1 //===-- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the VirtRegMap class.
12 // It also contains implementations of the the Spiller interface, which, given a
13 // virtual register map and a machine function, eliminates all virtual
14 // references by replacing them with physical register references - adding spill
17 //===----------------------------------------------------------------------===//
19 #define DEBUG_TYPE "spiller"
20 #include "VirtRegMap.h"
21 #include "llvm/Function.h"
22 #include "llvm/CodeGen/MachineFrameInfo.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Target/TargetMachine.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/ADT/BitVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/SmallSet.h"
37 STATISTIC(NumSpills, "Number of register spills");
38 STATISTIC(NumReMats, "Number of re-materialization");
39 STATISTIC(NumDRM , "Number of re-materializable defs elided");
40 STATISTIC(NumStores, "Number of stores added");
41 STATISTIC(NumLoads , "Number of loads added");
42 STATISTIC(NumReused, "Number of values reused");
43 STATISTIC(NumDSE , "Number of dead stores elided");
44 STATISTIC(NumDCE , "Number of copies elided");
47 enum SpillerName { simple, local };
49 static cl::opt<SpillerName>
51 cl::desc("Spiller to use: (default: local)"),
53 cl::values(clEnumVal(simple, " simple spiller"),
54 clEnumVal(local, " local spiller"),
59 //===----------------------------------------------------------------------===//
60 // VirtRegMap implementation
61 //===----------------------------------------------------------------------===//
63 VirtRegMap::VirtRegMap(MachineFunction &mf)
64 : TII(*mf.getTarget().getInstrInfo()), MF(mf),
65 Virt2PhysMap(NO_PHYS_REG), Virt2StackSlotMap(NO_STACK_SLOT),
66 Virt2ReMatIdMap(NO_STACK_SLOT), Virt2SplitMap(0),
67 Virt2SplitKillMap(0), ReMatMap(NULL), ReMatId(MAX_STACK_SLOT+1) {
71 void VirtRegMap::grow() {
72 unsigned LastVirtReg = MF.getRegInfo().getLastVirtReg();
73 Virt2PhysMap.grow(LastVirtReg);
74 Virt2StackSlotMap.grow(LastVirtReg);
75 Virt2ReMatIdMap.grow(LastVirtReg);
76 Virt2SplitMap.grow(LastVirtReg);
77 Virt2SplitKillMap.grow(LastVirtReg);
78 ReMatMap.grow(LastVirtReg);
81 int VirtRegMap::assignVirt2StackSlot(unsigned virtReg) {
82 assert(MRegisterInfo::isVirtualRegister(virtReg));
83 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
84 "attempt to assign stack slot to already spilled register");
85 const TargetRegisterClass* RC = MF.getRegInfo().getRegClass(virtReg);
86 int frameIndex = MF.getFrameInfo()->CreateStackObject(RC->getSize(),
88 Virt2StackSlotMap[virtReg] = frameIndex;
93 void VirtRegMap::assignVirt2StackSlot(unsigned virtReg, int frameIndex) {
94 assert(MRegisterInfo::isVirtualRegister(virtReg));
95 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT &&
96 "attempt to assign stack slot to already spilled register");
97 assert((frameIndex >= 0 ||
98 (frameIndex >= MF.getFrameInfo()->getObjectIndexBegin())) &&
99 "illegal fixed frame index");
100 Virt2StackSlotMap[virtReg] = frameIndex;
103 int VirtRegMap::assignVirtReMatId(unsigned virtReg) {
104 assert(MRegisterInfo::isVirtualRegister(virtReg));
105 assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
106 "attempt to assign re-mat id to already spilled register");
107 Virt2ReMatIdMap[virtReg] = ReMatId;
111 void VirtRegMap::assignVirtReMatId(unsigned virtReg, int id) {
112 assert(MRegisterInfo::isVirtualRegister(virtReg));
113 assert(Virt2ReMatIdMap[virtReg] == NO_STACK_SLOT &&
114 "attempt to assign re-mat id to already spilled register");
115 Virt2ReMatIdMap[virtReg] = id;
118 void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *OldMI,
119 MachineInstr *NewMI, ModRef MRInfo) {
120 // Move previous memory references folded to new instruction.
121 MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(NewMI);
122 for (MI2VirtMapTy::iterator I = MI2VirtMap.lower_bound(OldMI),
123 E = MI2VirtMap.end(); I != E && I->first == OldMI; ) {
124 MI2VirtMap.insert(IP, std::make_pair(NewMI, I->second));
125 MI2VirtMap.erase(I++);
128 // add new memory reference
129 MI2VirtMap.insert(IP, std::make_pair(NewMI, std::make_pair(VirtReg, MRInfo)));
132 void VirtRegMap::virtFolded(unsigned VirtReg, MachineInstr *MI, ModRef MRInfo) {
133 MI2VirtMapTy::iterator IP = MI2VirtMap.lower_bound(MI);
134 MI2VirtMap.insert(IP, std::make_pair(MI, std::make_pair(VirtReg, MRInfo)));
137 void VirtRegMap::print(std::ostream &OS) const {
138 const MRegisterInfo* MRI = MF.getTarget().getRegisterInfo();
140 OS << "********** REGISTER MAP **********\n";
141 for (unsigned i = MRegisterInfo::FirstVirtualRegister,
142 e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i) {
143 if (Virt2PhysMap[i] != (unsigned)VirtRegMap::NO_PHYS_REG)
144 OS << "[reg" << i << " -> " << MRI->getName(Virt2PhysMap[i]) << "]\n";
148 for (unsigned i = MRegisterInfo::FirstVirtualRegister,
149 e = MF.getRegInfo().getLastVirtReg(); i <= e; ++i)
150 if (Virt2StackSlotMap[i] != VirtRegMap::NO_STACK_SLOT)
151 OS << "[reg" << i << " -> fi#" << Virt2StackSlotMap[i] << "]\n";
155 void VirtRegMap::dump() const {
160 //===----------------------------------------------------------------------===//
161 // Simple Spiller Implementation
162 //===----------------------------------------------------------------------===//
164 Spiller::~Spiller() {}
167 struct VISIBILITY_HIDDEN SimpleSpiller : public Spiller {
168 bool runOnMachineFunction(MachineFunction& mf, VirtRegMap &VRM);
172 bool SimpleSpiller::runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
173 DOUT << "********** REWRITE MACHINE CODE **********\n";
174 DOUT << "********** Function: " << MF.getFunction()->getName() << '\n';
175 const TargetMachine &TM = MF.getTarget();
176 const TargetInstrInfo &TII = *TM.getInstrInfo();
179 // LoadedRegs - Keep track of which vregs are loaded, so that we only load
180 // each vreg once (in the case where a spilled vreg is used by multiple
181 // operands). This is always smaller than the number of operands to the
182 // current machine instr, so it should be small.
183 std::vector<unsigned> LoadedRegs;
185 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
187 DOUT << MBBI->getBasicBlock()->getName() << ":\n";
188 MachineBasicBlock &MBB = *MBBI;
189 for (MachineBasicBlock::iterator MII = MBB.begin(),
190 E = MBB.end(); MII != E; ++MII) {
191 MachineInstr &MI = *MII;
192 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
193 MachineOperand &MO = MI.getOperand(i);
194 if (MO.isRegister() && MO.getReg())
195 if (MRegisterInfo::isVirtualRegister(MO.getReg())) {
196 unsigned VirtReg = MO.getReg();
197 unsigned PhysReg = VRM.getPhys(VirtReg);
198 if (!VRM.isAssignedReg(VirtReg)) {
199 int StackSlot = VRM.getStackSlot(VirtReg);
200 const TargetRegisterClass* RC =
201 MF.getRegInfo().getRegClass(VirtReg);
204 std::find(LoadedRegs.begin(), LoadedRegs.end(), VirtReg)
205 == LoadedRegs.end()) {
206 TII.loadRegFromStackSlot(MBB, &MI, PhysReg, StackSlot, RC);
207 LoadedRegs.push_back(VirtReg);
209 DOUT << '\t' << *prior(MII);
213 TII.storeRegToStackSlot(MBB, next(MII), PhysReg, true,
218 MF.getRegInfo().setPhysRegUsed(PhysReg);
219 MI.getOperand(i).setReg(PhysReg);
221 MF.getRegInfo().setPhysRegUsed(MO.getReg());
232 //===----------------------------------------------------------------------===//
233 // Local Spiller Implementation
234 //===----------------------------------------------------------------------===//
237 class AvailableSpills;
239 /// LocalSpiller - This spiller does a simple pass over the machine basic
240 /// block to attempt to keep spills in registers as much as possible for
241 /// blocks that have low register pressure (the vreg may be spilled due to
242 /// register pressure in other blocks).
243 class VISIBILITY_HIDDEN LocalSpiller : public Spiller {
244 MachineRegisterInfo *RegInfo;
245 const MRegisterInfo *MRI;
246 const TargetInstrInfo *TII;
248 bool runOnMachineFunction(MachineFunction &MF, VirtRegMap &VRM) {
249 RegInfo = &MF.getRegInfo();
250 MRI = MF.getTarget().getRegisterInfo();
251 TII = MF.getTarget().getInstrInfo();
252 DOUT << "\n**** Local spiller rewriting function '"
253 << MF.getFunction()->getName() << "':\n";
254 DOUT << "**** Machine Instrs (NOTE! Does not include spills and reloads!)"
258 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
260 RewriteMBB(*MBB, VRM);
262 DOUT << "**** Post Machine Instrs ****\n";
268 bool PrepForUnfoldOpti(MachineBasicBlock &MBB,
269 MachineBasicBlock::iterator &MII,
270 std::vector<MachineInstr*> &MaybeDeadStores,
271 AvailableSpills &Spills, BitVector &RegKills,
272 std::vector<MachineOperand*> &KillOps,
274 void SpillRegToStackSlot(MachineBasicBlock &MBB,
275 MachineBasicBlock::iterator &MII,
276 int Idx, unsigned PhysReg, int StackSlot,
277 const TargetRegisterClass *RC,
278 bool isAvailable, MachineInstr *&LastStore,
279 AvailableSpills &Spills,
280 SmallSet<MachineInstr*, 4> &ReMatDefs,
282 std::vector<MachineOperand*> &KillOps,
284 void RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM);
288 /// AvailableSpills - As the local spiller is scanning and rewriting an MBB from
289 /// top down, keep track of which spills slots or remat are available in each
292 /// Note that not all physregs are created equal here. In particular, some
293 /// physregs are reloads that we are allowed to clobber or ignore at any time.
294 /// Other physregs are values that the register allocated program is using that
295 /// we cannot CHANGE, but we can read if we like. We keep track of this on a
296 /// per-stack-slot / remat id basis as the low bit in the value of the
297 /// SpillSlotsAvailable entries. The predicate 'canClobberPhysReg()' checks
298 /// this bit and addAvailable sets it if.
300 class VISIBILITY_HIDDEN AvailableSpills {
301 const MRegisterInfo *MRI;
302 const TargetInstrInfo *TII;
304 // SpillSlotsOrReMatsAvailable - This map keeps track of all of the spilled
305 // or remat'ed virtual register values that are still available, due to being
306 // loaded or stored to, but not invalidated yet.
307 std::map<int, unsigned> SpillSlotsOrReMatsAvailable;
309 // PhysRegsAvailable - This is the inverse of SpillSlotsOrReMatsAvailable,
310 // indicating which stack slot values are currently held by a physreg. This
311 // is used to invalidate entries in SpillSlotsOrReMatsAvailable when a
312 // physreg is modified.
313 std::multimap<unsigned, int> PhysRegsAvailable;
315 void disallowClobberPhysRegOnly(unsigned PhysReg);
317 void ClobberPhysRegOnly(unsigned PhysReg);
319 AvailableSpills(const MRegisterInfo *mri, const TargetInstrInfo *tii)
320 : MRI(mri), TII(tii) {
323 const MRegisterInfo *getRegInfo() const { return MRI; }
325 /// getSpillSlotOrReMatPhysReg - If the specified stack slot or remat is
326 /// available in a physical register, return that PhysReg, otherwise
328 unsigned getSpillSlotOrReMatPhysReg(int Slot) const {
329 std::map<int, unsigned>::const_iterator I =
330 SpillSlotsOrReMatsAvailable.find(Slot);
331 if (I != SpillSlotsOrReMatsAvailable.end()) {
332 return I->second >> 1; // Remove the CanClobber bit.
337 /// addAvailable - Mark that the specified stack slot / remat is available in
338 /// the specified physreg. If CanClobber is true, the physreg can be modified
339 /// at any time without changing the semantics of the program.
340 void addAvailable(int SlotOrReMat, MachineInstr *MI, unsigned Reg,
341 bool CanClobber = true) {
342 // If this stack slot is thought to be available in some other physreg,
343 // remove its record.
344 ModifyStackSlotOrReMat(SlotOrReMat);
346 PhysRegsAvailable.insert(std::make_pair(Reg, SlotOrReMat));
347 SpillSlotsOrReMatsAvailable[SlotOrReMat]= (Reg << 1) | (unsigned)CanClobber;
349 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
350 DOUT << "Remembering RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1;
352 DOUT << "Remembering SS#" << SlotOrReMat;
353 DOUT << " in physreg " << MRI->getName(Reg) << "\n";
356 /// canClobberPhysReg - Return true if the spiller is allowed to change the
357 /// value of the specified stackslot register if it desires. The specified
358 /// stack slot must be available in a physreg for this query to make sense.
359 bool canClobberPhysReg(int SlotOrReMat) const {
360 assert(SpillSlotsOrReMatsAvailable.count(SlotOrReMat) &&
361 "Value not available!");
362 return SpillSlotsOrReMatsAvailable.find(SlotOrReMat)->second & 1;
365 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
366 /// stackslot register. The register is still available but is no longer
367 /// allowed to be modifed.
368 void disallowClobberPhysReg(unsigned PhysReg);
370 /// ClobberPhysReg - This is called when the specified physreg changes
371 /// value. We use this to invalidate any info about stuff that lives in
372 /// it and any of its aliases.
373 void ClobberPhysReg(unsigned PhysReg);
375 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
376 /// slot changes. This removes information about which register the previous
377 /// value for this slot lives in (as the previous value is dead now).
378 void ModifyStackSlotOrReMat(int SlotOrReMat);
382 /// disallowClobberPhysRegOnly - Unset the CanClobber bit of the specified
383 /// stackslot register. The register is still available but is no longer
384 /// allowed to be modifed.
385 void AvailableSpills::disallowClobberPhysRegOnly(unsigned PhysReg) {
386 std::multimap<unsigned, int>::iterator I =
387 PhysRegsAvailable.lower_bound(PhysReg);
388 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
389 int SlotOrReMat = I->second;
391 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
392 "Bidirectional map mismatch!");
393 SpillSlotsOrReMatsAvailable[SlotOrReMat] &= ~1;
394 DOUT << "PhysReg " << MRI->getName(PhysReg)
395 << " copied, it is available for use but can no longer be modified\n";
399 /// disallowClobberPhysReg - Unset the CanClobber bit of the specified
400 /// stackslot register and its aliases. The register and its aliases may
401 /// still available but is no longer allowed to be modifed.
402 void AvailableSpills::disallowClobberPhysReg(unsigned PhysReg) {
403 for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
404 disallowClobberPhysRegOnly(*AS);
405 disallowClobberPhysRegOnly(PhysReg);
408 /// ClobberPhysRegOnly - This is called when the specified physreg changes
409 /// value. We use this to invalidate any info about stuff we thing lives in it.
410 void AvailableSpills::ClobberPhysRegOnly(unsigned PhysReg) {
411 std::multimap<unsigned, int>::iterator I =
412 PhysRegsAvailable.lower_bound(PhysReg);
413 while (I != PhysRegsAvailable.end() && I->first == PhysReg) {
414 int SlotOrReMat = I->second;
415 PhysRegsAvailable.erase(I++);
416 assert((SpillSlotsOrReMatsAvailable[SlotOrReMat] >> 1) == PhysReg &&
417 "Bidirectional map mismatch!");
418 SpillSlotsOrReMatsAvailable.erase(SlotOrReMat);
419 DOUT << "PhysReg " << MRI->getName(PhysReg)
420 << " clobbered, invalidating ";
421 if (SlotOrReMat > VirtRegMap::MAX_STACK_SLOT)
422 DOUT << "RM#" << SlotOrReMat-VirtRegMap::MAX_STACK_SLOT-1 << "\n";
424 DOUT << "SS#" << SlotOrReMat << "\n";
428 /// ClobberPhysReg - This is called when the specified physreg changes
429 /// value. We use this to invalidate any info about stuff we thing lives in
430 /// it and any of its aliases.
431 void AvailableSpills::ClobberPhysReg(unsigned PhysReg) {
432 for (const unsigned *AS = MRI->getAliasSet(PhysReg); *AS; ++AS)
433 ClobberPhysRegOnly(*AS);
434 ClobberPhysRegOnly(PhysReg);
437 /// ModifyStackSlotOrReMat - This method is called when the value in a stack
438 /// slot changes. This removes information about which register the previous
439 /// value for this slot lives in (as the previous value is dead now).
440 void AvailableSpills::ModifyStackSlotOrReMat(int SlotOrReMat) {
441 std::map<int, unsigned>::iterator It =
442 SpillSlotsOrReMatsAvailable.find(SlotOrReMat);
443 if (It == SpillSlotsOrReMatsAvailable.end()) return;
444 unsigned Reg = It->second >> 1;
445 SpillSlotsOrReMatsAvailable.erase(It);
447 // This register may hold the value of multiple stack slots, only remove this
448 // stack slot from the set of values the register contains.
449 std::multimap<unsigned, int>::iterator I = PhysRegsAvailable.lower_bound(Reg);
451 assert(I != PhysRegsAvailable.end() && I->first == Reg &&
452 "Map inverse broken!");
453 if (I->second == SlotOrReMat) break;
455 PhysRegsAvailable.erase(I);
460 /// InvalidateKills - MI is going to be deleted. If any of its operands are
461 /// marked kill, then invalidate the information.
462 static void InvalidateKills(MachineInstr &MI, BitVector &RegKills,
463 std::vector<MachineOperand*> &KillOps,
464 SmallVector<unsigned, 2> *KillRegs = NULL) {
465 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
466 MachineOperand &MO = MI.getOperand(i);
467 if (!MO.isRegister() || !MO.isUse() || !MO.isKill())
469 unsigned Reg = MO.getReg();
471 KillRegs->push_back(Reg);
472 if (KillOps[Reg] == &MO) {
479 /// InvalidateKill - A MI that defines the specified register is being deleted,
480 /// invalidate the register kill information.
481 static void InvalidateKill(unsigned Reg, BitVector &RegKills,
482 std::vector<MachineOperand*> &KillOps) {
484 KillOps[Reg]->setIsKill(false);
490 /// InvalidateRegDef - If the def operand of the specified def MI is now dead
491 /// (since it's spill instruction is removed), mark it isDead. Also checks if
492 /// the def MI has other definition operands that are not dead. Returns it by
494 static bool InvalidateRegDef(MachineBasicBlock::iterator I,
495 MachineInstr &NewDef, unsigned Reg,
497 // Due to remat, it's possible this reg isn't being reused. That is,
498 // the def of this reg (by prev MI) is now dead.
499 MachineInstr *DefMI = I;
500 MachineOperand *DefOp = NULL;
501 for (unsigned i = 0, e = DefMI->getNumOperands(); i != e; ++i) {
502 MachineOperand &MO = DefMI->getOperand(i);
503 if (MO.isRegister() && MO.isDef()) {
504 if (MO.getReg() == Reg)
506 else if (!MO.isDead())
513 bool FoundUse = false, Done = false;
514 MachineBasicBlock::iterator E = NewDef;
516 for (; !Done && I != E; ++I) {
517 MachineInstr *NMI = I;
518 for (unsigned j = 0, ee = NMI->getNumOperands(); j != ee; ++j) {
519 MachineOperand &MO = NMI->getOperand(j);
520 if (!MO.isRegister() || MO.getReg() != Reg)
524 Done = true; // Stop after scanning all the operands of this MI.
535 /// UpdateKills - Track and update kill info. If a MI reads a register that is
536 /// marked kill, then it must be due to register reuse. Transfer the kill info
538 static void UpdateKills(MachineInstr &MI, BitVector &RegKills,
539 std::vector<MachineOperand*> &KillOps) {
540 const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
541 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
542 MachineOperand &MO = MI.getOperand(i);
543 if (!MO.isRegister() || !MO.isUse())
545 unsigned Reg = MO.getReg();
550 // That can't be right. Register is killed but not re-defined and it's
551 // being reused. Let's fix that.
552 KillOps[Reg]->setIsKill(false);
555 if (i < TID->numOperands &&
556 TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
557 // Unless it's a two-address operand, this is the new kill.
566 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
567 const MachineOperand &MO = MI.getOperand(i);
568 if (!MO.isRegister() || !MO.isDef())
570 unsigned Reg = MO.getReg();
577 // ReusedOp - For each reused operand, we keep track of a bit of information, in
578 // case we need to rollback upon processing a new operand. See comments below.
581 // The MachineInstr operand that reused an available value.
584 // StackSlotOrReMat - The spill slot or remat id of the value being reused.
585 unsigned StackSlotOrReMat;
587 // PhysRegReused - The physical register the value was available in.
588 unsigned PhysRegReused;
590 // AssignedPhysReg - The physreg that was assigned for use by the reload.
591 unsigned AssignedPhysReg;
593 // VirtReg - The virtual register itself.
596 ReusedOp(unsigned o, unsigned ss, unsigned prr, unsigned apr,
598 : Operand(o), StackSlotOrReMat(ss), PhysRegReused(prr),
599 AssignedPhysReg(apr), VirtReg(vreg) {}
602 /// ReuseInfo - This maintains a collection of ReuseOp's for each operand that
603 /// is reused instead of reloaded.
604 class VISIBILITY_HIDDEN ReuseInfo {
606 std::vector<ReusedOp> Reuses;
607 BitVector PhysRegsClobbered;
609 ReuseInfo(MachineInstr &mi, const MRegisterInfo *mri) : MI(mi) {
610 PhysRegsClobbered.resize(mri->getNumRegs());
613 bool hasReuses() const {
614 return !Reuses.empty();
617 /// addReuse - If we choose to reuse a virtual register that is already
618 /// available instead of reloading it, remember that we did so.
619 void addReuse(unsigned OpNo, unsigned StackSlotOrReMat,
620 unsigned PhysRegReused, unsigned AssignedPhysReg,
622 // If the reload is to the assigned register anyway, no undo will be
624 if (PhysRegReused == AssignedPhysReg) return;
626 // Otherwise, remember this.
627 Reuses.push_back(ReusedOp(OpNo, StackSlotOrReMat, PhysRegReused,
628 AssignedPhysReg, VirtReg));
631 void markClobbered(unsigned PhysReg) {
632 PhysRegsClobbered.set(PhysReg);
635 bool isClobbered(unsigned PhysReg) const {
636 return PhysRegsClobbered.test(PhysReg);
639 /// GetRegForReload - We are about to emit a reload into PhysReg. If there
640 /// is some other operand that is using the specified register, either pick
641 /// a new register to use, or evict the previous reload and use this reg.
642 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
643 AvailableSpills &Spills,
644 std::vector<MachineInstr*> &MaybeDeadStores,
645 SmallSet<unsigned, 8> &Rejected,
647 std::vector<MachineOperand*> &KillOps,
649 const TargetInstrInfo* TII = MI->getParent()->getParent()->getTarget()
652 if (Reuses.empty()) return PhysReg; // This is most often empty.
654 for (unsigned ro = 0, e = Reuses.size(); ro != e; ++ro) {
655 ReusedOp &Op = Reuses[ro];
656 // If we find some other reuse that was supposed to use this register
657 // exactly for its reload, we can change this reload to use ITS reload
658 // register. That is, unless its reload register has already been
659 // considered and subsequently rejected because it has also been reused
660 // by another operand.
661 if (Op.PhysRegReused == PhysReg &&
662 Rejected.count(Op.AssignedPhysReg) == 0) {
663 // Yup, use the reload register that we didn't use before.
664 unsigned NewReg = Op.AssignedPhysReg;
665 Rejected.insert(PhysReg);
666 return GetRegForReload(NewReg, MI, Spills, MaybeDeadStores, Rejected,
667 RegKills, KillOps, VRM);
669 // Otherwise, we might also have a problem if a previously reused
670 // value aliases the new register. If so, codegen the previous reload
672 unsigned PRRU = Op.PhysRegReused;
673 const MRegisterInfo *MRI = Spills.getRegInfo();
674 if (MRI->areAliases(PRRU, PhysReg)) {
675 // Okay, we found out that an alias of a reused register
676 // was used. This isn't good because it means we have
677 // to undo a previous reuse.
678 MachineBasicBlock *MBB = MI->getParent();
679 const TargetRegisterClass *AliasRC =
680 MBB->getParent()->getRegInfo().getRegClass(Op.VirtReg);
682 // Copy Op out of the vector and remove it, we're going to insert an
683 // explicit load for it.
685 Reuses.erase(Reuses.begin()+ro);
687 // Ok, we're going to try to reload the assigned physreg into the
688 // slot that we were supposed to in the first place. However, that
689 // register could hold a reuse. Check to see if it conflicts or
690 // would prefer us to use a different register.
691 unsigned NewPhysReg = GetRegForReload(NewOp.AssignedPhysReg,
692 MI, Spills, MaybeDeadStores,
693 Rejected, RegKills, KillOps, VRM);
695 if (NewOp.StackSlotOrReMat > VirtRegMap::MAX_STACK_SLOT) {
696 MRI->reMaterialize(*MBB, MI, NewPhysReg,
697 VRM.getReMaterializedMI(NewOp.VirtReg));
700 TII->loadRegFromStackSlot(*MBB, MI, NewPhysReg,
701 NewOp.StackSlotOrReMat, AliasRC);
702 // Any stores to this stack slot are not dead anymore.
703 MaybeDeadStores[NewOp.StackSlotOrReMat] = NULL;
706 Spills.ClobberPhysReg(NewPhysReg);
707 Spills.ClobberPhysReg(NewOp.PhysRegReused);
709 MI->getOperand(NewOp.Operand).setReg(NewPhysReg);
711 Spills.addAvailable(NewOp.StackSlotOrReMat, MI, NewPhysReg);
712 MachineBasicBlock::iterator MII = MI;
714 UpdateKills(*MII, RegKills, KillOps);
715 DOUT << '\t' << *MII;
717 DOUT << "Reuse undone!\n";
720 // Finally, PhysReg is now available, go ahead and use it.
728 /// GetRegForReload - Helper for the above GetRegForReload(). Add a
729 /// 'Rejected' set to remember which registers have been considered and
730 /// rejected for the reload. This avoids infinite looping in case like
733 /// t2 <- assigned r0 for use by the reload but ended up reuse r1
734 /// t3 <- assigned r1 for use by the reload but ended up reuse r0
736 /// sees r1 is taken by t2, tries t2's reload register r0
737 /// sees r0 is taken by t3, tries t3's reload register r1
738 /// sees r1 is taken by t2, tries t2's reload register r0 ...
739 unsigned GetRegForReload(unsigned PhysReg, MachineInstr *MI,
740 AvailableSpills &Spills,
741 std::vector<MachineInstr*> &MaybeDeadStores,
743 std::vector<MachineOperand*> &KillOps,
745 SmallSet<unsigned, 8> Rejected;
746 return GetRegForReload(PhysReg, MI, Spills, MaybeDeadStores, Rejected,
747 RegKills, KillOps, VRM);
752 /// PrepForUnfoldOpti - Turn a store folding instruction into a load folding
753 /// instruction. e.g.
755 /// movl %eax, -32(%ebp)
756 /// movl -36(%ebp), %eax
757 /// orl %eax, -32(%ebp)
760 /// orl -36(%ebp), %eax
761 /// mov %eax, -32(%ebp)
762 /// This enables unfolding optimization for a subsequent instruction which will
763 /// also eliminate the newly introduced store instruction.
764 bool LocalSpiller::PrepForUnfoldOpti(MachineBasicBlock &MBB,
765 MachineBasicBlock::iterator &MII,
766 std::vector<MachineInstr*> &MaybeDeadStores,
767 AvailableSpills &Spills,
769 std::vector<MachineOperand*> &KillOps,
771 MachineFunction &MF = *MBB.getParent();
772 MachineInstr &MI = *MII;
773 unsigned UnfoldedOpc = 0;
774 unsigned UnfoldPR = 0;
775 unsigned UnfoldVR = 0;
776 int FoldedSS = VirtRegMap::NO_STACK_SLOT;
777 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
778 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
779 // Only transform a MI that folds a single register.
782 UnfoldVR = I->second.first;
783 VirtRegMap::ModRef MR = I->second.second;
784 if (VRM.isAssignedReg(UnfoldVR))
786 // If this reference is not a use, any previous store is now dead.
787 // Otherwise, the store to this stack slot is not dead anymore.
788 FoldedSS = VRM.getStackSlot(UnfoldVR);
789 MachineInstr* DeadStore = MaybeDeadStores[FoldedSS];
790 if (DeadStore && (MR & VirtRegMap::isModRef)) {
791 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(FoldedSS);
793 DeadStore->findRegisterUseOperandIdx(PhysReg, true) == -1)
796 UnfoldedOpc = MRI->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
804 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
805 MachineOperand &MO = MI.getOperand(i);
806 if (!MO.isRegister() || MO.getReg() == 0 || !MO.isUse())
808 unsigned VirtReg = MO.getReg();
809 if (MRegisterInfo::isPhysicalRegister(VirtReg) || MO.getSubReg())
811 if (VRM.isAssignedReg(VirtReg)) {
812 unsigned PhysReg = VRM.getPhys(VirtReg);
813 if (PhysReg && MRI->regsOverlap(PhysReg, UnfoldPR))
815 } else if (VRM.isReMaterialized(VirtReg))
817 int SS = VRM.getStackSlot(VirtReg);
818 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
820 if (MRI->regsOverlap(PhysReg, UnfoldPR))
824 PhysReg = VRM.getPhys(VirtReg);
825 if (!MRI->regsOverlap(PhysReg, UnfoldPR))
828 // Ok, we'll need to reload the value into a register which makes
829 // it impossible to perform the store unfolding optimization later.
830 // Let's see if it is possible to fold the load if the store is
831 // unfolded. This allows us to perform the store unfolding
833 SmallVector<MachineInstr*, 4> NewMIs;
834 if (MRI->unfoldMemoryOperand(MF, &MI, UnfoldVR, false, false, NewMIs)) {
835 assert(NewMIs.size() == 1);
836 MachineInstr *NewMI = NewMIs.back();
838 int Idx = NewMI->findRegisterUseOperandIdx(VirtReg);
840 SmallVector<unsigned, 2> Ops;
842 MachineInstr *FoldedMI = MRI->foldMemoryOperand(NewMI, Ops, SS);
844 if (!VRM.hasPhys(UnfoldVR))
845 VRM.assignVirt2Phys(UnfoldVR, UnfoldPR);
846 VRM.virtFolded(VirtReg, FoldedMI, VirtRegMap::isRef);
847 MII = MBB.insert(MII, FoldedMI);
848 VRM.RemoveMachineInstrFromMaps(&MI);
858 /// findSuperReg - Find the SubReg's super-register of given register class
859 /// where its SubIdx sub-register is SubReg.
860 static unsigned findSuperReg(const TargetRegisterClass *RC, unsigned SubReg,
861 unsigned SubIdx, const MRegisterInfo *MRI) {
862 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
865 if (MRI->getSubReg(Reg, SubIdx) == SubReg)
871 /// SpillRegToStackSlot - Spill a register to a specified stack slot. Check if
872 /// the last store to the same slot is now dead. If so, remove the last store.
873 void LocalSpiller::SpillRegToStackSlot(MachineBasicBlock &MBB,
874 MachineBasicBlock::iterator &MII,
875 int Idx, unsigned PhysReg, int StackSlot,
876 const TargetRegisterClass *RC,
877 bool isAvailable, MachineInstr *&LastStore,
878 AvailableSpills &Spills,
879 SmallSet<MachineInstr*, 4> &ReMatDefs,
881 std::vector<MachineOperand*> &KillOps,
883 TII->storeRegToStackSlot(MBB, next(MII), PhysReg, true, StackSlot, RC);
884 DOUT << "Store:\t" << *next(MII);
886 // If there is a dead store to this stack slot, nuke it now.
888 DOUT << "Removed dead store:\t" << *LastStore;
890 SmallVector<unsigned, 2> KillRegs;
891 InvalidateKills(*LastStore, RegKills, KillOps, &KillRegs);
892 MachineBasicBlock::iterator PrevMII = LastStore;
893 bool CheckDef = PrevMII != MBB.begin();
896 MBB.erase(LastStore);
897 VRM.RemoveMachineInstrFromMaps(LastStore);
899 // Look at defs of killed registers on the store. Mark the defs
900 // as dead since the store has been deleted and they aren't
902 for (unsigned j = 0, ee = KillRegs.size(); j != ee; ++j) {
903 bool HasOtherDef = false;
904 if (InvalidateRegDef(PrevMII, *MII, KillRegs[j], HasOtherDef)) {
905 MachineInstr *DeadDef = PrevMII;
906 if (ReMatDefs.count(DeadDef) && !HasOtherDef) {
907 // FIXME: This assumes a remat def does not have side
910 VRM.RemoveMachineInstrFromMaps(DeadDef);
918 LastStore = next(MII);
920 // If the stack slot value was previously available in some other
921 // register, change it now. Otherwise, make the register available,
923 Spills.ModifyStackSlotOrReMat(StackSlot);
924 Spills.ClobberPhysReg(PhysReg);
925 Spills.addAvailable(StackSlot, LastStore, PhysReg, isAvailable);
929 /// rewriteMBB - Keep track of which spills are available even after the
930 /// register allocator is done with them. If possible, avid reloading vregs.
931 void LocalSpiller::RewriteMBB(MachineBasicBlock &MBB, VirtRegMap &VRM) {
932 DOUT << MBB.getBasicBlock()->getName() << ":\n";
934 MachineFunction &MF = *MBB.getParent();
936 // Spills - Keep track of which spilled values are available in physregs so
937 // that we can choose to reuse the physregs instead of emitting reloads.
938 AvailableSpills Spills(MRI, TII);
940 // MaybeDeadStores - When we need to write a value back into a stack slot,
941 // keep track of the inserted store. If the stack slot value is never read
942 // (because the value was used from some available register, for example), and
943 // subsequently stored to, the original store is dead. This map keeps track
944 // of inserted stores that are not used. If we see a subsequent store to the
945 // same stack slot, the original store is deleted.
946 std::vector<MachineInstr*> MaybeDeadStores;
947 MaybeDeadStores.resize(MF.getFrameInfo()->getObjectIndexEnd(), NULL);
949 // ReMatDefs - These are rematerializable def MIs which are not deleted.
950 SmallSet<MachineInstr*, 4> ReMatDefs;
952 // Keep track of kill information.
953 BitVector RegKills(MRI->getNumRegs());
954 std::vector<MachineOperand*> KillOps;
955 KillOps.resize(MRI->getNumRegs(), NULL);
957 for (MachineBasicBlock::iterator MII = MBB.begin(), E = MBB.end();
959 MachineBasicBlock::iterator NextMII = MII; ++NextMII;
961 VirtRegMap::MI2VirtMapTy::const_iterator I, End;
963 bool BackTracked = false;
964 if (PrepForUnfoldOpti(MBB, MII,
965 MaybeDeadStores, Spills, RegKills, KillOps, VRM))
968 MachineInstr &MI = *MII;
969 const TargetInstrDescriptor *TID = MI.getInstrDescriptor();
971 // Insert restores here if asked to.
972 if (VRM.isRestorePt(&MI)) {
973 std::vector<unsigned> &RestoreRegs = VRM.getRestorePtRestores(&MI);
974 for (unsigned i = 0, e = RestoreRegs.size(); i != e; ++i) {
975 unsigned VirtReg = RestoreRegs[i];
976 if (!VRM.getPreSplitReg(VirtReg))
977 continue; // Split interval spilled again.
978 unsigned Phys = VRM.getPhys(VirtReg);
979 RegInfo->setPhysRegUsed(Phys);
980 if (VRM.isReMaterialized(VirtReg)) {
981 MRI->reMaterialize(MBB, &MI, Phys,
982 VRM.getReMaterializedMI(VirtReg));
985 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
986 TII->loadRegFromStackSlot(MBB, &MI, Phys, VRM.getStackSlot(VirtReg),
990 // This invalidates Phys.
991 Spills.ClobberPhysReg(Phys);
992 UpdateKills(*prior(MII), RegKills, KillOps);
993 DOUT << '\t' << *prior(MII);
997 // Insert spills here if asked to.
998 if (VRM.isSpillPt(&MI)) {
999 std::vector<std::pair<unsigned,bool> > &SpillRegs =
1000 VRM.getSpillPtSpills(&MI);
1001 for (unsigned i = 0, e = SpillRegs.size(); i != e; ++i) {
1002 unsigned VirtReg = SpillRegs[i].first;
1003 bool isKill = SpillRegs[i].second;
1004 if (!VRM.getPreSplitReg(VirtReg))
1005 continue; // Split interval spilled again.
1006 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1007 unsigned Phys = VRM.getPhys(VirtReg);
1008 int StackSlot = VRM.getStackSlot(VirtReg);
1009 TII->storeRegToStackSlot(MBB, next(MII), Phys, isKill, StackSlot, RC);
1010 MachineInstr *StoreMI = next(MII);
1011 DOUT << "Store:\t" << StoreMI;
1012 VRM.virtFolded(VirtReg, StoreMI, VirtRegMap::isMod);
1014 NextMII = next(MII);
1017 /// ReusedOperands - Keep track of operand reuse in case we need to undo
1019 ReuseInfo ReusedOperands(MI, MRI);
1020 // Process all of the spilled uses and all non spilled reg references.
1021 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1022 MachineOperand &MO = MI.getOperand(i);
1023 if (!MO.isRegister() || MO.getReg() == 0)
1024 continue; // Ignore non-register operands.
1026 unsigned VirtReg = MO.getReg();
1027 if (MRegisterInfo::isPhysicalRegister(VirtReg)) {
1028 // Ignore physregs for spilling, but remember that it is used by this
1030 RegInfo->setPhysRegUsed(VirtReg);
1034 assert(MRegisterInfo::isVirtualRegister(VirtReg) &&
1035 "Not a virtual or a physical register?");
1037 unsigned SubIdx = MO.getSubReg();
1038 if (VRM.isAssignedReg(VirtReg)) {
1039 // This virtual register was assigned a physreg!
1040 unsigned Phys = VRM.getPhys(VirtReg);
1041 RegInfo->setPhysRegUsed(Phys);
1043 ReusedOperands.markClobbered(Phys);
1044 unsigned RReg = SubIdx ? MRI->getSubReg(Phys, SubIdx) : Phys;
1045 MI.getOperand(i).setReg(RReg);
1049 // This virtual register is now known to be a spilled value.
1051 continue; // Handle defs in the loop below (handle use&def here though)
1053 bool DoReMat = VRM.isReMaterialized(VirtReg);
1054 int SSorRMId = DoReMat
1055 ? VRM.getReMatId(VirtReg) : VRM.getStackSlot(VirtReg);
1056 int ReuseSlot = SSorRMId;
1058 // Check to see if this stack slot is available.
1059 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SSorRMId);
1061 // If this is a sub-register use, make sure the reuse register is in the
1062 // right register class. For example, for x86 not all of the 32-bit
1063 // registers have accessible sub-registers.
1064 // Similarly so for EXTRACT_SUBREG. Consider this:
1066 // MOV32_mr fi#1, EDI
1068 // = EXTRACT_SUBREG fi#1
1069 // fi#1 is available in EDI, but it cannot be reused because it's not in
1070 // the right register file.
1072 (SubIdx || MI.getOpcode() == TargetInstrInfo::EXTRACT_SUBREG)) {
1073 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1074 if (!RC->contains(PhysReg))
1079 // This spilled operand might be part of a two-address operand. If this
1080 // is the case, then changing it will necessarily require changing the
1081 // def part of the instruction as well. However, in some cases, we
1082 // aren't allowed to modify the reused register. If none of these cases
1084 bool CanReuse = true;
1085 int ti = TID->getOperandConstraint(i, TOI::TIED_TO);
1087 MI.getOperand(ti).isRegister() &&
1088 MI.getOperand(ti).getReg() == VirtReg) {
1089 // Okay, we have a two address operand. We can reuse this physreg as
1090 // long as we are allowed to clobber the value and there isn't an
1091 // earlier def that has already clobbered the physreg.
1092 CanReuse = Spills.canClobberPhysReg(ReuseSlot) &&
1093 !ReusedOperands.isClobbered(PhysReg);
1097 // If this stack slot value is already available, reuse it!
1098 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1099 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1101 DOUT << "Reusing SS#" << ReuseSlot;
1102 DOUT << " from physreg "
1103 << MRI->getName(PhysReg) << " for vreg"
1104 << VirtReg <<" instead of reloading into physreg "
1105 << MRI->getName(VRM.getPhys(VirtReg)) << "\n";
1106 unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1107 MI.getOperand(i).setReg(RReg);
1109 // The only technical detail we have is that we don't know that
1110 // PhysReg won't be clobbered by a reloaded stack slot that occurs
1111 // later in the instruction. In particular, consider 'op V1, V2'.
1112 // If V1 is available in physreg R0, we would choose to reuse it
1113 // here, instead of reloading it into the register the allocator
1114 // indicated (say R1). However, V2 might have to be reloaded
1115 // later, and it might indicate that it needs to live in R0. When
1116 // this occurs, we need to have information available that
1117 // indicates it is safe to use R1 for the reload instead of R0.
1119 // To further complicate matters, we might conflict with an alias,
1120 // or R0 and R1 might not be compatible with each other. In this
1121 // case, we actually insert a reload for V1 in R1, ensuring that
1122 // we can get at R0 or its alias.
1123 ReusedOperands.addReuse(i, ReuseSlot, PhysReg,
1124 VRM.getPhys(VirtReg), VirtReg);
1126 // Only mark it clobbered if this is a use&def operand.
1127 ReusedOperands.markClobbered(PhysReg);
1130 if (MI.getOperand(i).isKill() &&
1131 ReuseSlot <= VirtRegMap::MAX_STACK_SLOT) {
1132 // This was the last use and the spilled value is still available
1133 // for reuse. That means the spill was unnecessary!
1134 MachineInstr* DeadStore = MaybeDeadStores[ReuseSlot];
1136 DOUT << "Removed dead store:\t" << *DeadStore;
1137 InvalidateKills(*DeadStore, RegKills, KillOps);
1138 VRM.RemoveMachineInstrFromMaps(DeadStore);
1139 MBB.erase(DeadStore);
1140 MaybeDeadStores[ReuseSlot] = NULL;
1147 // Otherwise we have a situation where we have a two-address instruction
1148 // whose mod/ref operand needs to be reloaded. This reload is already
1149 // available in some register "PhysReg", but if we used PhysReg as the
1150 // operand to our 2-addr instruction, the instruction would modify
1151 // PhysReg. This isn't cool if something later uses PhysReg and expects
1152 // to get its initial value.
1154 // To avoid this problem, and to avoid doing a load right after a store,
1155 // we emit a copy from PhysReg into the designated register for this
1157 unsigned DesignatedReg = VRM.getPhys(VirtReg);
1158 assert(DesignatedReg && "Must map virtreg to physreg!");
1160 // Note that, if we reused a register for a previous operand, the
1161 // register we want to reload into might not actually be
1162 // available. If this occurs, use the register indicated by the
1164 if (ReusedOperands.hasReuses())
1165 DesignatedReg = ReusedOperands.GetRegForReload(DesignatedReg, &MI,
1166 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1168 // If the mapped designated register is actually the physreg we have
1169 // incoming, we don't need to inserted a dead copy.
1170 if (DesignatedReg == PhysReg) {
1171 // If this stack slot value is already available, reuse it!
1172 if (ReuseSlot > VirtRegMap::MAX_STACK_SLOT)
1173 DOUT << "Reusing RM#" << ReuseSlot-VirtRegMap::MAX_STACK_SLOT-1;
1175 DOUT << "Reusing SS#" << ReuseSlot;
1176 DOUT << " from physreg " << MRI->getName(PhysReg) << " for vreg"
1178 << " instead of reloading into same physreg.\n";
1179 unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1180 MI.getOperand(i).setReg(RReg);
1181 ReusedOperands.markClobbered(RReg);
1186 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1187 RegInfo->setPhysRegUsed(DesignatedReg);
1188 ReusedOperands.markClobbered(DesignatedReg);
1189 TII->copyRegToReg(MBB, &MI, DesignatedReg, PhysReg, RC, RC);
1191 MachineInstr *CopyMI = prior(MII);
1192 UpdateKills(*CopyMI, RegKills, KillOps);
1194 // This invalidates DesignatedReg.
1195 Spills.ClobberPhysReg(DesignatedReg);
1197 Spills.addAvailable(ReuseSlot, &MI, DesignatedReg);
1199 SubIdx ? MRI->getSubReg(DesignatedReg, SubIdx) : DesignatedReg;
1200 MI.getOperand(i).setReg(RReg);
1201 DOUT << '\t' << *prior(MII);
1206 // Otherwise, reload it and remember that we have it.
1207 PhysReg = VRM.getPhys(VirtReg);
1208 assert(PhysReg && "Must map virtreg to physreg!");
1210 // Note that, if we reused a register for a previous operand, the
1211 // register we want to reload into might not actually be
1212 // available. If this occurs, use the register indicated by the
1214 if (ReusedOperands.hasReuses())
1215 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1216 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1218 RegInfo->setPhysRegUsed(PhysReg);
1219 ReusedOperands.markClobbered(PhysReg);
1221 MRI->reMaterialize(MBB, &MI, PhysReg, VRM.getReMaterializedMI(VirtReg));
1224 const TargetRegisterClass* RC = RegInfo->getRegClass(VirtReg);
1225 TII->loadRegFromStackSlot(MBB, &MI, PhysReg, SSorRMId, RC);
1228 // This invalidates PhysReg.
1229 Spills.ClobberPhysReg(PhysReg);
1231 // Any stores to this stack slot are not dead anymore.
1233 MaybeDeadStores[SSorRMId] = NULL;
1234 Spills.addAvailable(SSorRMId, &MI, PhysReg);
1235 // Assumes this is the last use. IsKill will be unset if reg is reused
1236 // unless it's a two-address operand.
1237 if (TID->getOperandConstraint(i, TOI::TIED_TO) == -1)
1238 MI.getOperand(i).setIsKill();
1239 unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1240 MI.getOperand(i).setReg(RReg);
1241 UpdateKills(*prior(MII), RegKills, KillOps);
1242 DOUT << '\t' << *prior(MII);
1248 // If we have folded references to memory operands, make sure we clear all
1249 // physical registers that may contain the value of the spilled virtual
1251 SmallSet<int, 2> FoldedSS;
1252 for (tie(I, End) = VRM.getFoldedVirts(&MI); I != End; ++I) {
1253 unsigned VirtReg = I->second.first;
1254 VirtRegMap::ModRef MR = I->second.second;
1255 DOUT << "Folded vreg: " << VirtReg << " MR: " << MR;
1257 int SS = VRM.getStackSlot(VirtReg);
1258 if (SS == VirtRegMap::NO_STACK_SLOT)
1260 FoldedSS.insert(SS);
1261 DOUT << " - StackSlot: " << SS << "\n";
1263 // If this folded instruction is just a use, check to see if it's a
1264 // straight load from the virt reg slot.
1265 if ((MR & VirtRegMap::isRef) && !(MR & VirtRegMap::isMod)) {
1267 unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx);
1268 if (DestReg && FrameIdx == SS) {
1269 // If this spill slot is available, turn it into a copy (or nothing)
1270 // instead of leaving it as a load!
1271 if (unsigned InReg = Spills.getSpillSlotOrReMatPhysReg(SS)) {
1272 DOUT << "Promoted Load To Copy: " << MI;
1273 if (DestReg != InReg) {
1274 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1275 TII->copyRegToReg(MBB, &MI, DestReg, InReg, RC, RC);
1276 // Revisit the copy so we make sure to notice the effects of the
1277 // operation on the destreg (either needing to RA it if it's
1278 // virtual or needing to clobber any values if it's physical).
1280 --NextMII; // backtrack to the copy.
1283 DOUT << "Removing now-noop copy: " << MI;
1284 // Unset last kill since it's being reused.
1285 InvalidateKill(InReg, RegKills, KillOps);
1288 VRM.RemoveMachineInstrFromMaps(&MI);
1291 goto ProcessNextInst;
1294 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1295 SmallVector<MachineInstr*, 4> NewMIs;
1297 MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, false, NewMIs)) {
1298 MBB.insert(MII, NewMIs[0]);
1299 VRM.RemoveMachineInstrFromMaps(&MI);
1302 --NextMII; // backtrack to the unfolded instruction.
1304 goto ProcessNextInst;
1309 // If this reference is not a use, any previous store is now dead.
1310 // Otherwise, the store to this stack slot is not dead anymore.
1311 MachineInstr* DeadStore = MaybeDeadStores[SS];
1313 bool isDead = !(MR & VirtRegMap::isRef);
1314 MachineInstr *NewStore = NULL;
1315 if (MR & VirtRegMap::isModRef) {
1316 unsigned PhysReg = Spills.getSpillSlotOrReMatPhysReg(SS);
1317 SmallVector<MachineInstr*, 4> NewMIs;
1318 // We can reuse this physreg as long as we are allowed to clobber
1319 // the value and there isn't an earlier def that has already clobbered
1322 !TII->isStoreToStackSlot(&MI, SS) && // Not profitable!
1323 DeadStore->findRegisterUseOperandIdx(PhysReg, true) != -1 &&
1324 MRI->unfoldMemoryOperand(MF, &MI, PhysReg, false, true, NewMIs)) {
1325 MBB.insert(MII, NewMIs[0]);
1326 NewStore = NewMIs[1];
1327 MBB.insert(MII, NewStore);
1328 VRM.RemoveMachineInstrFromMaps(&MI);
1332 --NextMII; // backtrack to the unfolded instruction.
1338 if (isDead) { // Previous store is dead.
1339 // If we get here, the store is dead, nuke it now.
1340 DOUT << "Removed dead store:\t" << *DeadStore;
1341 InvalidateKills(*DeadStore, RegKills, KillOps);
1342 VRM.RemoveMachineInstrFromMaps(DeadStore);
1343 MBB.erase(DeadStore);
1348 MaybeDeadStores[SS] = NULL;
1350 // Treat this store as a spill merged into a copy. That makes the
1351 // stack slot value available.
1352 VRM.virtFolded(VirtReg, NewStore, VirtRegMap::isMod);
1353 goto ProcessNextInst;
1357 // If the spill slot value is available, and this is a new definition of
1358 // the value, the value is not available anymore.
1359 if (MR & VirtRegMap::isMod) {
1360 // Notice that the value in this stack slot has been modified.
1361 Spills.ModifyStackSlotOrReMat(SS);
1363 // If this is *just* a mod of the value, check to see if this is just a
1364 // store to the spill slot (i.e. the spill got merged into the copy). If
1365 // so, realize that the vreg is available now, and add the store to the
1366 // MaybeDeadStore info.
1368 if (!(MR & VirtRegMap::isRef)) {
1369 if (unsigned SrcReg = TII->isStoreToStackSlot(&MI, StackSlot)) {
1370 assert(MRegisterInfo::isPhysicalRegister(SrcReg) &&
1371 "Src hasn't been allocated yet?");
1372 // Okay, this is certainly a store of SrcReg to [StackSlot]. Mark
1373 // this as a potentially dead store in case there is a subsequent
1374 // store into the stack slot without a read from it.
1375 MaybeDeadStores[StackSlot] = &MI;
1377 // If the stack slot value was previously available in some other
1378 // register, change it now. Otherwise, make the register available,
1380 Spills.addAvailable(StackSlot, &MI, SrcReg, false/*don't clobber*/);
1386 // Process all of the spilled defs.
1387 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1388 MachineOperand &MO = MI.getOperand(i);
1389 if (!(MO.isRegister() && MO.getReg() && MO.isDef()))
1392 unsigned VirtReg = MO.getReg();
1393 if (!MRegisterInfo::isVirtualRegister(VirtReg)) {
1394 // Check to see if this is a noop copy. If so, eliminate the
1395 // instruction before considering the dest reg to be changed.
1397 if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1399 DOUT << "Removing now-noop copy: " << MI;
1402 VRM.RemoveMachineInstrFromMaps(&MI);
1403 Spills.disallowClobberPhysReg(VirtReg);
1404 goto ProcessNextInst;
1407 // If it's not a no-op copy, it clobbers the value in the destreg.
1408 Spills.ClobberPhysReg(VirtReg);
1409 ReusedOperands.markClobbered(VirtReg);
1411 // Check to see if this instruction is a load from a stack slot into
1412 // a register. If so, this provides the stack slot value in the reg.
1414 if (unsigned DestReg = TII->isLoadFromStackSlot(&MI, FrameIdx)) {
1415 assert(DestReg == VirtReg && "Unknown load situation!");
1417 // If it is a folded reference, then it's not safe to clobber.
1418 bool Folded = FoldedSS.count(FrameIdx);
1419 // Otherwise, if it wasn't available, remember that it is now!
1420 Spills.addAvailable(FrameIdx, &MI, DestReg, !Folded);
1421 goto ProcessNextInst;
1427 unsigned SubIdx = MO.getSubReg();
1428 bool DoReMat = VRM.isReMaterialized(VirtReg);
1430 ReMatDefs.insert(&MI);
1432 // The only vregs left are stack slot definitions.
1433 int StackSlot = VRM.getStackSlot(VirtReg);
1434 const TargetRegisterClass *RC = RegInfo->getRegClass(VirtReg);
1436 // If this def is part of a two-address operand, make sure to execute
1437 // the store from the correct physical register.
1439 int TiedOp = MI.getInstrDescriptor()->findTiedToSrcOperand(i);
1441 PhysReg = MI.getOperand(TiedOp).getReg();
1443 unsigned SuperReg = findSuperReg(RC, PhysReg, SubIdx, MRI);
1444 assert(SuperReg && MRI->getSubReg(SuperReg, SubIdx) == PhysReg &&
1445 "Can't find corresponding super-register!");
1449 PhysReg = VRM.getPhys(VirtReg);
1450 if (ReusedOperands.isClobbered(PhysReg)) {
1451 // Another def has taken the assigned physreg. It must have been a
1452 // use&def which got it due to reuse. Undo the reuse!
1453 PhysReg = ReusedOperands.GetRegForReload(PhysReg, &MI,
1454 Spills, MaybeDeadStores, RegKills, KillOps, VRM);
1458 RegInfo->setPhysRegUsed(PhysReg);
1459 unsigned RReg = SubIdx ? MRI->getSubReg(PhysReg, SubIdx) : PhysReg;
1460 ReusedOperands.markClobbered(RReg);
1461 MI.getOperand(i).setReg(RReg);
1464 MachineInstr *&LastStore = MaybeDeadStores[StackSlot];
1465 SpillRegToStackSlot(MBB, MII, -1, PhysReg, StackSlot, RC, true,
1466 LastStore, Spills, ReMatDefs, RegKills, KillOps, VRM);
1467 NextMII = next(MII);
1469 // Check to see if this is a noop copy. If so, eliminate the
1470 // instruction before considering the dest reg to be changed.
1473 if (TII->isMoveInstr(MI, Src, Dst) && Src == Dst) {
1475 DOUT << "Removing now-noop copy: " << MI;
1478 VRM.RemoveMachineInstrFromMaps(&MI);
1479 UpdateKills(*LastStore, RegKills, KillOps);
1480 goto ProcessNextInst;
1486 if (!Erased && !BackTracked) {
1487 for (MachineBasicBlock::iterator II = MI; II != NextMII; ++II)
1488 UpdateKills(*II, RegKills, KillOps);
1494 llvm::Spiller* llvm::createSpiller() {
1495 switch (SpillerOpt) {
1496 default: assert(0 && "Unreachable!");
1498 return new LocalSpiller();
1500 return new SimpleSpiller();