1 //===-- Emitter.cpp - Write machine code to executable memory -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by the LLVM research group and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines a MachineCodeEmitter object that is used by the JIT to
11 // write machine code to memory and remember where relocatable values are.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "jit"
17 #include "llvm/Constant.h"
18 #include "llvm/Module.h"
19 #include "llvm/CodeGen/MachineCodeEmitter.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineRelocation.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Target/TargetJITInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/System/Memory.h"
31 Statistic<> NumBytes("jit", "Number of bytes of machine code compiled");
36 //===----------------------------------------------------------------------===//
37 // JITMemoryManager code.
40 /// JITMemoryManager - Manage memory for the JIT code generation in a logical,
41 /// sane way. This splits a large block of MAP_NORESERVE'd memory into two
42 /// sections, one for function stubs, one for the functions themselves. We
43 /// have to do this because we may need to emit a function stub while in the
44 /// middle of emitting a function, and we don't know how large the function we
45 /// are emitting is. This never bothers to release the memory, because when
46 /// we are ready to destroy the JIT, the program exits.
47 class JITMemoryManager {
48 sys::MemoryBlock MemBlock; // Virtual memory block allocated RWX
49 unsigned char *MemBase; // Base of block of memory, start of stub mem
50 unsigned char *FunctionBase; // Start of the function body area
51 unsigned char *CurStubPtr, *CurFunctionPtr;
55 inline unsigned char *allocateStub(unsigned StubSize);
56 inline unsigned char *startFunctionBody();
57 inline void endFunctionBody(unsigned char *FunctionEnd);
61 JITMemoryManager::JITMemoryManager() {
62 // Allocate a 16M block of memory...
63 MemBlock = sys::Memory::AllocateRWX((16 << 20));
64 MemBase = reinterpret_cast<unsigned char*>(MemBlock.base());
65 FunctionBase = MemBase + 512*1024; // Use 512k for stubs
67 // Allocate stubs backwards from the function base, allocate functions forward
68 // from the function base.
69 CurStubPtr = CurFunctionPtr = FunctionBase;
72 unsigned char *JITMemoryManager::allocateStub(unsigned StubSize) {
73 CurStubPtr -= StubSize;
74 if (CurStubPtr < MemBase) {
75 std::cerr << "JIT ran out of memory for function stubs!\n";
81 unsigned char *JITMemoryManager::startFunctionBody() {
82 // Round up to an even multiple of 8 bytes, this should eventually be target
84 return (unsigned char*)(((intptr_t)CurFunctionPtr + 7) & ~7);
87 void JITMemoryManager::endFunctionBody(unsigned char *FunctionEnd) {
88 assert(FunctionEnd > CurFunctionPtr);
89 CurFunctionPtr = FunctionEnd;
92 //===----------------------------------------------------------------------===//
93 // JIT lazy compilation code.
96 /// JITResolver - Keep track of, and resolve, call sites for functions that
97 /// have not yet been compiled.
99 /// MCE - The MachineCodeEmitter to use to emit stubs with.
100 MachineCodeEmitter &MCE;
102 /// LazyResolverFn - The target lazy resolver function that we actually
103 /// rewrite instructions to use.
104 TargetJITInfo::LazyResolverFn LazyResolverFn;
106 // FunctionToStubMap - Keep track of the stub created for a particular
107 // function so that we can reuse them if necessary.
108 std::map<Function*, void*> FunctionToStubMap;
110 // StubToFunctionMap - Keep track of the function that each stub corresponds
112 std::map<void*, Function*> StubToFunctionMap;
115 JITResolver(MachineCodeEmitter &mce) : MCE(mce) {
117 TheJIT->getJITInfo().getLazyResolverFunction(JITCompilerFn);
120 /// getFunctionStub - This returns a pointer to a function stub, creating
121 /// one on demand as needed.
122 void *getFunctionStub(Function *F);
124 /// AddCallbackAtLocation - If the target is capable of rewriting an
125 /// instruction without the use of a stub, record the location of the use so
126 /// we know which function is being used at the location.
127 void *AddCallbackAtLocation(Function *F, void *Location) {
128 /// Get the target-specific JIT resolver function.
129 StubToFunctionMap[Location] = F;
130 return (void*)LazyResolverFn;
133 /// JITCompilerFn - This function is called to resolve a stub to a compiled
134 /// address. If the LLVM Function corresponding to the stub has not yet
135 /// been compiled, this function compiles it first.
136 static void *JITCompilerFn(void *Stub);
140 /// getJITResolver - This function returns the one instance of the JIT resolver.
142 static JITResolver &getJITResolver(MachineCodeEmitter *MCE = 0) {
143 static JITResolver TheJITResolver(*MCE);
144 return TheJITResolver;
147 /// getFunctionStub - This returns a pointer to a function stub, creating
148 /// one on demand as needed.
149 void *JITResolver::getFunctionStub(Function *F) {
150 // If we already have a stub for this function, recycle it.
151 void *&Stub = FunctionToStubMap[F];
152 if (Stub) return Stub;
154 // Otherwise, codegen a new stub. For now, the stub will call the lazy
155 // resolver function.
156 Stub = TheJIT->getJITInfo().emitFunctionStub((void*)LazyResolverFn, MCE);
158 DEBUG(std::cerr << "JIT: Stub emitted at [" << Stub << "] for function '"
159 << F->getName() << "\n");
161 // Finally, keep track of the stub-to-Function mapping so that the
162 // JITCompilerFn knows which function to compile!
163 StubToFunctionMap[Stub] = F;
167 /// JITCompilerFn - This function is called when a lazy compilation stub has
168 /// been entered. It looks up which function this stub corresponds to, compiles
169 /// it if necessary, then returns the resultant function pointer.
170 void *JITResolver::JITCompilerFn(void *Stub) {
171 JITResolver &JR = getJITResolver();
173 // The address given to us for the stub may not be exactly right, it might be
174 // a little bit after the stub. As such, use upper_bound to find it.
175 std::map<void*, Function*>::iterator I =
176 JR.StubToFunctionMap.upper_bound(Stub);
177 assert(I != JR.StubToFunctionMap.begin() && "This is not a known stub!");
178 Function *F = (--I)->second;
180 // The target function will rewrite the stub so that the compilation callback
181 // function is no longer called from this stub.
182 JR.StubToFunctionMap.erase(I);
184 DEBUG(std::cerr << "JIT: Lazily resolving function '" << F->getName()
185 << "' In stub ptr = " << Stub << " actual ptr = "
186 << I->first << "\n");
188 void *Result = TheJIT->getPointerToFunction(F);
190 // We don't need to reuse this stub in the future, as F is now compiled.
191 JR.FunctionToStubMap.erase(F);
193 // FIXME: We could rewrite all references to this stub if we knew them.
198 //===----------------------------------------------------------------------===//
199 // JIT MachineCodeEmitter code.
202 /// Emitter - The JIT implementation of the MachineCodeEmitter, which is used
203 /// to output functions to memory for execution.
204 class Emitter : public MachineCodeEmitter {
205 JITMemoryManager MemMgr;
207 // CurBlock - The start of the current block of memory. CurByte - The
208 // current byte being emitted to.
209 unsigned char *CurBlock, *CurByte;
211 // When outputting a function stub in the context of some other function, we
212 // save CurBlock and CurByte here.
213 unsigned char *SavedCurBlock, *SavedCurByte;
215 // ConstantPoolAddresses - Contains the location for each entry in the
217 std::vector<void*> ConstantPoolAddresses;
219 /// Relocations - These are the relocations that the function needs, as
221 std::vector<MachineRelocation> Relocations;
223 Emitter(JIT &jit) { TheJIT = &jit; }
225 virtual void startFunction(MachineFunction &F);
226 virtual void finishFunction(MachineFunction &F);
227 virtual void emitConstantPool(MachineConstantPool *MCP);
228 virtual void startFunctionStub(unsigned StubSize);
229 virtual void* finishFunctionStub(const Function *F);
230 virtual void emitByte(unsigned char B);
231 virtual void emitWord(unsigned W);
232 virtual void emitWordAt(unsigned W, unsigned *Ptr);
234 virtual void addRelocation(const MachineRelocation &MR) {
235 Relocations.push_back(MR);
238 virtual uint64_t getCurrentPCValue();
239 virtual uint64_t getCurrentPCOffset();
240 virtual uint64_t getGlobalValueAddress(GlobalValue *V);
241 virtual uint64_t getGlobalValueAddress(const char *Name);
242 virtual uint64_t getConstantPoolEntryAddress(unsigned Entry);
244 // forceCompilationOf - Force the compilation of the specified function, and
245 // return its address, because we REALLY need the address now.
247 // FIXME: This is JIT specific!
249 virtual uint64_t forceCompilationOf(Function *F);
252 void *getPointerToGlobal(GlobalValue *GV, void *Reference, bool NoNeedStub);
256 MachineCodeEmitter *JIT::createEmitter(JIT &jit) {
257 return new Emitter(jit);
260 void *Emitter::getPointerToGlobal(GlobalValue *V, void *Reference,
261 bool DoesntNeedStub) {
262 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
263 /// FIXME: If we straightened things out, this could actually emit the
264 /// global immediately instead of queuing it for codegen later!
265 GlobalVariable *GV = cast<GlobalVariable>(V);
266 return TheJIT->getOrEmitGlobalVariable(GV);
269 // If we have already compiled the function, return a pointer to its body.
270 Function *F = cast<Function>(V);
271 void *ResultPtr = TheJIT->getPointerToGlobalIfAvailable(F);
272 if (ResultPtr) return ResultPtr;
274 if (F->hasExternalLinkage()) {
275 // If this is an external function pointer, we can force the JIT to
276 // 'compile' it, which really just adds it to the map.
277 return TheJIT->getPointerToFunction(F);
280 // Okay, the function has not been compiled yet, if the target callback
281 // mechanism is capable of rewriting the instruction directly, prefer to do
282 // that instead of emitting a stub.
284 return getJITResolver(this).AddCallbackAtLocation(F, Reference);
286 // Otherwise, we have to emit a lazy resolving stub.
287 return getJITResolver(this).getFunctionStub(F);
290 void Emitter::startFunction(MachineFunction &F) {
291 CurByte = CurBlock = MemMgr.startFunctionBody();
292 TheJIT->addGlobalMapping(F.getFunction(), CurBlock);
295 void Emitter::finishFunction(MachineFunction &F) {
296 MemMgr.endFunctionBody(CurByte);
297 ConstantPoolAddresses.clear();
298 NumBytes += CurByte-CurBlock;
300 if (!Relocations.empty()) {
301 // Resolve the relocations to concrete pointers.
302 for (unsigned i = 0, e = Relocations.size(); i != e; ++i) {
303 MachineRelocation &MR = Relocations[i];
306 ResultPtr = TheJIT->getPointerToNamedFunction(MR.getString());
308 ResultPtr = getPointerToGlobal(MR.getGlobalValue(),
309 CurBlock+MR.getMachineCodeOffset(),
310 MR.doesntNeedFunctionStub());
311 MR.setResultPointer(ResultPtr);
314 TheJIT->getJITInfo().relocate(CurBlock, &Relocations[0],
318 DEBUG(std::cerr << "JIT: Finished CodeGen of [" << (void*)CurBlock
319 << "] Function: " << F.getFunction()->getName()
320 << ": " << CurByte-CurBlock << " bytes of text, "
321 << Relocations.size() << " relocations\n");
325 void Emitter::emitConstantPool(MachineConstantPool *MCP) {
326 const std::vector<Constant*> &Constants = MCP->getConstants();
327 if (Constants.empty()) return;
329 std::vector<unsigned> ConstantOffset;
330 ConstantOffset.reserve(Constants.size());
332 // Calculate how much space we will need for all the constants, and the offset
333 // each one will live in.
334 unsigned TotalSize = 0;
335 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
336 const Type *Ty = Constants[i]->getType();
337 unsigned Size = TheJIT->getTargetData().getTypeSize(Ty);
338 unsigned Alignment = TheJIT->getTargetData().getTypeAlignment(Ty);
339 // Make sure to take into account the alignment requirements of the type.
340 TotalSize = (TotalSize + Alignment-1) & ~(Alignment-1);
342 // Remember the offset this element lives at.
343 ConstantOffset.push_back(TotalSize);
344 TotalSize += Size; // Reserve space for the constant.
347 // Now that we know how much memory to allocate, do so.
348 char *Pool = new char[TotalSize];
350 // Actually output all of the constants, and remember their addresses.
351 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
352 void *Addr = Pool + ConstantOffset[i];
353 TheJIT->InitializeMemory(Constants[i], Addr);
354 ConstantPoolAddresses.push_back(Addr);
358 void Emitter::startFunctionStub(unsigned StubSize) {
359 SavedCurBlock = CurBlock; SavedCurByte = CurByte;
360 CurByte = CurBlock = MemMgr.allocateStub(StubSize);
363 void *Emitter::finishFunctionStub(const Function *F) {
364 NumBytes += CurByte-CurBlock;
365 std::swap(CurBlock, SavedCurBlock);
366 CurByte = SavedCurByte;
367 return SavedCurBlock;
370 void Emitter::emitByte(unsigned char B) {
371 *CurByte++ = B; // Write the byte to memory
374 void Emitter::emitWord(unsigned W) {
375 // This won't work if the endianness of the host and target don't agree! (For
376 // a JIT this can't happen though. :)
377 *(unsigned*)CurByte = W;
378 CurByte += sizeof(unsigned);
381 void Emitter::emitWordAt(unsigned W, unsigned *Ptr) {
385 uint64_t Emitter::getGlobalValueAddress(GlobalValue *V) {
386 // Try looking up the function to see if it is already compiled, if not return
388 if (Function *F = dyn_cast<Function>(V)) {
389 void *Addr = TheJIT->getPointerToGlobalIfAvailable(F);
390 if (Addr == 0 && F->hasExternalLinkage()) {
391 // Do not output stubs for external functions.
392 Addr = TheJIT->getPointerToFunction(F);
394 return (intptr_t)Addr;
396 return (intptr_t)TheJIT->getOrEmitGlobalVariable(cast<GlobalVariable>(V));
399 uint64_t Emitter::getGlobalValueAddress(const char *Name) {
400 return (intptr_t)TheJIT->getPointerToNamedFunction(Name);
403 // getConstantPoolEntryAddress - Return the address of the 'ConstantNum' entry
404 // in the constant pool that was last emitted with the 'emitConstantPool'
407 uint64_t Emitter::getConstantPoolEntryAddress(unsigned ConstantNum) {
408 assert(ConstantNum < ConstantPoolAddresses.size() &&
409 "Invalid ConstantPoolIndex!");
410 return (intptr_t)ConstantPoolAddresses[ConstantNum];
413 // getCurrentPCValue - This returns the address that the next emitted byte
414 // will be output to.
416 uint64_t Emitter::getCurrentPCValue() {
417 return (intptr_t)CurByte;
420 uint64_t Emitter::getCurrentPCOffset() {
421 return (intptr_t)CurByte-(intptr_t)CurBlock;
424 uint64_t Emitter::forceCompilationOf(Function *F) {
425 return (intptr_t)TheJIT->getPointerToFunction(F);
428 // getPointerToNamedFunction - This function is used as a global wrapper to
429 // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
430 // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
431 // need to resolve function(s) that are being mis-codegenerated, so we need to
432 // resolve their addresses at runtime, and this is the way to do it.
434 void *getPointerToNamedFunction(const char *Name) {
435 Module &M = TheJIT->getModule();
436 if (Function *F = M.getNamedFunction(Name))
437 return TheJIT->getPointerToFunction(F);
438 return TheJIT->getPointerToNamedFunction(Name);