Use isIntrinsic() instead of checking for "llvm."
[oota-llvm.git] / lib / IR / Constants.cpp
1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Constant* classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalValue.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm>
36 #include <cstdarg>
37 using namespace llvm;
38
39 //===----------------------------------------------------------------------===//
40 //                              Constant Class
41 //===----------------------------------------------------------------------===//
42
43 void Constant::anchor() { }
44
45 bool Constant::isNegativeZeroValue() const {
46   // Floating point values have an explicit -0.0 value.
47   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48     return CFP->isZero() && CFP->isNegative();
49
50   // Equivalent for a vector of -0.0's.
51   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52     if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53       if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
54         return true;
55
56   // We've already handled true FP case; any other FP vectors can't represent -0.0.
57   if (getType()->isFPOrFPVectorTy())
58     return false;
59
60   // Otherwise, just use +0.0.
61   return isNullValue();
62 }
63
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
66 bool Constant::isZeroValue() const {
67   // Floating point values have an explicit -0.0 value.
68   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
69     return CFP->isZero();
70
71   // Otherwise, just use +0.0.
72   return isNullValue();
73 }
74
75 bool Constant::isNullValue() const {
76   // 0 is null.
77   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
78     return CI->isZero();
79
80   // +0.0 is null.
81   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82     return CFP->isZero() && !CFP->isNegative();
83
84   // constant zero is zero for aggregates and cpnull is null for pointers.
85   return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
86 }
87
88 bool Constant::isAllOnesValue() const {
89   // Check for -1 integers
90   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91     return CI->isMinusOne();
92
93   // Check for FP which are bitcasted from -1 integers
94   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95     return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
96
97   // Check for constant vectors which are splats of -1 values.
98   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99     if (Constant *Splat = CV->getSplatValue())
100       return Splat->isAllOnesValue();
101
102   // Check for constant vectors which are splats of -1 values.
103   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104     if (Constant *Splat = CV->getSplatValue())
105       return Splat->isAllOnesValue();
106
107   return false;
108 }
109
110 // Constructor to create a '0' constant of arbitrary type...
111 Constant *Constant::getNullValue(Type *Ty) {
112   switch (Ty->getTypeID()) {
113   case Type::IntegerTyID:
114     return ConstantInt::get(Ty, 0);
115   case Type::HalfTyID:
116     return ConstantFP::get(Ty->getContext(),
117                            APFloat::getZero(APFloat::IEEEhalf));
118   case Type::FloatTyID:
119     return ConstantFP::get(Ty->getContext(),
120                            APFloat::getZero(APFloat::IEEEsingle));
121   case Type::DoubleTyID:
122     return ConstantFP::get(Ty->getContext(),
123                            APFloat::getZero(APFloat::IEEEdouble));
124   case Type::X86_FP80TyID:
125     return ConstantFP::get(Ty->getContext(),
126                            APFloat::getZero(APFloat::x87DoubleExtended));
127   case Type::FP128TyID:
128     return ConstantFP::get(Ty->getContext(),
129                            APFloat::getZero(APFloat::IEEEquad));
130   case Type::PPC_FP128TyID:
131     return ConstantFP::get(Ty->getContext(),
132                            APFloat(APFloat::PPCDoubleDouble,
133                                    APInt::getNullValue(128)));
134   case Type::PointerTyID:
135     return ConstantPointerNull::get(cast<PointerType>(Ty));
136   case Type::StructTyID:
137   case Type::ArrayTyID:
138   case Type::VectorTyID:
139     return ConstantAggregateZero::get(Ty);
140   default:
141     // Function, Label, or Opaque type?
142     llvm_unreachable("Cannot create a null constant of that type!");
143   }
144 }
145
146 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
147   Type *ScalarTy = Ty->getScalarType();
148
149   // Create the base integer constant.
150   Constant *C = ConstantInt::get(Ty->getContext(), V);
151
152   // Convert an integer to a pointer, if necessary.
153   if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
154     C = ConstantExpr::getIntToPtr(C, PTy);
155
156   // Broadcast a scalar to a vector, if necessary.
157   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
158     C = ConstantVector::getSplat(VTy->getNumElements(), C);
159
160   return C;
161 }
162
163 Constant *Constant::getAllOnesValue(Type *Ty) {
164   if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
165     return ConstantInt::get(Ty->getContext(),
166                             APInt::getAllOnesValue(ITy->getBitWidth()));
167
168   if (Ty->isFloatingPointTy()) {
169     APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
170                                           !Ty->isPPC_FP128Ty());
171     return ConstantFP::get(Ty->getContext(), FL);
172   }
173
174   VectorType *VTy = cast<VectorType>(Ty);
175   return ConstantVector::getSplat(VTy->getNumElements(),
176                                   getAllOnesValue(VTy->getElementType()));
177 }
178
179 /// getAggregateElement - For aggregates (struct/array/vector) return the
180 /// constant that corresponds to the specified element if possible, or null if
181 /// not.  This can return null if the element index is a ConstantExpr, or if
182 /// 'this' is a constant expr.
183 Constant *Constant::getAggregateElement(unsigned Elt) const {
184   if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
185     return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
186
187   if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
188     return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
189
190   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
191     return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
192
193   if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
194     return CAZ->getElementValue(Elt);
195
196   if (const UndefValue *UV = dyn_cast<UndefValue>(this))
197     return UV->getElementValue(Elt);
198
199   if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
200     return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
201   return 0;
202 }
203
204 Constant *Constant::getAggregateElement(Constant *Elt) const {
205   assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
206   if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
207     return getAggregateElement(CI->getZExtValue());
208   return 0;
209 }
210
211
212 void Constant::destroyConstantImpl() {
213   // When a Constant is destroyed, there may be lingering
214   // references to the constant by other constants in the constant pool.  These
215   // constants are implicitly dependent on the module that is being deleted,
216   // but they don't know that.  Because we only find out when the CPV is
217   // deleted, we must now notify all of our users (that should only be
218   // Constants) that they are, in fact, invalid now and should be deleted.
219   //
220   while (!use_empty()) {
221     Value *V = use_back();
222 #ifndef NDEBUG      // Only in -g mode...
223     if (!isa<Constant>(V)) {
224       dbgs() << "While deleting: " << *this
225              << "\n\nUse still stuck around after Def is destroyed: "
226              << *V << "\n\n";
227     }
228 #endif
229     assert(isa<Constant>(V) && "References remain to Constant being destroyed");
230     cast<Constant>(V)->destroyConstant();
231
232     // The constant should remove itself from our use list...
233     assert((use_empty() || use_back() != V) && "Constant not removed!");
234   }
235
236   // Value has no outstanding references it is safe to delete it now...
237   delete this;
238 }
239
240 static bool canTrapImpl(const Constant *C,
241                         SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
242   assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
243   // The only thing that could possibly trap are constant exprs.
244   const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
245   if (!CE)
246     return false;
247
248   // ConstantExpr traps if any operands can trap.
249   for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
250     if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
251       if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
252         return true;
253     }
254   }
255
256   // Otherwise, only specific operations can trap.
257   switch (CE->getOpcode()) {
258   default:
259     return false;
260   case Instruction::UDiv:
261   case Instruction::SDiv:
262   case Instruction::FDiv:
263   case Instruction::URem:
264   case Instruction::SRem:
265   case Instruction::FRem:
266     // Div and rem can trap if the RHS is not known to be non-zero.
267     if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
268       return true;
269     return false;
270   }
271 }
272
273 /// canTrap - Return true if evaluation of this constant could trap.  This is
274 /// true for things like constant expressions that could divide by zero.
275 bool Constant::canTrap() const {
276   SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
277   return canTrapImpl(this, NonTrappingOps);
278 }
279
280 /// isThreadDependent - Return true if the value can vary between threads.
281 bool Constant::isThreadDependent() const {
282   SmallPtrSet<const Constant*, 64> Visited;
283   SmallVector<const Constant*, 64> WorkList;
284   WorkList.push_back(this);
285   Visited.insert(this);
286
287   while (!WorkList.empty()) {
288     const Constant *C = WorkList.pop_back_val();
289
290     if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
291       if (GV->isThreadLocal())
292         return true;
293     }
294
295     for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
296       const Constant *D = dyn_cast<Constant>(C->getOperand(I));
297       if (!D)
298         continue;
299       if (Visited.insert(D))
300         WorkList.push_back(D);
301     }
302   }
303
304   return false;
305 }
306
307 /// isConstantUsed - Return true if the constant has users other than constant
308 /// exprs and other dangling things.
309 bool Constant::isConstantUsed() const {
310   for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
311     const Constant *UC = dyn_cast<Constant>(*UI);
312     if (UC == 0 || isa<GlobalValue>(UC))
313       return true;
314
315     if (UC->isConstantUsed())
316       return true;
317   }
318   return false;
319 }
320
321
322
323 /// getRelocationInfo - This method classifies the entry according to
324 /// whether or not it may generate a relocation entry.  This must be
325 /// conservative, so if it might codegen to a relocatable entry, it should say
326 /// so.  The return values are:
327 /// 
328 ///  NoRelocation: This constant pool entry is guaranteed to never have a
329 ///     relocation applied to it (because it holds a simple constant like
330 ///     '4').
331 ///  LocalRelocation: This entry has relocations, but the entries are
332 ///     guaranteed to be resolvable by the static linker, so the dynamic
333 ///     linker will never see them.
334 ///  GlobalRelocations: This entry may have arbitrary relocations.
335 ///
336 /// FIXME: This really should not be in IR.
337 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
338   if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
339     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
340       return LocalRelocation;  // Local to this file/library.
341     return GlobalRelocations;    // Global reference.
342   }
343   
344   if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
345     return BA->getFunction()->getRelocationInfo();
346   
347   // While raw uses of blockaddress need to be relocated, differences between
348   // two of them don't when they are for labels in the same function.  This is a
349   // common idiom when creating a table for the indirect goto extension, so we
350   // handle it efficiently here.
351   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
352     if (CE->getOpcode() == Instruction::Sub) {
353       ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
354       ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
355       if (LHS && RHS &&
356           LHS->getOpcode() == Instruction::PtrToInt &&
357           RHS->getOpcode() == Instruction::PtrToInt &&
358           isa<BlockAddress>(LHS->getOperand(0)) &&
359           isa<BlockAddress>(RHS->getOperand(0)) &&
360           cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
361             cast<BlockAddress>(RHS->getOperand(0))->getFunction())
362         return NoRelocation;
363     }
364
365   PossibleRelocationsTy Result = NoRelocation;
366   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
367     Result = std::max(Result,
368                       cast<Constant>(getOperand(i))->getRelocationInfo());
369
370   return Result;
371 }
372
373 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
374 /// it.  This involves recursively eliminating any dead users of the
375 /// constantexpr.
376 static bool removeDeadUsersOfConstant(const Constant *C) {
377   if (isa<GlobalValue>(C)) return false; // Cannot remove this
378
379   while (!C->use_empty()) {
380     const Constant *User = dyn_cast<Constant>(C->use_back());
381     if (!User) return false; // Non-constant usage;
382     if (!removeDeadUsersOfConstant(User))
383       return false; // Constant wasn't dead
384   }
385
386   const_cast<Constant*>(C)->destroyConstant();
387   return true;
388 }
389
390
391 /// removeDeadConstantUsers - If there are any dead constant users dangling
392 /// off of this constant, remove them.  This method is useful for clients
393 /// that want to check to see if a global is unused, but don't want to deal
394 /// with potentially dead constants hanging off of the globals.
395 void Constant::removeDeadConstantUsers() const {
396   Value::const_use_iterator I = use_begin(), E = use_end();
397   Value::const_use_iterator LastNonDeadUser = E;
398   while (I != E) {
399     const Constant *User = dyn_cast<Constant>(*I);
400     if (User == 0) {
401       LastNonDeadUser = I;
402       ++I;
403       continue;
404     }
405
406     if (!removeDeadUsersOfConstant(User)) {
407       // If the constant wasn't dead, remember that this was the last live use
408       // and move on to the next constant.
409       LastNonDeadUser = I;
410       ++I;
411       continue;
412     }
413
414     // If the constant was dead, then the iterator is invalidated.
415     if (LastNonDeadUser == E) {
416       I = use_begin();
417       if (I == E) break;
418     } else {
419       I = LastNonDeadUser;
420       ++I;
421     }
422   }
423 }
424
425
426
427 //===----------------------------------------------------------------------===//
428 //                                ConstantInt
429 //===----------------------------------------------------------------------===//
430
431 void ConstantInt::anchor() { }
432
433 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
434   : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
435   assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
436 }
437
438 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
439   LLVMContextImpl *pImpl = Context.pImpl;
440   if (!pImpl->TheTrueVal)
441     pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
442   return pImpl->TheTrueVal;
443 }
444
445 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
446   LLVMContextImpl *pImpl = Context.pImpl;
447   if (!pImpl->TheFalseVal)
448     pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
449   return pImpl->TheFalseVal;
450 }
451
452 Constant *ConstantInt::getTrue(Type *Ty) {
453   VectorType *VTy = dyn_cast<VectorType>(Ty);
454   if (!VTy) {
455     assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
456     return ConstantInt::getTrue(Ty->getContext());
457   }
458   assert(VTy->getElementType()->isIntegerTy(1) &&
459          "True must be vector of i1 or i1.");
460   return ConstantVector::getSplat(VTy->getNumElements(),
461                                   ConstantInt::getTrue(Ty->getContext()));
462 }
463
464 Constant *ConstantInt::getFalse(Type *Ty) {
465   VectorType *VTy = dyn_cast<VectorType>(Ty);
466   if (!VTy) {
467     assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
468     return ConstantInt::getFalse(Ty->getContext());
469   }
470   assert(VTy->getElementType()->isIntegerTy(1) &&
471          "False must be vector of i1 or i1.");
472   return ConstantVector::getSplat(VTy->getNumElements(),
473                                   ConstantInt::getFalse(Ty->getContext()));
474 }
475
476
477 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap 
478 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
479 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
480 // compare APInt's of different widths, which would violate an APInt class
481 // invariant which generates an assertion.
482 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
483   // Get the corresponding integer type for the bit width of the value.
484   IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
485   // get an existing value or the insertion position
486   LLVMContextImpl *pImpl = Context.pImpl;
487   ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
488   if (!Slot) Slot = new ConstantInt(ITy, V);
489   return Slot;
490 }
491
492 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
493   Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
494
495   // For vectors, broadcast the value.
496   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
497     return ConstantVector::getSplat(VTy->getNumElements(), C);
498
499   return C;
500 }
501
502 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, 
503                               bool isSigned) {
504   return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
505 }
506
507 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
508   return get(Ty, V, true);
509 }
510
511 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
512   return get(Ty, V, true);
513 }
514
515 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
516   ConstantInt *C = get(Ty->getContext(), V);
517   assert(C->getType() == Ty->getScalarType() &&
518          "ConstantInt type doesn't match the type implied by its value!");
519
520   // For vectors, broadcast the value.
521   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
522     return ConstantVector::getSplat(VTy->getNumElements(), C);
523
524   return C;
525 }
526
527 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
528                               uint8_t radix) {
529   return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
530 }
531
532 //===----------------------------------------------------------------------===//
533 //                                ConstantFP
534 //===----------------------------------------------------------------------===//
535
536 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
537   if (Ty->isHalfTy())
538     return &APFloat::IEEEhalf;
539   if (Ty->isFloatTy())
540     return &APFloat::IEEEsingle;
541   if (Ty->isDoubleTy())
542     return &APFloat::IEEEdouble;
543   if (Ty->isX86_FP80Ty())
544     return &APFloat::x87DoubleExtended;
545   else if (Ty->isFP128Ty())
546     return &APFloat::IEEEquad;
547
548   assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
549   return &APFloat::PPCDoubleDouble;
550 }
551
552 void ConstantFP::anchor() { }
553
554 /// get() - This returns a constant fp for the specified value in the
555 /// specified type.  This should only be used for simple constant values like
556 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
557 Constant *ConstantFP::get(Type *Ty, double V) {
558   LLVMContext &Context = Ty->getContext();
559
560   APFloat FV(V);
561   bool ignored;
562   FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
563              APFloat::rmNearestTiesToEven, &ignored);
564   Constant *C = get(Context, FV);
565
566   // For vectors, broadcast the value.
567   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
568     return ConstantVector::getSplat(VTy->getNumElements(), C);
569
570   return C;
571 }
572
573
574 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
575   LLVMContext &Context = Ty->getContext();
576
577   APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
578   Constant *C = get(Context, FV);
579
580   // For vectors, broadcast the value.
581   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
582     return ConstantVector::getSplat(VTy->getNumElements(), C);
583
584   return C; 
585 }
586
587
588 ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
589   LLVMContext &Context = Ty->getContext();
590   APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
591   apf.changeSign();
592   return get(Context, apf);
593 }
594
595
596 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
597   Type *ScalarTy = Ty->getScalarType();
598   if (ScalarTy->isFloatingPointTy()) {
599     Constant *C = getNegativeZero(ScalarTy);
600     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
601       return ConstantVector::getSplat(VTy->getNumElements(), C);
602     return C;
603   }
604
605   return Constant::getNullValue(Ty);
606 }
607
608
609 // ConstantFP accessors.
610 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
611   LLVMContextImpl* pImpl = Context.pImpl;
612
613   ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
614
615   if (!Slot) {
616     Type *Ty;
617     if (&V.getSemantics() == &APFloat::IEEEhalf)
618       Ty = Type::getHalfTy(Context);
619     else if (&V.getSemantics() == &APFloat::IEEEsingle)
620       Ty = Type::getFloatTy(Context);
621     else if (&V.getSemantics() == &APFloat::IEEEdouble)
622       Ty = Type::getDoubleTy(Context);
623     else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
624       Ty = Type::getX86_FP80Ty(Context);
625     else if (&V.getSemantics() == &APFloat::IEEEquad)
626       Ty = Type::getFP128Ty(Context);
627     else {
628       assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && 
629              "Unknown FP format");
630       Ty = Type::getPPC_FP128Ty(Context);
631     }
632     Slot = new ConstantFP(Ty, V);
633   }
634
635   return Slot;
636 }
637
638 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
639   const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
640   return ConstantFP::get(Ty->getContext(),
641                          APFloat::getInf(Semantics, Negative));
642 }
643
644 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
645   : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
646   assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
647          "FP type Mismatch");
648 }
649
650 bool ConstantFP::isExactlyValue(const APFloat &V) const {
651   return Val.bitwiseIsEqual(V);
652 }
653
654 //===----------------------------------------------------------------------===//
655 //                   ConstantAggregateZero Implementation
656 //===----------------------------------------------------------------------===//
657
658 /// getSequentialElement - If this CAZ has array or vector type, return a zero
659 /// with the right element type.
660 Constant *ConstantAggregateZero::getSequentialElement() const {
661   return Constant::getNullValue(getType()->getSequentialElementType());
662 }
663
664 /// getStructElement - If this CAZ has struct type, return a zero with the
665 /// right element type for the specified element.
666 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
667   return Constant::getNullValue(getType()->getStructElementType(Elt));
668 }
669
670 /// getElementValue - Return a zero of the right value for the specified GEP
671 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
672 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
673   if (isa<SequentialType>(getType()))
674     return getSequentialElement();
675   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
676 }
677
678 /// getElementValue - Return a zero of the right value for the specified GEP
679 /// index.
680 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
681   if (isa<SequentialType>(getType()))
682     return getSequentialElement();
683   return getStructElement(Idx);
684 }
685
686
687 //===----------------------------------------------------------------------===//
688 //                         UndefValue Implementation
689 //===----------------------------------------------------------------------===//
690
691 /// getSequentialElement - If this undef has array or vector type, return an
692 /// undef with the right element type.
693 UndefValue *UndefValue::getSequentialElement() const {
694   return UndefValue::get(getType()->getSequentialElementType());
695 }
696
697 /// getStructElement - If this undef has struct type, return a zero with the
698 /// right element type for the specified element.
699 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
700   return UndefValue::get(getType()->getStructElementType(Elt));
701 }
702
703 /// getElementValue - Return an undef of the right value for the specified GEP
704 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
705 UndefValue *UndefValue::getElementValue(Constant *C) const {
706   if (isa<SequentialType>(getType()))
707     return getSequentialElement();
708   return getStructElement(cast<ConstantInt>(C)->getZExtValue());
709 }
710
711 /// getElementValue - Return an undef of the right value for the specified GEP
712 /// index.
713 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
714   if (isa<SequentialType>(getType()))
715     return getSequentialElement();
716   return getStructElement(Idx);
717 }
718
719
720
721 //===----------------------------------------------------------------------===//
722 //                            ConstantXXX Classes
723 //===----------------------------------------------------------------------===//
724
725 template <typename ItTy, typename EltTy>
726 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
727   for (; Start != End; ++Start)
728     if (*Start != Elt)
729       return false;
730   return true;
731 }
732
733 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
734   : Constant(T, ConstantArrayVal,
735              OperandTraits<ConstantArray>::op_end(this) - V.size(),
736              V.size()) {
737   assert(V.size() == T->getNumElements() &&
738          "Invalid initializer vector for constant array");
739   for (unsigned i = 0, e = V.size(); i != e; ++i)
740     assert(V[i]->getType() == T->getElementType() &&
741            "Initializer for array element doesn't match array element type!");
742   std::copy(V.begin(), V.end(), op_begin());
743 }
744
745 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
746   // Empty arrays are canonicalized to ConstantAggregateZero.
747   if (V.empty())
748     return ConstantAggregateZero::get(Ty);
749
750   for (unsigned i = 0, e = V.size(); i != e; ++i) {
751     assert(V[i]->getType() == Ty->getElementType() &&
752            "Wrong type in array element initializer");
753   }
754   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
755
756   // If this is an all-zero array, return a ConstantAggregateZero object.  If
757   // all undef, return an UndefValue, if "all simple", then return a
758   // ConstantDataArray.
759   Constant *C = V[0];
760   if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
761     return UndefValue::get(Ty);
762
763   if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
764     return ConstantAggregateZero::get(Ty);
765
766   // Check to see if all of the elements are ConstantFP or ConstantInt and if
767   // the element type is compatible with ConstantDataVector.  If so, use it.
768   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
769     // We speculatively build the elements here even if it turns out that there
770     // is a constantexpr or something else weird in the array, since it is so
771     // uncommon for that to happen.
772     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
773       if (CI->getType()->isIntegerTy(8)) {
774         SmallVector<uint8_t, 16> Elts;
775         for (unsigned i = 0, e = V.size(); i != e; ++i)
776           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
777             Elts.push_back(CI->getZExtValue());
778           else
779             break;
780         if (Elts.size() == V.size())
781           return ConstantDataArray::get(C->getContext(), Elts);
782       } else if (CI->getType()->isIntegerTy(16)) {
783         SmallVector<uint16_t, 16> Elts;
784         for (unsigned i = 0, e = V.size(); i != e; ++i)
785           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
786             Elts.push_back(CI->getZExtValue());
787           else
788             break;
789         if (Elts.size() == V.size())
790           return ConstantDataArray::get(C->getContext(), Elts);
791       } else if (CI->getType()->isIntegerTy(32)) {
792         SmallVector<uint32_t, 16> Elts;
793         for (unsigned i = 0, e = V.size(); i != e; ++i)
794           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
795             Elts.push_back(CI->getZExtValue());
796           else
797             break;
798         if (Elts.size() == V.size())
799           return ConstantDataArray::get(C->getContext(), Elts);
800       } else if (CI->getType()->isIntegerTy(64)) {
801         SmallVector<uint64_t, 16> Elts;
802         for (unsigned i = 0, e = V.size(); i != e; ++i)
803           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
804             Elts.push_back(CI->getZExtValue());
805           else
806             break;
807         if (Elts.size() == V.size())
808           return ConstantDataArray::get(C->getContext(), Elts);
809       }
810     }
811
812     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
813       if (CFP->getType()->isFloatTy()) {
814         SmallVector<float, 16> Elts;
815         for (unsigned i = 0, e = V.size(); i != e; ++i)
816           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
817             Elts.push_back(CFP->getValueAPF().convertToFloat());
818           else
819             break;
820         if (Elts.size() == V.size())
821           return ConstantDataArray::get(C->getContext(), Elts);
822       } else if (CFP->getType()->isDoubleTy()) {
823         SmallVector<double, 16> Elts;
824         for (unsigned i = 0, e = V.size(); i != e; ++i)
825           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
826             Elts.push_back(CFP->getValueAPF().convertToDouble());
827           else
828             break;
829         if (Elts.size() == V.size())
830           return ConstantDataArray::get(C->getContext(), Elts);
831       }
832     }
833   }
834
835   // Otherwise, we really do want to create a ConstantArray.
836   return pImpl->ArrayConstants.getOrCreate(Ty, V);
837 }
838
839 /// getTypeForElements - Return an anonymous struct type to use for a constant
840 /// with the specified set of elements.  The list must not be empty.
841 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
842                                                ArrayRef<Constant*> V,
843                                                bool Packed) {
844   unsigned VecSize = V.size();
845   SmallVector<Type*, 16> EltTypes(VecSize);
846   for (unsigned i = 0; i != VecSize; ++i)
847     EltTypes[i] = V[i]->getType();
848
849   return StructType::get(Context, EltTypes, Packed);
850 }
851
852
853 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
854                                                bool Packed) {
855   assert(!V.empty() &&
856          "ConstantStruct::getTypeForElements cannot be called on empty list");
857   return getTypeForElements(V[0]->getContext(), V, Packed);
858 }
859
860
861 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
862   : Constant(T, ConstantStructVal,
863              OperandTraits<ConstantStruct>::op_end(this) - V.size(),
864              V.size()) {
865   assert(V.size() == T->getNumElements() &&
866          "Invalid initializer vector for constant structure");
867   for (unsigned i = 0, e = V.size(); i != e; ++i)
868     assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
869            "Initializer for struct element doesn't match struct element type!");
870   std::copy(V.begin(), V.end(), op_begin());
871 }
872
873 // ConstantStruct accessors.
874 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
875   assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
876          "Incorrect # elements specified to ConstantStruct::get");
877
878   // Create a ConstantAggregateZero value if all elements are zeros.
879   bool isZero = true;
880   bool isUndef = false;
881   
882   if (!V.empty()) {
883     isUndef = isa<UndefValue>(V[0]);
884     isZero = V[0]->isNullValue();
885     if (isUndef || isZero) {
886       for (unsigned i = 0, e = V.size(); i != e; ++i) {
887         if (!V[i]->isNullValue())
888           isZero = false;
889         if (!isa<UndefValue>(V[i]))
890           isUndef = false;
891       }
892     }
893   }
894   if (isZero)
895     return ConstantAggregateZero::get(ST);
896   if (isUndef)
897     return UndefValue::get(ST);
898
899   return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
900 }
901
902 Constant *ConstantStruct::get(StructType *T, ...) {
903   va_list ap;
904   SmallVector<Constant*, 8> Values;
905   va_start(ap, T);
906   while (Constant *Val = va_arg(ap, llvm::Constant*))
907     Values.push_back(Val);
908   va_end(ap);
909   return get(T, Values);
910 }
911
912 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
913   : Constant(T, ConstantVectorVal,
914              OperandTraits<ConstantVector>::op_end(this) - V.size(),
915              V.size()) {
916   for (size_t i = 0, e = V.size(); i != e; i++)
917     assert(V[i]->getType() == T->getElementType() &&
918            "Initializer for vector element doesn't match vector element type!");
919   std::copy(V.begin(), V.end(), op_begin());
920 }
921
922 // ConstantVector accessors.
923 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
924   assert(!V.empty() && "Vectors can't be empty");
925   VectorType *T = VectorType::get(V.front()->getType(), V.size());
926   LLVMContextImpl *pImpl = T->getContext().pImpl;
927
928   // If this is an all-undef or all-zero vector, return a
929   // ConstantAggregateZero or UndefValue.
930   Constant *C = V[0];
931   bool isZero = C->isNullValue();
932   bool isUndef = isa<UndefValue>(C);
933
934   if (isZero || isUndef) {
935     for (unsigned i = 1, e = V.size(); i != e; ++i)
936       if (V[i] != C) {
937         isZero = isUndef = false;
938         break;
939       }
940   }
941
942   if (isZero)
943     return ConstantAggregateZero::get(T);
944   if (isUndef)
945     return UndefValue::get(T);
946
947   // Check to see if all of the elements are ConstantFP or ConstantInt and if
948   // the element type is compatible with ConstantDataVector.  If so, use it.
949   if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
950     // We speculatively build the elements here even if it turns out that there
951     // is a constantexpr or something else weird in the array, since it is so
952     // uncommon for that to happen.
953     if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
954       if (CI->getType()->isIntegerTy(8)) {
955         SmallVector<uint8_t, 16> Elts;
956         for (unsigned i = 0, e = V.size(); i != e; ++i)
957           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
958             Elts.push_back(CI->getZExtValue());
959           else
960             break;
961         if (Elts.size() == V.size())
962           return ConstantDataVector::get(C->getContext(), Elts);
963       } else if (CI->getType()->isIntegerTy(16)) {
964         SmallVector<uint16_t, 16> Elts;
965         for (unsigned i = 0, e = V.size(); i != e; ++i)
966           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
967             Elts.push_back(CI->getZExtValue());
968           else
969             break;
970         if (Elts.size() == V.size())
971           return ConstantDataVector::get(C->getContext(), Elts);
972       } else if (CI->getType()->isIntegerTy(32)) {
973         SmallVector<uint32_t, 16> Elts;
974         for (unsigned i = 0, e = V.size(); i != e; ++i)
975           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
976             Elts.push_back(CI->getZExtValue());
977           else
978             break;
979         if (Elts.size() == V.size())
980           return ConstantDataVector::get(C->getContext(), Elts);
981       } else if (CI->getType()->isIntegerTy(64)) {
982         SmallVector<uint64_t, 16> Elts;
983         for (unsigned i = 0, e = V.size(); i != e; ++i)
984           if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
985             Elts.push_back(CI->getZExtValue());
986           else
987             break;
988         if (Elts.size() == V.size())
989           return ConstantDataVector::get(C->getContext(), Elts);
990       }
991     }
992
993     if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
994       if (CFP->getType()->isFloatTy()) {
995         SmallVector<float, 16> Elts;
996         for (unsigned i = 0, e = V.size(); i != e; ++i)
997           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
998             Elts.push_back(CFP->getValueAPF().convertToFloat());
999           else
1000             break;
1001         if (Elts.size() == V.size())
1002           return ConstantDataVector::get(C->getContext(), Elts);
1003       } else if (CFP->getType()->isDoubleTy()) {
1004         SmallVector<double, 16> Elts;
1005         for (unsigned i = 0, e = V.size(); i != e; ++i)
1006           if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1007             Elts.push_back(CFP->getValueAPF().convertToDouble());
1008           else
1009             break;
1010         if (Elts.size() == V.size())
1011           return ConstantDataVector::get(C->getContext(), Elts);
1012       }
1013     }
1014   }
1015
1016   // Otherwise, the element type isn't compatible with ConstantDataVector, or
1017   // the operand list constants a ConstantExpr or something else strange.
1018   return pImpl->VectorConstants.getOrCreate(T, V);
1019 }
1020
1021 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1022   // If this splat is compatible with ConstantDataVector, use it instead of
1023   // ConstantVector.
1024   if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1025       ConstantDataSequential::isElementTypeCompatible(V->getType()))
1026     return ConstantDataVector::getSplat(NumElts, V);
1027
1028   SmallVector<Constant*, 32> Elts(NumElts, V);
1029   return get(Elts);
1030 }
1031
1032
1033 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1034 // can't be inline because we don't want to #include Instruction.h into
1035 // Constant.h
1036 bool ConstantExpr::isCast() const {
1037   return Instruction::isCast(getOpcode());
1038 }
1039
1040 bool ConstantExpr::isCompare() const {
1041   return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1042 }
1043
1044 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1045   if (getOpcode() != Instruction::GetElementPtr) return false;
1046
1047   gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1048   User::const_op_iterator OI = llvm::next(this->op_begin());
1049
1050   // Skip the first index, as it has no static limit.
1051   ++GEPI;
1052   ++OI;
1053
1054   // The remaining indices must be compile-time known integers within the
1055   // bounds of the corresponding notional static array types.
1056   for (; GEPI != E; ++GEPI, ++OI) {
1057     ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1058     if (!CI) return false;
1059     if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1060       if (CI->getValue().getActiveBits() > 64 ||
1061           CI->getZExtValue() >= ATy->getNumElements())
1062         return false;
1063   }
1064
1065   // All the indices checked out.
1066   return true;
1067 }
1068
1069 bool ConstantExpr::hasIndices() const {
1070   return getOpcode() == Instruction::ExtractValue ||
1071          getOpcode() == Instruction::InsertValue;
1072 }
1073
1074 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1075   if (const ExtractValueConstantExpr *EVCE =
1076         dyn_cast<ExtractValueConstantExpr>(this))
1077     return EVCE->Indices;
1078
1079   return cast<InsertValueConstantExpr>(this)->Indices;
1080 }
1081
1082 unsigned ConstantExpr::getPredicate() const {
1083   assert(isCompare());
1084   return ((const CompareConstantExpr*)this)->predicate;
1085 }
1086
1087 /// getWithOperandReplaced - Return a constant expression identical to this
1088 /// one, but with the specified operand set to the specified value.
1089 Constant *
1090 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1091   assert(Op->getType() == getOperand(OpNo)->getType() &&
1092          "Replacing operand with value of different type!");
1093   if (getOperand(OpNo) == Op)
1094     return const_cast<ConstantExpr*>(this);
1095
1096   SmallVector<Constant*, 8> NewOps;
1097   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1098     NewOps.push_back(i == OpNo ? Op : getOperand(i));
1099
1100   return getWithOperands(NewOps);
1101 }
1102
1103 /// getWithOperands - This returns the current constant expression with the
1104 /// operands replaced with the specified values.  The specified array must
1105 /// have the same number of operands as our current one.
1106 Constant *ConstantExpr::
1107 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1108   assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1109   bool AnyChange = Ty != getType();
1110   for (unsigned i = 0; i != Ops.size(); ++i)
1111     AnyChange |= Ops[i] != getOperand(i);
1112
1113   if (!AnyChange)  // No operands changed, return self.
1114     return const_cast<ConstantExpr*>(this);
1115
1116   switch (getOpcode()) {
1117   case Instruction::Trunc:
1118   case Instruction::ZExt:
1119   case Instruction::SExt:
1120   case Instruction::FPTrunc:
1121   case Instruction::FPExt:
1122   case Instruction::UIToFP:
1123   case Instruction::SIToFP:
1124   case Instruction::FPToUI:
1125   case Instruction::FPToSI:
1126   case Instruction::PtrToInt:
1127   case Instruction::IntToPtr:
1128   case Instruction::BitCast:
1129   case Instruction::AddrSpaceCast:
1130     return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1131   case Instruction::Select:
1132     return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1133   case Instruction::InsertElement:
1134     return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1135   case Instruction::ExtractElement:
1136     return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1137   case Instruction::InsertValue:
1138     return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1139   case Instruction::ExtractValue:
1140     return ConstantExpr::getExtractValue(Ops[0], getIndices());
1141   case Instruction::ShuffleVector:
1142     return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1143   case Instruction::GetElementPtr:
1144     return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1145                                       cast<GEPOperator>(this)->isInBounds());
1146   case Instruction::ICmp:
1147   case Instruction::FCmp:
1148     return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1149   default:
1150     assert(getNumOperands() == 2 && "Must be binary operator?");
1151     return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1152   }
1153 }
1154
1155
1156 //===----------------------------------------------------------------------===//
1157 //                      isValueValidForType implementations
1158
1159 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1160   unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1161   if (Ty->isIntegerTy(1))
1162     return Val == 0 || Val == 1;
1163   if (NumBits >= 64)
1164     return true; // always true, has to fit in largest type
1165   uint64_t Max = (1ll << NumBits) - 1;
1166   return Val <= Max;
1167 }
1168
1169 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1170   unsigned NumBits = Ty->getIntegerBitWidth();
1171   if (Ty->isIntegerTy(1))
1172     return Val == 0 || Val == 1 || Val == -1;
1173   if (NumBits >= 64)
1174     return true; // always true, has to fit in largest type
1175   int64_t Min = -(1ll << (NumBits-1));
1176   int64_t Max = (1ll << (NumBits-1)) - 1;
1177   return (Val >= Min && Val <= Max);
1178 }
1179
1180 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1181   // convert modifies in place, so make a copy.
1182   APFloat Val2 = APFloat(Val);
1183   bool losesInfo;
1184   switch (Ty->getTypeID()) {
1185   default:
1186     return false;         // These can't be represented as floating point!
1187
1188   // FIXME rounding mode needs to be more flexible
1189   case Type::HalfTyID: {
1190     if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1191       return true;
1192     Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1193     return !losesInfo;
1194   }
1195   case Type::FloatTyID: {
1196     if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1197       return true;
1198     Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1199     return !losesInfo;
1200   }
1201   case Type::DoubleTyID: {
1202     if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1203         &Val2.getSemantics() == &APFloat::IEEEsingle ||
1204         &Val2.getSemantics() == &APFloat::IEEEdouble)
1205       return true;
1206     Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1207     return !losesInfo;
1208   }
1209   case Type::X86_FP80TyID:
1210     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1211            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1212            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1213            &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1214   case Type::FP128TyID:
1215     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1216            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1217            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1218            &Val2.getSemantics() == &APFloat::IEEEquad;
1219   case Type::PPC_FP128TyID:
1220     return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1221            &Val2.getSemantics() == &APFloat::IEEEsingle || 
1222            &Val2.getSemantics() == &APFloat::IEEEdouble ||
1223            &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1224   }
1225 }
1226
1227
1228 //===----------------------------------------------------------------------===//
1229 //                      Factory Function Implementation
1230
1231 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1232   assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1233          "Cannot create an aggregate zero of non-aggregate type!");
1234   
1235   ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1236   if (Entry == 0)
1237     Entry = new ConstantAggregateZero(Ty);
1238
1239   return Entry;
1240 }
1241
1242 /// destroyConstant - Remove the constant from the constant table.
1243 ///
1244 void ConstantAggregateZero::destroyConstant() {
1245   getContext().pImpl->CAZConstants.erase(getType());
1246   destroyConstantImpl();
1247 }
1248
1249 /// destroyConstant - Remove the constant from the constant table...
1250 ///
1251 void ConstantArray::destroyConstant() {
1252   getType()->getContext().pImpl->ArrayConstants.remove(this);
1253   destroyConstantImpl();
1254 }
1255
1256
1257 //---- ConstantStruct::get() implementation...
1258 //
1259
1260 // destroyConstant - Remove the constant from the constant table...
1261 //
1262 void ConstantStruct::destroyConstant() {
1263   getType()->getContext().pImpl->StructConstants.remove(this);
1264   destroyConstantImpl();
1265 }
1266
1267 // destroyConstant - Remove the constant from the constant table...
1268 //
1269 void ConstantVector::destroyConstant() {
1270   getType()->getContext().pImpl->VectorConstants.remove(this);
1271   destroyConstantImpl();
1272 }
1273
1274 /// getSplatValue - If this is a splat vector constant, meaning that all of
1275 /// the elements have the same value, return that value. Otherwise return 0.
1276 Constant *Constant::getSplatValue() const {
1277   assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1278   if (isa<ConstantAggregateZero>(this))
1279     return getNullValue(this->getType()->getVectorElementType());
1280   if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1281     return CV->getSplatValue();
1282   if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1283     return CV->getSplatValue();
1284   return 0;
1285 }
1286
1287 /// getSplatValue - If this is a splat constant, where all of the
1288 /// elements have the same value, return that value. Otherwise return null.
1289 Constant *ConstantVector::getSplatValue() const {
1290   // Check out first element.
1291   Constant *Elt = getOperand(0);
1292   // Then make sure all remaining elements point to the same value.
1293   for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1294     if (getOperand(I) != Elt)
1295       return 0;
1296   return Elt;
1297 }
1298
1299 /// If C is a constant integer then return its value, otherwise C must be a
1300 /// vector of constant integers, all equal, and the common value is returned.
1301 const APInt &Constant::getUniqueInteger() const {
1302   if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1303     return CI->getValue();
1304   assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1305   const Constant *C = this->getAggregateElement(0U);
1306   assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1307   return cast<ConstantInt>(C)->getValue();
1308 }
1309
1310
1311 //---- ConstantPointerNull::get() implementation.
1312 //
1313
1314 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1315   ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1316   if (Entry == 0)
1317     Entry = new ConstantPointerNull(Ty);
1318
1319   return Entry;
1320 }
1321
1322 // destroyConstant - Remove the constant from the constant table...
1323 //
1324 void ConstantPointerNull::destroyConstant() {
1325   getContext().pImpl->CPNConstants.erase(getType());
1326   // Free the constant and any dangling references to it.
1327   destroyConstantImpl();
1328 }
1329
1330
1331 //---- UndefValue::get() implementation.
1332 //
1333
1334 UndefValue *UndefValue::get(Type *Ty) {
1335   UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1336   if (Entry == 0)
1337     Entry = new UndefValue(Ty);
1338
1339   return Entry;
1340 }
1341
1342 // destroyConstant - Remove the constant from the constant table.
1343 //
1344 void UndefValue::destroyConstant() {
1345   // Free the constant and any dangling references to it.
1346   getContext().pImpl->UVConstants.erase(getType());
1347   destroyConstantImpl();
1348 }
1349
1350 //---- BlockAddress::get() implementation.
1351 //
1352
1353 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1354   assert(BB->getParent() != 0 && "Block must have a parent");
1355   return get(BB->getParent(), BB);
1356 }
1357
1358 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1359   BlockAddress *&BA =
1360     F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1361   if (BA == 0)
1362     BA = new BlockAddress(F, BB);
1363
1364   assert(BA->getFunction() == F && "Basic block moved between functions");
1365   return BA;
1366 }
1367
1368 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1369 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1370            &Op<0>(), 2) {
1371   setOperand(0, F);
1372   setOperand(1, BB);
1373   BB->AdjustBlockAddressRefCount(1);
1374 }
1375
1376
1377 // destroyConstant - Remove the constant from the constant table.
1378 //
1379 void BlockAddress::destroyConstant() {
1380   getFunction()->getType()->getContext().pImpl
1381     ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1382   getBasicBlock()->AdjustBlockAddressRefCount(-1);
1383   destroyConstantImpl();
1384 }
1385
1386 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1387   // This could be replacing either the Basic Block or the Function.  In either
1388   // case, we have to remove the map entry.
1389   Function *NewF = getFunction();
1390   BasicBlock *NewBB = getBasicBlock();
1391
1392   if (U == &Op<0>())
1393     NewF = cast<Function>(To->stripPointerCasts());
1394   else
1395     NewBB = cast<BasicBlock>(To);
1396
1397   // See if the 'new' entry already exists, if not, just update this in place
1398   // and return early.
1399   BlockAddress *&NewBA =
1400     getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1401   if (NewBA == 0) {
1402     getBasicBlock()->AdjustBlockAddressRefCount(-1);
1403
1404     // Remove the old entry, this can't cause the map to rehash (just a
1405     // tombstone will get added).
1406     getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1407                                                             getBasicBlock()));
1408     NewBA = this;
1409     setOperand(0, NewF);
1410     setOperand(1, NewBB);
1411     getBasicBlock()->AdjustBlockAddressRefCount(1);
1412     return;
1413   }
1414
1415   // Otherwise, I do need to replace this with an existing value.
1416   assert(NewBA != this && "I didn't contain From!");
1417
1418   // Everyone using this now uses the replacement.
1419   replaceAllUsesWith(NewBA);
1420
1421   destroyConstant();
1422 }
1423
1424 //---- ConstantExpr::get() implementations.
1425 //
1426
1427 /// This is a utility function to handle folding of casts and lookup of the
1428 /// cast in the ExprConstants map. It is used by the various get* methods below.
1429 static inline Constant *getFoldedCast(
1430   Instruction::CastOps opc, Constant *C, Type *Ty) {
1431   assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1432   // Fold a few common cases
1433   if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1434     return FC;
1435
1436   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1437
1438   // Look up the constant in the table first to ensure uniqueness.
1439   ExprMapKeyType Key(opc, C);
1440
1441   return pImpl->ExprConstants.getOrCreate(Ty, Key);
1442 }
1443
1444 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1445   Instruction::CastOps opc = Instruction::CastOps(oc);
1446   assert(Instruction::isCast(opc) && "opcode out of range");
1447   assert(C && Ty && "Null arguments to getCast");
1448   assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1449
1450   switch (opc) {
1451   default:
1452     llvm_unreachable("Invalid cast opcode");
1453   case Instruction::Trunc:    return getTrunc(C, Ty);
1454   case Instruction::ZExt:     return getZExt(C, Ty);
1455   case Instruction::SExt:     return getSExt(C, Ty);
1456   case Instruction::FPTrunc:  return getFPTrunc(C, Ty);
1457   case Instruction::FPExt:    return getFPExtend(C, Ty);
1458   case Instruction::UIToFP:   return getUIToFP(C, Ty);
1459   case Instruction::SIToFP:   return getSIToFP(C, Ty);
1460   case Instruction::FPToUI:   return getFPToUI(C, Ty);
1461   case Instruction::FPToSI:   return getFPToSI(C, Ty);
1462   case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1463   case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1464   case Instruction::BitCast:  return getBitCast(C, Ty);
1465   case Instruction::AddrSpaceCast:  return getAddrSpaceCast(C, Ty);
1466   }
1467 }
1468
1469 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1470   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1471     return getBitCast(C, Ty);
1472   return getZExt(C, Ty);
1473 }
1474
1475 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1476   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1477     return getBitCast(C, Ty);
1478   return getSExt(C, Ty);
1479 }
1480
1481 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1482   if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1483     return getBitCast(C, Ty);
1484   return getTrunc(C, Ty);
1485 }
1486
1487 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1488   assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1489   assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1490           "Invalid cast");
1491
1492   if (Ty->isIntOrIntVectorTy())
1493     return getPtrToInt(S, Ty);
1494
1495   unsigned SrcAS = S->getType()->getPointerAddressSpace();
1496   if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1497     return getAddrSpaceCast(S, Ty);
1498
1499   return getBitCast(S, Ty);
1500 }
1501
1502 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, 
1503                                        bool isSigned) {
1504   assert(C->getType()->isIntOrIntVectorTy() &&
1505          Ty->isIntOrIntVectorTy() && "Invalid cast");
1506   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1507   unsigned DstBits = Ty->getScalarSizeInBits();
1508   Instruction::CastOps opcode =
1509     (SrcBits == DstBits ? Instruction::BitCast :
1510      (SrcBits > DstBits ? Instruction::Trunc :
1511       (isSigned ? Instruction::SExt : Instruction::ZExt)));
1512   return getCast(opcode, C, Ty);
1513 }
1514
1515 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1516   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1517          "Invalid cast");
1518   unsigned SrcBits = C->getType()->getScalarSizeInBits();
1519   unsigned DstBits = Ty->getScalarSizeInBits();
1520   if (SrcBits == DstBits)
1521     return C; // Avoid a useless cast
1522   Instruction::CastOps opcode =
1523     (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1524   return getCast(opcode, C, Ty);
1525 }
1526
1527 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1528 #ifndef NDEBUG
1529   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1530   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1531 #endif
1532   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1533   assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1534   assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1535   assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1536          "SrcTy must be larger than DestTy for Trunc!");
1537
1538   return getFoldedCast(Instruction::Trunc, C, Ty);
1539 }
1540
1541 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1542 #ifndef NDEBUG
1543   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1544   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1545 #endif
1546   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1547   assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1548   assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1549   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1550          "SrcTy must be smaller than DestTy for SExt!");
1551
1552   return getFoldedCast(Instruction::SExt, C, Ty);
1553 }
1554
1555 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1556 #ifndef NDEBUG
1557   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1558   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1559 #endif
1560   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1561   assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1562   assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1563   assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1564          "SrcTy must be smaller than DestTy for ZExt!");
1565
1566   return getFoldedCast(Instruction::ZExt, C, Ty);
1567 }
1568
1569 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1570 #ifndef NDEBUG
1571   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1572   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1573 #endif
1574   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1575   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1576          C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1577          "This is an illegal floating point truncation!");
1578   return getFoldedCast(Instruction::FPTrunc, C, Ty);
1579 }
1580
1581 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1582 #ifndef NDEBUG
1583   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1584   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1585 #endif
1586   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1587   assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1588          C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1589          "This is an illegal floating point extension!");
1590   return getFoldedCast(Instruction::FPExt, C, Ty);
1591 }
1592
1593 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1594 #ifndef NDEBUG
1595   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1596   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1597 #endif
1598   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1599   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1600          "This is an illegal uint to floating point cast!");
1601   return getFoldedCast(Instruction::UIToFP, C, Ty);
1602 }
1603
1604 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1605 #ifndef NDEBUG
1606   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1607   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1608 #endif
1609   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1610   assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1611          "This is an illegal sint to floating point cast!");
1612   return getFoldedCast(Instruction::SIToFP, C, Ty);
1613 }
1614
1615 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1616 #ifndef NDEBUG
1617   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1618   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1619 #endif
1620   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1621   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1622          "This is an illegal floating point to uint cast!");
1623   return getFoldedCast(Instruction::FPToUI, C, Ty);
1624 }
1625
1626 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1627 #ifndef NDEBUG
1628   bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1629   bool toVec = Ty->getTypeID() == Type::VectorTyID;
1630 #endif
1631   assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1632   assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1633          "This is an illegal floating point to sint cast!");
1634   return getFoldedCast(Instruction::FPToSI, C, Ty);
1635 }
1636
1637 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1638   assert(C->getType()->getScalarType()->isPointerTy() &&
1639          "PtrToInt source must be pointer or pointer vector");
1640   assert(DstTy->getScalarType()->isIntegerTy() && 
1641          "PtrToInt destination must be integer or integer vector");
1642   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1643   if (isa<VectorType>(C->getType()))
1644     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1645            "Invalid cast between a different number of vector elements");
1646   return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1647 }
1648
1649 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1650   assert(C->getType()->getScalarType()->isIntegerTy() &&
1651          "IntToPtr source must be integer or integer vector");
1652   assert(DstTy->getScalarType()->isPointerTy() &&
1653          "IntToPtr destination must be a pointer or pointer vector");
1654   assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1655   if (isa<VectorType>(C->getType()))
1656     assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1657            "Invalid cast between a different number of vector elements");
1658   return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1659 }
1660
1661 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1662   assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1663          "Invalid constantexpr bitcast!");
1664
1665   // It is common to ask for a bitcast of a value to its own type, handle this
1666   // speedily.
1667   if (C->getType() == DstTy) return C;
1668
1669   return getFoldedCast(Instruction::BitCast, C, DstTy);
1670 }
1671
1672 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy) {
1673   assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1674          "Invalid constantexpr addrspacecast!");
1675
1676   return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy);
1677 }
1678
1679 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1680                             unsigned Flags) {
1681   // Check the operands for consistency first.
1682   assert(Opcode >= Instruction::BinaryOpsBegin &&
1683          Opcode <  Instruction::BinaryOpsEnd   &&
1684          "Invalid opcode in binary constant expression");
1685   assert(C1->getType() == C2->getType() &&
1686          "Operand types in binary constant expression should match");
1687
1688 #ifndef NDEBUG
1689   switch (Opcode) {
1690   case Instruction::Add:
1691   case Instruction::Sub:
1692   case Instruction::Mul:
1693     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1694     assert(C1->getType()->isIntOrIntVectorTy() &&
1695            "Tried to create an integer operation on a non-integer type!");
1696     break;
1697   case Instruction::FAdd:
1698   case Instruction::FSub:
1699   case Instruction::FMul:
1700     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1701     assert(C1->getType()->isFPOrFPVectorTy() &&
1702            "Tried to create a floating-point operation on a "
1703            "non-floating-point type!");
1704     break;
1705   case Instruction::UDiv: 
1706   case Instruction::SDiv: 
1707     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1708     assert(C1->getType()->isIntOrIntVectorTy() &&
1709            "Tried to create an arithmetic operation on a non-arithmetic type!");
1710     break;
1711   case Instruction::FDiv:
1712     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1713     assert(C1->getType()->isFPOrFPVectorTy() &&
1714            "Tried to create an arithmetic operation on a non-arithmetic type!");
1715     break;
1716   case Instruction::URem: 
1717   case Instruction::SRem: 
1718     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1719     assert(C1->getType()->isIntOrIntVectorTy() &&
1720            "Tried to create an arithmetic operation on a non-arithmetic type!");
1721     break;
1722   case Instruction::FRem:
1723     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1724     assert(C1->getType()->isFPOrFPVectorTy() &&
1725            "Tried to create an arithmetic operation on a non-arithmetic type!");
1726     break;
1727   case Instruction::And:
1728   case Instruction::Or:
1729   case Instruction::Xor:
1730     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1731     assert(C1->getType()->isIntOrIntVectorTy() &&
1732            "Tried to create a logical operation on a non-integral type!");
1733     break;
1734   case Instruction::Shl:
1735   case Instruction::LShr:
1736   case Instruction::AShr:
1737     assert(C1->getType() == C2->getType() && "Op types should be identical!");
1738     assert(C1->getType()->isIntOrIntVectorTy() &&
1739            "Tried to create a shift operation on a non-integer type!");
1740     break;
1741   default:
1742     break;
1743   }
1744 #endif
1745
1746   if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1747     return FC;          // Fold a few common cases.
1748
1749   Constant *ArgVec[] = { C1, C2 };
1750   ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1751
1752   LLVMContextImpl *pImpl = C1->getContext().pImpl;
1753   return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1754 }
1755
1756 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1757   // sizeof is implemented as: (i64) gep (Ty*)null, 1
1758   // Note that a non-inbounds gep is used, as null isn't within any object.
1759   Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1760   Constant *GEP = getGetElementPtr(
1761                  Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1762   return getPtrToInt(GEP, 
1763                      Type::getInt64Ty(Ty->getContext()));
1764 }
1765
1766 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1767   // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1768   // Note that a non-inbounds gep is used, as null isn't within any object.
1769   Type *AligningTy = 
1770     StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1771   Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1772   Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1773   Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1774   Constant *Indices[2] = { Zero, One };
1775   Constant *GEP = getGetElementPtr(NullPtr, Indices);
1776   return getPtrToInt(GEP,
1777                      Type::getInt64Ty(Ty->getContext()));
1778 }
1779
1780 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1781   return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1782                                            FieldNo));
1783 }
1784
1785 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1786   // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1787   // Note that a non-inbounds gep is used, as null isn't within any object.
1788   Constant *GEPIdx[] = {
1789     ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1790     FieldNo
1791   };
1792   Constant *GEP = getGetElementPtr(
1793                 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1794   return getPtrToInt(GEP,
1795                      Type::getInt64Ty(Ty->getContext()));
1796 }
1797
1798 Constant *ConstantExpr::getCompare(unsigned short Predicate, 
1799                                    Constant *C1, Constant *C2) {
1800   assert(C1->getType() == C2->getType() && "Op types should be identical!");
1801
1802   switch (Predicate) {
1803   default: llvm_unreachable("Invalid CmpInst predicate");
1804   case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1805   case CmpInst::FCMP_OGE:   case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1806   case CmpInst::FCMP_ONE:   case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1807   case CmpInst::FCMP_UEQ:   case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1808   case CmpInst::FCMP_ULT:   case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1809   case CmpInst::FCMP_TRUE:
1810     return getFCmp(Predicate, C1, C2);
1811
1812   case CmpInst::ICMP_EQ:  case CmpInst::ICMP_NE:  case CmpInst::ICMP_UGT:
1813   case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1814   case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1815   case CmpInst::ICMP_SLE:
1816     return getICmp(Predicate, C1, C2);
1817   }
1818 }
1819
1820 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1821   assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1822
1823   if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1824     return SC;        // Fold common cases
1825
1826   Constant *ArgVec[] = { C, V1, V2 };
1827   ExprMapKeyType Key(Instruction::Select, ArgVec);
1828
1829   LLVMContextImpl *pImpl = C->getContext().pImpl;
1830   return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1831 }
1832
1833 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1834                                          bool InBounds) {
1835   assert(C->getType()->isPtrOrPtrVectorTy() &&
1836          "Non-pointer type for constant GetElementPtr expression");
1837
1838   if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1839     return FC;          // Fold a few common cases.
1840
1841   // Get the result type of the getelementptr!
1842   Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1843   assert(Ty && "GEP indices invalid!");
1844   unsigned AS = C->getType()->getPointerAddressSpace();
1845   Type *ReqTy = Ty->getPointerTo(AS);
1846   if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1847     ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1848
1849   // Look up the constant in the table first to ensure uniqueness
1850   std::vector<Constant*> ArgVec;
1851   ArgVec.reserve(1 + Idxs.size());
1852   ArgVec.push_back(C);
1853   for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1854     assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1855            "getelementptr index type missmatch");
1856     assert((!Idxs[i]->getType()->isVectorTy() ||
1857             ReqTy->getVectorNumElements() ==
1858             Idxs[i]->getType()->getVectorNumElements()) &&
1859            "getelementptr index type missmatch");
1860     ArgVec.push_back(cast<Constant>(Idxs[i]));
1861   }
1862   const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1863                            InBounds ? GEPOperator::IsInBounds : 0);
1864
1865   LLVMContextImpl *pImpl = C->getContext().pImpl;
1866   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1867 }
1868
1869 Constant *
1870 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1871   assert(LHS->getType() == RHS->getType());
1872   assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && 
1873          pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1874
1875   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1876     return FC;          // Fold a few common cases...
1877
1878   // Look up the constant in the table first to ensure uniqueness
1879   Constant *ArgVec[] = { LHS, RHS };
1880   // Get the key type with both the opcode and predicate
1881   const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1882
1883   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1884   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1885     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1886
1887   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1888   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1889 }
1890
1891 Constant *
1892 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1893   assert(LHS->getType() == RHS->getType());
1894   assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1895
1896   if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1897     return FC;          // Fold a few common cases...
1898
1899   // Look up the constant in the table first to ensure uniqueness
1900   Constant *ArgVec[] = { LHS, RHS };
1901   // Get the key type with both the opcode and predicate
1902   const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1903
1904   Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1905   if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1906     ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1907
1908   LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1909   return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1910 }
1911
1912 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1913   assert(Val->getType()->isVectorTy() &&
1914          "Tried to create extractelement operation on non-vector type!");
1915   assert(Idx->getType()->isIntegerTy(32) &&
1916          "Extractelement index must be i32 type!");
1917
1918   if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1919     return FC;          // Fold a few common cases.
1920
1921   // Look up the constant in the table first to ensure uniqueness
1922   Constant *ArgVec[] = { Val, Idx };
1923   const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1924
1925   LLVMContextImpl *pImpl = Val->getContext().pImpl;
1926   Type *ReqTy = Val->getType()->getVectorElementType();
1927   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1928 }
1929
1930 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, 
1931                                          Constant *Idx) {
1932   assert(Val->getType()->isVectorTy() &&
1933          "Tried to create insertelement operation on non-vector type!");
1934   assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1935          "Insertelement types must match!");
1936   assert(Idx->getType()->isIntegerTy(32) &&
1937          "Insertelement index must be i32 type!");
1938
1939   if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1940     return FC;          // Fold a few common cases.
1941   // Look up the constant in the table first to ensure uniqueness
1942   Constant *ArgVec[] = { Val, Elt, Idx };
1943   const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
1944
1945   LLVMContextImpl *pImpl = Val->getContext().pImpl;
1946   return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1947 }
1948
1949 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, 
1950                                          Constant *Mask) {
1951   assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1952          "Invalid shuffle vector constant expr operands!");
1953
1954   if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1955     return FC;          // Fold a few common cases.
1956
1957   unsigned NElts = Mask->getType()->getVectorNumElements();
1958   Type *EltTy = V1->getType()->getVectorElementType();
1959   Type *ShufTy = VectorType::get(EltTy, NElts);
1960
1961   // Look up the constant in the table first to ensure uniqueness
1962   Constant *ArgVec[] = { V1, V2, Mask };
1963   const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
1964
1965   LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1966   return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1967 }
1968
1969 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1970                                        ArrayRef<unsigned> Idxs) {
1971   assert(Agg->getType()->isFirstClassType() &&
1972          "Non-first-class type for constant insertvalue expression");
1973
1974   assert(ExtractValueInst::getIndexedType(Agg->getType(),
1975                                           Idxs) == Val->getType() &&
1976          "insertvalue indices invalid!");
1977   Type *ReqTy = Val->getType();
1978
1979   if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
1980     return FC;
1981
1982   Constant *ArgVec[] = { Agg, Val };
1983   const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
1984
1985   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
1986   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1987 }
1988
1989 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1990                                         ArrayRef<unsigned> Idxs) {
1991   assert(Agg->getType()->isFirstClassType() &&
1992          "Tried to create extractelement operation on non-first-class type!");
1993
1994   Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1995   (void)ReqTy;
1996   assert(ReqTy && "extractvalue indices invalid!");
1997
1998   assert(Agg->getType()->isFirstClassType() &&
1999          "Non-first-class type for constant extractvalue expression");
2000   if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2001     return FC;
2002
2003   Constant *ArgVec[] = { Agg };
2004   const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2005
2006   LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2007   return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2008 }
2009
2010 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2011   assert(C->getType()->isIntOrIntVectorTy() &&
2012          "Cannot NEG a nonintegral value!");
2013   return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2014                 C, HasNUW, HasNSW);
2015 }
2016
2017 Constant *ConstantExpr::getFNeg(Constant *C) {
2018   assert(C->getType()->isFPOrFPVectorTy() &&
2019          "Cannot FNEG a non-floating-point value!");
2020   return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2021 }
2022
2023 Constant *ConstantExpr::getNot(Constant *C) {
2024   assert(C->getType()->isIntOrIntVectorTy() &&
2025          "Cannot NOT a nonintegral value!");
2026   return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2027 }
2028
2029 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2030                                bool HasNUW, bool HasNSW) {
2031   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2032                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2033   return get(Instruction::Add, C1, C2, Flags);
2034 }
2035
2036 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2037   return get(Instruction::FAdd, C1, C2);
2038 }
2039
2040 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2041                                bool HasNUW, bool HasNSW) {
2042   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2043                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2044   return get(Instruction::Sub, C1, C2, Flags);
2045 }
2046
2047 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2048   return get(Instruction::FSub, C1, C2);
2049 }
2050
2051 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2052                                bool HasNUW, bool HasNSW) {
2053   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2054                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2055   return get(Instruction::Mul, C1, C2, Flags);
2056 }
2057
2058 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2059   return get(Instruction::FMul, C1, C2);
2060 }
2061
2062 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2063   return get(Instruction::UDiv, C1, C2,
2064              isExact ? PossiblyExactOperator::IsExact : 0);
2065 }
2066
2067 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2068   return get(Instruction::SDiv, C1, C2,
2069              isExact ? PossiblyExactOperator::IsExact : 0);
2070 }
2071
2072 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2073   return get(Instruction::FDiv, C1, C2);
2074 }
2075
2076 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2077   return get(Instruction::URem, C1, C2);
2078 }
2079
2080 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2081   return get(Instruction::SRem, C1, C2);
2082 }
2083
2084 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2085   return get(Instruction::FRem, C1, C2);
2086 }
2087
2088 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2089   return get(Instruction::And, C1, C2);
2090 }
2091
2092 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2093   return get(Instruction::Or, C1, C2);
2094 }
2095
2096 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2097   return get(Instruction::Xor, C1, C2);
2098 }
2099
2100 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2101                                bool HasNUW, bool HasNSW) {
2102   unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2103                    (HasNSW ? OverflowingBinaryOperator::NoSignedWrap   : 0);
2104   return get(Instruction::Shl, C1, C2, Flags);
2105 }
2106
2107 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2108   return get(Instruction::LShr, C1, C2,
2109              isExact ? PossiblyExactOperator::IsExact : 0);
2110 }
2111
2112 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2113   return get(Instruction::AShr, C1, C2,
2114              isExact ? PossiblyExactOperator::IsExact : 0);
2115 }
2116
2117 /// getBinOpIdentity - Return the identity for the given binary operation,
2118 /// i.e. a constant C such that X op C = X and C op X = X for every X.  It
2119 /// returns null if the operator doesn't have an identity.
2120 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2121   switch (Opcode) {
2122   default:
2123     // Doesn't have an identity.
2124     return 0;
2125
2126   case Instruction::Add:
2127   case Instruction::Or:
2128   case Instruction::Xor:
2129     return Constant::getNullValue(Ty);
2130
2131   case Instruction::Mul:
2132     return ConstantInt::get(Ty, 1);
2133
2134   case Instruction::And:
2135     return Constant::getAllOnesValue(Ty);
2136   }
2137 }
2138
2139 /// getBinOpAbsorber - Return the absorbing element for the given binary
2140 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2141 /// every X.  For example, this returns zero for integer multiplication.
2142 /// It returns null if the operator doesn't have an absorbing element.
2143 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2144   switch (Opcode) {
2145   default:
2146     // Doesn't have an absorber.
2147     return 0;
2148
2149   case Instruction::Or:
2150     return Constant::getAllOnesValue(Ty);
2151
2152   case Instruction::And:
2153   case Instruction::Mul:
2154     return Constant::getNullValue(Ty);
2155   }
2156 }
2157
2158 // destroyConstant - Remove the constant from the constant table...
2159 //
2160 void ConstantExpr::destroyConstant() {
2161   getType()->getContext().pImpl->ExprConstants.remove(this);
2162   destroyConstantImpl();
2163 }
2164
2165 const char *ConstantExpr::getOpcodeName() const {
2166   return Instruction::getOpcodeName(getOpcode());
2167 }
2168
2169
2170
2171 GetElementPtrConstantExpr::
2172 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2173                           Type *DestTy)
2174   : ConstantExpr(DestTy, Instruction::GetElementPtr,
2175                  OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2176                  - (IdxList.size()+1), IdxList.size()+1) {
2177   OperandList[0] = C;
2178   for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2179     OperandList[i+1] = IdxList[i];
2180 }
2181
2182 //===----------------------------------------------------------------------===//
2183 //                       ConstantData* implementations
2184
2185 void ConstantDataArray::anchor() {}
2186 void ConstantDataVector::anchor() {}
2187
2188 /// getElementType - Return the element type of the array/vector.
2189 Type *ConstantDataSequential::getElementType() const {
2190   return getType()->getElementType();
2191 }
2192
2193 StringRef ConstantDataSequential::getRawDataValues() const {
2194   return StringRef(DataElements, getNumElements()*getElementByteSize());
2195 }
2196
2197 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2198 /// formed with a vector or array of the specified element type.
2199 /// ConstantDataArray only works with normal float and int types that are
2200 /// stored densely in memory, not with things like i42 or x86_f80.
2201 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2202   if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2203   if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2204     switch (IT->getBitWidth()) {
2205     case 8:
2206     case 16:
2207     case 32:
2208     case 64:
2209       return true;
2210     default: break;
2211     }
2212   }
2213   return false;
2214 }
2215
2216 /// getNumElements - Return the number of elements in the array or vector.
2217 unsigned ConstantDataSequential::getNumElements() const {
2218   if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2219     return AT->getNumElements();
2220   return getType()->getVectorNumElements();
2221 }
2222
2223
2224 /// getElementByteSize - Return the size in bytes of the elements in the data.
2225 uint64_t ConstantDataSequential::getElementByteSize() const {
2226   return getElementType()->getPrimitiveSizeInBits()/8;
2227 }
2228
2229 /// getElementPointer - Return the start of the specified element.
2230 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2231   assert(Elt < getNumElements() && "Invalid Elt");
2232   return DataElements+Elt*getElementByteSize();
2233 }
2234
2235
2236 /// isAllZeros - return true if the array is empty or all zeros.
2237 static bool isAllZeros(StringRef Arr) {
2238   for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2239     if (*I != 0)
2240       return false;
2241   return true;
2242 }
2243
2244 /// getImpl - This is the underlying implementation of all of the
2245 /// ConstantDataSequential::get methods.  They all thunk down to here, providing
2246 /// the correct element type.  We take the bytes in as a StringRef because
2247 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2248 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2249   assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2250   // If the elements are all zero or there are no elements, return a CAZ, which
2251   // is more dense and canonical.
2252   if (isAllZeros(Elements))
2253     return ConstantAggregateZero::get(Ty);
2254
2255   // Do a lookup to see if we have already formed one of these.
2256   StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2257     Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2258
2259   // The bucket can point to a linked list of different CDS's that have the same
2260   // body but different types.  For example, 0,0,0,1 could be a 4 element array
2261   // of i8, or a 1-element array of i32.  They'll both end up in the same
2262   /// StringMap bucket, linked up by their Next pointers.  Walk the list.
2263   ConstantDataSequential **Entry = &Slot.getValue();
2264   for (ConstantDataSequential *Node = *Entry; Node != 0;
2265        Entry = &Node->Next, Node = *Entry)
2266     if (Node->getType() == Ty)
2267       return Node;
2268
2269   // Okay, we didn't get a hit.  Create a node of the right class, link it in,
2270   // and return it.
2271   if (isa<ArrayType>(Ty))
2272     return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2273
2274   assert(isa<VectorType>(Ty));
2275   return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2276 }
2277
2278 void ConstantDataSequential::destroyConstant() {
2279   // Remove the constant from the StringMap.
2280   StringMap<ConstantDataSequential*> &CDSConstants = 
2281     getType()->getContext().pImpl->CDSConstants;
2282
2283   StringMap<ConstantDataSequential*>::iterator Slot =
2284     CDSConstants.find(getRawDataValues());
2285
2286   assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2287
2288   ConstantDataSequential **Entry = &Slot->getValue();
2289
2290   // Remove the entry from the hash table.
2291   if ((*Entry)->Next == 0) {
2292     // If there is only one value in the bucket (common case) it must be this
2293     // entry, and removing the entry should remove the bucket completely.
2294     assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2295     getContext().pImpl->CDSConstants.erase(Slot);
2296   } else {
2297     // Otherwise, there are multiple entries linked off the bucket, unlink the 
2298     // node we care about but keep the bucket around.
2299     for (ConstantDataSequential *Node = *Entry; ;
2300          Entry = &Node->Next, Node = *Entry) {
2301       assert(Node && "Didn't find entry in its uniquing hash table!");
2302       // If we found our entry, unlink it from the list and we're done.
2303       if (Node == this) {
2304         *Entry = Node->Next;
2305         break;
2306       }
2307     }
2308   }
2309
2310   // If we were part of a list, make sure that we don't delete the list that is
2311   // still owned by the uniquing map.
2312   Next = 0;
2313
2314   // Finally, actually delete it.
2315   destroyConstantImpl();
2316 }
2317
2318 /// get() constructors - Return a constant with array type with an element
2319 /// count and element type matching the ArrayRef passed in.  Note that this
2320 /// can return a ConstantAggregateZero object.
2321 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2322   Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2323   const char *Data = reinterpret_cast<const char *>(Elts.data());
2324   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2325 }
2326 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2327   Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2328   const char *Data = reinterpret_cast<const char *>(Elts.data());
2329   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2330 }
2331 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2332   Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2333   const char *Data = reinterpret_cast<const char *>(Elts.data());
2334   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2335 }
2336 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2337   Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2338   const char *Data = reinterpret_cast<const char *>(Elts.data());
2339   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2340 }
2341 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2342   Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2343   const char *Data = reinterpret_cast<const char *>(Elts.data());
2344   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2345 }
2346 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2347   Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2348   const char *Data = reinterpret_cast<const char *>(Elts.data());
2349   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2350 }
2351
2352 /// getString - This method constructs a CDS and initializes it with a text
2353 /// string. The default behavior (AddNull==true) causes a null terminator to
2354 /// be placed at the end of the array (increasing the length of the string by
2355 /// one more than the StringRef would normally indicate.  Pass AddNull=false
2356 /// to disable this behavior.
2357 Constant *ConstantDataArray::getString(LLVMContext &Context,
2358                                        StringRef Str, bool AddNull) {
2359   if (!AddNull) {
2360     const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2361     return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2362                Str.size()));
2363   }
2364
2365   SmallVector<uint8_t, 64> ElementVals;
2366   ElementVals.append(Str.begin(), Str.end());
2367   ElementVals.push_back(0);
2368   return get(Context, ElementVals);
2369 }
2370
2371 /// get() constructors - Return a constant with vector type with an element
2372 /// count and element type matching the ArrayRef passed in.  Note that this
2373 /// can return a ConstantAggregateZero object.
2374 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2375   Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2376   const char *Data = reinterpret_cast<const char *>(Elts.data());
2377   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2378 }
2379 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2380   Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2381   const char *Data = reinterpret_cast<const char *>(Elts.data());
2382   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2383 }
2384 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2385   Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2386   const char *Data = reinterpret_cast<const char *>(Elts.data());
2387   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2388 }
2389 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2390   Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2391   const char *Data = reinterpret_cast<const char *>(Elts.data());
2392   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2393 }
2394 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2395   Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2396   const char *Data = reinterpret_cast<const char *>(Elts.data());
2397   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2398 }
2399 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2400   Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2401   const char *Data = reinterpret_cast<const char *>(Elts.data());
2402   return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2403 }
2404
2405 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2406   assert(isElementTypeCompatible(V->getType()) &&
2407          "Element type not compatible with ConstantData");
2408   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2409     if (CI->getType()->isIntegerTy(8)) {
2410       SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2411       return get(V->getContext(), Elts);
2412     }
2413     if (CI->getType()->isIntegerTy(16)) {
2414       SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2415       return get(V->getContext(), Elts);
2416     }
2417     if (CI->getType()->isIntegerTy(32)) {
2418       SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2419       return get(V->getContext(), Elts);
2420     }
2421     assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2422     SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2423     return get(V->getContext(), Elts);
2424   }
2425
2426   if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2427     if (CFP->getType()->isFloatTy()) {
2428       SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2429       return get(V->getContext(), Elts);
2430     }
2431     if (CFP->getType()->isDoubleTy()) {
2432       SmallVector<double, 16> Elts(NumElts,
2433                                    CFP->getValueAPF().convertToDouble());
2434       return get(V->getContext(), Elts);
2435     }
2436   }
2437   return ConstantVector::getSplat(NumElts, V);
2438 }
2439
2440
2441 /// getElementAsInteger - If this is a sequential container of integers (of
2442 /// any size), return the specified element in the low bits of a uint64_t.
2443 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2444   assert(isa<IntegerType>(getElementType()) &&
2445          "Accessor can only be used when element is an integer");
2446   const char *EltPtr = getElementPointer(Elt);
2447
2448   // The data is stored in host byte order, make sure to cast back to the right
2449   // type to load with the right endianness.
2450   switch (getElementType()->getIntegerBitWidth()) {
2451   default: llvm_unreachable("Invalid bitwidth for CDS");
2452   case 8:
2453     return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2454   case 16:
2455     return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2456   case 32:
2457     return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2458   case 64:
2459     return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2460   }
2461 }
2462
2463 /// getElementAsAPFloat - If this is a sequential container of floating point
2464 /// type, return the specified element as an APFloat.
2465 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2466   const char *EltPtr = getElementPointer(Elt);
2467
2468   switch (getElementType()->getTypeID()) {
2469   default:
2470     llvm_unreachable("Accessor can only be used when element is float/double!");
2471   case Type::FloatTyID: {
2472       const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2473       return APFloat(*const_cast<float *>(FloatPrt));
2474     }
2475   case Type::DoubleTyID: {
2476       const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2477       return APFloat(*const_cast<double *>(DoublePtr));
2478     }
2479   }
2480 }
2481
2482 /// getElementAsFloat - If this is an sequential container of floats, return
2483 /// the specified element as a float.
2484 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2485   assert(getElementType()->isFloatTy() &&
2486          "Accessor can only be used when element is a 'float'");
2487   const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2488   return *const_cast<float *>(EltPtr);
2489 }
2490
2491 /// getElementAsDouble - If this is an sequential container of doubles, return
2492 /// the specified element as a float.
2493 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2494   assert(getElementType()->isDoubleTy() &&
2495          "Accessor can only be used when element is a 'float'");
2496   const double *EltPtr =
2497       reinterpret_cast<const double *>(getElementPointer(Elt));
2498   return *const_cast<double *>(EltPtr);
2499 }
2500
2501 /// getElementAsConstant - Return a Constant for a specified index's element.
2502 /// Note that this has to compute a new constant to return, so it isn't as
2503 /// efficient as getElementAsInteger/Float/Double.
2504 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2505   if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2506     return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2507
2508   return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2509 }
2510
2511 /// isString - This method returns true if this is an array of i8.
2512 bool ConstantDataSequential::isString() const {
2513   return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2514 }
2515
2516 /// isCString - This method returns true if the array "isString", ends with a
2517 /// nul byte, and does not contains any other nul bytes.
2518 bool ConstantDataSequential::isCString() const {
2519   if (!isString())
2520     return false;
2521
2522   StringRef Str = getAsString();
2523
2524   // The last value must be nul.
2525   if (Str.back() != 0) return false;
2526
2527   // Other elements must be non-nul.
2528   return Str.drop_back().find(0) == StringRef::npos;
2529 }
2530
2531 /// getSplatValue - If this is a splat constant, meaning that all of the
2532 /// elements have the same value, return that value. Otherwise return NULL.
2533 Constant *ConstantDataVector::getSplatValue() const {
2534   const char *Base = getRawDataValues().data();
2535
2536   // Compare elements 1+ to the 0'th element.
2537   unsigned EltSize = getElementByteSize();
2538   for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2539     if (memcmp(Base, Base+i*EltSize, EltSize))
2540       return 0;
2541
2542   // If they're all the same, return the 0th one as a representative.
2543   return getElementAsConstant(0);
2544 }
2545
2546 //===----------------------------------------------------------------------===//
2547 //                replaceUsesOfWithOnConstant implementations
2548
2549 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2550 /// 'From' to be uses of 'To'.  This must update the uniquing data structures
2551 /// etc.
2552 ///
2553 /// Note that we intentionally replace all uses of From with To here.  Consider
2554 /// a large array that uses 'From' 1000 times.  By handling this case all here,
2555 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2556 /// single invocation handles all 1000 uses.  Handling them one at a time would
2557 /// work, but would be really slow because it would have to unique each updated
2558 /// array instance.
2559 ///
2560 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2561                                                 Use *U) {
2562   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2563   Constant *ToC = cast<Constant>(To);
2564
2565   LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2566
2567   SmallVector<Constant*, 8> Values;
2568   LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2569   Lookup.first = cast<ArrayType>(getType());
2570   Values.reserve(getNumOperands());  // Build replacement array.
2571
2572   // Fill values with the modified operands of the constant array.  Also,
2573   // compute whether this turns into an all-zeros array.
2574   unsigned NumUpdated = 0;
2575
2576   // Keep track of whether all the values in the array are "ToC".
2577   bool AllSame = true;
2578   for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2579     Constant *Val = cast<Constant>(O->get());
2580     if (Val == From) {
2581       Val = ToC;
2582       ++NumUpdated;
2583     }
2584     Values.push_back(Val);
2585     AllSame &= Val == ToC;
2586   }
2587
2588   Constant *Replacement = 0;
2589   if (AllSame && ToC->isNullValue()) {
2590     Replacement = ConstantAggregateZero::get(getType());
2591   } else if (AllSame && isa<UndefValue>(ToC)) {
2592     Replacement = UndefValue::get(getType());
2593   } else {
2594     // Check to see if we have this array type already.
2595     Lookup.second = makeArrayRef(Values);
2596     LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2597       pImpl->ArrayConstants.find(Lookup);
2598
2599     if (I != pImpl->ArrayConstants.map_end()) {
2600       Replacement = I->first;
2601     } else {
2602       // Okay, the new shape doesn't exist in the system yet.  Instead of
2603       // creating a new constant array, inserting it, replaceallusesof'ing the
2604       // old with the new, then deleting the old... just update the current one
2605       // in place!
2606       pImpl->ArrayConstants.remove(this);
2607
2608       // Update to the new value.  Optimize for the case when we have a single
2609       // operand that we're changing, but handle bulk updates efficiently.
2610       if (NumUpdated == 1) {
2611         unsigned OperandToUpdate = U - OperandList;
2612         assert(getOperand(OperandToUpdate) == From &&
2613                "ReplaceAllUsesWith broken!");
2614         setOperand(OperandToUpdate, ToC);
2615       } else {
2616         for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2617           if (getOperand(i) == From)
2618             setOperand(i, ToC);
2619       }
2620       pImpl->ArrayConstants.insert(this);
2621       return;
2622     }
2623   }
2624
2625   // Otherwise, I do need to replace this with an existing value.
2626   assert(Replacement != this && "I didn't contain From!");
2627
2628   // Everyone using this now uses the replacement.
2629   replaceAllUsesWith(Replacement);
2630
2631   // Delete the old constant!
2632   destroyConstant();
2633 }
2634
2635 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2636                                                  Use *U) {
2637   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2638   Constant *ToC = cast<Constant>(To);
2639
2640   unsigned OperandToUpdate = U-OperandList;
2641   assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2642
2643   SmallVector<Constant*, 8> Values;
2644   LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2645   Lookup.first = cast<StructType>(getType());
2646   Values.reserve(getNumOperands());  // Build replacement struct.
2647
2648   // Fill values with the modified operands of the constant struct.  Also,
2649   // compute whether this turns into an all-zeros struct.
2650   bool isAllZeros = false;
2651   bool isAllUndef = false;
2652   if (ToC->isNullValue()) {
2653     isAllZeros = true;
2654     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2655       Constant *Val = cast<Constant>(O->get());
2656       Values.push_back(Val);
2657       if (isAllZeros) isAllZeros = Val->isNullValue();
2658     }
2659   } else if (isa<UndefValue>(ToC)) {
2660     isAllUndef = true;
2661     for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2662       Constant *Val = cast<Constant>(O->get());
2663       Values.push_back(Val);
2664       if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2665     }
2666   } else {
2667     for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2668       Values.push_back(cast<Constant>(O->get()));
2669   }
2670   Values[OperandToUpdate] = ToC;
2671
2672   LLVMContextImpl *pImpl = getContext().pImpl;
2673
2674   Constant *Replacement = 0;
2675   if (isAllZeros) {
2676     Replacement = ConstantAggregateZero::get(getType());
2677   } else if (isAllUndef) {
2678     Replacement = UndefValue::get(getType());
2679   } else {
2680     // Check to see if we have this struct type already.
2681     Lookup.second = makeArrayRef(Values);
2682     LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2683       pImpl->StructConstants.find(Lookup);
2684
2685     if (I != pImpl->StructConstants.map_end()) {
2686       Replacement = I->first;
2687     } else {
2688       // Okay, the new shape doesn't exist in the system yet.  Instead of
2689       // creating a new constant struct, inserting it, replaceallusesof'ing the
2690       // old with the new, then deleting the old... just update the current one
2691       // in place!
2692       pImpl->StructConstants.remove(this);
2693
2694       // Update to the new value.
2695       setOperand(OperandToUpdate, ToC);
2696       pImpl->StructConstants.insert(this);
2697       return;
2698     }
2699   }
2700
2701   assert(Replacement != this && "I didn't contain From!");
2702
2703   // Everyone using this now uses the replacement.
2704   replaceAllUsesWith(Replacement);
2705
2706   // Delete the old constant!
2707   destroyConstant();
2708 }
2709
2710 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2711                                                  Use *U) {
2712   assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2713
2714   SmallVector<Constant*, 8> Values;
2715   Values.reserve(getNumOperands());  // Build replacement array...
2716   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2717     Constant *Val = getOperand(i);
2718     if (Val == From) Val = cast<Constant>(To);
2719     Values.push_back(Val);
2720   }
2721
2722   Constant *Replacement = get(Values);
2723   assert(Replacement != this && "I didn't contain From!");
2724
2725   // Everyone using this now uses the replacement.
2726   replaceAllUsesWith(Replacement);
2727
2728   // Delete the old constant!
2729   destroyConstant();
2730 }
2731
2732 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2733                                                Use *U) {
2734   assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2735   Constant *To = cast<Constant>(ToV);
2736
2737   SmallVector<Constant*, 8> NewOps;
2738   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2739     Constant *Op = getOperand(i);
2740     NewOps.push_back(Op == From ? To : Op);
2741   }
2742
2743   Constant *Replacement = getWithOperands(NewOps);
2744   assert(Replacement != this && "I didn't contain From!");
2745
2746   // Everyone using this now uses the replacement.
2747   replaceAllUsesWith(Replacement);
2748
2749   // Delete the old constant!
2750   destroyConstant();
2751 }
2752
2753 Instruction *ConstantExpr::getAsInstruction() {
2754   SmallVector<Value*,4> ValueOperands;
2755   for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2756     ValueOperands.push_back(cast<Value>(I));
2757
2758   ArrayRef<Value*> Ops(ValueOperands);
2759
2760   switch (getOpcode()) {
2761   case Instruction::Trunc:
2762   case Instruction::ZExt:
2763   case Instruction::SExt:
2764   case Instruction::FPTrunc:
2765   case Instruction::FPExt:
2766   case Instruction::UIToFP:
2767   case Instruction::SIToFP:
2768   case Instruction::FPToUI:
2769   case Instruction::FPToSI:
2770   case Instruction::PtrToInt:
2771   case Instruction::IntToPtr:
2772   case Instruction::BitCast:
2773     return CastInst::Create((Instruction::CastOps)getOpcode(),
2774                             Ops[0], getType());
2775   case Instruction::Select:
2776     return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2777   case Instruction::InsertElement:
2778     return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2779   case Instruction::ExtractElement:
2780     return ExtractElementInst::Create(Ops[0], Ops[1]);
2781   case Instruction::InsertValue:
2782     return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2783   case Instruction::ExtractValue:
2784     return ExtractValueInst::Create(Ops[0], getIndices());
2785   case Instruction::ShuffleVector:
2786     return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2787
2788   case Instruction::GetElementPtr:
2789     if (cast<GEPOperator>(this)->isInBounds())
2790       return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2791     else
2792       return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2793
2794   case Instruction::ICmp:
2795   case Instruction::FCmp:
2796     return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2797                            getPredicate(), Ops[0], Ops[1]);
2798
2799   default:
2800     assert(getNumOperands() == 2 && "Must be binary operator?");
2801     BinaryOperator *BO =
2802       BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2803                              Ops[0], Ops[1]);
2804     if (isa<OverflowingBinaryOperator>(BO)) {
2805       BO->setHasNoUnsignedWrap(SubclassOptionalData &
2806                                OverflowingBinaryOperator::NoUnsignedWrap);
2807       BO->setHasNoSignedWrap(SubclassOptionalData &
2808                              OverflowingBinaryOperator::NoSignedWrap);
2809     }
2810     if (isa<PossiblyExactOperator>(BO))
2811       BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);
2812     return BO;
2813   }
2814 }