Nuke the old JIT.
[oota-llvm.git] / lib / ExecutionEngine / Interpreter / ExternalFunctions.cpp
1 //===-- ExternalFunctions.cpp - Implement External Functions --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file contains both code to deal with invoking "external" functions, but
11 //  also contains code that implements "exported" external functions.
12 //
13 //  There are currently two mechanisms for handling external functions in the
14 //  Interpreter.  The first is to implement lle_* wrapper functions that are
15 //  specific to well-known library functions which manually translate the
16 //  arguments from GenericValues and make the call.  If such a wrapper does
17 //  not exist, and libffi is available, then the Interpreter will attempt to
18 //  invoke the function using libffi, after finding its address.
19 //
20 //===----------------------------------------------------------------------===//
21
22 #include "Interpreter.h"
23 #include "llvm/Config/config.h"     // Detect libffi
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Support/DynamicLibrary.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/ManagedStatic.h"
30 #include "llvm/Support/Mutex.h"
31 #include <cmath>
32 #include <csignal>
33 #include <cstdio>
34 #include <cstring>
35 #include <map>
36
37 #ifdef HAVE_FFI_CALL
38 #ifdef HAVE_FFI_H
39 #include <ffi.h>
40 #define USE_LIBFFI
41 #elif HAVE_FFI_FFI_H
42 #include <ffi/ffi.h>
43 #define USE_LIBFFI
44 #endif
45 #endif
46
47 using namespace llvm;
48
49 static ManagedStatic<sys::Mutex> FunctionsLock;
50
51 typedef GenericValue (*ExFunc)(FunctionType *,
52                                const std::vector<GenericValue> &);
53 static ManagedStatic<std::map<const Function *, ExFunc> > ExportedFunctions;
54 static std::map<std::string, ExFunc> FuncNames;
55
56 #ifdef USE_LIBFFI
57 typedef void (*RawFunc)();
58 static ManagedStatic<std::map<const Function *, RawFunc> > RawFunctions;
59 #endif
60
61 static Interpreter *TheInterpreter;
62
63 static char getTypeID(Type *Ty) {
64   switch (Ty->getTypeID()) {
65   case Type::VoidTyID:    return 'V';
66   case Type::IntegerTyID:
67     switch (cast<IntegerType>(Ty)->getBitWidth()) {
68       case 1:  return 'o';
69       case 8:  return 'B';
70       case 16: return 'S';
71       case 32: return 'I';
72       case 64: return 'L';
73       default: return 'N';
74     }
75   case Type::FloatTyID:   return 'F';
76   case Type::DoubleTyID:  return 'D';
77   case Type::PointerTyID: return 'P';
78   case Type::FunctionTyID:return 'M';
79   case Type::StructTyID:  return 'T';
80   case Type::ArrayTyID:   return 'A';
81   default: return 'U';
82   }
83 }
84
85 // Try to find address of external function given a Function object.
86 // Please note, that interpreter doesn't know how to assemble a
87 // real call in general case (this is JIT job), that's why it assumes,
88 // that all external functions has the same (and pretty "general") signature.
89 // The typical example of such functions are "lle_X_" ones.
90 static ExFunc lookupFunction(const Function *F) {
91   // Function not found, look it up... start by figuring out what the
92   // composite function name should be.
93   std::string ExtName = "lle_";
94   FunctionType *FT = F->getFunctionType();
95   for (unsigned i = 0, e = FT->getNumContainedTypes(); i != e; ++i)
96     ExtName += getTypeID(FT->getContainedType(i));
97   ExtName += "_" + F->getName().str();
98
99   sys::ScopedLock Writer(*FunctionsLock);
100   ExFunc FnPtr = FuncNames[ExtName];
101   if (!FnPtr)
102     FnPtr = FuncNames["lle_X_" + F->getName().str()];
103   if (!FnPtr)  // Try calling a generic function... if it exists...
104     FnPtr = (ExFunc)(intptr_t)
105       sys::DynamicLibrary::SearchForAddressOfSymbol("lle_X_" +
106                                                     F->getName().str());
107   if (FnPtr)
108     ExportedFunctions->insert(std::make_pair(F, FnPtr));  // Cache for later
109   return FnPtr;
110 }
111
112 #ifdef USE_LIBFFI
113 static ffi_type *ffiTypeFor(Type *Ty) {
114   switch (Ty->getTypeID()) {
115     case Type::VoidTyID: return &ffi_type_void;
116     case Type::IntegerTyID:
117       switch (cast<IntegerType>(Ty)->getBitWidth()) {
118         case 8:  return &ffi_type_sint8;
119         case 16: return &ffi_type_sint16;
120         case 32: return &ffi_type_sint32;
121         case 64: return &ffi_type_sint64;
122       }
123     case Type::FloatTyID:   return &ffi_type_float;
124     case Type::DoubleTyID:  return &ffi_type_double;
125     case Type::PointerTyID: return &ffi_type_pointer;
126     default: break;
127   }
128   // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
129   report_fatal_error("Type could not be mapped for use with libffi.");
130   return NULL;
131 }
132
133 static void *ffiValueFor(Type *Ty, const GenericValue &AV,
134                          void *ArgDataPtr) {
135   switch (Ty->getTypeID()) {
136     case Type::IntegerTyID:
137       switch (cast<IntegerType>(Ty)->getBitWidth()) {
138         case 8: {
139           int8_t *I8Ptr = (int8_t *) ArgDataPtr;
140           *I8Ptr = (int8_t) AV.IntVal.getZExtValue();
141           return ArgDataPtr;
142         }
143         case 16: {
144           int16_t *I16Ptr = (int16_t *) ArgDataPtr;
145           *I16Ptr = (int16_t) AV.IntVal.getZExtValue();
146           return ArgDataPtr;
147         }
148         case 32: {
149           int32_t *I32Ptr = (int32_t *) ArgDataPtr;
150           *I32Ptr = (int32_t) AV.IntVal.getZExtValue();
151           return ArgDataPtr;
152         }
153         case 64: {
154           int64_t *I64Ptr = (int64_t *) ArgDataPtr;
155           *I64Ptr = (int64_t) AV.IntVal.getZExtValue();
156           return ArgDataPtr;
157         }
158       }
159     case Type::FloatTyID: {
160       float *FloatPtr = (float *) ArgDataPtr;
161       *FloatPtr = AV.FloatVal;
162       return ArgDataPtr;
163     }
164     case Type::DoubleTyID: {
165       double *DoublePtr = (double *) ArgDataPtr;
166       *DoublePtr = AV.DoubleVal;
167       return ArgDataPtr;
168     }
169     case Type::PointerTyID: {
170       void **PtrPtr = (void **) ArgDataPtr;
171       *PtrPtr = GVTOP(AV);
172       return ArgDataPtr;
173     }
174     default: break;
175   }
176   // TODO: Support other types such as StructTyID, ArrayTyID, OpaqueTyID, etc.
177   report_fatal_error("Type value could not be mapped for use with libffi.");
178   return NULL;
179 }
180
181 static bool ffiInvoke(RawFunc Fn, Function *F,
182                       const std::vector<GenericValue> &ArgVals,
183                       const DataLayout *TD, GenericValue &Result) {
184   ffi_cif cif;
185   FunctionType *FTy = F->getFunctionType();
186   const unsigned NumArgs = F->arg_size();
187
188   // TODO: We don't have type information about the remaining arguments, because
189   // this information is never passed into ExecutionEngine::runFunction().
190   if (ArgVals.size() > NumArgs && F->isVarArg()) {
191     report_fatal_error("Calling external var arg function '" + F->getName()
192                       + "' is not supported by the Interpreter.");
193   }
194
195   unsigned ArgBytes = 0;
196
197   std::vector<ffi_type*> args(NumArgs);
198   for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
199        A != E; ++A) {
200     const unsigned ArgNo = A->getArgNo();
201     Type *ArgTy = FTy->getParamType(ArgNo);
202     args[ArgNo] = ffiTypeFor(ArgTy);
203     ArgBytes += TD->getTypeStoreSize(ArgTy);
204   }
205
206   SmallVector<uint8_t, 128> ArgData;
207   ArgData.resize(ArgBytes);
208   uint8_t *ArgDataPtr = ArgData.data();
209   SmallVector<void*, 16> values(NumArgs);
210   for (Function::const_arg_iterator A = F->arg_begin(), E = F->arg_end();
211        A != E; ++A) {
212     const unsigned ArgNo = A->getArgNo();
213     Type *ArgTy = FTy->getParamType(ArgNo);
214     values[ArgNo] = ffiValueFor(ArgTy, ArgVals[ArgNo], ArgDataPtr);
215     ArgDataPtr += TD->getTypeStoreSize(ArgTy);
216   }
217
218   Type *RetTy = FTy->getReturnType();
219   ffi_type *rtype = ffiTypeFor(RetTy);
220
221   if (ffi_prep_cif(&cif, FFI_DEFAULT_ABI, NumArgs, rtype, &args[0]) == FFI_OK) {
222     SmallVector<uint8_t, 128> ret;
223     if (RetTy->getTypeID() != Type::VoidTyID)
224       ret.resize(TD->getTypeStoreSize(RetTy));
225     ffi_call(&cif, Fn, ret.data(), values.data());
226     switch (RetTy->getTypeID()) {
227       case Type::IntegerTyID:
228         switch (cast<IntegerType>(RetTy)->getBitWidth()) {
229           case 8:  Result.IntVal = APInt(8 , *(int8_t *) ret.data()); break;
230           case 16: Result.IntVal = APInt(16, *(int16_t*) ret.data()); break;
231           case 32: Result.IntVal = APInt(32, *(int32_t*) ret.data()); break;
232           case 64: Result.IntVal = APInt(64, *(int64_t*) ret.data()); break;
233         }
234         break;
235       case Type::FloatTyID:   Result.FloatVal   = *(float *) ret.data(); break;
236       case Type::DoubleTyID:  Result.DoubleVal  = *(double*) ret.data(); break;
237       case Type::PointerTyID: Result.PointerVal = *(void **) ret.data(); break;
238       default: break;
239     }
240     return true;
241   }
242
243   return false;
244 }
245 #endif // USE_LIBFFI
246
247 GenericValue Interpreter::callExternalFunction(Function *F,
248                                      const std::vector<GenericValue> &ArgVals) {
249   TheInterpreter = this;
250
251   FunctionsLock->acquire();
252
253   // Do a lookup to see if the function is in our cache... this should just be a
254   // deferred annotation!
255   std::map<const Function *, ExFunc>::iterator FI = ExportedFunctions->find(F);
256   if (ExFunc Fn = (FI == ExportedFunctions->end()) ? lookupFunction(F)
257                                                    : FI->second) {
258     FunctionsLock->release();
259     return Fn(F->getFunctionType(), ArgVals);
260   }
261
262 #ifdef USE_LIBFFI
263   std::map<const Function *, RawFunc>::iterator RF = RawFunctions->find(F);
264   RawFunc RawFn;
265   if (RF == RawFunctions->end()) {
266     RawFn = (RawFunc)(intptr_t)
267       sys::DynamicLibrary::SearchForAddressOfSymbol(F->getName());
268     if (!RawFn)
269       RawFn = (RawFunc)(intptr_t)getPointerToGlobalIfAvailable(F);
270     if (RawFn != 0)
271       RawFunctions->insert(std::make_pair(F, RawFn));  // Cache for later
272   } else {
273     RawFn = RF->second;
274   }
275
276   FunctionsLock->release();
277
278   GenericValue Result;
279   if (RawFn != 0 && ffiInvoke(RawFn, F, ArgVals, getDataLayout(), Result))
280     return Result;
281 #endif // USE_LIBFFI
282
283   if (F->getName() == "__main")
284     errs() << "Tried to execute an unknown external function: "
285       << *F->getType() << " __main\n";
286   else
287     report_fatal_error("Tried to execute an unknown external function: " +
288                        F->getName());
289 #ifndef USE_LIBFFI
290   errs() << "Recompiling LLVM with --enable-libffi might help.\n";
291 #endif
292   return GenericValue();
293 }
294
295
296 //===----------------------------------------------------------------------===//
297 //  Functions "exported" to the running application...
298 //
299
300 // void atexit(Function*)
301 static
302 GenericValue lle_X_atexit(FunctionType *FT,
303                           const std::vector<GenericValue> &Args) {
304   assert(Args.size() == 1);
305   TheInterpreter->addAtExitHandler((Function*)GVTOP(Args[0]));
306   GenericValue GV;
307   GV.IntVal = 0;
308   return GV;
309 }
310
311 // void exit(int)
312 static
313 GenericValue lle_X_exit(FunctionType *FT,
314                         const std::vector<GenericValue> &Args) {
315   TheInterpreter->exitCalled(Args[0]);
316   return GenericValue();
317 }
318
319 // void abort(void)
320 static
321 GenericValue lle_X_abort(FunctionType *FT,
322                          const std::vector<GenericValue> &Args) {
323   //FIXME: should we report or raise here?
324   //report_fatal_error("Interpreted program raised SIGABRT");
325   raise (SIGABRT);
326   return GenericValue();
327 }
328
329 // int sprintf(char *, const char *, ...) - a very rough implementation to make
330 // output useful.
331 static
332 GenericValue lle_X_sprintf(FunctionType *FT,
333                            const std::vector<GenericValue> &Args) {
334   char *OutputBuffer = (char *)GVTOP(Args[0]);
335   const char *FmtStr = (const char *)GVTOP(Args[1]);
336   unsigned ArgNo = 2;
337
338   // printf should return # chars printed.  This is completely incorrect, but
339   // close enough for now.
340   GenericValue GV;
341   GV.IntVal = APInt(32, strlen(FmtStr));
342   while (1) {
343     switch (*FmtStr) {
344     case 0: return GV;             // Null terminator...
345     default:                       // Normal nonspecial character
346       sprintf(OutputBuffer++, "%c", *FmtStr++);
347       break;
348     case '\\': {                   // Handle escape codes
349       sprintf(OutputBuffer, "%c%c", *FmtStr, *(FmtStr+1));
350       FmtStr += 2; OutputBuffer += 2;
351       break;
352     }
353     case '%': {                    // Handle format specifiers
354       char FmtBuf[100] = "", Buffer[1000] = "";
355       char *FB = FmtBuf;
356       *FB++ = *FmtStr++;
357       char Last = *FB++ = *FmtStr++;
358       unsigned HowLong = 0;
359       while (Last != 'c' && Last != 'd' && Last != 'i' && Last != 'u' &&
360              Last != 'o' && Last != 'x' && Last != 'X' && Last != 'e' &&
361              Last != 'E' && Last != 'g' && Last != 'G' && Last != 'f' &&
362              Last != 'p' && Last != 's' && Last != '%') {
363         if (Last == 'l' || Last == 'L') HowLong++;  // Keep track of l's
364         Last = *FB++ = *FmtStr++;
365       }
366       *FB = 0;
367
368       switch (Last) {
369       case '%':
370         memcpy(Buffer, "%", 2); break;
371       case 'c':
372         sprintf(Buffer, FmtBuf, uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
373         break;
374       case 'd': case 'i':
375       case 'u': case 'o':
376       case 'x': case 'X':
377         if (HowLong >= 1) {
378           if (HowLong == 1 &&
379               TheInterpreter->getDataLayout()->getPointerSizeInBits() == 64 &&
380               sizeof(long) < sizeof(int64_t)) {
381             // Make sure we use %lld with a 64 bit argument because we might be
382             // compiling LLI on a 32 bit compiler.
383             unsigned Size = strlen(FmtBuf);
384             FmtBuf[Size] = FmtBuf[Size-1];
385             FmtBuf[Size+1] = 0;
386             FmtBuf[Size-1] = 'l';
387           }
388           sprintf(Buffer, FmtBuf, Args[ArgNo++].IntVal.getZExtValue());
389         } else
390           sprintf(Buffer, FmtBuf,uint32_t(Args[ArgNo++].IntVal.getZExtValue()));
391         break;
392       case 'e': case 'E': case 'g': case 'G': case 'f':
393         sprintf(Buffer, FmtBuf, Args[ArgNo++].DoubleVal); break;
394       case 'p':
395         sprintf(Buffer, FmtBuf, (void*)GVTOP(Args[ArgNo++])); break;
396       case 's':
397         sprintf(Buffer, FmtBuf, (char*)GVTOP(Args[ArgNo++])); break;
398       default:
399         errs() << "<unknown printf code '" << *FmtStr << "'!>";
400         ArgNo++; break;
401       }
402       size_t Len = strlen(Buffer);
403       memcpy(OutputBuffer, Buffer, Len + 1);
404       OutputBuffer += Len;
405       }
406       break;
407     }
408   }
409   return GV;
410 }
411
412 // int printf(const char *, ...) - a very rough implementation to make output
413 // useful.
414 static
415 GenericValue lle_X_printf(FunctionType *FT,
416                           const std::vector<GenericValue> &Args) {
417   char Buffer[10000];
418   std::vector<GenericValue> NewArgs;
419   NewArgs.push_back(PTOGV((void*)&Buffer[0]));
420   NewArgs.insert(NewArgs.end(), Args.begin(), Args.end());
421   GenericValue GV = lle_X_sprintf(FT, NewArgs);
422   outs() << Buffer;
423   return GV;
424 }
425
426 // int sscanf(const char *format, ...);
427 static
428 GenericValue lle_X_sscanf(FunctionType *FT,
429                           const std::vector<GenericValue> &args) {
430   assert(args.size() < 10 && "Only handle up to 10 args to sscanf right now!");
431
432   char *Args[10];
433   for (unsigned i = 0; i < args.size(); ++i)
434     Args[i] = (char*)GVTOP(args[i]);
435
436   GenericValue GV;
437   GV.IntVal = APInt(32, sscanf(Args[0], Args[1], Args[2], Args[3], Args[4],
438                     Args[5], Args[6], Args[7], Args[8], Args[9]));
439   return GV;
440 }
441
442 // int scanf(const char *format, ...);
443 static
444 GenericValue lle_X_scanf(FunctionType *FT,
445                          const std::vector<GenericValue> &args) {
446   assert(args.size() < 10 && "Only handle up to 10 args to scanf right now!");
447
448   char *Args[10];
449   for (unsigned i = 0; i < args.size(); ++i)
450     Args[i] = (char*)GVTOP(args[i]);
451
452   GenericValue GV;
453   GV.IntVal = APInt(32, scanf( Args[0], Args[1], Args[2], Args[3], Args[4],
454                     Args[5], Args[6], Args[7], Args[8], Args[9]));
455   return GV;
456 }
457
458 // int fprintf(FILE *, const char *, ...) - a very rough implementation to make
459 // output useful.
460 static
461 GenericValue lle_X_fprintf(FunctionType *FT,
462                            const std::vector<GenericValue> &Args) {
463   assert(Args.size() >= 2);
464   char Buffer[10000];
465   std::vector<GenericValue> NewArgs;
466   NewArgs.push_back(PTOGV(Buffer));
467   NewArgs.insert(NewArgs.end(), Args.begin()+1, Args.end());
468   GenericValue GV = lle_X_sprintf(FT, NewArgs);
469
470   fputs(Buffer, (FILE *) GVTOP(Args[0]));
471   return GV;
472 }
473
474 static GenericValue lle_X_memset(FunctionType *FT,
475                                  const std::vector<GenericValue> &Args) {
476   int val = (int)Args[1].IntVal.getSExtValue();
477   size_t len = (size_t)Args[2].IntVal.getZExtValue();
478   memset((void *)GVTOP(Args[0]), val, len);
479   // llvm.memset.* returns void, lle_X_* returns GenericValue,
480   // so here we return GenericValue with IntVal set to zero
481   GenericValue GV;
482   GV.IntVal = 0;
483   return GV;
484 }
485
486 static GenericValue lle_X_memcpy(FunctionType *FT,
487                                  const std::vector<GenericValue> &Args) {
488   memcpy(GVTOP(Args[0]), GVTOP(Args[1]),
489          (size_t)(Args[2].IntVal.getLimitedValue()));
490
491   // llvm.memcpy* returns void, lle_X_* returns GenericValue,
492   // so here we return GenericValue with IntVal set to zero
493   GenericValue GV;
494   GV.IntVal = 0;
495   return GV;
496 }
497
498 void Interpreter::initializeExternalFunctions() {
499   sys::ScopedLock Writer(*FunctionsLock);
500   FuncNames["lle_X_atexit"]       = lle_X_atexit;
501   FuncNames["lle_X_exit"]         = lle_X_exit;
502   FuncNames["lle_X_abort"]        = lle_X_abort;
503
504   FuncNames["lle_X_printf"]       = lle_X_printf;
505   FuncNames["lle_X_sprintf"]      = lle_X_sprintf;
506   FuncNames["lle_X_sscanf"]       = lle_X_sscanf;
507   FuncNames["lle_X_scanf"]        = lle_X_scanf;
508   FuncNames["lle_X_fprintf"]      = lle_X_fprintf;
509   FuncNames["lle_X_memset"]       = lle_X_memset;
510   FuncNames["lle_X_memcpy"]       = lle_X_memcpy;
511 }