1 //===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library implements the functionality defined in llvm/IR/Writer.h
12 // Note that these routines must be extremely tolerant of various errors in the
13 // LLVM code, because it can be used for debugging transformations.
15 //===----------------------------------------------------------------------===//
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/IR/AssemblyAnnotationWriter.h"
23 #include "llvm/IR/CFG.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DebugInfo.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRPrintingPasses.h"
29 #include "llvm/IR/InlineAsm.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Module.h"
33 #include "llvm/IR/ModuleSlotTracker.h"
34 #include "llvm/IR/Operator.h"
35 #include "llvm/IR/Statepoint.h"
36 #include "llvm/IR/TypeFinder.h"
37 #include "llvm/IR/UseListOrder.h"
38 #include "llvm/IR/ValueSymbolTable.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/Dwarf.h"
41 #include "llvm/Support/ErrorHandling.h"
42 #include "llvm/Support/FormattedStream.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
49 // Make virtual table appear in this compilation unit.
50 AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
52 //===----------------------------------------------------------------------===//
54 //===----------------------------------------------------------------------===//
58 DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
60 unsigned size() const { return IDs.size(); }
61 std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
62 std::pair<unsigned, bool> lookup(const Value *V) const {
65 void index(const Value *V) {
66 // Explicitly sequence get-size and insert-value operations to avoid UB.
67 unsigned ID = IDs.size() + 1;
73 static void orderValue(const Value *V, OrderMap &OM) {
74 if (OM.lookup(V).first)
77 if (const Constant *C = dyn_cast<Constant>(V))
78 if (C->getNumOperands() && !isa<GlobalValue>(C))
79 for (const Value *Op : C->operands())
80 if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
83 // Note: we cannot cache this lookup above, since inserting into the map
84 // changes the map's size, and thus affects the other IDs.
88 static OrderMap orderModule(const Module *M) {
89 // This needs to match the order used by ValueEnumerator::ValueEnumerator()
90 // and ValueEnumerator::incorporateFunction().
93 for (const GlobalVariable &G : M->globals()) {
94 if (G.hasInitializer())
95 if (!isa<GlobalValue>(G.getInitializer()))
96 orderValue(G.getInitializer(), OM);
99 for (const GlobalAlias &A : M->aliases()) {
100 if (!isa<GlobalValue>(A.getAliasee()))
101 orderValue(A.getAliasee(), OM);
104 for (const Function &F : *M) {
105 if (F.hasPrefixData())
106 if (!isa<GlobalValue>(F.getPrefixData()))
107 orderValue(F.getPrefixData(), OM);
109 if (F.hasPrologueData())
110 if (!isa<GlobalValue>(F.getPrologueData()))
111 orderValue(F.getPrologueData(), OM);
113 if (F.hasPersonalityFn())
114 if (!isa<GlobalValue>(F.getPersonalityFn()))
115 orderValue(F.getPersonalityFn(), OM);
119 if (F.isDeclaration())
122 for (const Argument &A : F.args())
124 for (const BasicBlock &BB : F) {
126 for (const Instruction &I : BB) {
127 for (const Value *Op : I.operands())
128 if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
138 static void predictValueUseListOrderImpl(const Value *V, const Function *F,
139 unsigned ID, const OrderMap &OM,
140 UseListOrderStack &Stack) {
141 // Predict use-list order for this one.
142 typedef std::pair<const Use *, unsigned> Entry;
143 SmallVector<Entry, 64> List;
144 for (const Use &U : V->uses())
145 // Check if this user will be serialized.
146 if (OM.lookup(U.getUser()).first)
147 List.push_back(std::make_pair(&U, List.size()));
150 // We may have lost some users.
154 !isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
155 if (auto *BA = dyn_cast<BlockAddress>(V))
156 ID = OM.lookup(BA->getBasicBlock()).first;
157 std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
158 const Use *LU = L.first;
159 const Use *RU = R.first;
163 auto LID = OM.lookup(LU->getUser()).first;
164 auto RID = OM.lookup(RU->getUser()).first;
166 // If ID is 4, then expect: 7 6 5 1 2 3.
180 // LID and RID are equal, so we have different operands of the same user.
181 // Assume operands are added in order for all instructions.
184 return LU->getOperandNo() < RU->getOperandNo();
185 return LU->getOperandNo() > RU->getOperandNo();
189 List.begin(), List.end(),
190 [](const Entry &L, const Entry &R) { return L.second < R.second; }))
191 // Order is already correct.
194 // Store the shuffle.
195 Stack.emplace_back(V, F, List.size());
196 assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
197 for (size_t I = 0, E = List.size(); I != E; ++I)
198 Stack.back().Shuffle[I] = List[I].second;
201 static void predictValueUseListOrder(const Value *V, const Function *F,
202 OrderMap &OM, UseListOrderStack &Stack) {
203 auto &IDPair = OM[V];
204 assert(IDPair.first && "Unmapped value");
206 // Already predicted.
209 // Do the actual prediction.
210 IDPair.second = true;
211 if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
212 predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
214 // Recursive descent into constants.
215 if (const Constant *C = dyn_cast<Constant>(V))
216 if (C->getNumOperands()) // Visit GlobalValues.
217 for (const Value *Op : C->operands())
218 if (isa<Constant>(Op)) // Visit GlobalValues.
219 predictValueUseListOrder(Op, F, OM, Stack);
222 static UseListOrderStack predictUseListOrder(const Module *M) {
223 OrderMap OM = orderModule(M);
225 // Use-list orders need to be serialized after all the users have been added
226 // to a value, or else the shuffles will be incomplete. Store them per
227 // function in a stack.
229 // Aside from function order, the order of values doesn't matter much here.
230 UseListOrderStack Stack;
232 // We want to visit the functions backward now so we can list function-local
233 // constants in the last Function they're used in. Module-level constants
234 // have already been visited above.
235 for (auto I = M->rbegin(), E = M->rend(); I != E; ++I) {
236 const Function &F = *I;
237 if (F.isDeclaration())
239 for (const BasicBlock &BB : F)
240 predictValueUseListOrder(&BB, &F, OM, Stack);
241 for (const Argument &A : F.args())
242 predictValueUseListOrder(&A, &F, OM, Stack);
243 for (const BasicBlock &BB : F)
244 for (const Instruction &I : BB)
245 for (const Value *Op : I.operands())
246 if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
247 predictValueUseListOrder(Op, &F, OM, Stack);
248 for (const BasicBlock &BB : F)
249 for (const Instruction &I : BB)
250 predictValueUseListOrder(&I, &F, OM, Stack);
253 // Visit globals last.
254 for (const GlobalVariable &G : M->globals())
255 predictValueUseListOrder(&G, nullptr, OM, Stack);
256 for (const Function &F : *M)
257 predictValueUseListOrder(&F, nullptr, OM, Stack);
258 for (const GlobalAlias &A : M->aliases())
259 predictValueUseListOrder(&A, nullptr, OM, Stack);
260 for (const GlobalVariable &G : M->globals())
261 if (G.hasInitializer())
262 predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
263 for (const GlobalAlias &A : M->aliases())
264 predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
265 for (const Function &F : *M)
266 if (F.hasPrefixData())
267 predictValueUseListOrder(F.getPrefixData(), nullptr, OM, Stack);
272 static const Module *getModuleFromVal(const Value *V) {
273 if (const Argument *MA = dyn_cast<Argument>(V))
274 return MA->getParent() ? MA->getParent()->getParent() : nullptr;
276 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
277 return BB->getParent() ? BB->getParent()->getParent() : nullptr;
279 if (const Instruction *I = dyn_cast<Instruction>(V)) {
280 const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
281 return M ? M->getParent() : nullptr;
284 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
285 return GV->getParent();
287 if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
288 for (const User *U : MAV->users())
289 if (isa<Instruction>(U))
290 if (const Module *M = getModuleFromVal(U))
298 static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
300 default: Out << "cc" << cc; break;
301 case CallingConv::Fast: Out << "fastcc"; break;
302 case CallingConv::Cold: Out << "coldcc"; break;
303 case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
304 case CallingConv::AnyReg: Out << "anyregcc"; break;
305 case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
306 case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
307 case CallingConv::GHC: Out << "ghccc"; break;
308 case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
309 case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
310 case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
311 case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
312 case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
313 case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
314 case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
315 case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
316 case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
317 case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
318 case CallingConv::PTX_Device: Out << "ptx_device"; break;
319 case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
320 case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
321 case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
322 case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
326 // PrintEscapedString - Print each character of the specified string, escaping
327 // it if it is not printable or if it is an escape char.
328 static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
329 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
330 unsigned char C = Name[i];
331 if (isprint(C) && C != '\\' && C != '"')
334 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
346 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
347 /// prefixed with % (if the string only contains simple characters) or is
348 /// surrounded with ""'s (if it has special chars in it). Print it out.
349 static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
350 assert(!Name.empty() && "Cannot get empty name!");
352 case NoPrefix: break;
353 case GlobalPrefix: OS << '@'; break;
354 case ComdatPrefix: OS << '$'; break;
355 case LabelPrefix: break;
356 case LocalPrefix: OS << '%'; break;
359 // Scan the name to see if it needs quotes first.
360 bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
362 for (unsigned i = 0, e = Name.size(); i != e; ++i) {
363 // By making this unsigned, the value passed in to isalnum will always be
364 // in the range 0-255. This is important when building with MSVC because
365 // its implementation will assert. This situation can arise when dealing
366 // with UTF-8 multibyte characters.
367 unsigned char C = Name[i];
368 if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
376 // If we didn't need any quotes, just write out the name in one blast.
382 // Okay, we need quotes. Output the quotes and escape any scary characters as
385 PrintEscapedString(Name, OS);
389 /// PrintLLVMName - Turn the specified name into an 'LLVM name', which is either
390 /// prefixed with % (if the string only contains simple characters) or is
391 /// surrounded with ""'s (if it has special chars in it). Print it out.
392 static void PrintLLVMName(raw_ostream &OS, const Value *V) {
393 PrintLLVMName(OS, V->getName(),
394 isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
400 TypePrinting(const TypePrinting &) = delete;
401 void operator=(const TypePrinting&) = delete;
404 /// NamedTypes - The named types that are used by the current module.
405 TypeFinder NamedTypes;
407 /// NumberedTypes - The numbered types, along with their value.
408 DenseMap<StructType*, unsigned> NumberedTypes;
410 TypePrinting() = default;
412 void incorporateTypes(const Module &M);
414 void print(Type *Ty, raw_ostream &OS);
416 void printStructBody(StructType *Ty, raw_ostream &OS);
420 void TypePrinting::incorporateTypes(const Module &M) {
421 NamedTypes.run(M, false);
423 // The list of struct types we got back includes all the struct types, split
424 // the unnamed ones out to a numbering and remove the anonymous structs.
425 unsigned NextNumber = 0;
427 std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
428 for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
429 StructType *STy = *I;
431 // Ignore anonymous types.
432 if (STy->isLiteral())
435 if (STy->getName().empty())
436 NumberedTypes[STy] = NextNumber++;
441 NamedTypes.erase(NextToUse, NamedTypes.end());
445 /// CalcTypeName - Write the specified type to the specified raw_ostream, making
446 /// use of type names or up references to shorten the type name where possible.
447 void TypePrinting::print(Type *Ty, raw_ostream &OS) {
448 switch (Ty->getTypeID()) {
449 case Type::VoidTyID: OS << "void"; return;
450 case Type::HalfTyID: OS << "half"; return;
451 case Type::FloatTyID: OS << "float"; return;
452 case Type::DoubleTyID: OS << "double"; return;
453 case Type::X86_FP80TyID: OS << "x86_fp80"; return;
454 case Type::FP128TyID: OS << "fp128"; return;
455 case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
456 case Type::LabelTyID: OS << "label"; return;
457 case Type::MetadataTyID: OS << "metadata"; return;
458 case Type::X86_MMXTyID: OS << "x86_mmx"; return;
459 case Type::IntegerTyID:
460 OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
463 case Type::FunctionTyID: {
464 FunctionType *FTy = cast<FunctionType>(Ty);
465 print(FTy->getReturnType(), OS);
467 for (FunctionType::param_iterator I = FTy->param_begin(),
468 E = FTy->param_end(); I != E; ++I) {
469 if (I != FTy->param_begin())
473 if (FTy->isVarArg()) {
474 if (FTy->getNumParams()) OS << ", ";
480 case Type::StructTyID: {
481 StructType *STy = cast<StructType>(Ty);
483 if (STy->isLiteral())
484 return printStructBody(STy, OS);
486 if (!STy->getName().empty())
487 return PrintLLVMName(OS, STy->getName(), LocalPrefix);
489 DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
490 if (I != NumberedTypes.end())
491 OS << '%' << I->second;
492 else // Not enumerated, print the hex address.
493 OS << "%\"type " << STy << '\"';
496 case Type::PointerTyID: {
497 PointerType *PTy = cast<PointerType>(Ty);
498 print(PTy->getElementType(), OS);
499 if (unsigned AddressSpace = PTy->getAddressSpace())
500 OS << " addrspace(" << AddressSpace << ')';
504 case Type::ArrayTyID: {
505 ArrayType *ATy = cast<ArrayType>(Ty);
506 OS << '[' << ATy->getNumElements() << " x ";
507 print(ATy->getElementType(), OS);
511 case Type::VectorTyID: {
512 VectorType *PTy = cast<VectorType>(Ty);
513 OS << "<" << PTy->getNumElements() << " x ";
514 print(PTy->getElementType(), OS);
519 llvm_unreachable("Invalid TypeID");
522 void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
523 if (STy->isOpaque()) {
531 if (STy->getNumElements() == 0) {
534 StructType::element_iterator I = STy->element_begin();
537 for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
549 //===----------------------------------------------------------------------===//
550 // SlotTracker Class: Enumerate slot numbers for unnamed values
551 //===----------------------------------------------------------------------===//
552 /// This class provides computation of slot numbers for LLVM Assembly writing.
556 /// ValueMap - A mapping of Values to slot numbers.
557 typedef DenseMap<const Value*, unsigned> ValueMap;
560 /// TheModule - The module for which we are holding slot numbers.
561 const Module* TheModule;
563 /// TheFunction - The function for which we are holding slot numbers.
564 const Function* TheFunction;
565 bool FunctionProcessed;
566 bool ShouldInitializeAllMetadata;
568 /// mMap - The slot map for the module level data.
572 /// fMap - The slot map for the function level data.
576 /// mdnMap - Map for MDNodes.
577 DenseMap<const MDNode*, unsigned> mdnMap;
580 /// asMap - The slot map for attribute sets.
581 DenseMap<AttributeSet, unsigned> asMap;
584 /// Construct from a module.
586 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
587 /// functions, giving correct numbering for metadata referenced only from
588 /// within a function (even if no functions have been initialized).
589 explicit SlotTracker(const Module *M,
590 bool ShouldInitializeAllMetadata = false);
591 /// Construct from a function, starting out in incorp state.
593 /// If \c ShouldInitializeAllMetadata, initializes all metadata in all
594 /// functions, giving correct numbering for metadata referenced only from
595 /// within a function (even if no functions have been initialized).
596 explicit SlotTracker(const Function *F,
597 bool ShouldInitializeAllMetadata = false);
599 /// Return the slot number of the specified value in it's type
600 /// plane. If something is not in the SlotTracker, return -1.
601 int getLocalSlot(const Value *V);
602 int getGlobalSlot(const GlobalValue *V);
603 int getMetadataSlot(const MDNode *N);
604 int getAttributeGroupSlot(AttributeSet AS);
606 /// If you'd like to deal with a function instead of just a module, use
607 /// this method to get its data into the SlotTracker.
608 void incorporateFunction(const Function *F) {
610 FunctionProcessed = false;
613 const Function *getFunction() const { return TheFunction; }
615 /// After calling incorporateFunction, use this method to remove the
616 /// most recently incorporated function from the SlotTracker. This
617 /// will reset the state of the machine back to just the module contents.
618 void purgeFunction();
620 /// MDNode map iterators.
621 typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
622 mdn_iterator mdn_begin() { return mdnMap.begin(); }
623 mdn_iterator mdn_end() { return mdnMap.end(); }
624 unsigned mdn_size() const { return mdnMap.size(); }
625 bool mdn_empty() const { return mdnMap.empty(); }
627 /// AttributeSet map iterators.
628 typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
629 as_iterator as_begin() { return asMap.begin(); }
630 as_iterator as_end() { return asMap.end(); }
631 unsigned as_size() const { return asMap.size(); }
632 bool as_empty() const { return asMap.empty(); }
634 /// This function does the actual initialization.
635 inline void initialize();
637 // Implementation Details
639 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
640 void CreateModuleSlot(const GlobalValue *V);
642 /// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
643 void CreateMetadataSlot(const MDNode *N);
645 /// CreateFunctionSlot - Insert the specified Value* into the slot table.
646 void CreateFunctionSlot(const Value *V);
648 /// \brief Insert the specified AttributeSet into the slot table.
649 void CreateAttributeSetSlot(AttributeSet AS);
651 /// Add all of the module level global variables (and their initializers)
652 /// and function declarations, but not the contents of those functions.
653 void processModule();
655 /// Add all of the functions arguments, basic blocks, and instructions.
656 void processFunction();
658 /// Add all of the metadata from a function.
659 void processFunctionMetadata(const Function &F);
661 /// Add all of the metadata from an instruction.
662 void processInstructionMetadata(const Instruction &I);
664 SlotTracker(const SlotTracker &) = delete;
665 void operator=(const SlotTracker &) = delete;
669 ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
671 : M(M), F(F), Machine(&Machine) {}
673 ModuleSlotTracker::ModuleSlotTracker(const Module *M,
674 bool ShouldInitializeAllMetadata)
675 : MachineStorage(M ? new SlotTracker(M, ShouldInitializeAllMetadata)
677 M(M), Machine(MachineStorage.get()) {}
679 ModuleSlotTracker::~ModuleSlotTracker() {}
681 void ModuleSlotTracker::incorporateFunction(const Function &F) {
685 // Nothing to do if this is the right function already.
689 Machine->purgeFunction();
690 Machine->incorporateFunction(&F);
694 static SlotTracker *createSlotTracker(const Module *M) {
695 return new SlotTracker(M);
698 static SlotTracker *createSlotTracker(const Value *V) {
699 if (const Argument *FA = dyn_cast<Argument>(V))
700 return new SlotTracker(FA->getParent());
702 if (const Instruction *I = dyn_cast<Instruction>(V))
704 return new SlotTracker(I->getParent()->getParent());
706 if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
707 return new SlotTracker(BB->getParent());
709 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
710 return new SlotTracker(GV->getParent());
712 if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
713 return new SlotTracker(GA->getParent());
715 if (const Function *Func = dyn_cast<Function>(V))
716 return new SlotTracker(Func);
722 #define ST_DEBUG(X) dbgs() << X
727 // Module level constructor. Causes the contents of the Module (sans functions)
728 // to be added to the slot table.
729 SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
730 : TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
731 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
732 fNext(0), mdnNext(0), asNext(0) {}
734 // Function level constructor. Causes the contents of the Module and the one
735 // function provided to be added to the slot table.
736 SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
737 : TheModule(F ? F->getParent() : nullptr), TheFunction(F),
738 FunctionProcessed(false),
739 ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
740 fNext(0), mdnNext(0), asNext(0) {}
742 inline void SlotTracker::initialize() {
745 TheModule = nullptr; ///< Prevent re-processing next time we're called.
748 if (TheFunction && !FunctionProcessed)
752 // Iterate through all the global variables, functions, and global
753 // variable initializers and create slots for them.
754 void SlotTracker::processModule() {
755 ST_DEBUG("begin processModule!\n");
757 // Add all of the unnamed global variables to the value table.
758 for (const GlobalVariable &Var : TheModule->globals()) {
760 CreateModuleSlot(&Var);
763 for (const GlobalAlias &A : TheModule->aliases()) {
765 CreateModuleSlot(&A);
768 // Add metadata used by named metadata.
769 for (const NamedMDNode &NMD : TheModule->named_metadata()) {
770 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
771 CreateMetadataSlot(NMD.getOperand(i));
774 for (const Function &F : *TheModule) {
776 // Add all the unnamed functions to the table.
777 CreateModuleSlot(&F);
779 if (ShouldInitializeAllMetadata)
780 processFunctionMetadata(F);
782 // Add all the function attributes to the table.
783 // FIXME: Add attributes of other objects?
784 AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
785 if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
786 CreateAttributeSetSlot(FnAttrs);
789 ST_DEBUG("end processModule!\n");
792 // Process the arguments, basic blocks, and instructions of a function.
793 void SlotTracker::processFunction() {
794 ST_DEBUG("begin processFunction!\n");
797 // Add all the function arguments with no names.
798 for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
799 AE = TheFunction->arg_end(); AI != AE; ++AI)
801 CreateFunctionSlot(AI);
803 ST_DEBUG("Inserting Instructions:\n");
805 // Add all of the basic blocks and instructions with no names.
806 for (auto &BB : *TheFunction) {
808 CreateFunctionSlot(&BB);
810 processFunctionMetadata(*TheFunction);
813 if (!I.getType()->isVoidTy() && !I.hasName())
814 CreateFunctionSlot(&I);
816 // We allow direct calls to any llvm.foo function here, because the
817 // target may not be linked into the optimizer.
818 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
819 // Add all the call attributes to the table.
820 AttributeSet Attrs = CI->getAttributes().getFnAttributes();
821 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
822 CreateAttributeSetSlot(Attrs);
823 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
824 // Add all the call attributes to the table.
825 AttributeSet Attrs = II->getAttributes().getFnAttributes();
826 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
827 CreateAttributeSetSlot(Attrs);
832 FunctionProcessed = true;
834 ST_DEBUG("end processFunction!\n");
837 void SlotTracker::processFunctionMetadata(const Function &F) {
838 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
840 F.getAllMetadata(MDs);
842 CreateMetadataSlot(MD.second);
845 processInstructionMetadata(I);
849 void SlotTracker::processInstructionMetadata(const Instruction &I) {
850 // Process metadata used directly by intrinsics.
851 if (const CallInst *CI = dyn_cast<CallInst>(&I))
852 if (Function *F = CI->getCalledFunction())
853 if (F->isIntrinsic())
854 for (auto &Op : I.operands())
855 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
856 if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
857 CreateMetadataSlot(N);
859 // Process metadata attached to this instruction.
860 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
861 I.getAllMetadata(MDs);
863 CreateMetadataSlot(MD.second);
866 /// Clean up after incorporating a function. This is the only way to get out of
867 /// the function incorporation state that affects get*Slot/Create*Slot. Function
868 /// incorporation state is indicated by TheFunction != 0.
869 void SlotTracker::purgeFunction() {
870 ST_DEBUG("begin purgeFunction!\n");
871 fMap.clear(); // Simply discard the function level map
872 TheFunction = nullptr;
873 FunctionProcessed = false;
874 ST_DEBUG("end purgeFunction!\n");
877 /// getGlobalSlot - Get the slot number of a global value.
878 int SlotTracker::getGlobalSlot(const GlobalValue *V) {
879 // Check for uninitialized state and do lazy initialization.
882 // Find the value in the module map
883 ValueMap::iterator MI = mMap.find(V);
884 return MI == mMap.end() ? -1 : (int)MI->second;
887 /// getMetadataSlot - Get the slot number of a MDNode.
888 int SlotTracker::getMetadataSlot(const MDNode *N) {
889 // Check for uninitialized state and do lazy initialization.
892 // Find the MDNode in the module map
893 mdn_iterator MI = mdnMap.find(N);
894 return MI == mdnMap.end() ? -1 : (int)MI->second;
898 /// getLocalSlot - Get the slot number for a value that is local to a function.
899 int SlotTracker::getLocalSlot(const Value *V) {
900 assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
902 // Check for uninitialized state and do lazy initialization.
905 ValueMap::iterator FI = fMap.find(V);
906 return FI == fMap.end() ? -1 : (int)FI->second;
909 int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
910 // Check for uninitialized state and do lazy initialization.
913 // Find the AttributeSet in the module map.
914 as_iterator AI = asMap.find(AS);
915 return AI == asMap.end() ? -1 : (int)AI->second;
918 /// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
919 void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
920 assert(V && "Can't insert a null Value into SlotTracker!");
921 assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
922 assert(!V->hasName() && "Doesn't need a slot!");
924 unsigned DestSlot = mNext++;
927 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
929 // G = Global, F = Function, A = Alias, o = other
930 ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
931 (isa<Function>(V) ? 'F' :
932 (isa<GlobalAlias>(V) ? 'A' : 'o'))) << "]\n");
935 /// CreateSlot - Create a new slot for the specified value if it has no name.
936 void SlotTracker::CreateFunctionSlot(const Value *V) {
937 assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
939 unsigned DestSlot = fNext++;
942 // G = Global, F = Function, o = other
943 ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
944 DestSlot << " [o]\n");
947 /// CreateModuleSlot - Insert the specified MDNode* into the slot table.
948 void SlotTracker::CreateMetadataSlot(const MDNode *N) {
949 assert(N && "Can't insert a null Value into SlotTracker!");
951 unsigned DestSlot = mdnNext;
952 if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
956 // Recursively add any MDNodes referenced by operands.
957 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
958 if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
959 CreateMetadataSlot(Op);
962 void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
963 assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
964 "Doesn't need a slot!");
966 as_iterator I = asMap.find(AS);
967 if (I != asMap.end())
970 unsigned DestSlot = asNext++;
971 asMap[AS] = DestSlot;
974 //===----------------------------------------------------------------------===//
975 // AsmWriter Implementation
976 //===----------------------------------------------------------------------===//
978 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
979 TypePrinting *TypePrinter,
980 SlotTracker *Machine,
981 const Module *Context);
983 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
984 TypePrinting *TypePrinter,
985 SlotTracker *Machine, const Module *Context,
986 bool FromValue = false);
988 static const char *getPredicateText(unsigned predicate) {
989 const char * pred = "unknown";
991 case FCmpInst::FCMP_FALSE: pred = "false"; break;
992 case FCmpInst::FCMP_OEQ: pred = "oeq"; break;
993 case FCmpInst::FCMP_OGT: pred = "ogt"; break;
994 case FCmpInst::FCMP_OGE: pred = "oge"; break;
995 case FCmpInst::FCMP_OLT: pred = "olt"; break;
996 case FCmpInst::FCMP_OLE: pred = "ole"; break;
997 case FCmpInst::FCMP_ONE: pred = "one"; break;
998 case FCmpInst::FCMP_ORD: pred = "ord"; break;
999 case FCmpInst::FCMP_UNO: pred = "uno"; break;
1000 case FCmpInst::FCMP_UEQ: pred = "ueq"; break;
1001 case FCmpInst::FCMP_UGT: pred = "ugt"; break;
1002 case FCmpInst::FCMP_UGE: pred = "uge"; break;
1003 case FCmpInst::FCMP_ULT: pred = "ult"; break;
1004 case FCmpInst::FCMP_ULE: pred = "ule"; break;
1005 case FCmpInst::FCMP_UNE: pred = "une"; break;
1006 case FCmpInst::FCMP_TRUE: pred = "true"; break;
1007 case ICmpInst::ICMP_EQ: pred = "eq"; break;
1008 case ICmpInst::ICMP_NE: pred = "ne"; break;
1009 case ICmpInst::ICMP_SGT: pred = "sgt"; break;
1010 case ICmpInst::ICMP_SGE: pred = "sge"; break;
1011 case ICmpInst::ICMP_SLT: pred = "slt"; break;
1012 case ICmpInst::ICMP_SLE: pred = "sle"; break;
1013 case ICmpInst::ICMP_UGT: pred = "ugt"; break;
1014 case ICmpInst::ICMP_UGE: pred = "uge"; break;
1015 case ICmpInst::ICMP_ULT: pred = "ult"; break;
1016 case ICmpInst::ICMP_ULE: pred = "ule"; break;
1021 static void writeAtomicRMWOperation(raw_ostream &Out,
1022 AtomicRMWInst::BinOp Op) {
1024 default: Out << " <unknown operation " << Op << ">"; break;
1025 case AtomicRMWInst::Xchg: Out << " xchg"; break;
1026 case AtomicRMWInst::Add: Out << " add"; break;
1027 case AtomicRMWInst::Sub: Out << " sub"; break;
1028 case AtomicRMWInst::And: Out << " and"; break;
1029 case AtomicRMWInst::Nand: Out << " nand"; break;
1030 case AtomicRMWInst::Or: Out << " or"; break;
1031 case AtomicRMWInst::Xor: Out << " xor"; break;
1032 case AtomicRMWInst::Max: Out << " max"; break;
1033 case AtomicRMWInst::Min: Out << " min"; break;
1034 case AtomicRMWInst::UMax: Out << " umax"; break;
1035 case AtomicRMWInst::UMin: Out << " umin"; break;
1039 static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
1040 if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
1041 // Unsafe algebra implies all the others, no need to write them all out
1042 if (FPO->hasUnsafeAlgebra())
1045 if (FPO->hasNoNaNs())
1047 if (FPO->hasNoInfs())
1049 if (FPO->hasNoSignedZeros())
1051 if (FPO->hasAllowReciprocal())
1056 if (const OverflowingBinaryOperator *OBO =
1057 dyn_cast<OverflowingBinaryOperator>(U)) {
1058 if (OBO->hasNoUnsignedWrap())
1060 if (OBO->hasNoSignedWrap())
1062 } else if (const PossiblyExactOperator *Div =
1063 dyn_cast<PossiblyExactOperator>(U)) {
1066 } else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
1067 if (GEP->isInBounds())
1072 static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
1073 TypePrinting &TypePrinter,
1074 SlotTracker *Machine,
1075 const Module *Context) {
1076 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1077 if (CI->getType()->isIntegerTy(1)) {
1078 Out << (CI->getZExtValue() ? "true" : "false");
1081 Out << CI->getValue();
1085 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
1086 if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
1087 &CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
1088 // We would like to output the FP constant value in exponential notation,
1089 // but we cannot do this if doing so will lose precision. Check here to
1090 // make sure that we only output it in exponential format if we can parse
1091 // the value back and get the same value.
1094 bool isHalf = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEhalf;
1095 bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
1096 bool isInf = CFP->getValueAPF().isInfinity();
1097 bool isNaN = CFP->getValueAPF().isNaN();
1098 if (!isHalf && !isInf && !isNaN) {
1099 double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
1100 CFP->getValueAPF().convertToFloat();
1101 SmallString<128> StrVal;
1102 raw_svector_ostream(StrVal) << Val;
1104 // Check to make sure that the stringized number is not some string like
1105 // "Inf" or NaN, that atof will accept, but the lexer will not. Check
1106 // that the string matches the "[-+]?[0-9]" regex.
1108 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
1109 ((StrVal[0] == '-' || StrVal[0] == '+') &&
1110 (StrVal[1] >= '0' && StrVal[1] <= '9'))) {
1111 // Reparse stringized version!
1112 if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
1118 // Otherwise we could not reparse it to exactly the same value, so we must
1119 // output the string in hexadecimal format! Note that loading and storing
1120 // floating point types changes the bits of NaNs on some hosts, notably
1121 // x86, so we must not use these types.
1122 static_assert(sizeof(double) == sizeof(uint64_t),
1123 "assuming that double is 64 bits!");
1125 APFloat apf = CFP->getValueAPF();
1126 // Halves and floats are represented in ASCII IR as double, convert.
1128 apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
1131 utohex_buffer(uint64_t(apf.bitcastToAPInt().getZExtValue()),
1136 // Either half, or some form of long double.
1137 // These appear as a magic letter identifying the type, then a
1138 // fixed number of hex digits.
1140 // Bit position, in the current word, of the next nibble to print.
1143 if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
1145 // api needed to prevent premature destruction
1146 APInt api = CFP->getValueAPF().bitcastToAPInt();
1147 const uint64_t* p = api.getRawData();
1148 uint64_t word = p[1];
1150 int width = api.getBitWidth();
1151 for (int j=0; j<width; j+=4, shiftcount-=4) {
1152 unsigned int nibble = (word>>shiftcount) & 15;
1154 Out << (unsigned char)(nibble + '0');
1156 Out << (unsigned char)(nibble - 10 + 'A');
1157 if (shiftcount == 0 && j+4 < width) {
1161 shiftcount = width-j-4;
1165 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
1168 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
1171 } else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
1175 llvm_unreachable("Unsupported floating point type");
1176 // api needed to prevent premature destruction
1177 APInt api = CFP->getValueAPF().bitcastToAPInt();
1178 const uint64_t* p = api.getRawData();
1180 int width = api.getBitWidth();
1181 for (int j=0; j<width; j+=4, shiftcount-=4) {
1182 unsigned int nibble = (word>>shiftcount) & 15;
1184 Out << (unsigned char)(nibble + '0');
1186 Out << (unsigned char)(nibble - 10 + 'A');
1187 if (shiftcount == 0 && j+4 < width) {
1191 shiftcount = width-j-4;
1197 if (isa<ConstantAggregateZero>(CV)) {
1198 Out << "zeroinitializer";
1202 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
1203 Out << "blockaddress(";
1204 WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
1207 WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
1213 if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
1214 Type *ETy = CA->getType()->getElementType();
1216 TypePrinter.print(ETy, Out);
1218 WriteAsOperandInternal(Out, CA->getOperand(0),
1219 &TypePrinter, Machine,
1221 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1223 TypePrinter.print(ETy, Out);
1225 WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
1232 if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
1233 // As a special case, print the array as a string if it is an array of
1234 // i8 with ConstantInt values.
1235 if (CA->isString()) {
1237 PrintEscapedString(CA->getAsString(), Out);
1242 Type *ETy = CA->getType()->getElementType();
1244 TypePrinter.print(ETy, Out);
1246 WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
1247 &TypePrinter, Machine,
1249 for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
1251 TypePrinter.print(ETy, Out);
1253 WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
1261 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
1262 if (CS->getType()->isPacked())
1265 unsigned N = CS->getNumOperands();
1268 TypePrinter.print(CS->getOperand(0)->getType(), Out);
1271 WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
1274 for (unsigned i = 1; i < N; i++) {
1276 TypePrinter.print(CS->getOperand(i)->getType(), Out);
1279 WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
1286 if (CS->getType()->isPacked())
1291 if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
1292 Type *ETy = CV->getType()->getVectorElementType();
1294 TypePrinter.print(ETy, Out);
1296 WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
1298 for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
1300 TypePrinter.print(ETy, Out);
1302 WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
1309 if (isa<ConstantPointerNull>(CV)) {
1314 if (isa<UndefValue>(CV)) {
1319 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1320 Out << CE->getOpcodeName();
1321 WriteOptimizationInfo(Out, CE);
1322 if (CE->isCompare())
1323 Out << ' ' << getPredicateText(CE->getPredicate());
1326 if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
1328 cast<PointerType>(GEP->getPointerOperandType()->getScalarType())
1334 for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
1335 TypePrinter.print((*OI)->getType(), Out);
1337 WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
1338 if (OI+1 != CE->op_end())
1342 if (CE->hasIndices()) {
1343 ArrayRef<unsigned> Indices = CE->getIndices();
1344 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
1345 Out << ", " << Indices[i];
1350 TypePrinter.print(CE->getType(), Out);
1357 Out << "<placeholder or erroneous Constant>";
1360 static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
1361 TypePrinting *TypePrinter, SlotTracker *Machine,
1362 const Module *Context) {
1364 for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
1365 const Metadata *MD = Node->getOperand(mi);
1368 else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
1369 Value *V = MDV->getValue();
1370 TypePrinter->print(V->getType(), Out);
1372 WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
1374 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1384 struct FieldSeparator {
1387 FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
1389 raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
1394 return OS << FS.Sep;
1396 struct MDFieldPrinter {
1399 TypePrinting *TypePrinter;
1400 SlotTracker *Machine;
1401 const Module *Context;
1403 explicit MDFieldPrinter(raw_ostream &Out)
1404 : Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
1405 MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
1406 SlotTracker *Machine, const Module *Context)
1407 : Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
1409 void printTag(const DINode *N);
1410 void printString(StringRef Name, StringRef Value,
1411 bool ShouldSkipEmpty = true);
1412 void printMetadata(StringRef Name, const Metadata *MD,
1413 bool ShouldSkipNull = true);
1414 template <class IntTy>
1415 void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
1416 void printBool(StringRef Name, bool Value);
1417 void printDIFlags(StringRef Name, unsigned Flags);
1418 template <class IntTy, class Stringifier>
1419 void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
1420 bool ShouldSkipZero = true);
1424 void MDFieldPrinter::printTag(const DINode *N) {
1425 Out << FS << "tag: ";
1426 if (const char *Tag = dwarf::TagString(N->getTag()))
1432 void MDFieldPrinter::printString(StringRef Name, StringRef Value,
1433 bool ShouldSkipEmpty) {
1434 if (ShouldSkipEmpty && Value.empty())
1437 Out << FS << Name << ": \"";
1438 PrintEscapedString(Value, Out);
1442 static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
1443 TypePrinting *TypePrinter,
1444 SlotTracker *Machine,
1445 const Module *Context) {
1450 WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
1453 void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
1454 bool ShouldSkipNull) {
1455 if (ShouldSkipNull && !MD)
1458 Out << FS << Name << ": ";
1459 writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
1462 template <class IntTy>
1463 void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
1464 if (ShouldSkipZero && !Int)
1467 Out << FS << Name << ": " << Int;
1470 void MDFieldPrinter::printBool(StringRef Name, bool Value) {
1471 Out << FS << Name << ": " << (Value ? "true" : "false");
1474 void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) {
1478 Out << FS << Name << ": ";
1480 SmallVector<unsigned, 8> SplitFlags;
1481 unsigned Extra = DINode::splitFlags(Flags, SplitFlags);
1483 FieldSeparator FlagsFS(" | ");
1484 for (unsigned F : SplitFlags) {
1485 const char *StringF = DINode::getFlagString(F);
1486 assert(StringF && "Expected valid flag");
1487 Out << FlagsFS << StringF;
1489 if (Extra || SplitFlags.empty())
1490 Out << FlagsFS << Extra;
1493 template <class IntTy, class Stringifier>
1494 void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
1495 Stringifier toString, bool ShouldSkipZero) {
1499 Out << FS << Name << ": ";
1500 if (const char *S = toString(Value))
1506 static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
1507 TypePrinting *TypePrinter, SlotTracker *Machine,
1508 const Module *Context) {
1509 Out << "!GenericDINode(";
1510 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1511 Printer.printTag(N);
1512 Printer.printString("header", N->getHeader());
1513 if (N->getNumDwarfOperands()) {
1514 Out << Printer.FS << "operands: {";
1516 for (auto &I : N->dwarf_operands()) {
1518 writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
1525 static void writeDILocation(raw_ostream &Out, const DILocation *DL,
1526 TypePrinting *TypePrinter, SlotTracker *Machine,
1527 const Module *Context) {
1528 Out << "!DILocation(";
1529 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1530 // Always output the line, since 0 is a relevant and important value for it.
1531 Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
1532 Printer.printInt("column", DL->getColumn());
1533 Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
1534 Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
1538 static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
1539 TypePrinting *, SlotTracker *, const Module *) {
1540 Out << "!DISubrange(";
1541 MDFieldPrinter Printer(Out);
1542 Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
1543 Printer.printInt("lowerBound", N->getLowerBound());
1547 static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
1548 TypePrinting *, SlotTracker *, const Module *) {
1549 Out << "!DIEnumerator(";
1550 MDFieldPrinter Printer(Out);
1551 Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
1552 Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
1556 static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
1557 TypePrinting *, SlotTracker *, const Module *) {
1558 Out << "!DIBasicType(";
1559 MDFieldPrinter Printer(Out);
1560 if (N->getTag() != dwarf::DW_TAG_base_type)
1561 Printer.printTag(N);
1562 Printer.printString("name", N->getName());
1563 Printer.printInt("size", N->getSizeInBits());
1564 Printer.printInt("align", N->getAlignInBits());
1565 Printer.printDwarfEnum("encoding", N->getEncoding(),
1566 dwarf::AttributeEncodingString);
1570 static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
1571 TypePrinting *TypePrinter, SlotTracker *Machine,
1572 const Module *Context) {
1573 Out << "!DIDerivedType(";
1574 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1575 Printer.printTag(N);
1576 Printer.printString("name", N->getName());
1577 Printer.printMetadata("scope", N->getRawScope());
1578 Printer.printMetadata("file", N->getRawFile());
1579 Printer.printInt("line", N->getLine());
1580 Printer.printMetadata("baseType", N->getRawBaseType(),
1581 /* ShouldSkipNull */ false);
1582 Printer.printInt("size", N->getSizeInBits());
1583 Printer.printInt("align", N->getAlignInBits());
1584 Printer.printInt("offset", N->getOffsetInBits());
1585 Printer.printDIFlags("flags", N->getFlags());
1586 Printer.printMetadata("extraData", N->getRawExtraData());
1590 static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
1591 TypePrinting *TypePrinter,
1592 SlotTracker *Machine, const Module *Context) {
1593 Out << "!DICompositeType(";
1594 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1595 Printer.printTag(N);
1596 Printer.printString("name", N->getName());
1597 Printer.printMetadata("scope", N->getRawScope());
1598 Printer.printMetadata("file", N->getRawFile());
1599 Printer.printInt("line", N->getLine());
1600 Printer.printMetadata("baseType", N->getRawBaseType());
1601 Printer.printInt("size", N->getSizeInBits());
1602 Printer.printInt("align", N->getAlignInBits());
1603 Printer.printInt("offset", N->getOffsetInBits());
1604 Printer.printDIFlags("flags", N->getFlags());
1605 Printer.printMetadata("elements", N->getRawElements());
1606 Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
1607 dwarf::LanguageString);
1608 Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
1609 Printer.printMetadata("templateParams", N->getRawTemplateParams());
1610 Printer.printString("identifier", N->getIdentifier());
1614 static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
1615 TypePrinting *TypePrinter,
1616 SlotTracker *Machine, const Module *Context) {
1617 Out << "!DISubroutineType(";
1618 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1619 Printer.printDIFlags("flags", N->getFlags());
1620 Printer.printMetadata("types", N->getRawTypeArray(),
1621 /* ShouldSkipNull */ false);
1625 static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
1626 SlotTracker *, const Module *) {
1628 MDFieldPrinter Printer(Out);
1629 Printer.printString("filename", N->getFilename(),
1630 /* ShouldSkipEmpty */ false);
1631 Printer.printString("directory", N->getDirectory(),
1632 /* ShouldSkipEmpty */ false);
1636 static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
1637 TypePrinting *TypePrinter, SlotTracker *Machine,
1638 const Module *Context) {
1639 Out << "!DICompileUnit(";
1640 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1641 Printer.printDwarfEnum("language", N->getSourceLanguage(),
1642 dwarf::LanguageString, /* ShouldSkipZero */ false);
1643 Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
1644 Printer.printString("producer", N->getProducer());
1645 Printer.printBool("isOptimized", N->isOptimized());
1646 Printer.printString("flags", N->getFlags());
1647 Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
1648 /* ShouldSkipZero */ false);
1649 Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
1650 Printer.printInt("emissionKind", N->getEmissionKind(),
1651 /* ShouldSkipZero */ false);
1652 Printer.printMetadata("enums", N->getRawEnumTypes());
1653 Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
1654 Printer.printMetadata("subprograms", N->getRawSubprograms());
1655 Printer.printMetadata("globals", N->getRawGlobalVariables());
1656 Printer.printMetadata("imports", N->getRawImportedEntities());
1657 Printer.printInt("dwoId", N->getDWOId());
1661 static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
1662 TypePrinting *TypePrinter, SlotTracker *Machine,
1663 const Module *Context) {
1664 Out << "!DISubprogram(";
1665 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1666 Printer.printString("name", N->getName());
1667 Printer.printString("linkageName", N->getLinkageName());
1668 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1669 Printer.printMetadata("file", N->getRawFile());
1670 Printer.printInt("line", N->getLine());
1671 Printer.printMetadata("type", N->getRawType());
1672 Printer.printBool("isLocal", N->isLocalToUnit());
1673 Printer.printBool("isDefinition", N->isDefinition());
1674 Printer.printInt("scopeLine", N->getScopeLine());
1675 Printer.printMetadata("containingType", N->getRawContainingType());
1676 Printer.printDwarfEnum("virtuality", N->getVirtuality(),
1677 dwarf::VirtualityString);
1678 Printer.printInt("virtualIndex", N->getVirtualIndex());
1679 Printer.printDIFlags("flags", N->getFlags());
1680 Printer.printBool("isOptimized", N->isOptimized());
1681 Printer.printMetadata("function", N->getRawFunction());
1682 Printer.printMetadata("templateParams", N->getRawTemplateParams());
1683 Printer.printMetadata("declaration", N->getRawDeclaration());
1684 Printer.printMetadata("variables", N->getRawVariables());
1688 static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
1689 TypePrinting *TypePrinter, SlotTracker *Machine,
1690 const Module *Context) {
1691 Out << "!DILexicalBlock(";
1692 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1693 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1694 Printer.printMetadata("file", N->getRawFile());
1695 Printer.printInt("line", N->getLine());
1696 Printer.printInt("column", N->getColumn());
1700 static void writeDILexicalBlockFile(raw_ostream &Out,
1701 const DILexicalBlockFile *N,
1702 TypePrinting *TypePrinter,
1703 SlotTracker *Machine,
1704 const Module *Context) {
1705 Out << "!DILexicalBlockFile(";
1706 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1707 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1708 Printer.printMetadata("file", N->getRawFile());
1709 Printer.printInt("discriminator", N->getDiscriminator(),
1710 /* ShouldSkipZero */ false);
1714 static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
1715 TypePrinting *TypePrinter, SlotTracker *Machine,
1716 const Module *Context) {
1717 Out << "!DINamespace(";
1718 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1719 Printer.printString("name", N->getName());
1720 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1721 Printer.printMetadata("file", N->getRawFile());
1722 Printer.printInt("line", N->getLine());
1726 static void writeDIModule(raw_ostream &Out, const DIModule *N,
1727 TypePrinting *TypePrinter, SlotTracker *Machine,
1728 const Module *Context) {
1729 Out << "!DIModule(";
1730 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1731 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1732 Printer.printString("name", N->getName());
1733 Printer.printString("configMacros", N->getConfigurationMacros());
1734 Printer.printString("includePath", N->getIncludePath());
1735 Printer.printString("isysroot", N->getISysRoot());
1740 static void writeDITemplateTypeParameter(raw_ostream &Out,
1741 const DITemplateTypeParameter *N,
1742 TypePrinting *TypePrinter,
1743 SlotTracker *Machine,
1744 const Module *Context) {
1745 Out << "!DITemplateTypeParameter(";
1746 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1747 Printer.printString("name", N->getName());
1748 Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
1752 static void writeDITemplateValueParameter(raw_ostream &Out,
1753 const DITemplateValueParameter *N,
1754 TypePrinting *TypePrinter,
1755 SlotTracker *Machine,
1756 const Module *Context) {
1757 Out << "!DITemplateValueParameter(";
1758 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1759 if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
1760 Printer.printTag(N);
1761 Printer.printString("name", N->getName());
1762 Printer.printMetadata("type", N->getRawType());
1763 Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
1767 static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
1768 TypePrinting *TypePrinter,
1769 SlotTracker *Machine, const Module *Context) {
1770 Out << "!DIGlobalVariable(";
1771 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1772 Printer.printString("name", N->getName());
1773 Printer.printString("linkageName", N->getLinkageName());
1774 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1775 Printer.printMetadata("file", N->getRawFile());
1776 Printer.printInt("line", N->getLine());
1777 Printer.printMetadata("type", N->getRawType());
1778 Printer.printBool("isLocal", N->isLocalToUnit());
1779 Printer.printBool("isDefinition", N->isDefinition());
1780 Printer.printMetadata("variable", N->getRawVariable());
1781 Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
1785 static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
1786 TypePrinting *TypePrinter,
1787 SlotTracker *Machine, const Module *Context) {
1788 Out << "!DILocalVariable(";
1789 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1790 Printer.printTag(N);
1791 Printer.printString("name", N->getName());
1792 Printer.printInt("arg", N->getArg(),
1793 /* ShouldSkipZero */
1794 N->getTag() == dwarf::DW_TAG_auto_variable);
1795 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1796 Printer.printMetadata("file", N->getRawFile());
1797 Printer.printInt("line", N->getLine());
1798 Printer.printMetadata("type", N->getRawType());
1799 Printer.printDIFlags("flags", N->getFlags());
1803 static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
1804 TypePrinting *TypePrinter, SlotTracker *Machine,
1805 const Module *Context) {
1806 Out << "!DIExpression(";
1809 for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
1810 const char *OpStr = dwarf::OperationEncodingString(I->getOp());
1811 assert(OpStr && "Expected valid opcode");
1814 for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
1815 Out << FS << I->getArg(A);
1818 for (const auto &I : N->getElements())
1824 static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
1825 TypePrinting *TypePrinter, SlotTracker *Machine,
1826 const Module *Context) {
1827 Out << "!DIObjCProperty(";
1828 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1829 Printer.printString("name", N->getName());
1830 Printer.printMetadata("file", N->getRawFile());
1831 Printer.printInt("line", N->getLine());
1832 Printer.printString("setter", N->getSetterName());
1833 Printer.printString("getter", N->getGetterName());
1834 Printer.printInt("attributes", N->getAttributes());
1835 Printer.printMetadata("type", N->getRawType());
1839 static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
1840 TypePrinting *TypePrinter,
1841 SlotTracker *Machine, const Module *Context) {
1842 Out << "!DIImportedEntity(";
1843 MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
1844 Printer.printTag(N);
1845 Printer.printString("name", N->getName());
1846 Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
1847 Printer.printMetadata("entity", N->getRawEntity());
1848 Printer.printInt("line", N->getLine());
1853 static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
1854 TypePrinting *TypePrinter,
1855 SlotTracker *Machine,
1856 const Module *Context) {
1857 if (Node->isDistinct())
1859 else if (Node->isTemporary())
1860 Out << "<temporary!> "; // Handle broken code.
1862 switch (Node->getMetadataID()) {
1864 llvm_unreachable("Expected uniquable MDNode");
1865 #define HANDLE_MDNODE_LEAF(CLASS) \
1866 case Metadata::CLASS##Kind: \
1867 write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
1869 #include "llvm/IR/Metadata.def"
1873 // Full implementation of printing a Value as an operand with support for
1874 // TypePrinting, etc.
1875 static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
1876 TypePrinting *TypePrinter,
1877 SlotTracker *Machine,
1878 const Module *Context) {
1880 PrintLLVMName(Out, V);
1884 const Constant *CV = dyn_cast<Constant>(V);
1885 if (CV && !isa<GlobalValue>(CV)) {
1886 assert(TypePrinter && "Constants require TypePrinting!");
1887 WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
1891 if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
1893 if (IA->hasSideEffects())
1894 Out << "sideeffect ";
1895 if (IA->isAlignStack())
1896 Out << "alignstack ";
1897 // We don't emit the AD_ATT dialect as it's the assumed default.
1898 if (IA->getDialect() == InlineAsm::AD_Intel)
1899 Out << "inteldialect ";
1901 PrintEscapedString(IA->getAsmString(), Out);
1903 PrintEscapedString(IA->getConstraintString(), Out);
1908 if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
1909 WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
1910 Context, /* FromValue */ true);
1916 // If we have a SlotTracker, use it.
1918 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1919 Slot = Machine->getGlobalSlot(GV);
1922 Slot = Machine->getLocalSlot(V);
1924 // If the local value didn't succeed, then we may be referring to a value
1925 // from a different function. Translate it, as this can happen when using
1926 // address of blocks.
1928 if ((Machine = createSlotTracker(V))) {
1929 Slot = Machine->getLocalSlot(V);
1933 } else if ((Machine = createSlotTracker(V))) {
1934 // Otherwise, create one to get the # and then destroy it.
1935 if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1936 Slot = Machine->getGlobalSlot(GV);
1939 Slot = Machine->getLocalSlot(V);
1948 Out << Prefix << Slot;
1953 static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
1954 TypePrinting *TypePrinter,
1955 SlotTracker *Machine, const Module *Context,
1957 if (const MDNode *N = dyn_cast<MDNode>(MD)) {
1958 std::unique_ptr<SlotTracker> MachineStorage;
1960 MachineStorage = make_unique<SlotTracker>(Context);
1961 Machine = MachineStorage.get();
1963 int Slot = Machine->getMetadataSlot(N);
1965 // Give the pointer value instead of "badref", since this comes up all
1966 // the time when debugging.
1967 Out << "<" << N << ">";
1973 if (const MDString *MDS = dyn_cast<MDString>(MD)) {
1975 PrintEscapedString(MDS->getString(), Out);
1980 auto *V = cast<ValueAsMetadata>(MD);
1981 assert(TypePrinter && "TypePrinter required for metadata values");
1982 assert((FromValue || !isa<LocalAsMetadata>(V)) &&
1983 "Unexpected function-local metadata outside of value argument");
1985 TypePrinter->print(V->getValue()->getType(), Out);
1987 WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
1991 class AssemblyWriter {
1992 formatted_raw_ostream &Out;
1993 const Module *TheModule;
1994 std::unique_ptr<SlotTracker> SlotTrackerStorage;
1995 SlotTracker &Machine;
1996 TypePrinting TypePrinter;
1997 AssemblyAnnotationWriter *AnnotationWriter;
1998 SetVector<const Comdat *> Comdats;
1999 bool ShouldPreserveUseListOrder;
2000 UseListOrderStack UseListOrders;
2001 SmallVector<StringRef, 8> MDNames;
2004 /// Construct an AssemblyWriter with an external SlotTracker
2005 AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
2006 AssemblyAnnotationWriter *AAW,
2007 bool ShouldPreserveUseListOrder = false);
2009 /// Construct an AssemblyWriter with an internally allocated SlotTracker
2010 AssemblyWriter(formatted_raw_ostream &o, const Module *M,
2011 AssemblyAnnotationWriter *AAW,
2012 bool ShouldPreserveUseListOrder = false);
2014 void printMDNodeBody(const MDNode *MD);
2015 void printNamedMDNode(const NamedMDNode *NMD);
2017 void printModule(const Module *M);
2019 void writeOperand(const Value *Op, bool PrintType);
2020 void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
2021 void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
2022 void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2023 AtomicOrdering FailureOrdering,
2024 SynchronizationScope SynchScope);
2026 void writeAllMDNodes();
2027 void writeMDNode(unsigned Slot, const MDNode *Node);
2028 void writeAllAttributeGroups();
2030 void printTypeIdentities();
2031 void printGlobal(const GlobalVariable *GV);
2032 void printAlias(const GlobalAlias *GV);
2033 void printComdat(const Comdat *C);
2034 void printFunction(const Function *F);
2035 void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
2036 void printBasicBlock(const BasicBlock *BB);
2037 void printInstructionLine(const Instruction &I);
2038 void printInstruction(const Instruction &I);
2040 void printUseListOrder(const UseListOrder &Order);
2041 void printUseLists(const Function *F);
2046 /// \brief Print out metadata attachments.
2047 void printMetadataAttachments(
2048 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
2049 StringRef Separator);
2051 // printInfoComment - Print a little comment after the instruction indicating
2052 // which slot it occupies.
2053 void printInfoComment(const Value &V);
2055 // printGCRelocateComment - print comment after call to the gc.relocate
2056 // intrinsic indicating base and derived pointer names.
2057 void printGCRelocateComment(const Value &V);
2061 void AssemblyWriter::init() {
2064 TypePrinter.incorporateTypes(*TheModule);
2065 for (const Function &F : *TheModule)
2066 if (const Comdat *C = F.getComdat())
2068 for (const GlobalVariable &GV : TheModule->globals())
2069 if (const Comdat *C = GV.getComdat())
2073 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
2074 const Module *M, AssemblyAnnotationWriter *AAW,
2075 bool ShouldPreserveUseListOrder)
2076 : Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
2077 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2081 AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, const Module *M,
2082 AssemblyAnnotationWriter *AAW,
2083 bool ShouldPreserveUseListOrder)
2084 : Out(o), TheModule(M), SlotTrackerStorage(createSlotTracker(M)),
2085 Machine(*SlotTrackerStorage), AnnotationWriter(AAW),
2086 ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
2090 void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
2092 Out << "<null operand!>";
2096 TypePrinter.print(Operand->getType(), Out);
2099 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2102 void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
2103 SynchronizationScope SynchScope) {
2104 if (Ordering == NotAtomic)
2107 switch (SynchScope) {
2108 case SingleThread: Out << " singlethread"; break;
2109 case CrossThread: break;
2113 default: Out << " <bad ordering " << int(Ordering) << ">"; break;
2114 case Unordered: Out << " unordered"; break;
2115 case Monotonic: Out << " monotonic"; break;
2116 case Acquire: Out << " acquire"; break;
2117 case Release: Out << " release"; break;
2118 case AcquireRelease: Out << " acq_rel"; break;
2119 case SequentiallyConsistent: Out << " seq_cst"; break;
2123 void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
2124 AtomicOrdering FailureOrdering,
2125 SynchronizationScope SynchScope) {
2126 assert(SuccessOrdering != NotAtomic && FailureOrdering != NotAtomic);
2128 switch (SynchScope) {
2129 case SingleThread: Out << " singlethread"; break;
2130 case CrossThread: break;
2133 switch (SuccessOrdering) {
2134 default: Out << " <bad ordering " << int(SuccessOrdering) << ">"; break;
2135 case Unordered: Out << " unordered"; break;
2136 case Monotonic: Out << " monotonic"; break;
2137 case Acquire: Out << " acquire"; break;
2138 case Release: Out << " release"; break;
2139 case AcquireRelease: Out << " acq_rel"; break;
2140 case SequentiallyConsistent: Out << " seq_cst"; break;
2143 switch (FailureOrdering) {
2144 default: Out << " <bad ordering " << int(FailureOrdering) << ">"; break;
2145 case Unordered: Out << " unordered"; break;
2146 case Monotonic: Out << " monotonic"; break;
2147 case Acquire: Out << " acquire"; break;
2148 case Release: Out << " release"; break;
2149 case AcquireRelease: Out << " acq_rel"; break;
2150 case SequentiallyConsistent: Out << " seq_cst"; break;
2154 void AssemblyWriter::writeParamOperand(const Value *Operand,
2155 AttributeSet Attrs, unsigned Idx) {
2157 Out << "<null operand!>";
2162 TypePrinter.print(Operand->getType(), Out);
2163 // Print parameter attributes list
2164 if (Attrs.hasAttributes(Idx))
2165 Out << ' ' << Attrs.getAsString(Idx);
2167 // Print the operand
2168 WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
2171 void AssemblyWriter::printModule(const Module *M) {
2172 Machine.initialize();
2174 if (ShouldPreserveUseListOrder)
2175 UseListOrders = predictUseListOrder(M);
2177 if (!M->getModuleIdentifier().empty() &&
2178 // Don't print the ID if it will start a new line (which would
2179 // require a comment char before it).
2180 M->getModuleIdentifier().find('\n') == std::string::npos)
2181 Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
2183 const std::string &DL = M->getDataLayoutStr();
2185 Out << "target datalayout = \"" << DL << "\"\n";
2186 if (!M->getTargetTriple().empty())
2187 Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
2189 if (!M->getModuleInlineAsm().empty()) {
2192 // Split the string into lines, to make it easier to read the .ll file.
2193 StringRef Asm = M->getModuleInlineAsm();
2196 std::tie(Front, Asm) = Asm.split('\n');
2198 // We found a newline, print the portion of the asm string from the
2199 // last newline up to this newline.
2200 Out << "module asm \"";
2201 PrintEscapedString(Front, Out);
2203 } while (!Asm.empty());
2206 printTypeIdentities();
2208 // Output all comdats.
2209 if (!Comdats.empty())
2211 for (const Comdat *C : Comdats) {
2213 if (C != Comdats.back())
2217 // Output all globals.
2218 if (!M->global_empty()) Out << '\n';
2219 for (const GlobalVariable &GV : M->globals()) {
2220 printGlobal(&GV); Out << '\n';
2223 // Output all aliases.
2224 if (!M->alias_empty()) Out << "\n";
2225 for (const GlobalAlias &GA : M->aliases())
2228 // Output global use-lists.
2229 printUseLists(nullptr);
2231 // Output all of the functions.
2232 for (const Function &F : *M)
2234 assert(UseListOrders.empty() && "All use-lists should have been consumed");
2236 // Output all attribute groups.
2237 if (!Machine.as_empty()) {
2239 writeAllAttributeGroups();
2242 // Output named metadata.
2243 if (!M->named_metadata_empty()) Out << '\n';
2245 for (const NamedMDNode &Node : M->named_metadata())
2246 printNamedMDNode(&Node);
2249 if (!Machine.mdn_empty()) {
2255 static void printMetadataIdentifier(StringRef Name,
2256 formatted_raw_ostream &Out) {
2258 Out << "<empty name> ";
2260 if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
2261 Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
2264 Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
2265 for (unsigned i = 1, e = Name.size(); i != e; ++i) {
2266 unsigned char C = Name[i];
2267 if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
2268 C == '.' || C == '_')
2271 Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
2276 void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
2278 printMetadataIdentifier(NMD->getName(), Out);
2280 for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
2283 int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
2292 static void PrintLinkage(GlobalValue::LinkageTypes LT,
2293 formatted_raw_ostream &Out) {
2295 case GlobalValue::ExternalLinkage: break;
2296 case GlobalValue::PrivateLinkage: Out << "private "; break;
2297 case GlobalValue::InternalLinkage: Out << "internal "; break;
2298 case GlobalValue::LinkOnceAnyLinkage: Out << "linkonce "; break;
2299 case GlobalValue::LinkOnceODRLinkage: Out << "linkonce_odr "; break;
2300 case GlobalValue::WeakAnyLinkage: Out << "weak "; break;
2301 case GlobalValue::WeakODRLinkage: Out << "weak_odr "; break;
2302 case GlobalValue::CommonLinkage: Out << "common "; break;
2303 case GlobalValue::AppendingLinkage: Out << "appending "; break;
2304 case GlobalValue::ExternalWeakLinkage: Out << "extern_weak "; break;
2305 case GlobalValue::AvailableExternallyLinkage:
2306 Out << "available_externally ";
2311 static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
2312 formatted_raw_ostream &Out) {
2314 case GlobalValue::DefaultVisibility: break;
2315 case GlobalValue::HiddenVisibility: Out << "hidden "; break;
2316 case GlobalValue::ProtectedVisibility: Out << "protected "; break;
2320 static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
2321 formatted_raw_ostream &Out) {
2323 case GlobalValue::DefaultStorageClass: break;
2324 case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
2325 case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
2329 static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
2330 formatted_raw_ostream &Out) {
2332 case GlobalVariable::NotThreadLocal:
2334 case GlobalVariable::GeneralDynamicTLSModel:
2335 Out << "thread_local ";
2337 case GlobalVariable::LocalDynamicTLSModel:
2338 Out << "thread_local(localdynamic) ";
2340 case GlobalVariable::InitialExecTLSModel:
2341 Out << "thread_local(initialexec) ";
2343 case GlobalVariable::LocalExecTLSModel:
2344 Out << "thread_local(localexec) ";
2349 static void maybePrintComdat(formatted_raw_ostream &Out,
2350 const GlobalObject &GO) {
2351 const Comdat *C = GO.getComdat();
2355 if (isa<GlobalVariable>(GO))
2359 if (GO.getName() == C->getName())
2363 PrintLLVMName(Out, C->getName(), ComdatPrefix);
2367 void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
2368 if (GV->isMaterializable())
2369 Out << "; Materializable\n";
2371 WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
2374 if (!GV->hasInitializer() && GV->hasExternalLinkage())
2377 PrintLinkage(GV->getLinkage(), Out);
2378 PrintVisibility(GV->getVisibility(), Out);
2379 PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
2380 PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
2381 if (GV->hasUnnamedAddr())
2382 Out << "unnamed_addr ";
2384 if (unsigned AddressSpace = GV->getType()->getAddressSpace())
2385 Out << "addrspace(" << AddressSpace << ") ";
2386 if (GV->isExternallyInitialized()) Out << "externally_initialized ";
2387 Out << (GV->isConstant() ? "constant " : "global ");
2388 TypePrinter.print(GV->getType()->getElementType(), Out);
2390 if (GV->hasInitializer()) {
2392 writeOperand(GV->getInitializer(), false);
2395 if (GV->hasSection()) {
2396 Out << ", section \"";
2397 PrintEscapedString(GV->getSection(), Out);
2400 maybePrintComdat(Out, *GV);
2401 if (GV->getAlignment())
2402 Out << ", align " << GV->getAlignment();
2404 printInfoComment(*GV);
2407 void AssemblyWriter::printAlias(const GlobalAlias *GA) {
2408 if (GA->isMaterializable())
2409 Out << "; Materializable\n";
2411 WriteAsOperandInternal(Out, GA, &TypePrinter, &Machine, GA->getParent());
2414 PrintLinkage(GA->getLinkage(), Out);
2415 PrintVisibility(GA->getVisibility(), Out);
2416 PrintDLLStorageClass(GA->getDLLStorageClass(), Out);
2417 PrintThreadLocalModel(GA->getThreadLocalMode(), Out);
2418 if (GA->hasUnnamedAddr())
2419 Out << "unnamed_addr ";
2423 const Constant *Aliasee = GA->getAliasee();
2426 TypePrinter.print(GA->getType(), Out);
2427 Out << " <<NULL ALIASEE>>";
2429 writeOperand(Aliasee, !isa<ConstantExpr>(Aliasee));
2432 printInfoComment(*GA);
2436 void AssemblyWriter::printComdat(const Comdat *C) {
2440 void AssemblyWriter::printTypeIdentities() {
2441 if (TypePrinter.NumberedTypes.empty() &&
2442 TypePrinter.NamedTypes.empty())
2447 // We know all the numbers that each type is used and we know that it is a
2448 // dense assignment. Convert the map to an index table.
2449 std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
2450 for (DenseMap<StructType*, unsigned>::iterator I =
2451 TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
2453 assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
2454 NumberedTypes[I->second] = I->first;
2457 // Emit all numbered types.
2458 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
2459 Out << '%' << i << " = type ";
2461 // Make sure we print out at least one level of the type structure, so
2462 // that we do not get %2 = type %2
2463 TypePrinter.printStructBody(NumberedTypes[i], Out);
2467 for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
2468 PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
2471 // Make sure we print out at least one level of the type structure, so
2472 // that we do not get %FILE = type %FILE
2473 TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
2478 /// printFunction - Print all aspects of a function.
2480 void AssemblyWriter::printFunction(const Function *F) {
2481 // Print out the return type and name.
2484 if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
2486 if (F->isMaterializable())
2487 Out << "; Materializable\n";
2489 const AttributeSet &Attrs = F->getAttributes();
2490 if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
2491 AttributeSet AS = Attrs.getFnAttributes();
2492 std::string AttrStr;
2495 for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
2496 if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
2499 for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
2501 Attribute Attr = *I;
2502 if (!Attr.isStringAttribute()) {
2503 if (!AttrStr.empty()) AttrStr += ' ';
2504 AttrStr += Attr.getAsString();
2508 if (!AttrStr.empty())
2509 Out << "; Function Attrs: " << AttrStr << '\n';
2512 if (F->isDeclaration())
2517 PrintLinkage(F->getLinkage(), Out);
2518 PrintVisibility(F->getVisibility(), Out);
2519 PrintDLLStorageClass(F->getDLLStorageClass(), Out);
2521 // Print the calling convention.
2522 if (F->getCallingConv() != CallingConv::C) {
2523 PrintCallingConv(F->getCallingConv(), Out);
2527 FunctionType *FT = F->getFunctionType();
2528 if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
2529 Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
2530 TypePrinter.print(F->getReturnType(), Out);
2532 WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
2534 Machine.incorporateFunction(F);
2536 // Loop over the arguments, printing them...
2539 if (!F->isDeclaration()) {
2540 // If this isn't a declaration, print the argument names as well.
2541 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
2543 // Insert commas as we go... the first arg doesn't get a comma
2544 if (I != F->arg_begin()) Out << ", ";
2545 printArgument(I, Attrs, Idx);
2549 // Otherwise, print the types from the function type.
2550 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
2551 // Insert commas as we go... the first arg doesn't get a comma
2555 TypePrinter.print(FT->getParamType(i), Out);
2557 if (Attrs.hasAttributes(i+1))
2558 Out << ' ' << Attrs.getAsString(i+1);
2562 // Finish printing arguments...
2563 if (FT->isVarArg()) {
2564 if (FT->getNumParams()) Out << ", ";
2565 Out << "..."; // Output varargs portion of signature!
2568 if (F->hasUnnamedAddr())
2569 Out << " unnamed_addr";
2570 if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
2571 Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
2572 if (F->hasSection()) {
2573 Out << " section \"";
2574 PrintEscapedString(F->getSection(), Out);
2577 maybePrintComdat(Out, *F);
2578 if (F->getAlignment())
2579 Out << " align " << F->getAlignment();
2581 Out << " gc \"" << F->getGC() << '"';
2582 if (F->hasPrefixData()) {
2584 writeOperand(F->getPrefixData(), true);
2586 if (F->hasPrologueData()) {
2587 Out << " prologue ";
2588 writeOperand(F->getPrologueData(), true);
2590 if (F->hasPersonalityFn()) {
2591 Out << " personality ";
2592 writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
2595 SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
2596 F->getAllMetadata(MDs);
2597 printMetadataAttachments(MDs, " ");
2599 if (F->isDeclaration()) {
2603 // Output all of the function's basic blocks.
2604 for (Function::const_iterator I = F->begin(), E = F->end(); I != E; ++I)
2607 // Output the function's use-lists.
2613 Machine.purgeFunction();
2616 /// printArgument - This member is called for every argument that is passed into
2617 /// the function. Simply print it out
2619 void AssemblyWriter::printArgument(const Argument *Arg,
2620 AttributeSet Attrs, unsigned Idx) {
2622 TypePrinter.print(Arg->getType(), Out);
2624 // Output parameter attributes list
2625 if (Attrs.hasAttributes(Idx))
2626 Out << ' ' << Attrs.getAsString(Idx);
2628 // Output name, if available...
2629 if (Arg->hasName()) {
2631 PrintLLVMName(Out, Arg);
2635 /// printBasicBlock - This member is called for each basic block in a method.
2637 void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
2638 if (BB->hasName()) { // Print out the label if it exists...
2640 PrintLLVMName(Out, BB->getName(), LabelPrefix);
2642 } else if (!BB->use_empty()) { // Don't print block # of no uses...
2643 Out << "\n; <label>:";
2644 int Slot = Machine.getLocalSlot(BB);
2651 if (!BB->getParent()) {
2652 Out.PadToColumn(50);
2653 Out << "; Error: Block without parent!";
2654 } else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
2655 // Output predecessors for the block.
2656 Out.PadToColumn(50);
2658 const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
2661 Out << " No predecessors!";
2664 writeOperand(*PI, false);
2665 for (++PI; PI != PE; ++PI) {
2667 writeOperand(*PI, false);
2674 if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
2676 // Output all of the instructions in the basic block...
2677 for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
2678 printInstructionLine(*I);
2681 if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
2684 /// printInstructionLine - Print an instruction and a newline character.
2685 void AssemblyWriter::printInstructionLine(const Instruction &I) {
2686 printInstruction(I);
2690 /// printGCRelocateComment - print comment after call to the gc.relocate
2691 /// intrinsic indicating base and derived pointer names.
2692 void AssemblyWriter::printGCRelocateComment(const Value &V) {
2693 assert(isGCRelocate(&V));
2694 GCRelocateOperands GCOps(cast<Instruction>(&V));
2697 writeOperand(GCOps.getBasePtr(), false);
2699 writeOperand(GCOps.getDerivedPtr(), false);
2703 /// printInfoComment - Print a little comment after the instruction indicating
2704 /// which slot it occupies.
2706 void AssemblyWriter::printInfoComment(const Value &V) {
2707 if (isGCRelocate(&V))
2708 printGCRelocateComment(V);
2710 if (AnnotationWriter)
2711 AnnotationWriter->printInfoComment(V, Out);
2714 // This member is called for each Instruction in a function..
2715 void AssemblyWriter::printInstruction(const Instruction &I) {
2716 if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
2718 // Print out indentation for an instruction.
2721 // Print out name if it exists...
2723 PrintLLVMName(Out, &I);
2725 } else if (!I.getType()->isVoidTy()) {
2726 // Print out the def slot taken.
2727 int SlotNum = Machine.getLocalSlot(&I);
2729 Out << "<badref> = ";
2731 Out << '%' << SlotNum << " = ";
2734 if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2735 if (CI->isMustTailCall())
2737 else if (CI->isTailCall())
2741 // Print out the opcode...
2742 Out << I.getOpcodeName();
2744 // If this is an atomic load or store, print out the atomic marker.
2745 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
2746 (isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
2749 if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
2752 // If this is a volatile operation, print out the volatile marker.
2753 if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
2754 (isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
2755 (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
2756 (isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
2759 // Print out optimization information.
2760 WriteOptimizationInfo(Out, &I);
2762 // Print out the compare instruction predicates
2763 if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
2764 Out << ' ' << getPredicateText(CI->getPredicate());
2766 // Print out the atomicrmw operation
2767 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
2768 writeAtomicRMWOperation(Out, RMWI->getOperation());
2770 // Print out the type of the operands...
2771 const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
2773 // Special case conditional branches to swizzle the condition out to the front
2774 if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
2775 const BranchInst &BI(cast<BranchInst>(I));
2777 writeOperand(BI.getCondition(), true);
2779 writeOperand(BI.getSuccessor(0), true);
2781 writeOperand(BI.getSuccessor(1), true);
2783 } else if (isa<SwitchInst>(I)) {
2784 const SwitchInst& SI(cast<SwitchInst>(I));
2785 // Special case switch instruction to get formatting nice and correct.
2787 writeOperand(SI.getCondition(), true);
2789 writeOperand(SI.getDefaultDest(), true);
2791 for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
2794 writeOperand(i.getCaseValue(), true);
2796 writeOperand(i.getCaseSuccessor(), true);
2799 } else if (isa<IndirectBrInst>(I)) {
2800 // Special case indirectbr instruction to get formatting nice and correct.
2802 writeOperand(Operand, true);
2805 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2808 writeOperand(I.getOperand(i), true);
2811 } else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
2813 TypePrinter.print(I.getType(), Out);
2816 for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
2817 if (op) Out << ", ";
2819 writeOperand(PN->getIncomingValue(op), false); Out << ", ";
2820 writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
2822 } else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
2824 writeOperand(I.getOperand(0), true);
2825 for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
2827 } else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
2829 writeOperand(I.getOperand(0), true); Out << ", ";
2830 writeOperand(I.getOperand(1), true);
2831 for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
2833 } else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
2835 TypePrinter.print(I.getType(), Out);
2836 if (LPI->isCleanup() || LPI->getNumClauses() != 0)
2839 if (LPI->isCleanup())
2842 for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
2843 if (i != 0 || LPI->isCleanup()) Out << "\n";
2844 if (LPI->isCatch(i))
2849 writeOperand(LPI->getClause(i), true);
2851 } else if (isa<ReturnInst>(I) && !Operand) {
2853 } else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
2854 // Print the calling convention being used.
2855 if (CI->getCallingConv() != CallingConv::C) {
2857 PrintCallingConv(CI->getCallingConv(), Out);
2860 Operand = CI->getCalledValue();
2861 FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
2862 Type *RetTy = FTy->getReturnType();
2863 const AttributeSet &PAL = CI->getAttributes();
2865 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
2866 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
2868 // If possible, print out the short form of the call instruction. We can
2869 // only do this if the first argument is a pointer to a nonvararg function,
2870 // and if the return type is not a pointer to a function.
2873 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
2875 writeOperand(Operand, false);
2877 for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
2880 writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
2883 // Emit an ellipsis if this is a musttail call in a vararg function. This
2884 // is only to aid readability, musttail calls forward varargs by default.
2885 if (CI->isMustTailCall() && CI->getParent() &&
2886 CI->getParent()->getParent() &&
2887 CI->getParent()->getParent()->isVarArg())
2891 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
2892 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
2893 } else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
2894 Operand = II->getCalledValue();
2895 FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
2896 Type *RetTy = FTy->getReturnType();
2897 const AttributeSet &PAL = II->getAttributes();
2899 // Print the calling convention being used.
2900 if (II->getCallingConv() != CallingConv::C) {
2902 PrintCallingConv(II->getCallingConv(), Out);
2905 if (PAL.hasAttributes(AttributeSet::ReturnIndex))
2906 Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
2908 // If possible, print out the short form of the invoke instruction. We can
2909 // only do this if the first argument is a pointer to a nonvararg function,
2910 // and if the return type is not a pointer to a function.
2913 TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
2915 writeOperand(Operand, false);
2917 for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
2920 writeParamOperand(II->getArgOperand(op), PAL, op + 1);
2924 if (PAL.hasAttributes(AttributeSet::FunctionIndex))
2925 Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
2928 writeOperand(II->getNormalDest(), true);
2930 writeOperand(II->getUnwindDest(), true);
2932 } else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
2934 if (AI->isUsedWithInAlloca())
2936 TypePrinter.print(AI->getAllocatedType(), Out);
2938 // Explicitly write the array size if the code is broken, if it's an array
2939 // allocation, or if the type is not canonical for scalar allocations. The
2940 // latter case prevents the type from mutating when round-tripping through
2942 if (!AI->getArraySize() || AI->isArrayAllocation() ||
2943 !AI->getArraySize()->getType()->isIntegerTy(32)) {
2945 writeOperand(AI->getArraySize(), true);
2947 if (AI->getAlignment()) {
2948 Out << ", align " << AI->getAlignment();
2950 } else if (isa<CastInst>(I)) {
2953 writeOperand(Operand, true); // Work with broken code
2956 TypePrinter.print(I.getType(), Out);
2957 } else if (isa<VAArgInst>(I)) {
2960 writeOperand(Operand, true); // Work with broken code
2963 TypePrinter.print(I.getType(), Out);
2964 } else if (Operand) { // Print the normal way.
2965 if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
2967 TypePrinter.print(GEP->getSourceElementType(), Out);
2969 } else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
2971 TypePrinter.print(LI->getType(), Out);
2975 // PrintAllTypes - Instructions who have operands of all the same type
2976 // omit the type from all but the first operand. If the instruction has
2977 // different type operands (for example br), then they are all printed.
2978 bool PrintAllTypes = false;
2979 Type *TheType = Operand->getType();
2981 // Select, Store and ShuffleVector always print all types.
2982 if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
2983 || isa<ReturnInst>(I)) {
2984 PrintAllTypes = true;
2986 for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
2987 Operand = I.getOperand(i);
2988 // note that Operand shouldn't be null, but the test helps make dump()
2989 // more tolerant of malformed IR
2990 if (Operand && Operand->getType() != TheType) {
2991 PrintAllTypes = true; // We have differing types! Print them all!
2997 if (!PrintAllTypes) {
2999 TypePrinter.print(TheType, Out);
3003 for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
3005 writeOperand(I.getOperand(i), PrintAllTypes);
3009 // Print atomic ordering/alignment for memory operations
3010 if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
3012 writeAtomic(LI->getOrdering(), LI->getSynchScope());
3013 if (LI->getAlignment())
3014 Out << ", align " << LI->getAlignment();
3015 } else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
3017 writeAtomic(SI->getOrdering(), SI->getSynchScope());
3018 if (SI->getAlignment())
3019 Out << ", align " << SI->getAlignment();
3020 } else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
3021 writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
3022 CXI->getSynchScope());
3023 } else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
3024 writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
3025 } else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
3026 writeAtomic(FI->getOrdering(), FI->getSynchScope());
3029 // Print Metadata info.
3030 SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
3031 I.getAllMetadata(InstMD);
3032 printMetadataAttachments(InstMD, ", ");
3034 // Print a nice comment.
3035 printInfoComment(I);
3038 void AssemblyWriter::printMetadataAttachments(
3039 const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
3040 StringRef Separator) {
3044 if (MDNames.empty())
3045 TheModule->getMDKindNames(MDNames);
3047 for (const auto &I : MDs) {
3048 unsigned Kind = I.first;
3050 if (Kind < MDNames.size()) {
3052 printMetadataIdentifier(MDNames[Kind], Out);
3054 Out << "!<unknown kind #" << Kind << ">";
3056 WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
3060 void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
3061 Out << '!' << Slot << " = ";
3062 printMDNodeBody(Node);
3066 void AssemblyWriter::writeAllMDNodes() {
3067 SmallVector<const MDNode *, 16> Nodes;
3068 Nodes.resize(Machine.mdn_size());
3069 for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
3071 Nodes[I->second] = cast<MDNode>(I->first);
3073 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
3074 writeMDNode(i, Nodes[i]);
3078 void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
3079 WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
3082 void AssemblyWriter::writeAllAttributeGroups() {
3083 std::vector<std::pair<AttributeSet, unsigned> > asVec;
3084 asVec.resize(Machine.as_size());
3086 for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
3088 asVec[I->second] = *I;
3090 for (std::vector<std::pair<AttributeSet, unsigned> >::iterator
3091 I = asVec.begin(), E = asVec.end(); I != E; ++I)
3092 Out << "attributes #" << I->second << " = { "
3093 << I->first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
3096 void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
3097 bool IsInFunction = Machine.getFunction();
3101 Out << "uselistorder";
3102 if (const BasicBlock *BB =
3103 IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
3105 writeOperand(BB->getParent(), false);
3107 writeOperand(BB, false);
3110 writeOperand(Order.V, true);
3114 assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
3115 Out << Order.Shuffle[0];
3116 for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
3117 Out << ", " << Order.Shuffle[I];
3121 void AssemblyWriter::printUseLists(const Function *F) {
3123 [&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
3128 Out << "\n; uselistorder directives\n";
3130 printUseListOrder(UseListOrders.back());
3131 UseListOrders.pop_back();
3135 //===----------------------------------------------------------------------===//
3136 // External Interface declarations
3137 //===----------------------------------------------------------------------===//
3139 void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW) const {
3140 SlotTracker SlotTable(this->getParent());
3141 formatted_raw_ostream OS(ROS);
3142 AssemblyWriter W(OS, SlotTable, this->getParent(), AAW);
3143 W.printFunction(this);
3146 void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
3147 bool ShouldPreserveUseListOrder) const {
3148 SlotTracker SlotTable(this);
3149 formatted_raw_ostream OS(ROS);
3150 AssemblyWriter W(OS, SlotTable, this, AAW, ShouldPreserveUseListOrder);
3151 W.printModule(this);
3154 void NamedMDNode::print(raw_ostream &ROS) const {
3155 SlotTracker SlotTable(getParent());
3156 formatted_raw_ostream OS(ROS);
3157 AssemblyWriter W(OS, SlotTable, getParent(), nullptr);
3158 W.printNamedMDNode(this);
3161 void Comdat::print(raw_ostream &ROS) const {
3162 PrintLLVMName(ROS, getName(), ComdatPrefix);
3163 ROS << " = comdat ";
3165 switch (getSelectionKind()) {
3169 case Comdat::ExactMatch:
3170 ROS << "exactmatch";
3172 case Comdat::Largest:
3175 case Comdat::NoDuplicates:
3176 ROS << "noduplicates";
3178 case Comdat::SameSize:
3186 void Type::print(raw_ostream &OS) const {
3188 TP.print(const_cast<Type*>(this), OS);
3190 // If the type is a named struct type, print the body as well.
3191 if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
3192 if (!STy->isLiteral()) {
3194 TP.printStructBody(STy, OS);
3198 static bool isReferencingMDNode(const Instruction &I) {
3199 if (const auto *CI = dyn_cast<CallInst>(&I))
3200 if (Function *F = CI->getCalledFunction())
3201 if (F->isIntrinsic())
3202 for (auto &Op : I.operands())
3203 if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
3204 if (isa<MDNode>(V->getMetadata()))
3209 void Value::print(raw_ostream &ROS) const {
3210 bool ShouldInitializeAllMetadata = false;
3211 if (auto *I = dyn_cast<Instruction>(this))
3212 ShouldInitializeAllMetadata = isReferencingMDNode(*I);
3213 else if (isa<Function>(this) || isa<MetadataAsValue>(this))
3214 ShouldInitializeAllMetadata = true;
3216 ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
3220 void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST) const {
3221 formatted_raw_ostream OS(ROS);
3222 SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
3223 SlotTracker &SlotTable =
3224 MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
3225 auto incorporateFunction = [&](const Function *F) {
3227 MST.incorporateFunction(*F);
3230 if (const Instruction *I = dyn_cast<Instruction>(this)) {
3231 incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
3232 AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr);
3233 W.printInstruction(*I);
3234 } else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
3235 incorporateFunction(BB->getParent());
3236 AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr);
3237 W.printBasicBlock(BB);
3238 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
3239 AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr);
3240 if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
3242 else if (const Function *F = dyn_cast<Function>(GV))
3245 W.printAlias(cast<GlobalAlias>(GV));
3246 } else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
3247 V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
3248 } else if (const Constant *C = dyn_cast<Constant>(this)) {
3249 TypePrinting TypePrinter;
3250 TypePrinter.print(C->getType(), OS);
3252 WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
3253 } else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
3254 this->printAsOperand(OS, /* PrintType */ true, MST);
3256 llvm_unreachable("Unknown value to print out!");
3260 /// Print without a type, skipping the TypePrinting object.
3262 /// \return \c true iff printing was succesful.
3263 static bool printWithoutType(const Value &V, raw_ostream &O,
3264 SlotTracker *Machine, const Module *M) {
3265 if (V.hasName() || isa<GlobalValue>(V) ||
3266 (!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
3267 WriteAsOperandInternal(O, &V, nullptr, Machine, M);
3273 static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
3274 ModuleSlotTracker &MST) {
3275 TypePrinting TypePrinter;
3276 if (const Module *M = MST.getModule())
3277 TypePrinter.incorporateTypes(*M);
3279 TypePrinter.print(V.getType(), O);
3283 WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
3287 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3288 const Module *M) const {
3290 M = getModuleFromVal(this);
3293 if (printWithoutType(*this, O, nullptr, M))
3296 SlotTracker Machine(
3297 M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
3298 ModuleSlotTracker MST(Machine, M);
3299 printAsOperandImpl(*this, O, PrintType, MST);
3302 void Value::printAsOperand(raw_ostream &O, bool PrintType,
3303 ModuleSlotTracker &MST) const {
3305 if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
3308 printAsOperandImpl(*this, O, PrintType, MST);
3311 static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
3312 ModuleSlotTracker &MST, const Module *M,
3313 bool OnlyAsOperand) {
3314 formatted_raw_ostream OS(ROS);
3316 TypePrinting TypePrinter;
3318 TypePrinter.incorporateTypes(*M);
3320 WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
3321 /* FromValue */ true);
3323 auto *N = dyn_cast<MDNode>(&MD);
3324 if (OnlyAsOperand || !N)
3328 WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
3331 void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
3332 ModuleSlotTracker MST(M, isa<MDNode>(this));
3333 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3336 void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
3337 const Module *M) const {
3338 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
3341 void Metadata::print(raw_ostream &OS, const Module *M) const {
3342 ModuleSlotTracker MST(M, isa<MDNode>(this));
3343 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3346 void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
3347 const Module *M) const {
3348 printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
3351 // Value::dump - allow easy printing of Values from the debugger.
3353 void Value::dump() const { print(dbgs()); dbgs() << '\n'; }
3355 // Type::dump - allow easy printing of Types from the debugger.
3357 void Type::dump() const { print(dbgs()); dbgs() << '\n'; }
3359 // Module::dump() - Allow printing of Modules from the debugger.
3361 void Module::dump() const { print(dbgs(), nullptr); }
3363 // \brief Allow printing of Comdats from the debugger.
3365 void Comdat::dump() const { print(dbgs()); }
3367 // NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
3369 void NamedMDNode::dump() const { print(dbgs()); }
3372 void Metadata::dump() const { dump(nullptr); }
3375 void Metadata::dump(const Module *M) const {