75bb586ef2cb1002bd75af2ba7b3d8eaae083519
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "dyld"
15 #include "llvm/ADT/OwningPtr.h"
16 #include "llvm/ADT/StringRef.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/IntervalMap.h"
19 #include "RuntimeDyldELF.h"
20 #include "llvm/Object/ObjectFile.h"
21 #include "llvm/Support/ELF.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/Object/ELF.h"
24 #include "JITRegistrar.h"
25 using namespace llvm;
26 using namespace llvm::object;
27
28 namespace {
29
30 template<support::endianness target_endianness, bool is64Bits>
31 class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
32   LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
33
34   typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
35   typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
36   typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
37   typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
38
39   typedef typename ELFObjectFile<target_endianness, is64Bits>::
40     Elf_Ehdr Elf_Ehdr;
41
42   typedef typename ELFDataTypeTypedefHelper<
43           target_endianness, is64Bits>::value_type addr_type;
44
45 protected:
46   // This duplicates the 'Data' member in the 'Binary' base class
47   // but it is necessary to workaround a bug in gcc 4.2
48   MemoryBuffer *InputData;
49
50 public:
51   DyldELFObject(MemoryBuffer *Object, error_code &ec);
52
53   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
54   void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
55
56   const MemoryBuffer& getBuffer() const { return *InputData; }
57
58   // Methods for type inquiry through isa, cast and dyn_cast
59   static inline bool classof(const Binary *v) {
60     return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
61             && classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
62   }
63   static inline bool classof(
64       const ELFObjectFile<target_endianness, is64Bits> *v) {
65     return v->isDyldType();
66   }
67   static inline bool classof(const DyldELFObject *v) {
68     return true;
69   }
70 };
71
72 template<support::endianness target_endianness, bool is64Bits>
73 class ELFObjectImage : public ObjectImage {
74   protected:
75     DyldELFObject<target_endianness, is64Bits> *DyldObj;
76     bool Registered;
77
78   public:
79     ELFObjectImage(DyldELFObject<target_endianness, is64Bits> *Obj)
80     : ObjectImage(Obj),
81       DyldObj(Obj),
82       Registered(false) {}
83
84     virtual ~ELFObjectImage() {
85       if (Registered)
86         deregisterWithDebugger();
87     }
88
89     // Subclasses can override these methods to update the image with loaded
90     // addresses for sections and common symbols
91     virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
92     {
93       DyldObj->updateSectionAddress(Sec, Addr);
94     }
95
96     virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
97     {
98       DyldObj->updateSymbolAddress(Sym, Addr);
99     }
100
101     virtual void registerWithDebugger()
102     {
103       JITRegistrar::getGDBRegistrar().registerObject(DyldObj->getBuffer());
104       Registered = true;
105     }
106     virtual void deregisterWithDebugger()
107     {
108       JITRegistrar::getGDBRegistrar().deregisterObject(DyldObj->getBuffer());
109     }
110 };
111
112 template<support::endianness target_endianness, bool is64Bits>
113 DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Object,
114                                                           error_code &ec)
115   : ELFObjectFile<target_endianness, is64Bits>(Object, ec),
116     InputData(Object) {
117   this->isDyldELFObject = true;
118 }
119
120 template<support::endianness target_endianness, bool is64Bits>
121 void DyldELFObject<target_endianness, is64Bits>::updateSectionAddress(
122                                                        const SectionRef &Sec,
123                                                        uint64_t Addr) {
124   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
125   Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
126                           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
127
128   // This assumes the address passed in matches the target address bitness
129   // The template-based type cast handles everything else.
130   shdr->sh_addr = static_cast<addr_type>(Addr);
131 }
132
133 template<support::endianness target_endianness, bool is64Bits>
134 void DyldELFObject<target_endianness, is64Bits>::updateSymbolAddress(
135                                                        const SymbolRef &SymRef,
136                                                        uint64_t Addr) {
137
138   Elf_Sym *sym = const_cast<Elf_Sym*>(
139                                  ELFObjectFile<target_endianness, is64Bits>::
140                                    getSymbol(SymRef.getRawDataRefImpl()));
141
142   // This assumes the address passed in matches the target address bitness
143   // The template-based type cast handles everything else.
144   sym->st_value = static_cast<addr_type>(Addr);
145 }
146
147 } // namespace
148
149
150 namespace llvm {
151
152 ObjectImage *RuntimeDyldELF::createObjectImage(
153                                          const MemoryBuffer *ConstInputBuffer) {
154   MemoryBuffer *InputBuffer = const_cast<MemoryBuffer*>(ConstInputBuffer);
155   std::pair<unsigned char, unsigned char> Ident = getElfArchType(InputBuffer);
156   error_code ec;
157
158   if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
159     DyldELFObject<support::little, false> *Obj =
160            new DyldELFObject<support::little, false>(InputBuffer, ec);
161     return new ELFObjectImage<support::little, false>(Obj);
162   }
163   else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
164     DyldELFObject<support::big, false> *Obj =
165            new DyldELFObject<support::big, false>(InputBuffer, ec);
166     return new ELFObjectImage<support::big, false>(Obj);
167   }
168   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
169     DyldELFObject<support::big, true> *Obj =
170            new DyldELFObject<support::big, true>(InputBuffer, ec);
171     return new ELFObjectImage<support::big, true>(Obj);
172   }
173   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
174     DyldELFObject<support::little, true> *Obj =
175            new DyldELFObject<support::little, true>(InputBuffer, ec);
176     return new ELFObjectImage<support::little, true>(Obj);
177   }
178   else
179     llvm_unreachable("Unexpected ELF format");
180 }
181
182 void RuntimeDyldELF::handleObjectLoaded(ObjectImage *Obj)
183 {
184   Obj->registerWithDebugger();
185   // Save the loaded object.  It will deregister itself when deleted
186   LoadedObject = Obj;
187 }
188
189 RuntimeDyldELF::~RuntimeDyldELF() {
190   if (LoadedObject)
191     delete LoadedObject;
192 }
193
194 void RuntimeDyldELF::resolveX86_64Relocation(uint8_t *LocalAddress,
195                                              uint64_t FinalAddress,
196                                              uint64_t Value,
197                                              uint32_t Type,
198                                              int64_t Addend) {
199   switch (Type) {
200   default:
201     llvm_unreachable("Relocation type not implemented yet!");
202   break;
203   case ELF::R_X86_64_64: {
204     uint64_t *Target = (uint64_t*)(LocalAddress);
205     *Target = Value + Addend;
206     break;
207   }
208   case ELF::R_X86_64_32:
209   case ELF::R_X86_64_32S: {
210     Value += Addend;
211     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
212            (Type == ELF::R_X86_64_32S && 
213              ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
214     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
215     uint32_t *Target = reinterpret_cast<uint32_t*>(LocalAddress);
216     *Target = TruncatedAddr;
217     break;
218   }
219   case ELF::R_X86_64_PC32: {
220     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
221     int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
222     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
223     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
224     *Placeholder = TruncOffset;
225     break;
226   }
227   }
228 }
229
230 void RuntimeDyldELF::resolveX86Relocation(uint8_t *LocalAddress,
231                                           uint32_t FinalAddress,
232                                           uint32_t Value,
233                                           uint32_t Type,
234                                           int32_t Addend) {
235   switch (Type) {
236   case ELF::R_386_32: {
237     uint32_t *Target = (uint32_t*)(LocalAddress);
238     uint32_t Placeholder = *Target;
239     *Target = Placeholder + Value + Addend;
240     break;
241   }
242   case ELF::R_386_PC32: {
243     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
244     uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
245     *Placeholder = RealOffset;
246     break;
247     }
248     default:
249       // There are other relocation types, but it appears these are the
250       // only ones currently used by the LLVM ELF object writer
251       llvm_unreachable("Relocation type not implemented yet!");
252       break;
253   }
254 }
255
256 void RuntimeDyldELF::resolveARMRelocation(uint8_t *LocalAddress,
257                                           uint32_t FinalAddress,
258                                           uint32_t Value,
259                                           uint32_t Type,
260                                           int32_t Addend) {
261   // TODO: Add Thumb relocations.
262   uint32_t* TargetPtr = (uint32_t*)LocalAddress;
263   Value += Addend;
264
265   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << LocalAddress
266                << " FinalAddress: " << format("%p",FinalAddress)
267                << " Value: " << format("%x",Value)
268                << " Type: " << format("%x",Type)
269                << " Addend: " << format("%x",Addend)
270                << "\n");
271
272   switch(Type) {
273   default:
274     llvm_unreachable("Not implemented relocation type!");
275
276   // Just write 32bit value to relocation address
277   case ELF::R_ARM_ABS32 :
278     *TargetPtr = Value;
279     break;
280
281   // Write first 16 bit of 32 bit value to the mov instruction.
282   // Last 4 bit should be shifted.
283   case ELF::R_ARM_MOVW_ABS_NC :
284     Value = Value & 0xFFFF;
285     *TargetPtr |= Value & 0xFFF;
286     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
287     break;
288
289   // Write last 16 bit of 32 bit value to the mov instruction.
290   // Last 4 bit should be shifted.
291   case ELF::R_ARM_MOVT_ABS :
292     Value = (Value >> 16) & 0xFFFF;
293     *TargetPtr |= Value & 0xFFF;
294     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
295     break;
296
297   // Write 24 bit relative value to the branch instruction.
298   case ELF::R_ARM_PC24 :    // Fall through.
299   case ELF::R_ARM_CALL :    // Fall through.
300   case ELF::R_ARM_JUMP24 :
301     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
302     RelValue = (RelValue & 0x03FFFFFC) >> 2;
303     *TargetPtr &= 0xFF000000;
304     *TargetPtr |= RelValue;
305     break;
306   }
307 }
308
309 void RuntimeDyldELF::resolveRelocation(uint8_t *LocalAddress,
310                                        uint64_t FinalAddress,
311                                        uint64_t Value,
312                                        uint32_t Type,
313                                        int64_t Addend) {
314   switch (Arch) {
315   case Triple::x86_64:
316     resolveX86_64Relocation(LocalAddress, FinalAddress, Value, Type, Addend);
317     break;
318   case Triple::x86:
319     resolveX86Relocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
320                          (uint32_t)(Value & 0xffffffffL), Type,
321                          (uint32_t)(Addend & 0xffffffffL));
322     break;
323   case Triple::arm:    // Fall through.
324   case Triple::thumb:
325     resolveARMRelocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
326                          (uint32_t)(Value & 0xffffffffL), Type,
327                          (uint32_t)(Addend & 0xffffffffL));
328     break;
329   default: llvm_unreachable("Unsupported CPU type!");
330   }
331 }
332
333 void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
334                                           ObjectImage &Obj,
335                                           ObjSectionToIDMap &ObjSectionToID,
336                                           const SymbolTableMap &Symbols,
337                                           StubMap &Stubs) {
338
339   uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
340   intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
341   const SymbolRef &Symbol = Rel.Symbol;
342
343   // Obtain the symbol name which is referenced in the relocation
344   StringRef TargetName;
345   Symbol.getName(TargetName);
346   DEBUG(dbgs() << "\t\tRelType: " << RelType
347                << " Addend: " << Addend
348                << " TargetName: " << TargetName
349                << "\n");
350   RelocationValueRef Value;
351   // First search for the symbol in the local symbol table
352   SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
353   if (lsi != Symbols.end()) {
354     Value.SectionID = lsi->second.first;
355     Value.Addend = lsi->second.second;
356   } else {
357     // Search for the symbol in the global symbol table
358     SymbolTableMap::const_iterator gsi =
359         GlobalSymbolTable.find(TargetName.data());
360     if (gsi != GlobalSymbolTable.end()) {
361       Value.SectionID = gsi->second.first;
362       Value.Addend = gsi->second.second;
363     } else {
364       SymbolRef::Type SymType;
365       Symbol.getType(SymType);
366       switch (SymType) {
367         case SymbolRef::ST_Debug: {
368           // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
369           // and can be changed by another developers. Maybe best way is add
370           // a new symbol type ST_Section to SymbolRef and use it.
371           section_iterator si(Obj.end_sections());
372           Symbol.getSection(si);
373           if (si == Obj.end_sections())
374             llvm_unreachable("Symbol section not found, bad object file format!");
375           DEBUG(dbgs() << "\t\tThis is section symbol\n");
376           Value.SectionID = findOrEmitSection(Obj, (*si), true, ObjSectionToID);
377           Value.Addend = Addend;
378           break;
379         }
380         case SymbolRef::ST_Unknown: {
381           Value.SymbolName = TargetName.data();
382           Value.Addend = Addend;
383           break;
384         }
385         default:
386           llvm_unreachable("Unresolved symbol type!");
387           break;
388       }
389     }
390   }
391   DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
392                << " Rel.Offset: " << Rel.Offset
393                << "\n");
394   if (Arch == Triple::arm &&
395       (RelType == ELF::R_ARM_PC24 ||
396        RelType == ELF::R_ARM_CALL ||
397        RelType == ELF::R_ARM_JUMP24)) {
398     // This is an ARM branch relocation, need to use a stub function.
399     DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
400     SectionEntry &Section = Sections[Rel.SectionID];
401     uint8_t *Target = Section.Address + Rel.Offset;
402
403     //  Look up for existing stub.
404     StubMap::const_iterator i = Stubs.find(Value);
405     if (i != Stubs.end()) {
406       resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address +
407                         i->second, RelType, 0);
408       DEBUG(dbgs() << " Stub function found\n");
409     } else {
410       // Create a new stub function.
411       DEBUG(dbgs() << " Create a new stub function\n");
412       Stubs[Value] = Section.StubOffset;
413       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
414                                                    Section.StubOffset);
415       RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
416                          ELF::R_ARM_ABS32, Value.Addend);
417       if (Value.SymbolName)
418         addRelocationForSymbol(RE, Value.SymbolName);
419       else
420         addRelocationForSection(RE, Value.SectionID);
421
422       resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address +
423                         Section.StubOffset, RelType, 0);
424       Section.StubOffset += getMaxStubSize();
425     }
426   } else {
427     RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
428     if (Value.SymbolName)
429       addRelocationForSymbol(RE, Value.SymbolName);
430     else
431       addRelocationForSection(RE, Value.SectionID);
432   }
433 }
434
435 bool RuntimeDyldELF::isCompatibleFormat(const MemoryBuffer *InputBuffer) const {
436   StringRef Magic = InputBuffer->getBuffer().slice(0, ELF::EI_NIDENT);
437   return (memcmp(Magic.data(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
438 }
439 } // namespace llvm