBB, unsigned Dist,
318 unsigned LastUse = Dist;
319 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
320 E = MRI->reg_end(); I != E; ++I) {
321 MachineOperand &MO = I.getOperand();
322 MachineInstr *MI = MO.getParent();
323 if (MI->getParent() != MBB || MI->isDebugValue())
325 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
326 if (DI == DistanceMap.end())
328 if (MO.isUse() && DI->second < LastUse)
329 LastUse = DI->second;
330 if (MO.isDef() && DI->second > LastDef)
331 LastDef = DI->second;
334 return !(LastUse > LastDef && LastUse < Dist);
337 MachineInstr *TwoAddressInstructionPass::FindLastUseInMBB(unsigned Reg,
338 MachineBasicBlock *MBB,
340 unsigned LastUseDist = 0;
341 MachineInstr *LastUse = 0;
342 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(Reg),
343 E = MRI->reg_end(); I != E; ++I) {
344 MachineOperand &MO = I.getOperand();
345 MachineInstr *MI = MO.getParent();
346 if (MI->getParent() != MBB || MI->isDebugValue())
348 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
349 if (DI == DistanceMap.end())
351 if (DI->second >= Dist)
354 if (MO.isUse() && DI->second > LastUseDist) {
356 LastUseDist = DI->second;
362 /// isCopyToReg - Return true if the specified MI is a copy instruction or
363 /// a extract_subreg instruction. It also returns the source and destination
364 /// registers and whether they are physical registers by reference.
365 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
366 unsigned &SrcReg, unsigned &DstReg,
367 bool &IsSrcPhys, bool &IsDstPhys) {
370 unsigned SrcSubIdx, DstSubIdx;
371 if (!TII->isMoveInstr(MI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
372 if (MI.isExtractSubreg()) {
373 DstReg = MI.getOperand(0).getReg();
374 SrcReg = MI.getOperand(1).getReg();
375 } else if (MI.isInsertSubreg()) {
376 DstReg = MI.getOperand(0).getReg();
377 SrcReg = MI.getOperand(2).getReg();
378 } else if (MI.isSubregToReg()) {
379 DstReg = MI.getOperand(0).getReg();
380 SrcReg = MI.getOperand(2).getReg();
385 IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
386 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
392 /// isKilled - Test if the given register value, which is used by the given
393 /// instruction, is killed by the given instruction. This looks through
394 /// coalescable copies to see if the original value is potentially not killed.
396 /// For example, in this code:
398 /// %reg1034 = copy %reg1024
399 /// %reg1035 = copy %reg1025<kill>
400 /// %reg1036 = add %reg1034<kill>, %reg1035<kill>
402 /// %reg1034 is not considered to be killed, since it is copied from a
403 /// register which is not killed. Treating it as not killed lets the
404 /// normal heuristics commute the (two-address) add, which lets
405 /// coalescing eliminate the extra copy.
407 static bool isKilled(MachineInstr &MI, unsigned Reg,
408 const MachineRegisterInfo *MRI,
409 const TargetInstrInfo *TII) {
410 MachineInstr *DefMI = &MI;
412 if (!DefMI->killsRegister(Reg))
414 if (TargetRegisterInfo::isPhysicalRegister(Reg))
416 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
417 // If there are multiple defs, we can't do a simple analysis, so just
418 // go with what the kill flag says.
419 if (llvm::next(Begin) != MRI->def_end())
422 bool IsSrcPhys, IsDstPhys;
423 unsigned SrcReg, DstReg;
424 // If the def is something other than a copy, then it isn't going to
425 // be coalesced, so follow the kill flag.
426 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
432 /// isTwoAddrUse - Return true if the specified MI uses the specified register
433 /// as a two-address use. If so, return the destination register by reference.
434 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
435 const TargetInstrDesc &TID = MI.getDesc();
436 unsigned NumOps = MI.isInlineAsm() ? MI.getNumOperands():TID.getNumOperands();
437 for (unsigned i = 0; i != NumOps; ++i) {
438 const MachineOperand &MO = MI.getOperand(i);
439 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
442 if (MI.isRegTiedToDefOperand(i, &ti)) {
443 DstReg = MI.getOperand(ti).getReg();
450 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
451 /// use, return the use instruction if it's a copy or a two-address use.
453 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
454 MachineRegisterInfo *MRI,
455 const TargetInstrInfo *TII,
457 unsigned &DstReg, bool &IsDstPhys) {
458 if (!MRI->hasOneNonDBGUse(Reg))
459 // None or more than one use.
461 MachineInstr &UseMI = *MRI->use_nodbg_begin(Reg);
462 if (UseMI.getParent() != MBB)
466 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
471 if (isTwoAddrUse(UseMI, Reg, DstReg)) {
472 IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
478 /// getMappedReg - Return the physical register the specified virtual register
479 /// might be mapped to.
481 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
482 while (TargetRegisterInfo::isVirtualRegister(Reg)) {
483 DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
484 if (SI == RegMap.end())
488 if (TargetRegisterInfo::isPhysicalRegister(Reg))
493 /// regsAreCompatible - Return true if the two registers are equal or aliased.
496 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
501 return TRI->regsOverlap(RegA, RegB);
505 /// isProfitableToReMat - Return true if it's potentially profitable to commute
506 /// the two-address instruction that's being processed.
508 TwoAddressInstructionPass::isProfitableToCommute(unsigned regB, unsigned regC,
509 MachineInstr *MI, MachineBasicBlock *MBB,
511 // Determine if it's profitable to commute this two address instruction. In
512 // general, we want no uses between this instruction and the definition of
513 // the two-address register.
515 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
516 // %reg1029<def> = MOV8rr %reg1028
517 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
518 // insert => %reg1030<def> = MOV8rr %reg1028
519 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
520 // In this case, it might not be possible to coalesce the second MOV8rr
521 // instruction if the first one is coalesced. So it would be profitable to
523 // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
524 // %reg1029<def> = MOV8rr %reg1028
525 // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
526 // insert => %reg1030<def> = MOV8rr %reg1029
527 // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
529 if (!MI->killsRegister(regC))
532 // Ok, we have something like:
533 // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
534 // let's see if it's worth commuting it.
536 // Look for situations like this:
537 // %reg1024<def> = MOV r1
538 // %reg1025<def> = MOV r0
539 // %reg1026<def> = ADD %reg1024, %reg1025
541 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
542 unsigned FromRegB = getMappedReg(regB, SrcRegMap);
543 unsigned FromRegC = getMappedReg(regC, SrcRegMap);
544 unsigned ToRegB = getMappedReg(regB, DstRegMap);
545 unsigned ToRegC = getMappedReg(regC, DstRegMap);
546 if (!regsAreCompatible(FromRegB, ToRegB, TRI) &&
547 (regsAreCompatible(FromRegB, ToRegC, TRI) ||
548 regsAreCompatible(FromRegC, ToRegB, TRI)))
551 // If there is a use of regC between its last def (could be livein) and this
552 // instruction, then bail.
553 unsigned LastDefC = 0;
554 if (!NoUseAfterLastDef(regC, MBB, Dist, LastDefC))
557 // If there is a use of regB between its last def (could be livein) and this
558 // instruction, then go ahead and make this transformation.
559 unsigned LastDefB = 0;
560 if (!NoUseAfterLastDef(regB, MBB, Dist, LastDefB))
563 // Since there are no intervening uses for both registers, then commute
564 // if the def of regC is closer. Its live interval is shorter.
565 return LastDefB && LastDefC && LastDefC > LastDefB;
568 /// CommuteInstruction - Commute a two-address instruction and update the basic
569 /// block, distance map, and live variables if needed. Return true if it is
572 TwoAddressInstructionPass::CommuteInstruction(MachineBasicBlock::iterator &mi,
573 MachineFunction::iterator &mbbi,
574 unsigned RegB, unsigned RegC, unsigned Dist) {
575 MachineInstr *MI = mi;
576 DEBUG(dbgs() << "2addr: COMMUTING : " << *MI);
577 MachineInstr *NewMI = TII->commuteInstruction(MI);
580 DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
584 DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
585 // If the instruction changed to commute it, update livevar.
588 // Update live variables
589 LV->replaceKillInstruction(RegC, MI, NewMI);
591 mbbi->insert(mi, NewMI); // Insert the new inst
592 mbbi->erase(mi); // Nuke the old inst.
594 DistanceMap.insert(std::make_pair(NewMI, Dist));
597 // Update source register map.
598 unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
600 unsigned RegA = MI->getOperand(0).getReg();
601 SrcRegMap[RegA] = FromRegC;
607 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
608 /// given 2-address instruction to a 3-address one.
610 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA) {
611 // Look for situations like this:
612 // %reg1024<def> = MOV r1
613 // %reg1025<def> = MOV r0
614 // %reg1026<def> = ADD %reg1024, %reg1025
616 // Turn ADD into a 3-address instruction to avoid a copy.
617 unsigned FromRegA = getMappedReg(RegA, SrcRegMap);
618 unsigned ToRegA = getMappedReg(RegA, DstRegMap);
619 return (FromRegA && ToRegA && !regsAreCompatible(FromRegA, ToRegA, TRI));
622 /// ConvertInstTo3Addr - Convert the specified two-address instruction into a
623 /// three address one. Return true if this transformation was successful.
625 TwoAddressInstructionPass::ConvertInstTo3Addr(MachineBasicBlock::iterator &mi,
626 MachineBasicBlock::iterator &nmi,
627 MachineFunction::iterator &mbbi,
628 unsigned RegB, unsigned Dist) {
629 MachineInstr *NewMI = TII->convertToThreeAddress(mbbi, mi, LV);
631 DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
632 DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI);
635 if (NewMI->findRegisterUseOperand(RegB, false, TRI))
636 // FIXME: Temporary workaround. If the new instruction doesn't
637 // uses RegB, convertToThreeAddress must have created more
638 // then one instruction.
639 Sunk = Sink3AddrInstruction(mbbi, NewMI, RegB, mi);
641 mbbi->erase(mi); // Nuke the old inst.
644 DistanceMap.insert(std::make_pair(NewMI, Dist));
646 nmi = llvm::next(mi);
654 /// ProcessCopy - If the specified instruction is not yet processed, process it
655 /// if it's a copy. For a copy instruction, we find the physical registers the
656 /// source and destination registers might be mapped to. These are kept in
657 /// point-to maps used to determine future optimizations. e.g.
660 /// v1026 = add v1024, v1025
662 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
663 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
664 /// potentially joined with r1 on the output side. It's worthwhile to commute
665 /// 'add' to eliminate a copy.
666 void TwoAddressInstructionPass::ProcessCopy(MachineInstr *MI,
667 MachineBasicBlock *MBB,
668 SmallPtrSet<MachineInstr*, 8> &Processed) {
669 if (Processed.count(MI))
672 bool IsSrcPhys, IsDstPhys;
673 unsigned SrcReg, DstReg;
674 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
677 if (IsDstPhys && !IsSrcPhys)
678 DstRegMap.insert(std::make_pair(SrcReg, DstReg));
679 else if (!IsDstPhys && IsSrcPhys) {
680 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
682 assert(SrcRegMap[DstReg] == SrcReg &&
683 "Can't map to two src physical registers!");
685 SmallVector<unsigned, 4> VirtRegPairs;
688 while (MachineInstr *UseMI = findOnlyInterestingUse(DstReg, MBB, MRI,TII,
689 IsCopy, NewReg, IsDstPhys)) {
691 if (!Processed.insert(UseMI))
695 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
696 if (DI != DistanceMap.end())
697 // Earlier in the same MBB.Reached via a back edge.
701 VirtRegPairs.push_back(NewReg);
704 bool isNew = SrcRegMap.insert(std::make_pair(NewReg, DstReg)).second;
706 assert(SrcRegMap[NewReg] == DstReg &&
707 "Can't map to two src physical registers!");
708 VirtRegPairs.push_back(NewReg);
712 if (!VirtRegPairs.empty()) {
713 unsigned ToReg = VirtRegPairs.back();
714 VirtRegPairs.pop_back();
715 while (!VirtRegPairs.empty()) {
716 unsigned FromReg = VirtRegPairs.back();
717 VirtRegPairs.pop_back();
718 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
720 assert(DstRegMap[FromReg] == ToReg &&
721 "Can't map to two dst physical registers!");
727 Processed.insert(MI);
730 /// isSafeToDelete - If the specified instruction does not produce any side
731 /// effects and all of its defs are dead, then it's safe to delete.
732 static bool isSafeToDelete(MachineInstr *MI,
733 const TargetInstrInfo *TII,
734 SmallVector<unsigned, 4> &Kills) {
735 const TargetInstrDesc &TID = MI->getDesc();
736 if (TID.mayStore() || TID.isCall())
738 if (TID.isTerminator() || TID.hasUnmodeledSideEffects())
741 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
742 MachineOperand &MO = MI->getOperand(i);
745 if (MO.isDef() && !MO.isDead())
747 if (MO.isUse() && MO.isKill())
748 Kills.push_back(MO.getReg());
753 /// canUpdateDeletedKills - Check if all the registers listed in Kills are
754 /// killed by instructions in MBB preceding the current instruction at
755 /// position Dist. If so, return true and record information about the
756 /// preceding kills in NewKills.
757 bool TwoAddressInstructionPass::
758 canUpdateDeletedKills(SmallVector<unsigned, 4> &Kills,
759 SmallVector<NewKill, 4> &NewKills,
760 MachineBasicBlock *MBB, unsigned Dist) {
761 while (!Kills.empty()) {
762 unsigned Kill = Kills.back();
764 if (TargetRegisterInfo::isPhysicalRegister(Kill))
767 MachineInstr *LastKill = FindLastUseInMBB(Kill, MBB, Dist);
771 bool isModRef = LastKill->modifiesRegister(Kill);
772 NewKills.push_back(std::make_pair(std::make_pair(Kill, isModRef),
778 /// DeleteUnusedInstr - If an instruction with a tied register operand can
779 /// be safely deleted, just delete it.
781 TwoAddressInstructionPass::DeleteUnusedInstr(MachineBasicBlock::iterator &mi,
782 MachineBasicBlock::iterator &nmi,
783 MachineFunction::iterator &mbbi,
785 // Check if the instruction has no side effects and if all its defs are dead.
786 SmallVector<unsigned, 4> Kills;
787 if (!isSafeToDelete(mi, TII, Kills))
790 // If this instruction kills some virtual registers, we need to
791 // update the kill information. If it's not possible to do so,
793 SmallVector<NewKill, 4> NewKills;
794 if (!canUpdateDeletedKills(Kills, NewKills, &*mbbi, Dist))
798 while (!NewKills.empty()) {
799 MachineInstr *NewKill = NewKills.back().second;
800 unsigned Kill = NewKills.back().first.first;
801 bool isDead = NewKills.back().first.second;
803 if (LV->removeVirtualRegisterKilled(Kill, mi)) {
805 LV->addVirtualRegisterDead(Kill, NewKill);
807 LV->addVirtualRegisterKilled(Kill, NewKill);
812 mbbi->erase(mi); // Nuke the old inst.
817 /// TryInstructionTransform - For the case where an instruction has a single
818 /// pair of tied register operands, attempt some transformations that may
819 /// either eliminate the tied operands or improve the opportunities for
820 /// coalescing away the register copy. Returns true if the tied operands
821 /// are eliminated altogether.
822 bool TwoAddressInstructionPass::
823 TryInstructionTransform(MachineBasicBlock::iterator &mi,
824 MachineBasicBlock::iterator &nmi,
825 MachineFunction::iterator &mbbi,
826 unsigned SrcIdx, unsigned DstIdx, unsigned Dist) {
827 const TargetInstrDesc &TID = mi->getDesc();
828 unsigned regA = mi->getOperand(DstIdx).getReg();
829 unsigned regB = mi->getOperand(SrcIdx).getReg();
831 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
832 "cannot make instruction into two-address form");
834 // If regA is dead and the instruction can be deleted, just delete
835 // it so it doesn't clobber regB.
836 bool regBKilled = isKilled(*mi, regB, MRI, TII);
837 if (!regBKilled && mi->getOperand(DstIdx).isDead() &&
838 DeleteUnusedInstr(mi, nmi, mbbi, Dist)) {
840 return true; // Done with this instruction.
843 // Check if it is profitable to commute the operands.
844 unsigned SrcOp1, SrcOp2;
846 unsigned regCIdx = ~0U;
847 bool TryCommute = false;
848 bool AggressiveCommute = false;
849 if (TID.isCommutable() && mi->getNumOperands() >= 3 &&
850 TII->findCommutedOpIndices(mi, SrcOp1, SrcOp2)) {
851 if (SrcIdx == SrcOp1)
853 else if (SrcIdx == SrcOp2)
856 if (regCIdx != ~0U) {
857 regC = mi->getOperand(regCIdx).getReg();
858 if (!regBKilled && isKilled(*mi, regC, MRI, TII))
859 // If C dies but B does not, swap the B and C operands.
860 // This makes the live ranges of A and C joinable.
862 else if (isProfitableToCommute(regB, regC, mi, mbbi, Dist)) {
864 AggressiveCommute = true;
869 // If it's profitable to commute, try to do so.
870 if (TryCommute && CommuteInstruction(mi, mbbi, regB, regC, Dist)) {
872 if (AggressiveCommute)
877 if (TID.isConvertibleTo3Addr()) {
878 // This instruction is potentially convertible to a true
879 // three-address instruction. Check if it is profitable.
880 if (!regBKilled || isProfitableToConv3Addr(regA)) {
881 // Try to convert it.
882 if (ConvertInstTo3Addr(mi, nmi, mbbi, regB, Dist)) {
883 ++NumConvertedTo3Addr;
884 return true; // Done with this instruction.
891 /// runOnMachineFunction - Reduce two-address instructions to two operands.
893 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &MF) {
894 DEBUG(dbgs() << "Machine Function\n");
895 const TargetMachine &TM = MF.getTarget();
896 MRI = &MF.getRegInfo();
897 TII = TM.getInstrInfo();
898 TRI = TM.getRegisterInfo();
899 LV = getAnalysisIfAvailable<LiveVariables>();
900 AA = &getAnalysis<AliasAnalysis>();
902 bool MadeChange = false;
904 DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
905 DEBUG(dbgs() << "********** Function: "
906 << MF.getFunction()->getName() << '\n');
908 // ReMatRegs - Keep track of the registers whose def's are remat'ed.
910 ReMatRegs.resize(MRI->getLastVirtReg()+1);
912 typedef DenseMap<unsigned, SmallVector<std::pair<unsigned, unsigned>, 4> >
914 TiedOperandMap TiedOperands(4);
916 SmallPtrSet<MachineInstr*, 8> Processed;
917 for (MachineFunction::iterator mbbi = MF.begin(), mbbe = MF.end();
918 mbbi != mbbe; ++mbbi) {
924 for (MachineBasicBlock::iterator mi = mbbi->begin(), me = mbbi->end();
926 MachineBasicBlock::iterator nmi = llvm::next(mi);
927 if (mi->isDebugValue()) {
932 const TargetInstrDesc &TID = mi->getDesc();
933 bool FirstTied = true;
935 DistanceMap.insert(std::make_pair(mi, ++Dist));
937 ProcessCopy(&*mi, &*mbbi, Processed);
939 // First scan through all the tied register uses in this instruction
940 // and record a list of pairs of tied operands for each register.
941 unsigned NumOps = mi->isInlineAsm()
942 ? mi->getNumOperands() : TID.getNumOperands();
943 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
945 if (!mi->isRegTiedToDefOperand(SrcIdx, &DstIdx))
950 ++NumTwoAddressInstrs;
951 DEBUG(dbgs() << '\t' << *mi);
954 assert(mi->getOperand(SrcIdx).isReg() &&
955 mi->getOperand(SrcIdx).getReg() &&
956 mi->getOperand(SrcIdx).isUse() &&
957 "two address instruction invalid");
959 unsigned regB = mi->getOperand(SrcIdx).getReg();
960 TiedOperandMap::iterator OI = TiedOperands.find(regB);
961 if (OI == TiedOperands.end()) {
962 SmallVector<std::pair<unsigned, unsigned>, 4> TiedPair;
963 OI = TiedOperands.insert(std::make_pair(regB, TiedPair)).first;
965 OI->second.push_back(std::make_pair(SrcIdx, DstIdx));
968 // Now iterate over the information collected above.
969 for (TiedOperandMap::iterator OI = TiedOperands.begin(),
970 OE = TiedOperands.end(); OI != OE; ++OI) {
971 SmallVector<std::pair<unsigned, unsigned>, 4> &TiedPairs = OI->second;
973 // If the instruction has a single pair of tied operands, try some
974 // transformations that may either eliminate the tied operands or
975 // improve the opportunities for coalescing away the register copy.
976 if (TiedOperands.size() == 1 && TiedPairs.size() == 1) {
977 unsigned SrcIdx = TiedPairs[0].first;
978 unsigned DstIdx = TiedPairs[0].second;
980 // If the registers are already equal, nothing needs to be done.
981 if (mi->getOperand(SrcIdx).getReg() ==
982 mi->getOperand(DstIdx).getReg())
983 break; // Done with this instruction.
985 if (TryInstructionTransform(mi, nmi, mbbi, SrcIdx, DstIdx, Dist))
986 break; // The tied operands have been eliminated.
989 bool RemovedKillFlag = false;
990 bool AllUsesCopied = true;
991 unsigned LastCopiedReg = 0;
992 unsigned regB = OI->first;
993 for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
994 unsigned SrcIdx = TiedPairs[tpi].first;
995 unsigned DstIdx = TiedPairs[tpi].second;
996 unsigned regA = mi->getOperand(DstIdx).getReg();
997 // Grab regB from the instruction because it may have changed if the
998 // instruction was commuted.
999 regB = mi->getOperand(SrcIdx).getReg();
1002 // The register is tied to multiple destinations (or else we would
1003 // not have continued this far), but this use of the register
1004 // already matches the tied destination. Leave it.
1005 AllUsesCopied = false;
1008 LastCopiedReg = regA;
1010 assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1011 "cannot make instruction into two-address form");
1014 // First, verify that we don't have a use of "a" in the instruction
1015 // (a = b + a for example) because our transformation will not
1016 // work. This should never occur because we are in SSA form.
1017 for (unsigned i = 0; i != mi->getNumOperands(); ++i)
1018 assert(i == DstIdx ||
1019 !mi->getOperand(i).isReg() ||
1020 mi->getOperand(i).getReg() != regA);
1023 // Emit a copy or rematerialize the definition.
1024 const TargetRegisterClass *rc = MRI->getRegClass(regB);
1025 MachineInstr *DefMI = MRI->getVRegDef(regB);
1026 // If it's safe and profitable, remat the definition instead of
1029 DefMI->getDesc().isAsCheapAsAMove() &&
1030 DefMI->isSafeToReMat(TII, AA, regB) &&
1031 isProfitableToReMat(regB, rc, mi, DefMI, mbbi, Dist)){
1032 DEBUG(dbgs() << "2addr: REMATTING : " << *DefMI << "\n");
1033 unsigned regASubIdx = mi->getOperand(DstIdx).getSubReg();
1034 TII->reMaterialize(*mbbi, mi, regA, regASubIdx, DefMI, TRI);
1035 ReMatRegs.set(regB);
1038 bool Emitted = TII->copyRegToReg(*mbbi, mi, regA, regB, rc, rc);
1040 assert(Emitted && "Unable to issue a copy instruction!\n");
1043 MachineBasicBlock::iterator prevMI = prior(mi);
1044 // Update DistanceMap.
1045 DistanceMap.insert(std::make_pair(prevMI, Dist));
1046 DistanceMap[mi] = ++Dist;
1048 DEBUG(dbgs() << "\t\tprepend:\t" << *prevMI);
1050 MachineOperand &MO = mi->getOperand(SrcIdx);
1051 assert(MO.isReg() && MO.getReg() == regB && MO.isUse() &&
1052 "inconsistent operand info for 2-reg pass");
1054 MO.setIsKill(false);
1055 RemovedKillFlag = true;
1060 if (AllUsesCopied) {
1061 // Replace other (un-tied) uses of regB with LastCopiedReg.
1062 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1063 MachineOperand &MO = mi->getOperand(i);
1064 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1066 MO.setIsKill(false);
1067 RemovedKillFlag = true;
1069 MO.setReg(LastCopiedReg);
1073 // Update live variables for regB.
1074 if (RemovedKillFlag && LV && LV->getVarInfo(regB).removeKill(mi))
1075 LV->addVirtualRegisterKilled(regB, prior(mi));
1077 } else if (RemovedKillFlag) {
1078 // Some tied uses of regB matched their destination registers, so
1079 // regB is still used in this instruction, but a kill flag was
1080 // removed from a different tied use of regB, so now we need to add
1081 // a kill flag to one of the remaining uses of regB.
1082 for (unsigned i = 0, e = mi->getNumOperands(); i != e; ++i) {
1083 MachineOperand &MO = mi->getOperand(i);
1084 if (MO.isReg() && MO.getReg() == regB && MO.isUse()) {
1093 DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1096 // Clear TiedOperands here instead of at the top of the loop
1097 // since most instructions do not have tied operands.
1098 TiedOperands.clear();
1103 // Some remat'ed instructions are dead.
1104 int VReg = ReMatRegs.find_first();
1105 while (VReg != -1) {
1106 if (MRI->use_nodbg_empty(VReg)) {
1107 MachineInstr *DefMI = MRI->getVRegDef(VReg);
1108 DefMI->eraseFromParent();
1110 VReg = ReMatRegs.find_next(VReg);