1 //===-- JITEmitter.cpp - Write machine code to executable memory ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines a MachineCodeEmitter object that is used by the JIT to
11 // write machine code to memory and remember where relocatable values are.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
17 #include "JITDebugRegisterer.h"
18 #include "JITDwarfEmitter.h"
19 #include "llvm/ADT/OwningPtr.h"
20 #include "llvm/Constants.h"
21 #include "llvm/Module.h"
22 #include "llvm/DerivedTypes.h"
23 #include "llvm/Analysis/DebugInfo.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineCodeInfo.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/MachineRelocation.h"
31 #include "llvm/ExecutionEngine/GenericValue.h"
32 #include "llvm/ExecutionEngine/JITEventListener.h"
33 #include "llvm/ExecutionEngine/JITMemoryManager.h"
34 #include "llvm/Target/TargetData.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetJITInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetOptions.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/ManagedStatic.h"
42 #include "llvm/Support/MutexGuard.h"
43 #include "llvm/Support/ValueHandle.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/System/Disassembler.h"
46 #include "llvm/System/Memory.h"
47 #include "llvm/ADT/DenseMap.h"
48 #include "llvm/ADT/SmallPtrSet.h"
49 #include "llvm/ADT/SmallVector.h"
50 #include "llvm/ADT/Statistic.h"
51 #include "llvm/ADT/ValueMap.h"
58 STATISTIC(NumBytes, "Number of bytes of machine code compiled");
59 STATISTIC(NumRelos, "Number of relocations applied");
60 STATISTIC(NumRetries, "Number of retries with more memory");
63 // A declaration may stop being a declaration once it's fully read from bitcode.
64 // This function returns true if F is fully read and is still a declaration.
65 static bool isNonGhostDeclaration(const Function *F) {
66 return F->isDeclaration() && !F->isMaterializable();
69 //===----------------------------------------------------------------------===//
70 // JIT lazy compilation code.
74 class JITResolverState;
76 template<typename ValueTy>
77 struct NoRAUWValueMapConfig : public ValueMapConfig<ValueTy> {
78 typedef JITResolverState *ExtraData;
79 static void onRAUW(JITResolverState *, Value *Old, Value *New) {
80 assert(false && "The JIT doesn't know how to handle a"
81 " RAUW on a value it has emitted.");
85 struct CallSiteValueMapConfig : public NoRAUWValueMapConfig<Function*> {
86 typedef JITResolverState *ExtraData;
87 static void onDelete(JITResolverState *JRS, Function *F);
90 class JITResolverState {
92 typedef ValueMap<Function*, void*, NoRAUWValueMapConfig<Function*> >
93 FunctionToLazyStubMapTy;
94 typedef std::map<void*, AssertingVH<Function> > CallSiteToFunctionMapTy;
95 typedef ValueMap<Function *, SmallPtrSet<void*, 1>,
96 CallSiteValueMapConfig> FunctionToCallSitesMapTy;
97 typedef std::map<AssertingVH<GlobalValue>, void*> GlobalToIndirectSymMapTy;
99 /// FunctionToLazyStubMap - Keep track of the lazy stub created for a
100 /// particular function so that we can reuse them if necessary.
101 FunctionToLazyStubMapTy FunctionToLazyStubMap;
103 /// CallSiteToFunctionMap - Keep track of the function that each lazy call
104 /// site corresponds to, and vice versa.
105 CallSiteToFunctionMapTy CallSiteToFunctionMap;
106 FunctionToCallSitesMapTy FunctionToCallSitesMap;
108 /// GlobalToIndirectSymMap - Keep track of the indirect symbol created for a
109 /// particular GlobalVariable so that we can reuse them if necessary.
110 GlobalToIndirectSymMapTy GlobalToIndirectSymMap;
112 /// Instance of the JIT this ResolverState serves.
116 JITResolverState(JIT *jit) : FunctionToLazyStubMap(this),
117 FunctionToCallSitesMap(this),
120 FunctionToLazyStubMapTy& getFunctionToLazyStubMap(
121 const MutexGuard& locked) {
122 assert(locked.holds(TheJIT->lock));
123 return FunctionToLazyStubMap;
126 GlobalToIndirectSymMapTy& getGlobalToIndirectSymMap(const MutexGuard& locked) {
127 assert(locked.holds(TheJIT->lock));
128 return GlobalToIndirectSymMap;
131 pair<void *, Function *> LookupFunctionFromCallSite(
132 const MutexGuard &locked, void *CallSite) const {
133 assert(locked.holds(TheJIT->lock));
135 // The address given to us for the stub may not be exactly right, it might be
136 // a little bit after the stub. As such, use upper_bound to find it.
137 CallSiteToFunctionMapTy::const_iterator I =
138 CallSiteToFunctionMap.upper_bound(CallSite);
139 assert(I != CallSiteToFunctionMap.begin() &&
140 "This is not a known call site!");
145 void AddCallSite(const MutexGuard &locked, void *CallSite, Function *F) {
146 assert(locked.holds(TheJIT->lock));
148 bool Inserted = CallSiteToFunctionMap.insert(
149 std::make_pair(CallSite, F)).second;
151 assert(Inserted && "Pair was already in CallSiteToFunctionMap");
152 FunctionToCallSitesMap[F].insert(CallSite);
155 // Returns the Function of the stub if a stub was erased, or NULL if there
156 // was no stub. This function uses the call-site->function map to find a
157 // relevant function, but asserts that only stubs and not other call sites
158 // will be passed in.
159 Function *EraseStub(const MutexGuard &locked, void *Stub);
161 void EraseAllCallSitesFor(const MutexGuard &locked, Function *F) {
162 assert(locked.holds(TheJIT->lock));
163 EraseAllCallSitesForPrelocked(F);
165 void EraseAllCallSitesForPrelocked(Function *F);
167 // Erases _all_ call sites regardless of their function. This is used to
168 // unregister the stub addresses from the StubToResolverMap in
170 void EraseAllCallSitesPrelocked();
173 /// JITResolver - Keep track of, and resolve, call sites for functions that
174 /// have not yet been compiled.
176 typedef JITResolverState::FunctionToLazyStubMapTy FunctionToLazyStubMapTy;
177 typedef JITResolverState::CallSiteToFunctionMapTy CallSiteToFunctionMapTy;
178 typedef JITResolverState::GlobalToIndirectSymMapTy GlobalToIndirectSymMapTy;
180 /// LazyResolverFn - The target lazy resolver function that we actually
181 /// rewrite instructions to use.
182 TargetJITInfo::LazyResolverFn LazyResolverFn;
184 JITResolverState state;
186 /// ExternalFnToStubMap - This is the equivalent of FunctionToLazyStubMap
187 /// for external functions. TODO: Of course, external functions don't need
188 /// a lazy stub. It's actually here to make it more likely that far calls
189 /// succeed, but no single stub can guarantee that. I'll remove this in a
190 /// subsequent checkin when I actually fix far calls.
191 std::map<void*, void*> ExternalFnToStubMap;
193 /// revGOTMap - map addresses to indexes in the GOT
194 std::map<void*, unsigned> revGOTMap;
195 unsigned nextGOTIndex;
199 /// Instance of JIT corresponding to this Resolver.
203 explicit JITResolver(JIT &jit, JITEmitter &je)
204 : state(&jit), nextGOTIndex(0), JE(je), TheJIT(&jit) {
205 LazyResolverFn = jit.getJITInfo().getLazyResolverFunction(JITCompilerFn);
210 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function's
211 /// lazy-compilation stub if it has already been created.
212 void *getLazyFunctionStubIfAvailable(Function *F);
214 /// getLazyFunctionStub - This returns a pointer to a function's
215 /// lazy-compilation stub, creating one on demand as needed.
216 void *getLazyFunctionStub(Function *F);
218 /// getExternalFunctionStub - Return a stub for the function at the
219 /// specified address, created lazily on demand.
220 void *getExternalFunctionStub(void *FnAddr);
222 /// getGlobalValueIndirectSym - Return an indirect symbol containing the
223 /// specified GV address.
224 void *getGlobalValueIndirectSym(GlobalValue *V, void *GVAddress);
226 void getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
227 SmallVectorImpl<void*> &Ptrs);
229 /// getGOTIndexForAddress - Return a new or existing index in the GOT for
230 /// an address. This function only manages slots, it does not manage the
231 /// contents of the slots or the memory associated with the GOT.
232 unsigned getGOTIndexForAddr(void *addr);
234 /// JITCompilerFn - This function is called to resolve a stub to a compiled
235 /// address. If the LLVM Function corresponding to the stub has not yet
236 /// been compiled, this function compiles it first.
237 static void *JITCompilerFn(void *Stub);
240 class StubToResolverMapTy {
241 /// Map a stub address to a specific instance of a JITResolver so that
242 /// lazily-compiled functions can find the right resolver to use.
245 std::map<void*, JITResolver*> Map;
247 /// Guards Map from concurrent accesses.
248 mutable sys::Mutex Lock;
251 /// Registers a Stub to be resolved by Resolver.
252 void RegisterStubResolver(void *Stub, JITResolver *Resolver) {
253 MutexGuard guard(Lock);
254 Map.insert(std::make_pair(Stub, Resolver));
256 /// Unregisters the Stub when it's invalidated.
257 void UnregisterStubResolver(void *Stub) {
258 MutexGuard guard(Lock);
261 /// Returns the JITResolver instance that owns the Stub.
262 JITResolver *getResolverFromStub(void *Stub) const {
263 MutexGuard guard(Lock);
264 // The address given to us for the stub may not be exactly right, it might
265 // be a little bit after the stub. As such, use upper_bound to find it.
266 // This is the same trick as in LookupFunctionFromCallSite from
268 std::map<void*, JITResolver*>::const_iterator I = Map.upper_bound(Stub);
269 assert(I != Map.begin() && "This is not a known stub!");
273 /// True if any stubs refer to the given resolver. Only used in an assert().
275 bool ResolverHasStubs(JITResolver* Resolver) const {
276 MutexGuard guard(Lock);
277 for (std::map<void*, JITResolver*>::const_iterator I = Map.begin(),
278 E = Map.end(); I != E; ++I) {
279 if (I->second == Resolver)
285 /// This needs to be static so that a lazy call stub can access it with no
286 /// context except the address of the stub.
287 ManagedStatic<StubToResolverMapTy> StubToResolverMap;
289 /// JITEmitter - The JIT implementation of the MachineCodeEmitter, which is
290 /// used to output functions to memory for execution.
291 class JITEmitter : public JITCodeEmitter {
292 JITMemoryManager *MemMgr;
294 // When outputting a function stub in the context of some other function, we
295 // save BufferBegin/BufferEnd/CurBufferPtr here.
296 uint8_t *SavedBufferBegin, *SavedBufferEnd, *SavedCurBufferPtr;
298 // When reattempting to JIT a function after running out of space, we store
299 // the estimated size of the function we're trying to JIT here, so we can
300 // ask the memory manager for at least this much space. When we
301 // successfully emit the function, we reset this back to zero.
302 uintptr_t SizeEstimate;
304 /// Relocations - These are the relocations that the function needs, as
306 std::vector<MachineRelocation> Relocations;
308 /// MBBLocations - This vector is a mapping from MBB ID's to their address.
309 /// It is filled in by the StartMachineBasicBlock callback and queried by
310 /// the getMachineBasicBlockAddress callback.
311 std::vector<uintptr_t> MBBLocations;
313 /// ConstantPool - The constant pool for the current function.
315 MachineConstantPool *ConstantPool;
317 /// ConstantPoolBase - A pointer to the first entry in the constant pool.
319 void *ConstantPoolBase;
321 /// ConstPoolAddresses - Addresses of individual constant pool entries.
323 SmallVector<uintptr_t, 8> ConstPoolAddresses;
325 /// JumpTable - The jump tables for the current function.
327 MachineJumpTableInfo *JumpTable;
329 /// JumpTableBase - A pointer to the first entry in the jump table.
333 /// Resolver - This contains info about the currently resolved functions.
334 JITResolver Resolver;
336 /// DE - The dwarf emitter for the jit.
337 OwningPtr<JITDwarfEmitter> DE;
339 /// DR - The debug registerer for the jit.
340 OwningPtr<JITDebugRegisterer> DR;
342 /// LabelLocations - This vector is a mapping from Label ID's to their
344 DenseMap<MCSymbol*, uintptr_t> LabelLocations;
346 /// MMI - Machine module info for exception informations
347 MachineModuleInfo* MMI;
349 // CurFn - The llvm function being emitted. Only valid during
351 const Function *CurFn;
353 /// Information about emitted code, which is passed to the
354 /// JITEventListeners. This is reset in startFunction and used in
356 JITEvent_EmittedFunctionDetails EmissionDetails;
359 void *FunctionBody; // Beginning of the function's allocation.
360 void *Code; // The address the function's code actually starts at.
361 void *ExceptionTable;
362 EmittedCode() : FunctionBody(0), Code(0), ExceptionTable(0) {}
364 struct EmittedFunctionConfig : public ValueMapConfig<const Function*> {
365 typedef JITEmitter *ExtraData;
366 static void onDelete(JITEmitter *, const Function*);
367 static void onRAUW(JITEmitter *, const Function*, const Function*);
369 ValueMap<const Function *, EmittedCode,
370 EmittedFunctionConfig> EmittedFunctions;
374 /// Instance of the JIT
378 JITEmitter(JIT &jit, JITMemoryManager *JMM, TargetMachine &TM)
379 : SizeEstimate(0), Resolver(jit, *this), MMI(0), CurFn(0),
380 EmittedFunctions(this), TheJIT(&jit) {
381 MemMgr = JMM ? JMM : JITMemoryManager::CreateDefaultMemManager();
382 if (jit.getJITInfo().needsGOT()) {
383 MemMgr->AllocateGOT();
384 DEBUG(dbgs() << "JIT is managing a GOT\n");
387 if (JITExceptionHandling || JITEmitDebugInfo) {
388 DE.reset(new JITDwarfEmitter(jit));
390 if (JITEmitDebugInfo) {
391 DR.reset(new JITDebugRegisterer(TM));
398 /// classof - Methods for support type inquiry through isa, cast, and
401 static inline bool classof(const JITEmitter*) { return true; }
402 static inline bool classof(const MachineCodeEmitter*) { return true; }
404 JITResolver &getJITResolver() { return Resolver; }
406 virtual void startFunction(MachineFunction &F);
407 virtual bool finishFunction(MachineFunction &F);
409 void emitConstantPool(MachineConstantPool *MCP);
410 void initJumpTableInfo(MachineJumpTableInfo *MJTI);
411 void emitJumpTableInfo(MachineJumpTableInfo *MJTI);
413 void startGVStub(const GlobalValue* GV,
414 unsigned StubSize, unsigned Alignment = 1);
415 void startGVStub(void *Buffer, unsigned StubSize);
417 virtual void *allocIndirectGV(const GlobalValue *GV,
418 const uint8_t *Buffer, size_t Size,
421 /// allocateSpace - Reserves space in the current block if any, or
422 /// allocate a new one of the given size.
423 virtual void *allocateSpace(uintptr_t Size, unsigned Alignment);
425 /// allocateGlobal - Allocate memory for a global. Unlike allocateSpace,
426 /// this method does not allocate memory in the current output buffer,
427 /// because a global may live longer than the current function.
428 virtual void *allocateGlobal(uintptr_t Size, unsigned Alignment);
430 virtual void addRelocation(const MachineRelocation &MR) {
431 Relocations.push_back(MR);
434 virtual void StartMachineBasicBlock(MachineBasicBlock *MBB) {
435 if (MBBLocations.size() <= (unsigned)MBB->getNumber())
436 MBBLocations.resize((MBB->getNumber()+1)*2);
437 MBBLocations[MBB->getNumber()] = getCurrentPCValue();
438 DEBUG(dbgs() << "JIT: Emitting BB" << MBB->getNumber() << " at ["
439 << (void*) getCurrentPCValue() << "]\n");
442 virtual uintptr_t getConstantPoolEntryAddress(unsigned Entry) const;
443 virtual uintptr_t getJumpTableEntryAddress(unsigned Entry) const;
445 virtual uintptr_t getMachineBasicBlockAddress(MachineBasicBlock *MBB) const {
446 assert(MBBLocations.size() > (unsigned)MBB->getNumber() &&
447 MBBLocations[MBB->getNumber()] && "MBB not emitted!");
448 return MBBLocations[MBB->getNumber()];
451 /// retryWithMoreMemory - Log a retry and deallocate all memory for the
452 /// given function. Increase the minimum allocation size so that we get
453 /// more memory next time.
454 void retryWithMoreMemory(MachineFunction &F);
456 /// deallocateMemForFunction - Deallocate all memory for the specified
458 void deallocateMemForFunction(const Function *F);
460 virtual void processDebugLoc(DebugLoc DL, bool BeforePrintingInsn);
462 virtual void emitLabel(MCSymbol *Label) {
463 LabelLocations[Label] = getCurrentPCValue();
466 virtual DenseMap<MCSymbol*, uintptr_t> *getLabelLocations() {
467 return &LabelLocations;
470 virtual uintptr_t getLabelAddress(MCSymbol *Label) const {
471 assert(LabelLocations.count(Label) && "Label not emitted!");
472 return LabelLocations.find(Label)->second;
475 virtual void setModuleInfo(MachineModuleInfo* Info) {
477 if (DE.get()) DE->setModuleInfo(Info);
480 void setMemoryExecutable() {
481 MemMgr->setMemoryExecutable();
484 JITMemoryManager *getMemMgr() const { return MemMgr; }
487 void *getPointerToGlobal(GlobalValue *GV, void *Reference,
488 bool MayNeedFarStub);
489 void *getPointerToGVIndirectSym(GlobalValue *V, void *Reference);
490 unsigned addSizeOfGlobal(const GlobalVariable *GV, unsigned Size);
491 unsigned addSizeOfGlobalsInConstantVal(
492 const Constant *C, unsigned Size,
493 SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
494 SmallVectorImpl<const GlobalVariable*> &Worklist);
495 unsigned addSizeOfGlobalsInInitializer(
496 const Constant *Init, unsigned Size,
497 SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
498 SmallVectorImpl<const GlobalVariable*> &Worklist);
499 unsigned GetSizeOfGlobalsInBytes(MachineFunction &MF);
503 void CallSiteValueMapConfig::onDelete(JITResolverState *JRS, Function *F) {
504 JRS->EraseAllCallSitesForPrelocked(F);
507 Function *JITResolverState::EraseStub(const MutexGuard &locked, void *Stub) {
508 CallSiteToFunctionMapTy::iterator C2F_I =
509 CallSiteToFunctionMap.find(Stub);
510 if (C2F_I == CallSiteToFunctionMap.end()) {
515 StubToResolverMap->UnregisterStubResolver(Stub);
517 Function *const F = C2F_I->second;
519 void *RealStub = FunctionToLazyStubMap.lookup(F);
520 assert(RealStub == Stub &&
521 "Call-site that wasn't a stub passed in to EraseStub");
523 FunctionToLazyStubMap.erase(F);
524 CallSiteToFunctionMap.erase(C2F_I);
526 // Remove the stub from the function->call-sites map, and remove the whole
527 // entry from the map if that was the last call site.
528 FunctionToCallSitesMapTy::iterator F2C_I = FunctionToCallSitesMap.find(F);
529 assert(F2C_I != FunctionToCallSitesMap.end() &&
530 "FunctionToCallSitesMap broken");
531 bool Erased = F2C_I->second.erase(Stub);
533 assert(Erased && "FunctionToCallSitesMap broken");
534 if (F2C_I->second.empty())
535 FunctionToCallSitesMap.erase(F2C_I);
540 void JITResolverState::EraseAllCallSitesForPrelocked(Function *F) {
541 FunctionToCallSitesMapTy::iterator F2C = FunctionToCallSitesMap.find(F);
542 if (F2C == FunctionToCallSitesMap.end())
544 StubToResolverMapTy &S2RMap = *StubToResolverMap;
545 for (SmallPtrSet<void*, 1>::const_iterator I = F2C->second.begin(),
546 E = F2C->second.end(); I != E; ++I) {
547 S2RMap.UnregisterStubResolver(*I);
548 bool Erased = CallSiteToFunctionMap.erase(*I);
550 assert(Erased && "Missing call site->function mapping");
552 FunctionToCallSitesMap.erase(F2C);
555 void JITResolverState::EraseAllCallSitesPrelocked() {
556 StubToResolverMapTy &S2RMap = *StubToResolverMap;
557 for (CallSiteToFunctionMapTy::const_iterator
558 I = CallSiteToFunctionMap.begin(),
559 E = CallSiteToFunctionMap.end(); I != E; ++I) {
560 S2RMap.UnregisterStubResolver(I->first);
562 CallSiteToFunctionMap.clear();
563 FunctionToCallSitesMap.clear();
566 JITResolver::~JITResolver() {
567 // No need to lock because we're in the destructor, and state isn't shared.
568 state.EraseAllCallSitesPrelocked();
569 assert(!StubToResolverMap->ResolverHasStubs(this) &&
570 "Resolver destroyed with stubs still alive.");
573 /// getLazyFunctionStubIfAvailable - This returns a pointer to a function stub
574 /// if it has already been created.
575 void *JITResolver::getLazyFunctionStubIfAvailable(Function *F) {
576 MutexGuard locked(TheJIT->lock);
578 // If we already have a stub for this function, recycle it.
579 return state.getFunctionToLazyStubMap(locked).lookup(F);
582 /// getFunctionStub - This returns a pointer to a function stub, creating
583 /// one on demand as needed.
584 void *JITResolver::getLazyFunctionStub(Function *F) {
585 MutexGuard locked(TheJIT->lock);
587 // If we already have a lazy stub for this function, recycle it.
588 void *&Stub = state.getFunctionToLazyStubMap(locked)[F];
589 if (Stub) return Stub;
591 // Call the lazy resolver function if we are JIT'ing lazily. Otherwise we
592 // must resolve the symbol now.
593 void *Actual = TheJIT->isCompilingLazily()
594 ? (void *)(intptr_t)LazyResolverFn : (void *)0;
596 // If this is an external declaration, attempt to resolve the address now
597 // to place in the stub.
598 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage()) {
599 Actual = TheJIT->getPointerToFunction(F);
601 // If we resolved the symbol to a null address (eg. a weak external)
602 // don't emit a stub. Return a null pointer to the application.
603 if (!Actual) return 0;
606 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
607 JE.startGVStub(F, SL.Size, SL.Alignment);
608 // Codegen a new stub, calling the lazy resolver or the actual address of the
609 // external function, if it was resolved.
610 Stub = TheJIT->getJITInfo().emitFunctionStub(F, Actual, JE);
613 if (Actual != (void*)(intptr_t)LazyResolverFn) {
614 // If we are getting the stub for an external function, we really want the
615 // address of the stub in the GlobalAddressMap for the JIT, not the address
616 // of the external function.
617 TheJIT->updateGlobalMapping(F, Stub);
620 DEBUG(dbgs() << "JIT: Lazy stub emitted at [" << Stub << "] for function '"
621 << F->getName() << "'\n");
623 if (TheJIT->isCompilingLazily()) {
624 // Register this JITResolver as the one corresponding to this call site so
625 // JITCompilerFn will be able to find it.
626 StubToResolverMap->RegisterStubResolver(Stub, this);
628 // Finally, keep track of the stub-to-Function mapping so that the
629 // JITCompilerFn knows which function to compile!
630 state.AddCallSite(locked, Stub, F);
631 } else if (!Actual) {
632 // If we are JIT'ing non-lazily but need to call a function that does not
633 // exist yet, add it to the JIT's work list so that we can fill in the
634 // stub address later.
635 assert(!isNonGhostDeclaration(F) && !F->hasAvailableExternallyLinkage() &&
636 "'Actual' should have been set above.");
637 TheJIT->addPendingFunction(F);
643 /// getGlobalValueIndirectSym - Return a lazy pointer containing the specified
645 void *JITResolver::getGlobalValueIndirectSym(GlobalValue *GV, void *GVAddress) {
646 MutexGuard locked(TheJIT->lock);
648 // If we already have a stub for this global variable, recycle it.
649 void *&IndirectSym = state.getGlobalToIndirectSymMap(locked)[GV];
650 if (IndirectSym) return IndirectSym;
652 // Otherwise, codegen a new indirect symbol.
653 IndirectSym = TheJIT->getJITInfo().emitGlobalValueIndirectSym(GV, GVAddress,
656 DEBUG(dbgs() << "JIT: Indirect symbol emitted at [" << IndirectSym
657 << "] for GV '" << GV->getName() << "'\n");
662 /// getExternalFunctionStub - Return a stub for the function at the
663 /// specified address, created lazily on demand.
664 void *JITResolver::getExternalFunctionStub(void *FnAddr) {
665 // If we already have a stub for this function, recycle it.
666 void *&Stub = ExternalFnToStubMap[FnAddr];
667 if (Stub) return Stub;
669 TargetJITInfo::StubLayout SL = TheJIT->getJITInfo().getStubLayout();
670 JE.startGVStub(0, SL.Size, SL.Alignment);
671 Stub = TheJIT->getJITInfo().emitFunctionStub(0, FnAddr, JE);
674 DEBUG(dbgs() << "JIT: Stub emitted at [" << Stub
675 << "] for external function at '" << FnAddr << "'\n");
679 unsigned JITResolver::getGOTIndexForAddr(void* addr) {
680 unsigned idx = revGOTMap[addr];
682 idx = ++nextGOTIndex;
683 revGOTMap[addr] = idx;
684 DEBUG(dbgs() << "JIT: Adding GOT entry " << idx << " for addr ["
690 void JITResolver::getRelocatableGVs(SmallVectorImpl<GlobalValue*> &GVs,
691 SmallVectorImpl<void*> &Ptrs) {
692 MutexGuard locked(TheJIT->lock);
694 const FunctionToLazyStubMapTy &FM = state.getFunctionToLazyStubMap(locked);
695 GlobalToIndirectSymMapTy &GM = state.getGlobalToIndirectSymMap(locked);
697 for (FunctionToLazyStubMapTy::const_iterator i = FM.begin(), e = FM.end();
699 Function *F = i->first;
700 if (F->isDeclaration() && F->hasExternalLinkage()) {
701 GVs.push_back(i->first);
702 Ptrs.push_back(i->second);
705 for (GlobalToIndirectSymMapTy::iterator i = GM.begin(), e = GM.end();
707 GVs.push_back(i->first);
708 Ptrs.push_back(i->second);
712 /// JITCompilerFn - This function is called when a lazy compilation stub has
713 /// been entered. It looks up which function this stub corresponds to, compiles
714 /// it if necessary, then returns the resultant function pointer.
715 void *JITResolver::JITCompilerFn(void *Stub) {
716 JITResolver *JR = StubToResolverMap->getResolverFromStub(Stub);
717 assert(JR && "Unable to find the corresponding JITResolver to the call site");
723 // Only lock for getting the Function. The call getPointerToFunction made
724 // in this function might trigger function materializing, which requires
725 // JIT lock to be unlocked.
726 MutexGuard locked(JR->TheJIT->lock);
728 // The address given to us for the stub may not be exactly right, it might
729 // be a little bit after the stub. As such, use upper_bound to find it.
730 pair<void*, Function*> I =
731 JR->state.LookupFunctionFromCallSite(locked, Stub);
736 // If we have already code generated the function, just return the address.
737 void *Result = JR->TheJIT->getPointerToGlobalIfAvailable(F);
740 // Otherwise we don't have it, do lazy compilation now.
742 // If lazy compilation is disabled, emit a useful error message and abort.
743 if (!JR->TheJIT->isCompilingLazily()) {
744 report_fatal_error("LLVM JIT requested to do lazy compilation of function '"
745 + F->getName() + "' when lazy compiles are disabled!");
748 DEBUG(dbgs() << "JIT: Lazily resolving function '" << F->getName()
749 << "' In stub ptr = " << Stub << " actual ptr = "
750 << ActualPtr << "\n");
752 Result = JR->TheJIT->getPointerToFunction(F);
755 // Reacquire the lock to update the GOT map.
756 MutexGuard locked(JR->TheJIT->lock);
758 // We might like to remove the call site from the CallSiteToFunction map, but
759 // we can't do that! Multiple threads could be stuck, waiting to acquire the
760 // lock above. As soon as the 1st function finishes compiling the function,
761 // the next one will be released, and needs to be able to find the function it
764 // FIXME: We could rewrite all references to this stub if we knew them.
766 // What we will do is set the compiled function address to map to the
767 // same GOT entry as the stub so that later clients may update the GOT
768 // if they see it still using the stub address.
769 // Note: this is done so the Resolver doesn't have to manage GOT memory
770 // Do this without allocating map space if the target isn't using a GOT
771 if(JR->revGOTMap.find(Stub) != JR->revGOTMap.end())
772 JR->revGOTMap[Result] = JR->revGOTMap[Stub];
777 //===----------------------------------------------------------------------===//
780 void *JITEmitter::getPointerToGlobal(GlobalValue *V, void *Reference,
781 bool MayNeedFarStub) {
782 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
783 return TheJIT->getOrEmitGlobalVariable(GV);
785 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
786 return TheJIT->getPointerToGlobal(GA->resolveAliasedGlobal(false));
788 // If we have already compiled the function, return a pointer to its body.
789 Function *F = cast<Function>(V);
791 void *FnStub = Resolver.getLazyFunctionStubIfAvailable(F);
793 // Return the function stub if it's already created. We do this first so
794 // that we're returning the same address for the function as any previous
795 // call. TODO: Yes, this is wrong. The lazy stub isn't guaranteed to be
796 // close enough to call.
800 // If we know the target can handle arbitrary-distance calls, try to
801 // return a direct pointer.
802 if (!MayNeedFarStub) {
803 // If we have code, go ahead and return that.
804 void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
805 if (ResultPtr) return ResultPtr;
807 // If this is an external function pointer, we can force the JIT to
808 // 'compile' it, which really just adds it to the map.
809 if (isNonGhostDeclaration(F) || F->hasAvailableExternallyLinkage())
810 return TheJIT->getPointerToFunction(F);
813 // Otherwise, we may need a to emit a stub, and, conservatively, we always do
814 // so. Note that it's possible to return null from getLazyFunctionStub in the
815 // case of a weak extern that fails to resolve.
816 return Resolver.getLazyFunctionStub(F);
819 void *JITEmitter::getPointerToGVIndirectSym(GlobalValue *V, void *Reference) {
820 // Make sure GV is emitted first, and create a stub containing the fully
822 void *GVAddress = getPointerToGlobal(V, Reference, false);
823 void *StubAddr = Resolver.getGlobalValueIndirectSym(V, GVAddress);
827 void JITEmitter::processDebugLoc(DebugLoc DL, bool BeforePrintingInsn) {
828 if (DL.isUnknown()) return;
829 if (!BeforePrintingInsn) return;
831 const LLVMContext& Context = EmissionDetails.MF->getFunction()->getContext();
833 if (DL.getScope(Context) != 0 && PrevDL != DL) {
834 JITEvent_EmittedFunctionDetails::LineStart NextLine;
835 NextLine.Address = getCurrentPCValue();
837 EmissionDetails.LineStarts.push_back(NextLine);
843 static unsigned GetConstantPoolSizeInBytes(MachineConstantPool *MCP,
844 const TargetData *TD) {
845 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
846 if (Constants.empty()) return 0;
849 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
850 MachineConstantPoolEntry CPE = Constants[i];
851 unsigned AlignMask = CPE.getAlignment() - 1;
852 Size = (Size + AlignMask) & ~AlignMask;
853 const Type *Ty = CPE.getType();
854 Size += TD->getTypeAllocSize(Ty);
859 static unsigned GetJumpTableSizeInBytes(MachineJumpTableInfo *MJTI, JIT *jit) {
860 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
861 if (JT.empty()) return 0;
863 unsigned NumEntries = 0;
864 for (unsigned i = 0, e = JT.size(); i != e; ++i)
865 NumEntries += JT[i].MBBs.size();
867 return NumEntries * MJTI->getEntrySize(*jit->getTargetData());
870 static uintptr_t RoundUpToAlign(uintptr_t Size, unsigned Alignment) {
871 if (Alignment == 0) Alignment = 1;
872 // Since we do not know where the buffer will be allocated, be pessimistic.
873 return Size + Alignment;
876 /// addSizeOfGlobal - add the size of the global (plus any alignment padding)
877 /// into the running total Size.
879 unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
880 const Type *ElTy = GV->getType()->getElementType();
881 size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
883 (size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
884 DEBUG(dbgs() << "JIT: Adding in size " << GVSize << " alignment " << GVAlign);
886 // Assume code section ends with worst possible alignment, so first
887 // variable needs maximal padding.
890 Size = ((Size+GVAlign-1)/GVAlign)*GVAlign;
895 /// addSizeOfGlobalsInConstantVal - find any globals that we haven't seen yet
896 /// but are referenced from the constant; put them in SeenGlobals and the
897 /// Worklist, and add their size into the running total Size.
899 unsigned JITEmitter::addSizeOfGlobalsInConstantVal(
902 SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
903 SmallVectorImpl<const GlobalVariable*> &Worklist) {
904 // If its undefined, return the garbage.
905 if (isa<UndefValue>(C))
908 // If the value is a ConstantExpr
909 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
910 Constant *Op0 = CE->getOperand(0);
911 switch (CE->getOpcode()) {
912 case Instruction::GetElementPtr:
913 case Instruction::Trunc:
914 case Instruction::ZExt:
915 case Instruction::SExt:
916 case Instruction::FPTrunc:
917 case Instruction::FPExt:
918 case Instruction::UIToFP:
919 case Instruction::SIToFP:
920 case Instruction::FPToUI:
921 case Instruction::FPToSI:
922 case Instruction::PtrToInt:
923 case Instruction::IntToPtr:
924 case Instruction::BitCast: {
925 Size = addSizeOfGlobalsInConstantVal(Op0, Size, SeenGlobals, Worklist);
928 case Instruction::Add:
929 case Instruction::FAdd:
930 case Instruction::Sub:
931 case Instruction::FSub:
932 case Instruction::Mul:
933 case Instruction::FMul:
934 case Instruction::UDiv:
935 case Instruction::SDiv:
936 case Instruction::URem:
937 case Instruction::SRem:
938 case Instruction::And:
939 case Instruction::Or:
940 case Instruction::Xor: {
941 Size = addSizeOfGlobalsInConstantVal(Op0, Size, SeenGlobals, Worklist);
942 Size = addSizeOfGlobalsInConstantVal(CE->getOperand(1), Size,
943 SeenGlobals, Worklist);
948 raw_string_ostream Msg(msg);
949 Msg << "ConstantExpr not handled: " << *CE;
950 report_fatal_error(Msg.str());
955 if (C->getType()->getTypeID() == Type::PointerTyID)
956 if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C))
957 if (SeenGlobals.insert(GV)) {
958 Worklist.push_back(GV);
959 Size = addSizeOfGlobal(GV, Size);
965 /// addSizeOfGLobalsInInitializer - handle any globals that we haven't seen yet
966 /// but are referenced from the given initializer.
968 unsigned JITEmitter::addSizeOfGlobalsInInitializer(
969 const Constant *Init,
971 SmallPtrSet<const GlobalVariable*, 8> &SeenGlobals,
972 SmallVectorImpl<const GlobalVariable*> &Worklist) {
973 if (!isa<UndefValue>(Init) &&
974 !isa<ConstantVector>(Init) &&
975 !isa<ConstantAggregateZero>(Init) &&
976 !isa<ConstantArray>(Init) &&
977 !isa<ConstantStruct>(Init) &&
978 Init->getType()->isFirstClassType())
979 Size = addSizeOfGlobalsInConstantVal(Init, Size, SeenGlobals, Worklist);
983 /// GetSizeOfGlobalsInBytes - walk the code for the function, looking for
984 /// globals; then walk the initializers of those globals looking for more.
985 /// If their size has not been considered yet, add it into the running total
988 unsigned JITEmitter::GetSizeOfGlobalsInBytes(MachineFunction &MF) {
990 SmallPtrSet<const GlobalVariable*, 8> SeenGlobals;
992 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
994 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
996 const TargetInstrDesc &Desc = I->getDesc();
997 const MachineInstr &MI = *I;
998 unsigned NumOps = Desc.getNumOperands();
999 for (unsigned CurOp = 0; CurOp < NumOps; CurOp++) {
1000 const MachineOperand &MO = MI.getOperand(CurOp);
1001 if (MO.isGlobal()) {
1002 const GlobalValue* V = MO.getGlobal();
1003 const GlobalVariable *GV = dyn_cast<const GlobalVariable>(V);
1006 // If seen in previous function, it will have an entry here.
1007 if (TheJIT->getPointerToGlobalIfAvailable(
1008 const_cast<GlobalVariable *>(GV)))
1010 // If seen earlier in this function, it will have an entry here.
1011 // FIXME: it should be possible to combine these tables, by
1012 // assuming the addresses of the new globals in this module
1013 // start at 0 (or something) and adjusting them after codegen
1014 // complete. Another possibility is to grab a marker bit in GV.
1015 if (SeenGlobals.insert(GV))
1016 // A variable as yet unseen. Add in its size.
1017 Size = addSizeOfGlobal(GV, Size);
1022 DEBUG(dbgs() << "JIT: About to look through initializers\n");
1023 // Look for more globals that are referenced only from initializers.
1024 SmallVector<const GlobalVariable*, 8> Worklist(
1025 SeenGlobals.begin(), SeenGlobals.end());
1026 while (!Worklist.empty()) {
1027 const GlobalVariable* GV = Worklist.back();
1028 Worklist.pop_back();
1029 if (GV->hasInitializer())
1030 Size = addSizeOfGlobalsInInitializer(GV->getInitializer(), Size,
1031 SeenGlobals, Worklist);
1037 void JITEmitter::startFunction(MachineFunction &F) {
1038 DEBUG(dbgs() << "JIT: Starting CodeGen of Function "
1039 << F.getFunction()->getName() << "\n");
1041 uintptr_t ActualSize = 0;
1042 // Set the memory writable, if it's not already
1043 MemMgr->setMemoryWritable();
1044 if (MemMgr->NeedsExactSize()) {
1045 DEBUG(dbgs() << "JIT: ExactSize\n");
1046 const TargetInstrInfo* TII = F.getTarget().getInstrInfo();
1047 MachineConstantPool *MCP = F.getConstantPool();
1049 // Ensure the constant pool/jump table info is at least 4-byte aligned.
1050 ActualSize = RoundUpToAlign(ActualSize, 16);
1052 // Add the alignment of the constant pool
1053 ActualSize = RoundUpToAlign(ActualSize, MCP->getConstantPoolAlignment());
1055 // Add the constant pool size
1056 ActualSize += GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1058 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo()) {
1059 // Add the aligment of the jump table info
1060 ActualSize = RoundUpToAlign(ActualSize,
1061 MJTI->getEntryAlignment(*TheJIT->getTargetData()));
1063 // Add the jump table size
1064 ActualSize += GetJumpTableSizeInBytes(MJTI, TheJIT);
1067 // Add the alignment for the function
1068 ActualSize = RoundUpToAlign(ActualSize,
1069 std::max(F.getFunction()->getAlignment(), 8U));
1071 // Add the function size
1072 ActualSize += TII->GetFunctionSizeInBytes(F);
1074 DEBUG(dbgs() << "JIT: ActualSize before globals " << ActualSize << "\n");
1075 // Add the size of the globals that will be allocated after this function.
1076 // These are all the ones referenced from this function that were not
1077 // previously allocated.
1078 ActualSize += GetSizeOfGlobalsInBytes(F);
1079 DEBUG(dbgs() << "JIT: ActualSize after globals " << ActualSize << "\n");
1080 } else if (SizeEstimate > 0) {
1081 // SizeEstimate will be non-zero on reallocation attempts.
1082 ActualSize = SizeEstimate;
1085 BufferBegin = CurBufferPtr = MemMgr->startFunctionBody(F.getFunction(),
1087 BufferEnd = BufferBegin+ActualSize;
1088 EmittedFunctions[F.getFunction()].FunctionBody = BufferBegin;
1090 // Ensure the constant pool/jump table info is at least 4-byte aligned.
1093 emitConstantPool(F.getConstantPool());
1094 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
1095 initJumpTableInfo(MJTI);
1097 // About to start emitting the machine code for the function.
1098 emitAlignment(std::max(F.getFunction()->getAlignment(), 8U));
1099 TheJIT->updateGlobalMapping(F.getFunction(), CurBufferPtr);
1100 EmittedFunctions[F.getFunction()].Code = CurBufferPtr;
1102 MBBLocations.clear();
1104 EmissionDetails.MF = &F;
1105 EmissionDetails.LineStarts.clear();
1108 bool JITEmitter::finishFunction(MachineFunction &F) {
1109 if (CurBufferPtr == BufferEnd) {
1110 // We must call endFunctionBody before retrying, because
1111 // deallocateMemForFunction requires it.
1112 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1113 retryWithMoreMemory(F);
1117 if (MachineJumpTableInfo *MJTI = F.getJumpTableInfo())
1118 emitJumpTableInfo(MJTI);
1120 // FnStart is the start of the text, not the start of the constant pool and
1121 // other per-function data.
1123 (uint8_t *)TheJIT->getPointerToGlobalIfAvailable(F.getFunction());
1125 // FnEnd is the end of the function's machine code.
1126 uint8_t *FnEnd = CurBufferPtr;
1128 if (!Relocations.empty()) {
1129 CurFn = F.getFunction();
1130 NumRelos += Relocations.size();
1132 // Resolve the relocations to concrete pointers.
1133 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
1134 MachineRelocation &MR = Relocations[i];
1135 void *ResultPtr = 0;
1136 if (!MR.letTargetResolve()) {
1137 if (MR.isExternalSymbol()) {
1138 ResultPtr = TheJIT->getPointerToNamedFunction(MR.getExternalSymbol(),
1140 DEBUG(dbgs() << "JIT: Map \'" << MR.getExternalSymbol() << "\' to ["
1141 << ResultPtr << "]\n");
1143 // If the target REALLY wants a stub for this function, emit it now.
1144 if (MR.mayNeedFarStub()) {
1145 ResultPtr = Resolver.getExternalFunctionStub(ResultPtr);
1147 } else if (MR.isGlobalValue()) {
1148 ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
1149 BufferBegin+MR.getMachineCodeOffset(),
1150 MR.mayNeedFarStub());
1151 } else if (MR.isIndirectSymbol()) {
1152 ResultPtr = getPointerToGVIndirectSym(
1153 MR.getGlobalValue(), BufferBegin+MR.getMachineCodeOffset());
1154 } else if (MR.isBasicBlock()) {
1155 ResultPtr = (void*)getMachineBasicBlockAddress(MR.getBasicBlock());
1156 } else if (MR.isConstantPoolIndex()) {
1157 ResultPtr = (void*)getConstantPoolEntryAddress(MR.getConstantPoolIndex());
1159 assert(MR.isJumpTableIndex());
1160 ResultPtr=(void*)getJumpTableEntryAddress(MR.getJumpTableIndex());
1163 MR.setResultPointer(ResultPtr);
1166 // if we are managing the GOT and the relocation wants an index,
1168 if (MR.isGOTRelative() && MemMgr->isManagingGOT()) {
1169 unsigned idx = Resolver.getGOTIndexForAddr(ResultPtr);
1170 MR.setGOTIndex(idx);
1171 if (((void**)MemMgr->getGOTBase())[idx] != ResultPtr) {
1172 DEBUG(dbgs() << "JIT: GOT was out of date for " << ResultPtr
1173 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1175 ((void**)MemMgr->getGOTBase())[idx] = ResultPtr;
1181 TheJIT->getJITInfo().relocate(BufferBegin, &Relocations[0],
1182 Relocations.size(), MemMgr->getGOTBase());
1185 // Update the GOT entry for F to point to the new code.
1186 if (MemMgr->isManagingGOT()) {
1187 unsigned idx = Resolver.getGOTIndexForAddr((void*)BufferBegin);
1188 if (((void**)MemMgr->getGOTBase())[idx] != (void*)BufferBegin) {
1189 DEBUG(dbgs() << "JIT: GOT was out of date for " << (void*)BufferBegin
1190 << " pointing at " << ((void**)MemMgr->getGOTBase())[idx]
1192 ((void**)MemMgr->getGOTBase())[idx] = (void*)BufferBegin;
1196 // CurBufferPtr may have moved beyond FnEnd, due to memory allocation for
1197 // global variables that were referenced in the relocations.
1198 MemMgr->endFunctionBody(F.getFunction(), BufferBegin, CurBufferPtr);
1200 if (CurBufferPtr == BufferEnd) {
1201 retryWithMoreMemory(F);
1204 // Now that we've succeeded in emitting the function, reset the
1205 // SizeEstimate back down to zero.
1209 BufferBegin = CurBufferPtr = 0;
1210 NumBytes += FnEnd-FnStart;
1212 // Invalidate the icache if necessary.
1213 sys::Memory::InvalidateInstructionCache(FnStart, FnEnd-FnStart);
1215 TheJIT->NotifyFunctionEmitted(*F.getFunction(), FnStart, FnEnd-FnStart,
1218 // Reset the previous debug location.
1219 PrevDL = DebugLoc();
1221 DEBUG(dbgs() << "JIT: Finished CodeGen of [" << (void*)FnStart
1222 << "] Function: " << F.getFunction()->getName()
1223 << ": " << (FnEnd-FnStart) << " bytes of text, "
1224 << Relocations.size() << " relocations\n");
1226 Relocations.clear();
1227 ConstPoolAddresses.clear();
1229 // Mark code region readable and executable if it's not so already.
1230 MemMgr->setMemoryExecutable();
1233 if (sys::hasDisassembler()) {
1234 dbgs() << "JIT: Disassembled code:\n";
1235 dbgs() << sys::disassembleBuffer(FnStart, FnEnd-FnStart,
1236 (uintptr_t)FnStart);
1238 dbgs() << "JIT: Binary code:\n";
1239 uint8_t* q = FnStart;
1240 for (int i = 0; q < FnEnd; q += 4, ++i) {
1244 dbgs() << "JIT: " << (long)(q - FnStart) << ": ";
1246 for (int j = 3; j >= 0; --j) {
1250 dbgs() << (unsigned short)q[j];
1262 if (JITExceptionHandling || JITEmitDebugInfo) {
1263 uintptr_t ActualSize = 0;
1264 SavedBufferBegin = BufferBegin;
1265 SavedBufferEnd = BufferEnd;
1266 SavedCurBufferPtr = CurBufferPtr;
1268 if (MemMgr->NeedsExactSize())
1269 ActualSize = DE->GetDwarfTableSizeInBytes(F, *this, FnStart, FnEnd);
1271 BufferBegin = CurBufferPtr = MemMgr->startExceptionTable(F.getFunction(),
1273 BufferEnd = BufferBegin+ActualSize;
1274 EmittedFunctions[F.getFunction()].ExceptionTable = BufferBegin;
1276 uint8_t *FrameRegister = DE->EmitDwarfTable(F, *this, FnStart, FnEnd,
1278 MemMgr->endExceptionTable(F.getFunction(), BufferBegin, CurBufferPtr,
1280 uint8_t *EhEnd = CurBufferPtr;
1281 BufferBegin = SavedBufferBegin;
1282 BufferEnd = SavedBufferEnd;
1283 CurBufferPtr = SavedCurBufferPtr;
1285 if (JITExceptionHandling) {
1286 TheJIT->RegisterTable(FrameRegister);
1289 if (JITEmitDebugInfo) {
1291 I.FnStart = FnStart;
1293 I.EhStart = EhStart;
1295 DR->RegisterFunction(F.getFunction(), I);
1305 void JITEmitter::retryWithMoreMemory(MachineFunction &F) {
1306 DEBUG(dbgs() << "JIT: Ran out of space for native code. Reattempting.\n");
1307 Relocations.clear(); // Clear the old relocations or we'll reapply them.
1308 ConstPoolAddresses.clear();
1310 deallocateMemForFunction(F.getFunction());
1311 // Try again with at least twice as much free space.
1312 SizeEstimate = (uintptr_t)(2 * (BufferEnd - BufferBegin));
1315 /// deallocateMemForFunction - Deallocate all memory for the specified
1316 /// function body. Also drop any references the function has to stubs.
1317 /// May be called while the Function is being destroyed inside ~Value().
1318 void JITEmitter::deallocateMemForFunction(const Function *F) {
1319 ValueMap<const Function *, EmittedCode, EmittedFunctionConfig>::iterator
1320 Emitted = EmittedFunctions.find(F);
1321 if (Emitted != EmittedFunctions.end()) {
1322 MemMgr->deallocateFunctionBody(Emitted->second.FunctionBody);
1323 MemMgr->deallocateExceptionTable(Emitted->second.ExceptionTable);
1324 TheJIT->NotifyFreeingMachineCode(Emitted->second.Code);
1326 EmittedFunctions.erase(Emitted);
1329 // TODO: Do we need to unregister exception handling information from libgcc
1332 if (JITEmitDebugInfo) {
1333 DR->UnregisterFunction(F);
1338 void* JITEmitter::allocateSpace(uintptr_t Size, unsigned Alignment) {
1340 return JITCodeEmitter::allocateSpace(Size, Alignment);
1342 // create a new memory block if there is no active one.
1343 // care must be taken so that BufferBegin is invalidated when a
1345 BufferBegin = CurBufferPtr = MemMgr->allocateSpace(Size, Alignment);
1346 BufferEnd = BufferBegin+Size;
1347 return CurBufferPtr;
1350 void* JITEmitter::allocateGlobal(uintptr_t Size, unsigned Alignment) {
1351 // Delegate this call through the memory manager.
1352 return MemMgr->allocateGlobal(Size, Alignment);
1355 void JITEmitter::emitConstantPool(MachineConstantPool *MCP) {
1356 if (TheJIT->getJITInfo().hasCustomConstantPool())
1359 const std::vector<MachineConstantPoolEntry> &Constants = MCP->getConstants();
1360 if (Constants.empty()) return;
1362 unsigned Size = GetConstantPoolSizeInBytes(MCP, TheJIT->getTargetData());
1363 unsigned Align = MCP->getConstantPoolAlignment();
1364 ConstantPoolBase = allocateSpace(Size, Align);
1367 if (ConstantPoolBase == 0) return; // Buffer overflow.
1369 DEBUG(dbgs() << "JIT: Emitted constant pool at [" << ConstantPoolBase
1370 << "] (size: " << Size << ", alignment: " << Align << ")\n");
1372 // Initialize the memory for all of the constant pool entries.
1373 unsigned Offset = 0;
1374 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1375 MachineConstantPoolEntry CPE = Constants[i];
1376 unsigned AlignMask = CPE.getAlignment() - 1;
1377 Offset = (Offset + AlignMask) & ~AlignMask;
1379 uintptr_t CAddr = (uintptr_t)ConstantPoolBase + Offset;
1380 ConstPoolAddresses.push_back(CAddr);
1381 if (CPE.isMachineConstantPoolEntry()) {
1382 // FIXME: add support to lower machine constant pool values into bytes!
1383 report_fatal_error("Initialize memory with machine specific constant pool"
1384 "entry has not been implemented!");
1386 TheJIT->InitializeMemory(CPE.Val.ConstVal, (void*)CAddr);
1387 DEBUG(dbgs() << "JIT: CP" << i << " at [0x";
1388 dbgs().write_hex(CAddr) << "]\n");
1390 const Type *Ty = CPE.Val.ConstVal->getType();
1391 Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
1395 void JITEmitter::initJumpTableInfo(MachineJumpTableInfo *MJTI) {
1396 if (TheJIT->getJITInfo().hasCustomJumpTables())
1398 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline)
1401 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1402 if (JT.empty()) return;
1404 unsigned NumEntries = 0;
1405 for (unsigned i = 0, e = JT.size(); i != e; ++i)
1406 NumEntries += JT[i].MBBs.size();
1408 unsigned EntrySize = MJTI->getEntrySize(*TheJIT->getTargetData());
1410 // Just allocate space for all the jump tables now. We will fix up the actual
1411 // MBB entries in the tables after we emit the code for each block, since then
1412 // we will know the final locations of the MBBs in memory.
1414 JumpTableBase = allocateSpace(NumEntries * EntrySize,
1415 MJTI->getEntryAlignment(*TheJIT->getTargetData()));
1418 void JITEmitter::emitJumpTableInfo(MachineJumpTableInfo *MJTI) {
1419 if (TheJIT->getJITInfo().hasCustomJumpTables())
1422 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1423 if (JT.empty() || JumpTableBase == 0) return;
1426 switch (MJTI->getEntryKind()) {
1427 case MachineJumpTableInfo::EK_Inline:
1429 case MachineJumpTableInfo::EK_BlockAddress: {
1430 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1432 assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == sizeof(void*) &&
1435 // For each jump table, map each target in the jump table to the address of
1436 // an emitted MachineBasicBlock.
1437 intptr_t *SlotPtr = (intptr_t*)JumpTableBase;
1439 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1440 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1441 // Store the address of the basic block for this jump table slot in the
1442 // memory we allocated for the jump table in 'initJumpTableInfo'
1443 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi)
1444 *SlotPtr++ = getMachineBasicBlockAddress(MBBs[mi]);
1449 case MachineJumpTableInfo::EK_Custom32:
1450 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
1451 case MachineJumpTableInfo::EK_LabelDifference32: {
1452 assert(MJTI->getEntrySize(*TheJIT->getTargetData()) == 4&&"Cross JIT'ing?");
1453 // For each jump table, place the offset from the beginning of the table
1454 // to the target address.
1455 int *SlotPtr = (int*)JumpTableBase;
1457 for (unsigned i = 0, e = JT.size(); i != e; ++i) {
1458 const std::vector<MachineBasicBlock*> &MBBs = JT[i].MBBs;
1459 // Store the offset of the basic block for this jump table slot in the
1460 // memory we allocated for the jump table in 'initJumpTableInfo'
1461 uintptr_t Base = (uintptr_t)SlotPtr;
1462 for (unsigned mi = 0, me = MBBs.size(); mi != me; ++mi) {
1463 uintptr_t MBBAddr = getMachineBasicBlockAddress(MBBs[mi]);
1464 /// FIXME: USe EntryKind instead of magic "getPICJumpTableEntry" hook.
1465 *SlotPtr++ = TheJIT->getJITInfo().getPICJumpTableEntry(MBBAddr, Base);
1473 void JITEmitter::startGVStub(const GlobalValue* GV,
1474 unsigned StubSize, unsigned Alignment) {
1475 SavedBufferBegin = BufferBegin;
1476 SavedBufferEnd = BufferEnd;
1477 SavedCurBufferPtr = CurBufferPtr;
1479 BufferBegin = CurBufferPtr = MemMgr->allocateStub(GV, StubSize, Alignment);
1480 BufferEnd = BufferBegin+StubSize+1;
1483 void JITEmitter::startGVStub(void *Buffer, unsigned StubSize) {
1484 SavedBufferBegin = BufferBegin;
1485 SavedBufferEnd = BufferEnd;
1486 SavedCurBufferPtr = CurBufferPtr;
1488 BufferBegin = CurBufferPtr = (uint8_t *)Buffer;
1489 BufferEnd = BufferBegin+StubSize+1;
1492 void JITEmitter::finishGVStub() {
1493 assert(CurBufferPtr != BufferEnd && "Stub overflowed allocated space.");
1494 NumBytes += getCurrentPCOffset();
1495 BufferBegin = SavedBufferBegin;
1496 BufferEnd = SavedBufferEnd;
1497 CurBufferPtr = SavedCurBufferPtr;
1500 void *JITEmitter::allocIndirectGV(const GlobalValue *GV,
1501 const uint8_t *Buffer, size_t Size,
1502 unsigned Alignment) {
1503 uint8_t *IndGV = MemMgr->allocateStub(GV, Size, Alignment);
1504 memcpy(IndGV, Buffer, Size);
1508 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
1509 // in the constant pool that was last emitted with the 'emitConstantPool'
1512 uintptr_t JITEmitter::getConstantPoolEntryAddress(unsigned ConstantNum) const {
1513 assert(ConstantNum < ConstantPool->getConstants().size() &&
1514 "Invalid ConstantPoolIndex!");
1515 return ConstPoolAddresses[ConstantNum];
1518 // getJumpTableEntryAddress - Return the address of the JumpTable with index
1519 // 'Index' in the jumpp table that was last initialized with 'initJumpTableInfo'
1521 uintptr_t JITEmitter::getJumpTableEntryAddress(unsigned Index) const {
1522 const std::vector<MachineJumpTableEntry> &JT = JumpTable->getJumpTables();
1523 assert(Index < JT.size() && "Invalid jump table index!");
1525 unsigned EntrySize = JumpTable->getEntrySize(*TheJIT->getTargetData());
1527 unsigned Offset = 0;
1528 for (unsigned i = 0; i < Index; ++i)
1529 Offset += JT[i].MBBs.size();
1531 Offset *= EntrySize;
1533 return (uintptr_t)((char *)JumpTableBase + Offset);
1536 void JITEmitter::EmittedFunctionConfig::onDelete(
1537 JITEmitter *Emitter, const Function *F) {
1538 Emitter->deallocateMemForFunction(F);
1540 void JITEmitter::EmittedFunctionConfig::onRAUW(
1541 JITEmitter *, const Function*, const Function*) {
1542 llvm_unreachable("The JIT doesn't know how to handle a"
1543 " RAUW on a value it has emitted.");
1547 //===----------------------------------------------------------------------===//
1548 // Public interface to this file
1549 //===----------------------------------------------------------------------===//
1551 JITCodeEmitter *JIT::createEmitter(JIT &jit, JITMemoryManager *JMM,
1552 TargetMachine &tm) {
1553 return new JITEmitter(jit, JMM, tm);
1556 // getPointerToFunctionOrStub - If the specified function has been
1557 // code-gen'd, return a pointer to the function. If not, compile it, or use
1558 // a stub to implement lazy compilation if available.
1560 void *JIT::getPointerToFunctionOrStub(Function *F) {
1561 // If we have already code generated the function, just return the address.
1562 if (void *Addr = getPointerToGlobalIfAvailable(F))
1565 // Get a stub if the target supports it.
1566 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1567 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1568 return JE->getJITResolver().getLazyFunctionStub(F);
1571 void JIT::updateFunctionStub(Function *F) {
1572 // Get the empty stub we generated earlier.
1573 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1574 JITEmitter *JE = cast<JITEmitter>(getCodeEmitter());
1575 void *Stub = JE->getJITResolver().getLazyFunctionStub(F);
1576 void *Addr = getPointerToGlobalIfAvailable(F);
1577 assert(Addr != Stub && "Function must have non-stub address to be updated.");
1579 // Tell the target jit info to rewrite the stub at the specified address,
1580 // rather than creating a new one.
1581 TargetJITInfo::StubLayout layout = getJITInfo().getStubLayout();
1582 JE->startGVStub(Stub, layout.Size);
1583 getJITInfo().emitFunctionStub(F, Addr, *getCodeEmitter());
1587 /// freeMachineCodeForFunction - release machine code memory for given Function.
1589 void JIT::freeMachineCodeForFunction(Function *F) {
1590 // Delete translation for this from the ExecutionEngine, so it will get
1591 // retranslated next time it is used.
1592 updateGlobalMapping(F, 0);
1594 // Free the actual memory for the function body and related stuff.
1595 assert(isa<JITEmitter>(JCE) && "Unexpected MCE?");
1596 cast<JITEmitter>(JCE)->deallocateMemForFunction(F);