1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Constant* classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GlobalValue.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/Operator.h"
28 #include "llvm/Support/Compiler.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/GetElementPtrTypeIterator.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
39 //===----------------------------------------------------------------------===//
41 //===----------------------------------------------------------------------===//
43 void Constant::anchor() { }
45 bool Constant::isNegativeZeroValue() const {
46 // Floating point values have an explicit -0.0 value.
47 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48 return CFP->isZero() && CFP->isNegative();
50 // Equivalent for a vector of -0.0's.
51 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
56 // We've already handled true FP case; any other FP vectors can't represent -0.0.
57 if (getType()->isFPOrFPVectorTy())
60 // Otherwise, just use +0.0.
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
66 bool Constant::isZeroValue() const {
67 // Floating point values have an explicit -0.0 value.
68 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
71 // Otherwise, just use +0.0.
75 bool Constant::isNullValue() const {
77 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
81 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82 return CFP->isZero() && !CFP->isNegative();
84 // constant zero is zero for aggregates and cpnull is null for pointers.
85 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
88 bool Constant::isAllOnesValue() const {
89 // Check for -1 integers
90 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91 return CI->isMinusOne();
93 // Check for FP which are bitcasted from -1 integers
94 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
97 // Check for constant vectors which are splats of -1 values.
98 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99 if (Constant *Splat = CV->getSplatValue())
100 return Splat->isAllOnesValue();
102 // Check for constant vectors which are splats of -1 values.
103 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104 if (Constant *Splat = CV->getSplatValue())
105 return Splat->isAllOnesValue();
110 // Constructor to create a '0' constant of arbitrary type...
111 Constant *Constant::getNullValue(Type *Ty) {
112 switch (Ty->getTypeID()) {
113 case Type::IntegerTyID:
114 return ConstantInt::get(Ty, 0);
116 return ConstantFP::get(Ty->getContext(),
117 APFloat::getZero(APFloat::IEEEhalf));
118 case Type::FloatTyID:
119 return ConstantFP::get(Ty->getContext(),
120 APFloat::getZero(APFloat::IEEEsingle));
121 case Type::DoubleTyID:
122 return ConstantFP::get(Ty->getContext(),
123 APFloat::getZero(APFloat::IEEEdouble));
124 case Type::X86_FP80TyID:
125 return ConstantFP::get(Ty->getContext(),
126 APFloat::getZero(APFloat::x87DoubleExtended));
127 case Type::FP128TyID:
128 return ConstantFP::get(Ty->getContext(),
129 APFloat::getZero(APFloat::IEEEquad));
130 case Type::PPC_FP128TyID:
131 return ConstantFP::get(Ty->getContext(),
132 APFloat(APFloat::PPCDoubleDouble,
133 APInt::getNullValue(128)));
134 case Type::PointerTyID:
135 return ConstantPointerNull::get(cast<PointerType>(Ty));
136 case Type::StructTyID:
137 case Type::ArrayTyID:
138 case Type::VectorTyID:
139 return ConstantAggregateZero::get(Ty);
141 // Function, Label, or Opaque type?
142 llvm_unreachable("Cannot create a null constant of that type!");
146 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
147 Type *ScalarTy = Ty->getScalarType();
149 // Create the base integer constant.
150 Constant *C = ConstantInt::get(Ty->getContext(), V);
152 // Convert an integer to a pointer, if necessary.
153 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
154 C = ConstantExpr::getIntToPtr(C, PTy);
156 // Broadcast a scalar to a vector, if necessary.
157 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
158 C = ConstantVector::getSplat(VTy->getNumElements(), C);
163 Constant *Constant::getAllOnesValue(Type *Ty) {
164 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
165 return ConstantInt::get(Ty->getContext(),
166 APInt::getAllOnesValue(ITy->getBitWidth()));
168 if (Ty->isFloatingPointTy()) {
169 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
170 !Ty->isPPC_FP128Ty());
171 return ConstantFP::get(Ty->getContext(), FL);
174 VectorType *VTy = cast<VectorType>(Ty);
175 return ConstantVector::getSplat(VTy->getNumElements(),
176 getAllOnesValue(VTy->getElementType()));
179 /// getAggregateElement - For aggregates (struct/array/vector) return the
180 /// constant that corresponds to the specified element if possible, or null if
181 /// not. This can return null if the element index is a ConstantExpr, or if
182 /// 'this' is a constant expr.
183 Constant *Constant::getAggregateElement(unsigned Elt) const {
184 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
185 return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0;
187 if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
188 return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0;
190 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
191 return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0;
193 if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this))
194 return CAZ->getElementValue(Elt);
196 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
197 return UV->getElementValue(Elt);
199 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
200 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0;
204 Constant *Constant::getAggregateElement(Constant *Elt) const {
205 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
206 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
207 return getAggregateElement(CI->getZExtValue());
212 void Constant::destroyConstantImpl() {
213 // When a Constant is destroyed, there may be lingering
214 // references to the constant by other constants in the constant pool. These
215 // constants are implicitly dependent on the module that is being deleted,
216 // but they don't know that. Because we only find out when the CPV is
217 // deleted, we must now notify all of our users (that should only be
218 // Constants) that they are, in fact, invalid now and should be deleted.
220 while (!use_empty()) {
221 Value *V = use_back();
222 #ifndef NDEBUG // Only in -g mode...
223 if (!isa<Constant>(V)) {
224 dbgs() << "While deleting: " << *this
225 << "\n\nUse still stuck around after Def is destroyed: "
229 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
230 cast<Constant>(V)->destroyConstant();
232 // The constant should remove itself from our use list...
233 assert((use_empty() || use_back() != V) && "Constant not removed!");
236 // Value has no outstanding references it is safe to delete it now...
240 static bool canTrapImpl(const Constant *C,
241 SmallPtrSet<const ConstantExpr *, 4> &NonTrappingOps) {
242 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
243 // The only thing that could possibly trap are constant exprs.
244 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
248 // ConstantExpr traps if any operands can trap.
249 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
250 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
251 if (NonTrappingOps.insert(Op) && canTrapImpl(Op, NonTrappingOps))
256 // Otherwise, only specific operations can trap.
257 switch (CE->getOpcode()) {
260 case Instruction::UDiv:
261 case Instruction::SDiv:
262 case Instruction::FDiv:
263 case Instruction::URem:
264 case Instruction::SRem:
265 case Instruction::FRem:
266 // Div and rem can trap if the RHS is not known to be non-zero.
267 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
273 /// canTrap - Return true if evaluation of this constant could trap. This is
274 /// true for things like constant expressions that could divide by zero.
275 bool Constant::canTrap() const {
276 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
277 return canTrapImpl(this, NonTrappingOps);
280 /// isThreadDependent - Return true if the value can vary between threads.
281 bool Constant::isThreadDependent() const {
282 SmallPtrSet<const Constant*, 64> Visited;
283 SmallVector<const Constant*, 64> WorkList;
284 WorkList.push_back(this);
285 Visited.insert(this);
287 while (!WorkList.empty()) {
288 const Constant *C = WorkList.pop_back_val();
290 if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) {
291 if (GV->isThreadLocal())
295 for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) {
296 const Constant *D = dyn_cast<Constant>(C->getOperand(I));
299 if (Visited.insert(D))
300 WorkList.push_back(D);
307 /// isConstantUsed - Return true if the constant has users other than constant
308 /// exprs and other dangling things.
309 bool Constant::isConstantUsed() const {
310 for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
311 const Constant *UC = dyn_cast<Constant>(*UI);
312 if (UC == 0 || isa<GlobalValue>(UC))
315 if (UC->isConstantUsed())
323 /// getRelocationInfo - This method classifies the entry according to
324 /// whether or not it may generate a relocation entry. This must be
325 /// conservative, so if it might codegen to a relocatable entry, it should say
326 /// so. The return values are:
328 /// NoRelocation: This constant pool entry is guaranteed to never have a
329 /// relocation applied to it (because it holds a simple constant like
331 /// LocalRelocation: This entry has relocations, but the entries are
332 /// guaranteed to be resolvable by the static linker, so the dynamic
333 /// linker will never see them.
334 /// GlobalRelocations: This entry may have arbitrary relocations.
336 /// FIXME: This really should not be in IR.
337 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
338 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
339 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
340 return LocalRelocation; // Local to this file/library.
341 return GlobalRelocations; // Global reference.
344 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
345 return BA->getFunction()->getRelocationInfo();
347 // While raw uses of blockaddress need to be relocated, differences between
348 // two of them don't when they are for labels in the same function. This is a
349 // common idiom when creating a table for the indirect goto extension, so we
350 // handle it efficiently here.
351 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
352 if (CE->getOpcode() == Instruction::Sub) {
353 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
354 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
356 LHS->getOpcode() == Instruction::PtrToInt &&
357 RHS->getOpcode() == Instruction::PtrToInt &&
358 isa<BlockAddress>(LHS->getOperand(0)) &&
359 isa<BlockAddress>(RHS->getOperand(0)) &&
360 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
361 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
365 PossibleRelocationsTy Result = NoRelocation;
366 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
367 Result = std::max(Result,
368 cast<Constant>(getOperand(i))->getRelocationInfo());
373 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
374 /// it. This involves recursively eliminating any dead users of the
376 static bool removeDeadUsersOfConstant(const Constant *C) {
377 if (isa<GlobalValue>(C)) return false; // Cannot remove this
379 while (!C->use_empty()) {
380 const Constant *User = dyn_cast<Constant>(C->use_back());
381 if (!User) return false; // Non-constant usage;
382 if (!removeDeadUsersOfConstant(User))
383 return false; // Constant wasn't dead
386 const_cast<Constant*>(C)->destroyConstant();
391 /// removeDeadConstantUsers - If there are any dead constant users dangling
392 /// off of this constant, remove them. This method is useful for clients
393 /// that want to check to see if a global is unused, but don't want to deal
394 /// with potentially dead constants hanging off of the globals.
395 void Constant::removeDeadConstantUsers() const {
396 Value::const_use_iterator I = use_begin(), E = use_end();
397 Value::const_use_iterator LastNonDeadUser = E;
399 const Constant *User = dyn_cast<Constant>(*I);
406 if (!removeDeadUsersOfConstant(User)) {
407 // If the constant wasn't dead, remember that this was the last live use
408 // and move on to the next constant.
414 // If the constant was dead, then the iterator is invalidated.
415 if (LastNonDeadUser == E) {
427 //===----------------------------------------------------------------------===//
429 //===----------------------------------------------------------------------===//
431 void ConstantInt::anchor() { }
433 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
434 : Constant(Ty, ConstantIntVal, 0, 0), Val(V) {
435 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
438 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
439 LLVMContextImpl *pImpl = Context.pImpl;
440 if (!pImpl->TheTrueVal)
441 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
442 return pImpl->TheTrueVal;
445 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
446 LLVMContextImpl *pImpl = Context.pImpl;
447 if (!pImpl->TheFalseVal)
448 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
449 return pImpl->TheFalseVal;
452 Constant *ConstantInt::getTrue(Type *Ty) {
453 VectorType *VTy = dyn_cast<VectorType>(Ty);
455 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
456 return ConstantInt::getTrue(Ty->getContext());
458 assert(VTy->getElementType()->isIntegerTy(1) &&
459 "True must be vector of i1 or i1.");
460 return ConstantVector::getSplat(VTy->getNumElements(),
461 ConstantInt::getTrue(Ty->getContext()));
464 Constant *ConstantInt::getFalse(Type *Ty) {
465 VectorType *VTy = dyn_cast<VectorType>(Ty);
467 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
468 return ConstantInt::getFalse(Ty->getContext());
470 assert(VTy->getElementType()->isIntegerTy(1) &&
471 "False must be vector of i1 or i1.");
472 return ConstantVector::getSplat(VTy->getNumElements(),
473 ConstantInt::getFalse(Ty->getContext()));
477 // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap
478 // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the
479 // operator== and operator!= to ensure that the DenseMap doesn't attempt to
480 // compare APInt's of different widths, which would violate an APInt class
481 // invariant which generates an assertion.
482 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
483 // Get the corresponding integer type for the bit width of the value.
484 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
485 // get an existing value or the insertion position
486 LLVMContextImpl *pImpl = Context.pImpl;
487 ConstantInt *&Slot = pImpl->IntConstants[DenseMapAPIntKeyInfo::KeyTy(V, ITy)];
488 if (!Slot) Slot = new ConstantInt(ITy, V);
492 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
493 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
495 // For vectors, broadcast the value.
496 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
497 return ConstantVector::getSplat(VTy->getNumElements(), C);
502 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
504 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
507 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
508 return get(Ty, V, true);
511 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
512 return get(Ty, V, true);
515 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
516 ConstantInt *C = get(Ty->getContext(), V);
517 assert(C->getType() == Ty->getScalarType() &&
518 "ConstantInt type doesn't match the type implied by its value!");
520 // For vectors, broadcast the value.
521 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
522 return ConstantVector::getSplat(VTy->getNumElements(), C);
527 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
529 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
532 //===----------------------------------------------------------------------===//
534 //===----------------------------------------------------------------------===//
536 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
538 return &APFloat::IEEEhalf;
540 return &APFloat::IEEEsingle;
541 if (Ty->isDoubleTy())
542 return &APFloat::IEEEdouble;
543 if (Ty->isX86_FP80Ty())
544 return &APFloat::x87DoubleExtended;
545 else if (Ty->isFP128Ty())
546 return &APFloat::IEEEquad;
548 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
549 return &APFloat::PPCDoubleDouble;
552 void ConstantFP::anchor() { }
554 /// get() - This returns a constant fp for the specified value in the
555 /// specified type. This should only be used for simple constant values like
556 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
557 Constant *ConstantFP::get(Type *Ty, double V) {
558 LLVMContext &Context = Ty->getContext();
562 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
563 APFloat::rmNearestTiesToEven, &ignored);
564 Constant *C = get(Context, FV);
566 // For vectors, broadcast the value.
567 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
568 return ConstantVector::getSplat(VTy->getNumElements(), C);
574 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
575 LLVMContext &Context = Ty->getContext();
577 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
578 Constant *C = get(Context, FV);
580 // For vectors, broadcast the value.
581 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
582 return ConstantVector::getSplat(VTy->getNumElements(), C);
588 ConstantFP *ConstantFP::getNegativeZero(Type *Ty) {
589 LLVMContext &Context = Ty->getContext();
590 APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF();
592 return get(Context, apf);
596 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
597 Type *ScalarTy = Ty->getScalarType();
598 if (ScalarTy->isFloatingPointTy()) {
599 Constant *C = getNegativeZero(ScalarTy);
600 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
601 return ConstantVector::getSplat(VTy->getNumElements(), C);
605 return Constant::getNullValue(Ty);
609 // ConstantFP accessors.
610 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
611 LLVMContextImpl* pImpl = Context.pImpl;
613 ConstantFP *&Slot = pImpl->FPConstants[DenseMapAPFloatKeyInfo::KeyTy(V)];
617 if (&V.getSemantics() == &APFloat::IEEEhalf)
618 Ty = Type::getHalfTy(Context);
619 else if (&V.getSemantics() == &APFloat::IEEEsingle)
620 Ty = Type::getFloatTy(Context);
621 else if (&V.getSemantics() == &APFloat::IEEEdouble)
622 Ty = Type::getDoubleTy(Context);
623 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
624 Ty = Type::getX86_FP80Ty(Context);
625 else if (&V.getSemantics() == &APFloat::IEEEquad)
626 Ty = Type::getFP128Ty(Context);
628 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
629 "Unknown FP format");
630 Ty = Type::getPPC_FP128Ty(Context);
632 Slot = new ConstantFP(Ty, V);
638 ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) {
639 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty);
640 return ConstantFP::get(Ty->getContext(),
641 APFloat::getInf(Semantics, Negative));
644 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
645 : Constant(Ty, ConstantFPVal, 0, 0), Val(V) {
646 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
650 bool ConstantFP::isExactlyValue(const APFloat &V) const {
651 return Val.bitwiseIsEqual(V);
654 //===----------------------------------------------------------------------===//
655 // ConstantAggregateZero Implementation
656 //===----------------------------------------------------------------------===//
658 /// getSequentialElement - If this CAZ has array or vector type, return a zero
659 /// with the right element type.
660 Constant *ConstantAggregateZero::getSequentialElement() const {
661 return Constant::getNullValue(getType()->getSequentialElementType());
664 /// getStructElement - If this CAZ has struct type, return a zero with the
665 /// right element type for the specified element.
666 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
667 return Constant::getNullValue(getType()->getStructElementType(Elt));
670 /// getElementValue - Return a zero of the right value for the specified GEP
671 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
672 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
673 if (isa<SequentialType>(getType()))
674 return getSequentialElement();
675 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
678 /// getElementValue - Return a zero of the right value for the specified GEP
680 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
681 if (isa<SequentialType>(getType()))
682 return getSequentialElement();
683 return getStructElement(Idx);
687 //===----------------------------------------------------------------------===//
688 // UndefValue Implementation
689 //===----------------------------------------------------------------------===//
691 /// getSequentialElement - If this undef has array or vector type, return an
692 /// undef with the right element type.
693 UndefValue *UndefValue::getSequentialElement() const {
694 return UndefValue::get(getType()->getSequentialElementType());
697 /// getStructElement - If this undef has struct type, return a zero with the
698 /// right element type for the specified element.
699 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
700 return UndefValue::get(getType()->getStructElementType(Elt));
703 /// getElementValue - Return an undef of the right value for the specified GEP
704 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
705 UndefValue *UndefValue::getElementValue(Constant *C) const {
706 if (isa<SequentialType>(getType()))
707 return getSequentialElement();
708 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
711 /// getElementValue - Return an undef of the right value for the specified GEP
713 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
714 if (isa<SequentialType>(getType()))
715 return getSequentialElement();
716 return getStructElement(Idx);
721 //===----------------------------------------------------------------------===//
722 // ConstantXXX Classes
723 //===----------------------------------------------------------------------===//
725 template <typename ItTy, typename EltTy>
726 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
727 for (; Start != End; ++Start)
733 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
734 : Constant(T, ConstantArrayVal,
735 OperandTraits<ConstantArray>::op_end(this) - V.size(),
737 assert(V.size() == T->getNumElements() &&
738 "Invalid initializer vector for constant array");
739 for (unsigned i = 0, e = V.size(); i != e; ++i)
740 assert(V[i]->getType() == T->getElementType() &&
741 "Initializer for array element doesn't match array element type!");
742 std::copy(V.begin(), V.end(), op_begin());
745 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
746 // Empty arrays are canonicalized to ConstantAggregateZero.
748 return ConstantAggregateZero::get(Ty);
750 for (unsigned i = 0, e = V.size(); i != e; ++i) {
751 assert(V[i]->getType() == Ty->getElementType() &&
752 "Wrong type in array element initializer");
754 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
756 // If this is an all-zero array, return a ConstantAggregateZero object. If
757 // all undef, return an UndefValue, if "all simple", then return a
758 // ConstantDataArray.
760 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
761 return UndefValue::get(Ty);
763 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
764 return ConstantAggregateZero::get(Ty);
766 // Check to see if all of the elements are ConstantFP or ConstantInt and if
767 // the element type is compatible with ConstantDataVector. If so, use it.
768 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
769 // We speculatively build the elements here even if it turns out that there
770 // is a constantexpr or something else weird in the array, since it is so
771 // uncommon for that to happen.
772 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
773 if (CI->getType()->isIntegerTy(8)) {
774 SmallVector<uint8_t, 16> Elts;
775 for (unsigned i = 0, e = V.size(); i != e; ++i)
776 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
777 Elts.push_back(CI->getZExtValue());
780 if (Elts.size() == V.size())
781 return ConstantDataArray::get(C->getContext(), Elts);
782 } else if (CI->getType()->isIntegerTy(16)) {
783 SmallVector<uint16_t, 16> Elts;
784 for (unsigned i = 0, e = V.size(); i != e; ++i)
785 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
786 Elts.push_back(CI->getZExtValue());
789 if (Elts.size() == V.size())
790 return ConstantDataArray::get(C->getContext(), Elts);
791 } else if (CI->getType()->isIntegerTy(32)) {
792 SmallVector<uint32_t, 16> Elts;
793 for (unsigned i = 0, e = V.size(); i != e; ++i)
794 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
795 Elts.push_back(CI->getZExtValue());
798 if (Elts.size() == V.size())
799 return ConstantDataArray::get(C->getContext(), Elts);
800 } else if (CI->getType()->isIntegerTy(64)) {
801 SmallVector<uint64_t, 16> Elts;
802 for (unsigned i = 0, e = V.size(); i != e; ++i)
803 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
804 Elts.push_back(CI->getZExtValue());
807 if (Elts.size() == V.size())
808 return ConstantDataArray::get(C->getContext(), Elts);
812 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
813 if (CFP->getType()->isFloatTy()) {
814 SmallVector<float, 16> Elts;
815 for (unsigned i = 0, e = V.size(); i != e; ++i)
816 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
817 Elts.push_back(CFP->getValueAPF().convertToFloat());
820 if (Elts.size() == V.size())
821 return ConstantDataArray::get(C->getContext(), Elts);
822 } else if (CFP->getType()->isDoubleTy()) {
823 SmallVector<double, 16> Elts;
824 for (unsigned i = 0, e = V.size(); i != e; ++i)
825 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
826 Elts.push_back(CFP->getValueAPF().convertToDouble());
829 if (Elts.size() == V.size())
830 return ConstantDataArray::get(C->getContext(), Elts);
835 // Otherwise, we really do want to create a ConstantArray.
836 return pImpl->ArrayConstants.getOrCreate(Ty, V);
839 /// getTypeForElements - Return an anonymous struct type to use for a constant
840 /// with the specified set of elements. The list must not be empty.
841 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
842 ArrayRef<Constant*> V,
844 unsigned VecSize = V.size();
845 SmallVector<Type*, 16> EltTypes(VecSize);
846 for (unsigned i = 0; i != VecSize; ++i)
847 EltTypes[i] = V[i]->getType();
849 return StructType::get(Context, EltTypes, Packed);
853 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
856 "ConstantStruct::getTypeForElements cannot be called on empty list");
857 return getTypeForElements(V[0]->getContext(), V, Packed);
861 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
862 : Constant(T, ConstantStructVal,
863 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
865 assert(V.size() == T->getNumElements() &&
866 "Invalid initializer vector for constant structure");
867 for (unsigned i = 0, e = V.size(); i != e; ++i)
868 assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
869 "Initializer for struct element doesn't match struct element type!");
870 std::copy(V.begin(), V.end(), op_begin());
873 // ConstantStruct accessors.
874 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
875 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
876 "Incorrect # elements specified to ConstantStruct::get");
878 // Create a ConstantAggregateZero value if all elements are zeros.
880 bool isUndef = false;
883 isUndef = isa<UndefValue>(V[0]);
884 isZero = V[0]->isNullValue();
885 if (isUndef || isZero) {
886 for (unsigned i = 0, e = V.size(); i != e; ++i) {
887 if (!V[i]->isNullValue())
889 if (!isa<UndefValue>(V[i]))
895 return ConstantAggregateZero::get(ST);
897 return UndefValue::get(ST);
899 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
902 Constant *ConstantStruct::get(StructType *T, ...) {
904 SmallVector<Constant*, 8> Values;
906 while (Constant *Val = va_arg(ap, llvm::Constant*))
907 Values.push_back(Val);
909 return get(T, Values);
912 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
913 : Constant(T, ConstantVectorVal,
914 OperandTraits<ConstantVector>::op_end(this) - V.size(),
916 for (size_t i = 0, e = V.size(); i != e; i++)
917 assert(V[i]->getType() == T->getElementType() &&
918 "Initializer for vector element doesn't match vector element type!");
919 std::copy(V.begin(), V.end(), op_begin());
922 // ConstantVector accessors.
923 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
924 assert(!V.empty() && "Vectors can't be empty");
925 VectorType *T = VectorType::get(V.front()->getType(), V.size());
926 LLVMContextImpl *pImpl = T->getContext().pImpl;
928 // If this is an all-undef or all-zero vector, return a
929 // ConstantAggregateZero or UndefValue.
931 bool isZero = C->isNullValue();
932 bool isUndef = isa<UndefValue>(C);
934 if (isZero || isUndef) {
935 for (unsigned i = 1, e = V.size(); i != e; ++i)
937 isZero = isUndef = false;
943 return ConstantAggregateZero::get(T);
945 return UndefValue::get(T);
947 // Check to see if all of the elements are ConstantFP or ConstantInt and if
948 // the element type is compatible with ConstantDataVector. If so, use it.
949 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
950 // We speculatively build the elements here even if it turns out that there
951 // is a constantexpr or something else weird in the array, since it is so
952 // uncommon for that to happen.
953 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
954 if (CI->getType()->isIntegerTy(8)) {
955 SmallVector<uint8_t, 16> Elts;
956 for (unsigned i = 0, e = V.size(); i != e; ++i)
957 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
958 Elts.push_back(CI->getZExtValue());
961 if (Elts.size() == V.size())
962 return ConstantDataVector::get(C->getContext(), Elts);
963 } else if (CI->getType()->isIntegerTy(16)) {
964 SmallVector<uint16_t, 16> Elts;
965 for (unsigned i = 0, e = V.size(); i != e; ++i)
966 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
967 Elts.push_back(CI->getZExtValue());
970 if (Elts.size() == V.size())
971 return ConstantDataVector::get(C->getContext(), Elts);
972 } else if (CI->getType()->isIntegerTy(32)) {
973 SmallVector<uint32_t, 16> Elts;
974 for (unsigned i = 0, e = V.size(); i != e; ++i)
975 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
976 Elts.push_back(CI->getZExtValue());
979 if (Elts.size() == V.size())
980 return ConstantDataVector::get(C->getContext(), Elts);
981 } else if (CI->getType()->isIntegerTy(64)) {
982 SmallVector<uint64_t, 16> Elts;
983 for (unsigned i = 0, e = V.size(); i != e; ++i)
984 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
985 Elts.push_back(CI->getZExtValue());
988 if (Elts.size() == V.size())
989 return ConstantDataVector::get(C->getContext(), Elts);
993 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
994 if (CFP->getType()->isFloatTy()) {
995 SmallVector<float, 16> Elts;
996 for (unsigned i = 0, e = V.size(); i != e; ++i)
997 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
998 Elts.push_back(CFP->getValueAPF().convertToFloat());
1001 if (Elts.size() == V.size())
1002 return ConstantDataVector::get(C->getContext(), Elts);
1003 } else if (CFP->getType()->isDoubleTy()) {
1004 SmallVector<double, 16> Elts;
1005 for (unsigned i = 0, e = V.size(); i != e; ++i)
1006 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1007 Elts.push_back(CFP->getValueAPF().convertToDouble());
1010 if (Elts.size() == V.size())
1011 return ConstantDataVector::get(C->getContext(), Elts);
1016 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1017 // the operand list constants a ConstantExpr or something else strange.
1018 return pImpl->VectorConstants.getOrCreate(T, V);
1021 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1022 // If this splat is compatible with ConstantDataVector, use it instead of
1024 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1025 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1026 return ConstantDataVector::getSplat(NumElts, V);
1028 SmallVector<Constant*, 32> Elts(NumElts, V);
1033 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1034 // can't be inline because we don't want to #include Instruction.h into
1036 bool ConstantExpr::isCast() const {
1037 return Instruction::isCast(getOpcode());
1040 bool ConstantExpr::isCompare() const {
1041 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1044 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1045 if (getOpcode() != Instruction::GetElementPtr) return false;
1047 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1048 User::const_op_iterator OI = llvm::next(this->op_begin());
1050 // Skip the first index, as it has no static limit.
1054 // The remaining indices must be compile-time known integers within the
1055 // bounds of the corresponding notional static array types.
1056 for (; GEPI != E; ++GEPI, ++OI) {
1057 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1058 if (!CI) return false;
1059 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1060 if (CI->getValue().getActiveBits() > 64 ||
1061 CI->getZExtValue() >= ATy->getNumElements())
1065 // All the indices checked out.
1069 bool ConstantExpr::hasIndices() const {
1070 return getOpcode() == Instruction::ExtractValue ||
1071 getOpcode() == Instruction::InsertValue;
1074 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1075 if (const ExtractValueConstantExpr *EVCE =
1076 dyn_cast<ExtractValueConstantExpr>(this))
1077 return EVCE->Indices;
1079 return cast<InsertValueConstantExpr>(this)->Indices;
1082 unsigned ConstantExpr::getPredicate() const {
1083 assert(isCompare());
1084 return ((const CompareConstantExpr*)this)->predicate;
1087 /// getWithOperandReplaced - Return a constant expression identical to this
1088 /// one, but with the specified operand set to the specified value.
1090 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1091 assert(Op->getType() == getOperand(OpNo)->getType() &&
1092 "Replacing operand with value of different type!");
1093 if (getOperand(OpNo) == Op)
1094 return const_cast<ConstantExpr*>(this);
1096 SmallVector<Constant*, 8> NewOps;
1097 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1098 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1100 return getWithOperands(NewOps);
1103 /// getWithOperands - This returns the current constant expression with the
1104 /// operands replaced with the specified values. The specified array must
1105 /// have the same number of operands as our current one.
1106 Constant *ConstantExpr::
1107 getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const {
1108 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1109 bool AnyChange = Ty != getType();
1110 for (unsigned i = 0; i != Ops.size(); ++i)
1111 AnyChange |= Ops[i] != getOperand(i);
1113 if (!AnyChange) // No operands changed, return self.
1114 return const_cast<ConstantExpr*>(this);
1116 switch (getOpcode()) {
1117 case Instruction::Trunc:
1118 case Instruction::ZExt:
1119 case Instruction::SExt:
1120 case Instruction::FPTrunc:
1121 case Instruction::FPExt:
1122 case Instruction::UIToFP:
1123 case Instruction::SIToFP:
1124 case Instruction::FPToUI:
1125 case Instruction::FPToSI:
1126 case Instruction::PtrToInt:
1127 case Instruction::IntToPtr:
1128 case Instruction::BitCast:
1129 case Instruction::AddrSpaceCast:
1130 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty);
1131 case Instruction::Select:
1132 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]);
1133 case Instruction::InsertElement:
1134 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]);
1135 case Instruction::ExtractElement:
1136 return ConstantExpr::getExtractElement(Ops[0], Ops[1]);
1137 case Instruction::InsertValue:
1138 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices());
1139 case Instruction::ExtractValue:
1140 return ConstantExpr::getExtractValue(Ops[0], getIndices());
1141 case Instruction::ShuffleVector:
1142 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]);
1143 case Instruction::GetElementPtr:
1144 return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1),
1145 cast<GEPOperator>(this)->isInBounds());
1146 case Instruction::ICmp:
1147 case Instruction::FCmp:
1148 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]);
1150 assert(getNumOperands() == 2 && "Must be binary operator?");
1151 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData);
1156 //===----------------------------------------------------------------------===//
1157 // isValueValidForType implementations
1159 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1160 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1161 if (Ty->isIntegerTy(1))
1162 return Val == 0 || Val == 1;
1164 return true; // always true, has to fit in largest type
1165 uint64_t Max = (1ll << NumBits) - 1;
1169 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1170 unsigned NumBits = Ty->getIntegerBitWidth();
1171 if (Ty->isIntegerTy(1))
1172 return Val == 0 || Val == 1 || Val == -1;
1174 return true; // always true, has to fit in largest type
1175 int64_t Min = -(1ll << (NumBits-1));
1176 int64_t Max = (1ll << (NumBits-1)) - 1;
1177 return (Val >= Min && Val <= Max);
1180 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1181 // convert modifies in place, so make a copy.
1182 APFloat Val2 = APFloat(Val);
1184 switch (Ty->getTypeID()) {
1186 return false; // These can't be represented as floating point!
1188 // FIXME rounding mode needs to be more flexible
1189 case Type::HalfTyID: {
1190 if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1192 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1195 case Type::FloatTyID: {
1196 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1198 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1201 case Type::DoubleTyID: {
1202 if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1203 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1204 &Val2.getSemantics() == &APFloat::IEEEdouble)
1206 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1209 case Type::X86_FP80TyID:
1210 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1211 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1212 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1213 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1214 case Type::FP128TyID:
1215 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1216 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1217 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1218 &Val2.getSemantics() == &APFloat::IEEEquad;
1219 case Type::PPC_FP128TyID:
1220 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1221 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1222 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1223 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1228 //===----------------------------------------------------------------------===//
1229 // Factory Function Implementation
1231 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1232 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1233 "Cannot create an aggregate zero of non-aggregate type!");
1235 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1237 Entry = new ConstantAggregateZero(Ty);
1242 /// destroyConstant - Remove the constant from the constant table.
1244 void ConstantAggregateZero::destroyConstant() {
1245 getContext().pImpl->CAZConstants.erase(getType());
1246 destroyConstantImpl();
1249 /// destroyConstant - Remove the constant from the constant table...
1251 void ConstantArray::destroyConstant() {
1252 getType()->getContext().pImpl->ArrayConstants.remove(this);
1253 destroyConstantImpl();
1257 //---- ConstantStruct::get() implementation...
1260 // destroyConstant - Remove the constant from the constant table...
1262 void ConstantStruct::destroyConstant() {
1263 getType()->getContext().pImpl->StructConstants.remove(this);
1264 destroyConstantImpl();
1267 // destroyConstant - Remove the constant from the constant table...
1269 void ConstantVector::destroyConstant() {
1270 getType()->getContext().pImpl->VectorConstants.remove(this);
1271 destroyConstantImpl();
1274 /// getSplatValue - If this is a splat vector constant, meaning that all of
1275 /// the elements have the same value, return that value. Otherwise return 0.
1276 Constant *Constant::getSplatValue() const {
1277 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1278 if (isa<ConstantAggregateZero>(this))
1279 return getNullValue(this->getType()->getVectorElementType());
1280 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1281 return CV->getSplatValue();
1282 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1283 return CV->getSplatValue();
1287 /// getSplatValue - If this is a splat constant, where all of the
1288 /// elements have the same value, return that value. Otherwise return null.
1289 Constant *ConstantVector::getSplatValue() const {
1290 // Check out first element.
1291 Constant *Elt = getOperand(0);
1292 // Then make sure all remaining elements point to the same value.
1293 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1294 if (getOperand(I) != Elt)
1299 /// If C is a constant integer then return its value, otherwise C must be a
1300 /// vector of constant integers, all equal, and the common value is returned.
1301 const APInt &Constant::getUniqueInteger() const {
1302 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1303 return CI->getValue();
1304 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1305 const Constant *C = this->getAggregateElement(0U);
1306 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1307 return cast<ConstantInt>(C)->getValue();
1311 //---- ConstantPointerNull::get() implementation.
1314 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1315 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1317 Entry = new ConstantPointerNull(Ty);
1322 // destroyConstant - Remove the constant from the constant table...
1324 void ConstantPointerNull::destroyConstant() {
1325 getContext().pImpl->CPNConstants.erase(getType());
1326 // Free the constant and any dangling references to it.
1327 destroyConstantImpl();
1331 //---- UndefValue::get() implementation.
1334 UndefValue *UndefValue::get(Type *Ty) {
1335 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1337 Entry = new UndefValue(Ty);
1342 // destroyConstant - Remove the constant from the constant table.
1344 void UndefValue::destroyConstant() {
1345 // Free the constant and any dangling references to it.
1346 getContext().pImpl->UVConstants.erase(getType());
1347 destroyConstantImpl();
1350 //---- BlockAddress::get() implementation.
1353 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1354 assert(BB->getParent() != 0 && "Block must have a parent");
1355 return get(BB->getParent(), BB);
1358 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1360 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1362 BA = new BlockAddress(F, BB);
1364 assert(BA->getFunction() == F && "Basic block moved between functions");
1368 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1369 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1373 BB->AdjustBlockAddressRefCount(1);
1377 // destroyConstant - Remove the constant from the constant table.
1379 void BlockAddress::destroyConstant() {
1380 getFunction()->getType()->getContext().pImpl
1381 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1382 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1383 destroyConstantImpl();
1386 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1387 // This could be replacing either the Basic Block or the Function. In either
1388 // case, we have to remove the map entry.
1389 Function *NewF = getFunction();
1390 BasicBlock *NewBB = getBasicBlock();
1393 NewF = cast<Function>(To->stripPointerCasts());
1395 NewBB = cast<BasicBlock>(To);
1397 // See if the 'new' entry already exists, if not, just update this in place
1398 // and return early.
1399 BlockAddress *&NewBA =
1400 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1402 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1404 // Remove the old entry, this can't cause the map to rehash (just a
1405 // tombstone will get added).
1406 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1409 setOperand(0, NewF);
1410 setOperand(1, NewBB);
1411 getBasicBlock()->AdjustBlockAddressRefCount(1);
1415 // Otherwise, I do need to replace this with an existing value.
1416 assert(NewBA != this && "I didn't contain From!");
1418 // Everyone using this now uses the replacement.
1419 replaceAllUsesWith(NewBA);
1424 //---- ConstantExpr::get() implementations.
1427 /// This is a utility function to handle folding of casts and lookup of the
1428 /// cast in the ExprConstants map. It is used by the various get* methods below.
1429 static inline Constant *getFoldedCast(
1430 Instruction::CastOps opc, Constant *C, Type *Ty) {
1431 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1432 // Fold a few common cases
1433 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1436 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1438 // Look up the constant in the table first to ensure uniqueness.
1439 ExprMapKeyType Key(opc, C);
1441 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1444 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) {
1445 Instruction::CastOps opc = Instruction::CastOps(oc);
1446 assert(Instruction::isCast(opc) && "opcode out of range");
1447 assert(C && Ty && "Null arguments to getCast");
1448 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1452 llvm_unreachable("Invalid cast opcode");
1453 case Instruction::Trunc: return getTrunc(C, Ty);
1454 case Instruction::ZExt: return getZExt(C, Ty);
1455 case Instruction::SExt: return getSExt(C, Ty);
1456 case Instruction::FPTrunc: return getFPTrunc(C, Ty);
1457 case Instruction::FPExt: return getFPExtend(C, Ty);
1458 case Instruction::UIToFP: return getUIToFP(C, Ty);
1459 case Instruction::SIToFP: return getSIToFP(C, Ty);
1460 case Instruction::FPToUI: return getFPToUI(C, Ty);
1461 case Instruction::FPToSI: return getFPToSI(C, Ty);
1462 case Instruction::PtrToInt: return getPtrToInt(C, Ty);
1463 case Instruction::IntToPtr: return getIntToPtr(C, Ty);
1464 case Instruction::BitCast: return getBitCast(C, Ty);
1465 case Instruction::AddrSpaceCast: return getAddrSpaceCast(C, Ty);
1469 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1470 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1471 return getBitCast(C, Ty);
1472 return getZExt(C, Ty);
1475 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1476 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1477 return getBitCast(C, Ty);
1478 return getSExt(C, Ty);
1481 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1482 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1483 return getBitCast(C, Ty);
1484 return getTrunc(C, Ty);
1487 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1488 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1489 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1492 if (Ty->isIntOrIntVectorTy())
1493 return getPtrToInt(S, Ty);
1495 unsigned SrcAS = S->getType()->getPointerAddressSpace();
1496 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1497 return getAddrSpaceCast(S, Ty);
1499 return getBitCast(S, Ty);
1502 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1504 assert(C->getType()->isIntOrIntVectorTy() &&
1505 Ty->isIntOrIntVectorTy() && "Invalid cast");
1506 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1507 unsigned DstBits = Ty->getScalarSizeInBits();
1508 Instruction::CastOps opcode =
1509 (SrcBits == DstBits ? Instruction::BitCast :
1510 (SrcBits > DstBits ? Instruction::Trunc :
1511 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1512 return getCast(opcode, C, Ty);
1515 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1516 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1518 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1519 unsigned DstBits = Ty->getScalarSizeInBits();
1520 if (SrcBits == DstBits)
1521 return C; // Avoid a useless cast
1522 Instruction::CastOps opcode =
1523 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1524 return getCast(opcode, C, Ty);
1527 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) {
1529 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1530 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1532 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1533 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1534 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1535 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1536 "SrcTy must be larger than DestTy for Trunc!");
1538 return getFoldedCast(Instruction::Trunc, C, Ty);
1541 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) {
1543 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1544 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1546 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1547 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1548 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1549 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1550 "SrcTy must be smaller than DestTy for SExt!");
1552 return getFoldedCast(Instruction::SExt, C, Ty);
1555 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) {
1557 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1558 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1560 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1561 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1562 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1563 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1564 "SrcTy must be smaller than DestTy for ZExt!");
1566 return getFoldedCast(Instruction::ZExt, C, Ty);
1569 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) {
1571 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1572 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1574 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1575 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1576 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1577 "This is an illegal floating point truncation!");
1578 return getFoldedCast(Instruction::FPTrunc, C, Ty);
1581 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) {
1583 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1584 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1586 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1587 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1588 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1589 "This is an illegal floating point extension!");
1590 return getFoldedCast(Instruction::FPExt, C, Ty);
1593 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) {
1595 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1596 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1598 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1599 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1600 "This is an illegal uint to floating point cast!");
1601 return getFoldedCast(Instruction::UIToFP, C, Ty);
1604 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) {
1606 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1607 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1609 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1610 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1611 "This is an illegal sint to floating point cast!");
1612 return getFoldedCast(Instruction::SIToFP, C, Ty);
1615 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) {
1617 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1618 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1620 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1621 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1622 "This is an illegal floating point to uint cast!");
1623 return getFoldedCast(Instruction::FPToUI, C, Ty);
1626 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) {
1628 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1629 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1631 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1632 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1633 "This is an illegal floating point to sint cast!");
1634 return getFoldedCast(Instruction::FPToSI, C, Ty);
1637 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) {
1638 assert(C->getType()->getScalarType()->isPointerTy() &&
1639 "PtrToInt source must be pointer or pointer vector");
1640 assert(DstTy->getScalarType()->isIntegerTy() &&
1641 "PtrToInt destination must be integer or integer vector");
1642 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1643 if (isa<VectorType>(C->getType()))
1644 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1645 "Invalid cast between a different number of vector elements");
1646 return getFoldedCast(Instruction::PtrToInt, C, DstTy);
1649 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) {
1650 assert(C->getType()->getScalarType()->isIntegerTy() &&
1651 "IntToPtr source must be integer or integer vector");
1652 assert(DstTy->getScalarType()->isPointerTy() &&
1653 "IntToPtr destination must be a pointer or pointer vector");
1654 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1655 if (isa<VectorType>(C->getType()))
1656 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1657 "Invalid cast between a different number of vector elements");
1658 return getFoldedCast(Instruction::IntToPtr, C, DstTy);
1661 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) {
1662 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1663 "Invalid constantexpr bitcast!");
1665 // It is common to ask for a bitcast of a value to its own type, handle this
1667 if (C->getType() == DstTy) return C;
1669 return getFoldedCast(Instruction::BitCast, C, DstTy);
1672 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy) {
1673 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1674 "Invalid constantexpr addrspacecast!");
1676 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy);
1679 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1681 // Check the operands for consistency first.
1682 assert(Opcode >= Instruction::BinaryOpsBegin &&
1683 Opcode < Instruction::BinaryOpsEnd &&
1684 "Invalid opcode in binary constant expression");
1685 assert(C1->getType() == C2->getType() &&
1686 "Operand types in binary constant expression should match");
1690 case Instruction::Add:
1691 case Instruction::Sub:
1692 case Instruction::Mul:
1693 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1694 assert(C1->getType()->isIntOrIntVectorTy() &&
1695 "Tried to create an integer operation on a non-integer type!");
1697 case Instruction::FAdd:
1698 case Instruction::FSub:
1699 case Instruction::FMul:
1700 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1701 assert(C1->getType()->isFPOrFPVectorTy() &&
1702 "Tried to create a floating-point operation on a "
1703 "non-floating-point type!");
1705 case Instruction::UDiv:
1706 case Instruction::SDiv:
1707 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1708 assert(C1->getType()->isIntOrIntVectorTy() &&
1709 "Tried to create an arithmetic operation on a non-arithmetic type!");
1711 case Instruction::FDiv:
1712 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1713 assert(C1->getType()->isFPOrFPVectorTy() &&
1714 "Tried to create an arithmetic operation on a non-arithmetic type!");
1716 case Instruction::URem:
1717 case Instruction::SRem:
1718 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1719 assert(C1->getType()->isIntOrIntVectorTy() &&
1720 "Tried to create an arithmetic operation on a non-arithmetic type!");
1722 case Instruction::FRem:
1723 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1724 assert(C1->getType()->isFPOrFPVectorTy() &&
1725 "Tried to create an arithmetic operation on a non-arithmetic type!");
1727 case Instruction::And:
1728 case Instruction::Or:
1729 case Instruction::Xor:
1730 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1731 assert(C1->getType()->isIntOrIntVectorTy() &&
1732 "Tried to create a logical operation on a non-integral type!");
1734 case Instruction::Shl:
1735 case Instruction::LShr:
1736 case Instruction::AShr:
1737 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1738 assert(C1->getType()->isIntOrIntVectorTy() &&
1739 "Tried to create a shift operation on a non-integer type!");
1746 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1747 return FC; // Fold a few common cases.
1749 Constant *ArgVec[] = { C1, C2 };
1750 ExprMapKeyType Key(Opcode, ArgVec, 0, Flags);
1752 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1753 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1756 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1757 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1758 // Note that a non-inbounds gep is used, as null isn't within any object.
1759 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1760 Constant *GEP = getGetElementPtr(
1761 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1762 return getPtrToInt(GEP,
1763 Type::getInt64Ty(Ty->getContext()));
1766 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1767 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1768 // Note that a non-inbounds gep is used, as null isn't within any object.
1770 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL);
1771 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo());
1772 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1773 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1774 Constant *Indices[2] = { Zero, One };
1775 Constant *GEP = getGetElementPtr(NullPtr, Indices);
1776 return getPtrToInt(GEP,
1777 Type::getInt64Ty(Ty->getContext()));
1780 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1781 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1785 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1786 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1787 // Note that a non-inbounds gep is used, as null isn't within any object.
1788 Constant *GEPIdx[] = {
1789 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1792 Constant *GEP = getGetElementPtr(
1793 Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1794 return getPtrToInt(GEP,
1795 Type::getInt64Ty(Ty->getContext()));
1798 Constant *ConstantExpr::getCompare(unsigned short Predicate,
1799 Constant *C1, Constant *C2) {
1800 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1802 switch (Predicate) {
1803 default: llvm_unreachable("Invalid CmpInst predicate");
1804 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1805 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1806 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1807 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1808 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1809 case CmpInst::FCMP_TRUE:
1810 return getFCmp(Predicate, C1, C2);
1812 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1813 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1814 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1815 case CmpInst::ICMP_SLE:
1816 return getICmp(Predicate, C1, C2);
1820 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) {
1821 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
1823 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
1824 return SC; // Fold common cases
1826 Constant *ArgVec[] = { C, V1, V2 };
1827 ExprMapKeyType Key(Instruction::Select, ArgVec);
1829 LLVMContextImpl *pImpl = C->getContext().pImpl;
1830 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
1833 Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs,
1835 assert(C->getType()->isPtrOrPtrVectorTy() &&
1836 "Non-pointer type for constant GetElementPtr expression");
1838 if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs))
1839 return FC; // Fold a few common cases.
1841 // Get the result type of the getelementptr!
1842 Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs);
1843 assert(Ty && "GEP indices invalid!");
1844 unsigned AS = C->getType()->getPointerAddressSpace();
1845 Type *ReqTy = Ty->getPointerTo(AS);
1846 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
1847 ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
1849 // Look up the constant in the table first to ensure uniqueness
1850 std::vector<Constant*> ArgVec;
1851 ArgVec.reserve(1 + Idxs.size());
1852 ArgVec.push_back(C);
1853 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1854 assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
1855 "getelementptr index type missmatch");
1856 assert((!Idxs[i]->getType()->isVectorTy() ||
1857 ReqTy->getVectorNumElements() ==
1858 Idxs[i]->getType()->getVectorNumElements()) &&
1859 "getelementptr index type missmatch");
1860 ArgVec.push_back(cast<Constant>(Idxs[i]));
1862 const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
1863 InBounds ? GEPOperator::IsInBounds : 0);
1865 LLVMContextImpl *pImpl = C->getContext().pImpl;
1866 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1870 ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1871 assert(LHS->getType() == RHS->getType());
1872 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
1873 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
1875 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1876 return FC; // Fold a few common cases...
1878 // Look up the constant in the table first to ensure uniqueness
1879 Constant *ArgVec[] = { LHS, RHS };
1880 // Get the key type with both the opcode and predicate
1881 const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred);
1883 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1884 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1885 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1887 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1888 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1892 ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) {
1893 assert(LHS->getType() == RHS->getType());
1894 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
1896 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
1897 return FC; // Fold a few common cases...
1899 // Look up the constant in the table first to ensure uniqueness
1900 Constant *ArgVec[] = { LHS, RHS };
1901 // Get the key type with both the opcode and predicate
1902 const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred);
1904 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
1905 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
1906 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
1908 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
1909 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
1912 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) {
1913 assert(Val->getType()->isVectorTy() &&
1914 "Tried to create extractelement operation on non-vector type!");
1915 assert(Idx->getType()->isIntegerTy(32) &&
1916 "Extractelement index must be i32 type!");
1918 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
1919 return FC; // Fold a few common cases.
1921 // Look up the constant in the table first to ensure uniqueness
1922 Constant *ArgVec[] = { Val, Idx };
1923 const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec);
1925 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1926 Type *ReqTy = Val->getType()->getVectorElementType();
1927 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1930 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
1932 assert(Val->getType()->isVectorTy() &&
1933 "Tried to create insertelement operation on non-vector type!");
1934 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
1935 "Insertelement types must match!");
1936 assert(Idx->getType()->isIntegerTy(32) &&
1937 "Insertelement index must be i32 type!");
1939 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
1940 return FC; // Fold a few common cases.
1941 // Look up the constant in the table first to ensure uniqueness
1942 Constant *ArgVec[] = { Val, Elt, Idx };
1943 const ExprMapKeyType Key(Instruction::InsertElement, ArgVec);
1945 LLVMContextImpl *pImpl = Val->getContext().pImpl;
1946 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
1949 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
1951 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
1952 "Invalid shuffle vector constant expr operands!");
1954 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
1955 return FC; // Fold a few common cases.
1957 unsigned NElts = Mask->getType()->getVectorNumElements();
1958 Type *EltTy = V1->getType()->getVectorElementType();
1959 Type *ShufTy = VectorType::get(EltTy, NElts);
1961 // Look up the constant in the table first to ensure uniqueness
1962 Constant *ArgVec[] = { V1, V2, Mask };
1963 const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec);
1965 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
1966 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
1969 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
1970 ArrayRef<unsigned> Idxs) {
1971 assert(Agg->getType()->isFirstClassType() &&
1972 "Non-first-class type for constant insertvalue expression");
1974 assert(ExtractValueInst::getIndexedType(Agg->getType(),
1975 Idxs) == Val->getType() &&
1976 "insertvalue indices invalid!");
1977 Type *ReqTy = Val->getType();
1979 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
1982 Constant *ArgVec[] = { Agg, Val };
1983 const ExprMapKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
1985 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
1986 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
1989 Constant *ConstantExpr::getExtractValue(Constant *Agg,
1990 ArrayRef<unsigned> Idxs) {
1991 assert(Agg->getType()->isFirstClassType() &&
1992 "Tried to create extractelement operation on non-first-class type!");
1994 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
1996 assert(ReqTy && "extractvalue indices invalid!");
1998 assert(Agg->getType()->isFirstClassType() &&
1999 "Non-first-class type for constant extractvalue expression");
2000 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2003 Constant *ArgVec[] = { Agg };
2004 const ExprMapKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2006 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2007 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2010 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2011 assert(C->getType()->isIntOrIntVectorTy() &&
2012 "Cannot NEG a nonintegral value!");
2013 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2017 Constant *ConstantExpr::getFNeg(Constant *C) {
2018 assert(C->getType()->isFPOrFPVectorTy() &&
2019 "Cannot FNEG a non-floating-point value!");
2020 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2023 Constant *ConstantExpr::getNot(Constant *C) {
2024 assert(C->getType()->isIntOrIntVectorTy() &&
2025 "Cannot NOT a nonintegral value!");
2026 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2029 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2030 bool HasNUW, bool HasNSW) {
2031 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2032 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2033 return get(Instruction::Add, C1, C2, Flags);
2036 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2037 return get(Instruction::FAdd, C1, C2);
2040 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2041 bool HasNUW, bool HasNSW) {
2042 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2043 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2044 return get(Instruction::Sub, C1, C2, Flags);
2047 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2048 return get(Instruction::FSub, C1, C2);
2051 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2052 bool HasNUW, bool HasNSW) {
2053 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2054 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2055 return get(Instruction::Mul, C1, C2, Flags);
2058 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2059 return get(Instruction::FMul, C1, C2);
2062 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2063 return get(Instruction::UDiv, C1, C2,
2064 isExact ? PossiblyExactOperator::IsExact : 0);
2067 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2068 return get(Instruction::SDiv, C1, C2,
2069 isExact ? PossiblyExactOperator::IsExact : 0);
2072 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2073 return get(Instruction::FDiv, C1, C2);
2076 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2077 return get(Instruction::URem, C1, C2);
2080 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2081 return get(Instruction::SRem, C1, C2);
2084 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2085 return get(Instruction::FRem, C1, C2);
2088 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2089 return get(Instruction::And, C1, C2);
2092 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2093 return get(Instruction::Or, C1, C2);
2096 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2097 return get(Instruction::Xor, C1, C2);
2100 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2101 bool HasNUW, bool HasNSW) {
2102 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2103 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2104 return get(Instruction::Shl, C1, C2, Flags);
2107 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2108 return get(Instruction::LShr, C1, C2,
2109 isExact ? PossiblyExactOperator::IsExact : 0);
2112 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2113 return get(Instruction::AShr, C1, C2,
2114 isExact ? PossiblyExactOperator::IsExact : 0);
2117 /// getBinOpIdentity - Return the identity for the given binary operation,
2118 /// i.e. a constant C such that X op C = X and C op X = X for every X. It
2119 /// returns null if the operator doesn't have an identity.
2120 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2123 // Doesn't have an identity.
2126 case Instruction::Add:
2127 case Instruction::Or:
2128 case Instruction::Xor:
2129 return Constant::getNullValue(Ty);
2131 case Instruction::Mul:
2132 return ConstantInt::get(Ty, 1);
2134 case Instruction::And:
2135 return Constant::getAllOnesValue(Ty);
2139 /// getBinOpAbsorber - Return the absorbing element for the given binary
2140 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2141 /// every X. For example, this returns zero for integer multiplication.
2142 /// It returns null if the operator doesn't have an absorbing element.
2143 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2146 // Doesn't have an absorber.
2149 case Instruction::Or:
2150 return Constant::getAllOnesValue(Ty);
2152 case Instruction::And:
2153 case Instruction::Mul:
2154 return Constant::getNullValue(Ty);
2158 // destroyConstant - Remove the constant from the constant table...
2160 void ConstantExpr::destroyConstant() {
2161 getType()->getContext().pImpl->ExprConstants.remove(this);
2162 destroyConstantImpl();
2165 const char *ConstantExpr::getOpcodeName() const {
2166 return Instruction::getOpcodeName(getOpcode());
2171 GetElementPtrConstantExpr::
2172 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2174 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2175 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2176 - (IdxList.size()+1), IdxList.size()+1) {
2178 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2179 OperandList[i+1] = IdxList[i];
2182 //===----------------------------------------------------------------------===//
2183 // ConstantData* implementations
2185 void ConstantDataArray::anchor() {}
2186 void ConstantDataVector::anchor() {}
2188 /// getElementType - Return the element type of the array/vector.
2189 Type *ConstantDataSequential::getElementType() const {
2190 return getType()->getElementType();
2193 StringRef ConstantDataSequential::getRawDataValues() const {
2194 return StringRef(DataElements, getNumElements()*getElementByteSize());
2197 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2198 /// formed with a vector or array of the specified element type.
2199 /// ConstantDataArray only works with normal float and int types that are
2200 /// stored densely in memory, not with things like i42 or x86_f80.
2201 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2202 if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2203 if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2204 switch (IT->getBitWidth()) {
2216 /// getNumElements - Return the number of elements in the array or vector.
2217 unsigned ConstantDataSequential::getNumElements() const {
2218 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2219 return AT->getNumElements();
2220 return getType()->getVectorNumElements();
2224 /// getElementByteSize - Return the size in bytes of the elements in the data.
2225 uint64_t ConstantDataSequential::getElementByteSize() const {
2226 return getElementType()->getPrimitiveSizeInBits()/8;
2229 /// getElementPointer - Return the start of the specified element.
2230 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2231 assert(Elt < getNumElements() && "Invalid Elt");
2232 return DataElements+Elt*getElementByteSize();
2236 /// isAllZeros - return true if the array is empty or all zeros.
2237 static bool isAllZeros(StringRef Arr) {
2238 for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2244 /// getImpl - This is the underlying implementation of all of the
2245 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2246 /// the correct element type. We take the bytes in as a StringRef because
2247 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2248 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2249 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2250 // If the elements are all zero or there are no elements, return a CAZ, which
2251 // is more dense and canonical.
2252 if (isAllZeros(Elements))
2253 return ConstantAggregateZero::get(Ty);
2255 // Do a lookup to see if we have already formed one of these.
2256 StringMap<ConstantDataSequential*>::MapEntryTy &Slot =
2257 Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements);
2259 // The bucket can point to a linked list of different CDS's that have the same
2260 // body but different types. For example, 0,0,0,1 could be a 4 element array
2261 // of i8, or a 1-element array of i32. They'll both end up in the same
2262 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2263 ConstantDataSequential **Entry = &Slot.getValue();
2264 for (ConstantDataSequential *Node = *Entry; Node != 0;
2265 Entry = &Node->Next, Node = *Entry)
2266 if (Node->getType() == Ty)
2269 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2271 if (isa<ArrayType>(Ty))
2272 return *Entry = new ConstantDataArray(Ty, Slot.getKeyData());
2274 assert(isa<VectorType>(Ty));
2275 return *Entry = new ConstantDataVector(Ty, Slot.getKeyData());
2278 void ConstantDataSequential::destroyConstant() {
2279 // Remove the constant from the StringMap.
2280 StringMap<ConstantDataSequential*> &CDSConstants =
2281 getType()->getContext().pImpl->CDSConstants;
2283 StringMap<ConstantDataSequential*>::iterator Slot =
2284 CDSConstants.find(getRawDataValues());
2286 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2288 ConstantDataSequential **Entry = &Slot->getValue();
2290 // Remove the entry from the hash table.
2291 if ((*Entry)->Next == 0) {
2292 // If there is only one value in the bucket (common case) it must be this
2293 // entry, and removing the entry should remove the bucket completely.
2294 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2295 getContext().pImpl->CDSConstants.erase(Slot);
2297 // Otherwise, there are multiple entries linked off the bucket, unlink the
2298 // node we care about but keep the bucket around.
2299 for (ConstantDataSequential *Node = *Entry; ;
2300 Entry = &Node->Next, Node = *Entry) {
2301 assert(Node && "Didn't find entry in its uniquing hash table!");
2302 // If we found our entry, unlink it from the list and we're done.
2304 *Entry = Node->Next;
2310 // If we were part of a list, make sure that we don't delete the list that is
2311 // still owned by the uniquing map.
2314 // Finally, actually delete it.
2315 destroyConstantImpl();
2318 /// get() constructors - Return a constant with array type with an element
2319 /// count and element type matching the ArrayRef passed in. Note that this
2320 /// can return a ConstantAggregateZero object.
2321 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2322 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2323 const char *Data = reinterpret_cast<const char *>(Elts.data());
2324 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2326 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2327 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2328 const char *Data = reinterpret_cast<const char *>(Elts.data());
2329 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2331 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2332 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2333 const char *Data = reinterpret_cast<const char *>(Elts.data());
2334 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2336 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2337 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2338 const char *Data = reinterpret_cast<const char *>(Elts.data());
2339 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2341 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2342 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2343 const char *Data = reinterpret_cast<const char *>(Elts.data());
2344 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2346 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2347 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2348 const char *Data = reinterpret_cast<const char *>(Elts.data());
2349 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2352 /// getString - This method constructs a CDS and initializes it with a text
2353 /// string. The default behavior (AddNull==true) causes a null terminator to
2354 /// be placed at the end of the array (increasing the length of the string by
2355 /// one more than the StringRef would normally indicate. Pass AddNull=false
2356 /// to disable this behavior.
2357 Constant *ConstantDataArray::getString(LLVMContext &Context,
2358 StringRef Str, bool AddNull) {
2360 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2361 return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data),
2365 SmallVector<uint8_t, 64> ElementVals;
2366 ElementVals.append(Str.begin(), Str.end());
2367 ElementVals.push_back(0);
2368 return get(Context, ElementVals);
2371 /// get() constructors - Return a constant with vector type with an element
2372 /// count and element type matching the ArrayRef passed in. Note that this
2373 /// can return a ConstantAggregateZero object.
2374 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2375 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2376 const char *Data = reinterpret_cast<const char *>(Elts.data());
2377 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2379 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2380 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2381 const char *Data = reinterpret_cast<const char *>(Elts.data());
2382 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2384 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2385 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2386 const char *Data = reinterpret_cast<const char *>(Elts.data());
2387 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2389 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2390 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2391 const char *Data = reinterpret_cast<const char *>(Elts.data());
2392 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2394 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2395 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2396 const char *Data = reinterpret_cast<const char *>(Elts.data());
2397 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2399 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2400 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2401 const char *Data = reinterpret_cast<const char *>(Elts.data());
2402 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2405 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2406 assert(isElementTypeCompatible(V->getType()) &&
2407 "Element type not compatible with ConstantData");
2408 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2409 if (CI->getType()->isIntegerTy(8)) {
2410 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2411 return get(V->getContext(), Elts);
2413 if (CI->getType()->isIntegerTy(16)) {
2414 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2415 return get(V->getContext(), Elts);
2417 if (CI->getType()->isIntegerTy(32)) {
2418 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2419 return get(V->getContext(), Elts);
2421 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2422 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2423 return get(V->getContext(), Elts);
2426 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2427 if (CFP->getType()->isFloatTy()) {
2428 SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat());
2429 return get(V->getContext(), Elts);
2431 if (CFP->getType()->isDoubleTy()) {
2432 SmallVector<double, 16> Elts(NumElts,
2433 CFP->getValueAPF().convertToDouble());
2434 return get(V->getContext(), Elts);
2437 return ConstantVector::getSplat(NumElts, V);
2441 /// getElementAsInteger - If this is a sequential container of integers (of
2442 /// any size), return the specified element in the low bits of a uint64_t.
2443 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2444 assert(isa<IntegerType>(getElementType()) &&
2445 "Accessor can only be used when element is an integer");
2446 const char *EltPtr = getElementPointer(Elt);
2448 // The data is stored in host byte order, make sure to cast back to the right
2449 // type to load with the right endianness.
2450 switch (getElementType()->getIntegerBitWidth()) {
2451 default: llvm_unreachable("Invalid bitwidth for CDS");
2453 return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2455 return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2457 return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2459 return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2463 /// getElementAsAPFloat - If this is a sequential container of floating point
2464 /// type, return the specified element as an APFloat.
2465 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2466 const char *EltPtr = getElementPointer(Elt);
2468 switch (getElementType()->getTypeID()) {
2470 llvm_unreachable("Accessor can only be used when element is float/double!");
2471 case Type::FloatTyID: {
2472 const float *FloatPrt = reinterpret_cast<const float *>(EltPtr);
2473 return APFloat(*const_cast<float *>(FloatPrt));
2475 case Type::DoubleTyID: {
2476 const double *DoublePtr = reinterpret_cast<const double *>(EltPtr);
2477 return APFloat(*const_cast<double *>(DoublePtr));
2482 /// getElementAsFloat - If this is an sequential container of floats, return
2483 /// the specified element as a float.
2484 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2485 assert(getElementType()->isFloatTy() &&
2486 "Accessor can only be used when element is a 'float'");
2487 const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2488 return *const_cast<float *>(EltPtr);
2491 /// getElementAsDouble - If this is an sequential container of doubles, return
2492 /// the specified element as a float.
2493 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2494 assert(getElementType()->isDoubleTy() &&
2495 "Accessor can only be used when element is a 'float'");
2496 const double *EltPtr =
2497 reinterpret_cast<const double *>(getElementPointer(Elt));
2498 return *const_cast<double *>(EltPtr);
2501 /// getElementAsConstant - Return a Constant for a specified index's element.
2502 /// Note that this has to compute a new constant to return, so it isn't as
2503 /// efficient as getElementAsInteger/Float/Double.
2504 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2505 if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2506 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2508 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2511 /// isString - This method returns true if this is an array of i8.
2512 bool ConstantDataSequential::isString() const {
2513 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2516 /// isCString - This method returns true if the array "isString", ends with a
2517 /// nul byte, and does not contains any other nul bytes.
2518 bool ConstantDataSequential::isCString() const {
2522 StringRef Str = getAsString();
2524 // The last value must be nul.
2525 if (Str.back() != 0) return false;
2527 // Other elements must be non-nul.
2528 return Str.drop_back().find(0) == StringRef::npos;
2531 /// getSplatValue - If this is a splat constant, meaning that all of the
2532 /// elements have the same value, return that value. Otherwise return NULL.
2533 Constant *ConstantDataVector::getSplatValue() const {
2534 const char *Base = getRawDataValues().data();
2536 // Compare elements 1+ to the 0'th element.
2537 unsigned EltSize = getElementByteSize();
2538 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2539 if (memcmp(Base, Base+i*EltSize, EltSize))
2542 // If they're all the same, return the 0th one as a representative.
2543 return getElementAsConstant(0);
2546 //===----------------------------------------------------------------------===//
2547 // replaceUsesOfWithOnConstant implementations
2549 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2550 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2553 /// Note that we intentionally replace all uses of From with To here. Consider
2554 /// a large array that uses 'From' 1000 times. By handling this case all here,
2555 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2556 /// single invocation handles all 1000 uses. Handling them one at a time would
2557 /// work, but would be really slow because it would have to unique each updated
2560 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2562 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2563 Constant *ToC = cast<Constant>(To);
2565 LLVMContextImpl *pImpl = getType()->getContext().pImpl;
2567 SmallVector<Constant*, 8> Values;
2568 LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup;
2569 Lookup.first = cast<ArrayType>(getType());
2570 Values.reserve(getNumOperands()); // Build replacement array.
2572 // Fill values with the modified operands of the constant array. Also,
2573 // compute whether this turns into an all-zeros array.
2574 unsigned NumUpdated = 0;
2576 // Keep track of whether all the values in the array are "ToC".
2577 bool AllSame = true;
2578 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2579 Constant *Val = cast<Constant>(O->get());
2584 Values.push_back(Val);
2585 AllSame &= Val == ToC;
2588 Constant *Replacement = 0;
2589 if (AllSame && ToC->isNullValue()) {
2590 Replacement = ConstantAggregateZero::get(getType());
2591 } else if (AllSame && isa<UndefValue>(ToC)) {
2592 Replacement = UndefValue::get(getType());
2594 // Check to see if we have this array type already.
2595 Lookup.second = makeArrayRef(Values);
2596 LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I =
2597 pImpl->ArrayConstants.find(Lookup);
2599 if (I != pImpl->ArrayConstants.map_end()) {
2600 Replacement = I->first;
2602 // Okay, the new shape doesn't exist in the system yet. Instead of
2603 // creating a new constant array, inserting it, replaceallusesof'ing the
2604 // old with the new, then deleting the old... just update the current one
2606 pImpl->ArrayConstants.remove(this);
2608 // Update to the new value. Optimize for the case when we have a single
2609 // operand that we're changing, but handle bulk updates efficiently.
2610 if (NumUpdated == 1) {
2611 unsigned OperandToUpdate = U - OperandList;
2612 assert(getOperand(OperandToUpdate) == From &&
2613 "ReplaceAllUsesWith broken!");
2614 setOperand(OperandToUpdate, ToC);
2616 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
2617 if (getOperand(i) == From)
2620 pImpl->ArrayConstants.insert(this);
2625 // Otherwise, I do need to replace this with an existing value.
2626 assert(Replacement != this && "I didn't contain From!");
2628 // Everyone using this now uses the replacement.
2629 replaceAllUsesWith(Replacement);
2631 // Delete the old constant!
2635 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2637 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2638 Constant *ToC = cast<Constant>(To);
2640 unsigned OperandToUpdate = U-OperandList;
2641 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2643 SmallVector<Constant*, 8> Values;
2644 LLVMContextImpl::StructConstantsTy::LookupKey Lookup;
2645 Lookup.first = cast<StructType>(getType());
2646 Values.reserve(getNumOperands()); // Build replacement struct.
2648 // Fill values with the modified operands of the constant struct. Also,
2649 // compute whether this turns into an all-zeros struct.
2650 bool isAllZeros = false;
2651 bool isAllUndef = false;
2652 if (ToC->isNullValue()) {
2654 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2655 Constant *Val = cast<Constant>(O->get());
2656 Values.push_back(Val);
2657 if (isAllZeros) isAllZeros = Val->isNullValue();
2659 } else if (isa<UndefValue>(ToC)) {
2661 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2662 Constant *Val = cast<Constant>(O->get());
2663 Values.push_back(Val);
2664 if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2667 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2668 Values.push_back(cast<Constant>(O->get()));
2670 Values[OperandToUpdate] = ToC;
2672 LLVMContextImpl *pImpl = getContext().pImpl;
2674 Constant *Replacement = 0;
2676 Replacement = ConstantAggregateZero::get(getType());
2677 } else if (isAllUndef) {
2678 Replacement = UndefValue::get(getType());
2680 // Check to see if we have this struct type already.
2681 Lookup.second = makeArrayRef(Values);
2682 LLVMContextImpl::StructConstantsTy::MapTy::iterator I =
2683 pImpl->StructConstants.find(Lookup);
2685 if (I != pImpl->StructConstants.map_end()) {
2686 Replacement = I->first;
2688 // Okay, the new shape doesn't exist in the system yet. Instead of
2689 // creating a new constant struct, inserting it, replaceallusesof'ing the
2690 // old with the new, then deleting the old... just update the current one
2692 pImpl->StructConstants.remove(this);
2694 // Update to the new value.
2695 setOperand(OperandToUpdate, ToC);
2696 pImpl->StructConstants.insert(this);
2701 assert(Replacement != this && "I didn't contain From!");
2703 // Everyone using this now uses the replacement.
2704 replaceAllUsesWith(Replacement);
2706 // Delete the old constant!
2710 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2712 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2714 SmallVector<Constant*, 8> Values;
2715 Values.reserve(getNumOperands()); // Build replacement array...
2716 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2717 Constant *Val = getOperand(i);
2718 if (Val == From) Val = cast<Constant>(To);
2719 Values.push_back(Val);
2722 Constant *Replacement = get(Values);
2723 assert(Replacement != this && "I didn't contain From!");
2725 // Everyone using this now uses the replacement.
2726 replaceAllUsesWith(Replacement);
2728 // Delete the old constant!
2732 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2734 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2735 Constant *To = cast<Constant>(ToV);
2737 SmallVector<Constant*, 8> NewOps;
2738 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2739 Constant *Op = getOperand(i);
2740 NewOps.push_back(Op == From ? To : Op);
2743 Constant *Replacement = getWithOperands(NewOps);
2744 assert(Replacement != this && "I didn't contain From!");
2746 // Everyone using this now uses the replacement.
2747 replaceAllUsesWith(Replacement);
2749 // Delete the old constant!
2753 Instruction *ConstantExpr::getAsInstruction() {
2754 SmallVector<Value*,4> ValueOperands;
2755 for (op_iterator I = op_begin(), E = op_end(); I != E; ++I)
2756 ValueOperands.push_back(cast<Value>(I));
2758 ArrayRef<Value*> Ops(ValueOperands);
2760 switch (getOpcode()) {
2761 case Instruction::Trunc:
2762 case Instruction::ZExt:
2763 case Instruction::SExt:
2764 case Instruction::FPTrunc:
2765 case Instruction::FPExt:
2766 case Instruction::UIToFP:
2767 case Instruction::SIToFP:
2768 case Instruction::FPToUI:
2769 case Instruction::FPToSI:
2770 case Instruction::PtrToInt:
2771 case Instruction::IntToPtr:
2772 case Instruction::BitCast:
2773 return CastInst::Create((Instruction::CastOps)getOpcode(),
2775 case Instruction::Select:
2776 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
2777 case Instruction::InsertElement:
2778 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
2779 case Instruction::ExtractElement:
2780 return ExtractElementInst::Create(Ops[0], Ops[1]);
2781 case Instruction::InsertValue:
2782 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
2783 case Instruction::ExtractValue:
2784 return ExtractValueInst::Create(Ops[0], getIndices());
2785 case Instruction::ShuffleVector:
2786 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
2788 case Instruction::GetElementPtr:
2789 if (cast<GEPOperator>(this)->isInBounds())
2790 return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1));
2792 return GetElementPtrInst::Create(Ops[0], Ops.slice(1));
2794 case Instruction::ICmp:
2795 case Instruction::FCmp:
2796 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
2797 getPredicate(), Ops[0], Ops[1]);
2800 assert(getNumOperands() == 2 && "Must be binary operator?");
2801 BinaryOperator *BO =
2802 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
2804 if (isa<OverflowingBinaryOperator>(BO)) {
2805 BO->setHasNoUnsignedWrap(SubclassOptionalData &
2806 OverflowingBinaryOperator::NoUnsignedWrap);
2807 BO->setHasNoSignedWrap(SubclassOptionalData &
2808 OverflowingBinaryOperator::NoSignedWrap);
2810 if (isa<PossiblyExactOperator>(BO))
2811 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);