1 //===-- Constants.cpp - Implement Constant nodes --------------------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Constant* classes.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Constants.h"
15 #include "ConstantFold.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/FoldingSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/GetElementPtrTypeIterator.h"
25 #include "llvm/IR/GlobalValue.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/Operator.h"
29 #include "llvm/Support/Compiler.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Support/raw_ostream.h"
39 //===----------------------------------------------------------------------===//
41 //===----------------------------------------------------------------------===//
43 void Constant::anchor() { }
45 bool Constant::isNegativeZeroValue() const {
46 // Floating point values have an explicit -0.0 value.
47 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
48 return CFP->isZero() && CFP->isNegative();
50 // Equivalent for a vector of -0.0's.
51 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
52 if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue()))
53 if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative())
56 // We've already handled true FP case; any other FP vectors can't represent -0.0.
57 if (getType()->isFPOrFPVectorTy())
60 // Otherwise, just use +0.0.
64 // Return true iff this constant is positive zero (floating point), negative
65 // zero (floating point), or a null value.
66 bool Constant::isZeroValue() const {
67 // Floating point values have an explicit -0.0 value.
68 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
71 // Otherwise, just use +0.0.
75 bool Constant::isNullValue() const {
77 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
81 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
82 return CFP->isZero() && !CFP->isNegative();
84 // constant zero is zero for aggregates and cpnull is null for pointers.
85 return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this);
88 bool Constant::isAllOnesValue() const {
89 // Check for -1 integers
90 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
91 return CI->isMinusOne();
93 // Check for FP which are bitcasted from -1 integers
94 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
95 return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue();
97 // Check for constant vectors which are splats of -1 values.
98 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
99 if (Constant *Splat = CV->getSplatValue())
100 return Splat->isAllOnesValue();
102 // Check for constant vectors which are splats of -1 values.
103 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
104 if (Constant *Splat = CV->getSplatValue())
105 return Splat->isAllOnesValue();
110 bool Constant::isOneValue() const {
111 // Check for 1 integers
112 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
115 // Check for FP which are bitcasted from 1 integers
116 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
117 return CFP->getValueAPF().bitcastToAPInt() == 1;
119 // Check for constant vectors which are splats of 1 values.
120 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
121 if (Constant *Splat = CV->getSplatValue())
122 return Splat->isOneValue();
124 // Check for constant vectors which are splats of 1 values.
125 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
126 if (Constant *Splat = CV->getSplatValue())
127 return Splat->isOneValue();
132 bool Constant::isMinSignedValue() const {
133 // Check for INT_MIN integers
134 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
135 return CI->isMinValue(/*isSigned=*/true);
137 // Check for FP which are bitcasted from INT_MIN integers
138 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
139 return CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
141 // Check for constant vectors which are splats of INT_MIN values.
142 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
143 if (Constant *Splat = CV->getSplatValue())
144 return Splat->isMinSignedValue();
146 // Check for constant vectors which are splats of INT_MIN values.
147 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
148 if (Constant *Splat = CV->getSplatValue())
149 return Splat->isMinSignedValue();
154 bool Constant::isNotMinSignedValue() const {
155 // Check for INT_MIN integers
156 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
157 return !CI->isMinValue(/*isSigned=*/true);
159 // Check for FP which are bitcasted from INT_MIN integers
160 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this))
161 return !CFP->getValueAPF().bitcastToAPInt().isMinSignedValue();
163 // Check for constant vectors which are splats of INT_MIN values.
164 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
165 if (Constant *Splat = CV->getSplatValue())
166 return Splat->isNotMinSignedValue();
168 // Check for constant vectors which are splats of INT_MIN values.
169 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
170 if (Constant *Splat = CV->getSplatValue())
171 return Splat->isNotMinSignedValue();
173 // It *may* contain INT_MIN, we can't tell.
177 // Constructor to create a '0' constant of arbitrary type...
178 Constant *Constant::getNullValue(Type *Ty) {
179 switch (Ty->getTypeID()) {
180 case Type::IntegerTyID:
181 return ConstantInt::get(Ty, 0);
183 return ConstantFP::get(Ty->getContext(),
184 APFloat::getZero(APFloat::IEEEhalf));
185 case Type::FloatTyID:
186 return ConstantFP::get(Ty->getContext(),
187 APFloat::getZero(APFloat::IEEEsingle));
188 case Type::DoubleTyID:
189 return ConstantFP::get(Ty->getContext(),
190 APFloat::getZero(APFloat::IEEEdouble));
191 case Type::X86_FP80TyID:
192 return ConstantFP::get(Ty->getContext(),
193 APFloat::getZero(APFloat::x87DoubleExtended));
194 case Type::FP128TyID:
195 return ConstantFP::get(Ty->getContext(),
196 APFloat::getZero(APFloat::IEEEquad));
197 case Type::PPC_FP128TyID:
198 return ConstantFP::get(Ty->getContext(),
199 APFloat(APFloat::PPCDoubleDouble,
200 APInt::getNullValue(128)));
201 case Type::PointerTyID:
202 return ConstantPointerNull::get(cast<PointerType>(Ty));
203 case Type::StructTyID:
204 case Type::ArrayTyID:
205 case Type::VectorTyID:
206 return ConstantAggregateZero::get(Ty);
208 // Function, Label, or Opaque type?
209 llvm_unreachable("Cannot create a null constant of that type!");
213 Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) {
214 Type *ScalarTy = Ty->getScalarType();
216 // Create the base integer constant.
217 Constant *C = ConstantInt::get(Ty->getContext(), V);
219 // Convert an integer to a pointer, if necessary.
220 if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy))
221 C = ConstantExpr::getIntToPtr(C, PTy);
223 // Broadcast a scalar to a vector, if necessary.
224 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
225 C = ConstantVector::getSplat(VTy->getNumElements(), C);
230 Constant *Constant::getAllOnesValue(Type *Ty) {
231 if (IntegerType *ITy = dyn_cast<IntegerType>(Ty))
232 return ConstantInt::get(Ty->getContext(),
233 APInt::getAllOnesValue(ITy->getBitWidth()));
235 if (Ty->isFloatingPointTy()) {
236 APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(),
237 !Ty->isPPC_FP128Ty());
238 return ConstantFP::get(Ty->getContext(), FL);
241 VectorType *VTy = cast<VectorType>(Ty);
242 return ConstantVector::getSplat(VTy->getNumElements(),
243 getAllOnesValue(VTy->getElementType()));
246 /// getAggregateElement - For aggregates (struct/array/vector) return the
247 /// constant that corresponds to the specified element if possible, or null if
248 /// not. This can return null if the element index is a ConstantExpr, or if
249 /// 'this' is a constant expr.
250 Constant *Constant::getAggregateElement(unsigned Elt) const {
251 if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this))
252 return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : nullptr;
254 if (const ConstantArray *CA = dyn_cast<ConstantArray>(this))
255 return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : nullptr;
257 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
258 return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : nullptr;
260 if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this))
261 return Elt < CAZ->getNumElements() ? CAZ->getElementValue(Elt) : nullptr;
263 if (const UndefValue *UV = dyn_cast<UndefValue>(this))
264 return Elt < UV->getNumElements() ? UV->getElementValue(Elt) : nullptr;
266 if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this))
267 return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt)
272 Constant *Constant::getAggregateElement(Constant *Elt) const {
273 assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer");
274 if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt))
275 return getAggregateElement(CI->getZExtValue());
280 void Constant::destroyConstantImpl() {
281 // When a Constant is destroyed, there may be lingering
282 // references to the constant by other constants in the constant pool. These
283 // constants are implicitly dependent on the module that is being deleted,
284 // but they don't know that. Because we only find out when the CPV is
285 // deleted, we must now notify all of our users (that should only be
286 // Constants) that they are, in fact, invalid now and should be deleted.
288 while (!use_empty()) {
289 Value *V = user_back();
290 #ifndef NDEBUG // Only in -g mode...
291 if (!isa<Constant>(V)) {
292 dbgs() << "While deleting: " << *this
293 << "\n\nUse still stuck around after Def is destroyed: "
297 assert(isa<Constant>(V) && "References remain to Constant being destroyed");
298 cast<Constant>(V)->destroyConstant();
300 // The constant should remove itself from our use list...
301 assert((use_empty() || user_back() != V) && "Constant not removed!");
304 // Value has no outstanding references it is safe to delete it now...
308 static bool canTrapImpl(const Constant *C,
309 SmallPtrSetImpl<const ConstantExpr *> &NonTrappingOps) {
310 assert(C->getType()->isFirstClassType() && "Cannot evaluate aggregate vals!");
311 // The only thing that could possibly trap are constant exprs.
312 const ConstantExpr *CE = dyn_cast<ConstantExpr>(C);
316 // ConstantExpr traps if any operands can trap.
317 for (unsigned i = 0, e = C->getNumOperands(); i != e; ++i) {
318 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(CE->getOperand(i))) {
319 if (NonTrappingOps.insert(Op).second && canTrapImpl(Op, NonTrappingOps))
324 // Otherwise, only specific operations can trap.
325 switch (CE->getOpcode()) {
328 case Instruction::UDiv:
329 case Instruction::SDiv:
330 case Instruction::FDiv:
331 case Instruction::URem:
332 case Instruction::SRem:
333 case Instruction::FRem:
334 // Div and rem can trap if the RHS is not known to be non-zero.
335 if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue())
341 /// canTrap - Return true if evaluation of this constant could trap. This is
342 /// true for things like constant expressions that could divide by zero.
343 bool Constant::canTrap() const {
344 SmallPtrSet<const ConstantExpr *, 4> NonTrappingOps;
345 return canTrapImpl(this, NonTrappingOps);
348 /// Check if C contains a GlobalValue for which Predicate is true.
350 ConstHasGlobalValuePredicate(const Constant *C,
351 bool (*Predicate)(const GlobalValue *)) {
352 SmallPtrSet<const Constant *, 8> Visited;
353 SmallVector<const Constant *, 8> WorkList;
354 WorkList.push_back(C);
357 while (!WorkList.empty()) {
358 const Constant *WorkItem = WorkList.pop_back_val();
359 if (const auto *GV = dyn_cast<GlobalValue>(WorkItem))
362 for (const Value *Op : WorkItem->operands()) {
363 const Constant *ConstOp = dyn_cast<Constant>(Op);
366 if (Visited.insert(ConstOp).second)
367 WorkList.push_back(ConstOp);
373 /// Return true if the value can vary between threads.
374 bool Constant::isThreadDependent() const {
375 auto DLLImportPredicate = [](const GlobalValue *GV) {
376 return GV->isThreadLocal();
378 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
381 bool Constant::isDLLImportDependent() const {
382 auto DLLImportPredicate = [](const GlobalValue *GV) {
383 return GV->hasDLLImportStorageClass();
385 return ConstHasGlobalValuePredicate(this, DLLImportPredicate);
388 /// Return true if the constant has users other than constant exprs and other
390 bool Constant::isConstantUsed() const {
391 for (const User *U : users()) {
392 const Constant *UC = dyn_cast<Constant>(U);
393 if (!UC || isa<GlobalValue>(UC))
396 if (UC->isConstantUsed())
404 /// getRelocationInfo - This method classifies the entry according to
405 /// whether or not it may generate a relocation entry. This must be
406 /// conservative, so if it might codegen to a relocatable entry, it should say
407 /// so. The return values are:
409 /// NoRelocation: This constant pool entry is guaranteed to never have a
410 /// relocation applied to it (because it holds a simple constant like
412 /// LocalRelocation: This entry has relocations, but the entries are
413 /// guaranteed to be resolvable by the static linker, so the dynamic
414 /// linker will never see them.
415 /// GlobalRelocations: This entry may have arbitrary relocations.
417 /// FIXME: This really should not be in IR.
418 Constant::PossibleRelocationsTy Constant::getRelocationInfo() const {
419 if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
420 if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
421 return LocalRelocation; // Local to this file/library.
422 return GlobalRelocations; // Global reference.
425 if (const BlockAddress *BA = dyn_cast<BlockAddress>(this))
426 return BA->getFunction()->getRelocationInfo();
428 // While raw uses of blockaddress need to be relocated, differences between
429 // two of them don't when they are for labels in the same function. This is a
430 // common idiom when creating a table for the indirect goto extension, so we
431 // handle it efficiently here.
432 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this))
433 if (CE->getOpcode() == Instruction::Sub) {
434 ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0));
435 ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1));
437 LHS->getOpcode() == Instruction::PtrToInt &&
438 RHS->getOpcode() == Instruction::PtrToInt &&
439 isa<BlockAddress>(LHS->getOperand(0)) &&
440 isa<BlockAddress>(RHS->getOperand(0)) &&
441 cast<BlockAddress>(LHS->getOperand(0))->getFunction() ==
442 cast<BlockAddress>(RHS->getOperand(0))->getFunction())
446 PossibleRelocationsTy Result = NoRelocation;
447 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
448 Result = std::max(Result,
449 cast<Constant>(getOperand(i))->getRelocationInfo());
454 /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove
455 /// it. This involves recursively eliminating any dead users of the
457 static bool removeDeadUsersOfConstant(const Constant *C) {
458 if (isa<GlobalValue>(C)) return false; // Cannot remove this
460 while (!C->use_empty()) {
461 const Constant *User = dyn_cast<Constant>(C->user_back());
462 if (!User) return false; // Non-constant usage;
463 if (!removeDeadUsersOfConstant(User))
464 return false; // Constant wasn't dead
467 const_cast<Constant*>(C)->destroyConstant();
472 /// removeDeadConstantUsers - If there are any dead constant users dangling
473 /// off of this constant, remove them. This method is useful for clients
474 /// that want to check to see if a global is unused, but don't want to deal
475 /// with potentially dead constants hanging off of the globals.
476 void Constant::removeDeadConstantUsers() const {
477 Value::const_user_iterator I = user_begin(), E = user_end();
478 Value::const_user_iterator LastNonDeadUser = E;
480 const Constant *User = dyn_cast<Constant>(*I);
487 if (!removeDeadUsersOfConstant(User)) {
488 // If the constant wasn't dead, remember that this was the last live use
489 // and move on to the next constant.
495 // If the constant was dead, then the iterator is invalidated.
496 if (LastNonDeadUser == E) {
508 //===----------------------------------------------------------------------===//
510 //===----------------------------------------------------------------------===//
512 void ConstantInt::anchor() { }
514 ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V)
515 : Constant(Ty, ConstantIntVal, nullptr, 0), Val(V) {
516 assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type");
519 ConstantInt *ConstantInt::getTrue(LLVMContext &Context) {
520 LLVMContextImpl *pImpl = Context.pImpl;
521 if (!pImpl->TheTrueVal)
522 pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1);
523 return pImpl->TheTrueVal;
526 ConstantInt *ConstantInt::getFalse(LLVMContext &Context) {
527 LLVMContextImpl *pImpl = Context.pImpl;
528 if (!pImpl->TheFalseVal)
529 pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0);
530 return pImpl->TheFalseVal;
533 Constant *ConstantInt::getTrue(Type *Ty) {
534 VectorType *VTy = dyn_cast<VectorType>(Ty);
536 assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1.");
537 return ConstantInt::getTrue(Ty->getContext());
539 assert(VTy->getElementType()->isIntegerTy(1) &&
540 "True must be vector of i1 or i1.");
541 return ConstantVector::getSplat(VTy->getNumElements(),
542 ConstantInt::getTrue(Ty->getContext()));
545 Constant *ConstantInt::getFalse(Type *Ty) {
546 VectorType *VTy = dyn_cast<VectorType>(Ty);
548 assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1.");
549 return ConstantInt::getFalse(Ty->getContext());
551 assert(VTy->getElementType()->isIntegerTy(1) &&
552 "False must be vector of i1 or i1.");
553 return ConstantVector::getSplat(VTy->getNumElements(),
554 ConstantInt::getFalse(Ty->getContext()));
557 // Get a ConstantInt from an APInt.
558 ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) {
559 // get an existing value or the insertion position
560 LLVMContextImpl *pImpl = Context.pImpl;
561 ConstantInt *&Slot = pImpl->IntConstants[V];
563 // Get the corresponding integer type for the bit width of the value.
564 IntegerType *ITy = IntegerType::get(Context, V.getBitWidth());
565 Slot = new ConstantInt(ITy, V);
567 assert(Slot->getType() == IntegerType::get(Context, V.getBitWidth()));
571 Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) {
572 Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned);
574 // For vectors, broadcast the value.
575 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
576 return ConstantVector::getSplat(VTy->getNumElements(), C);
581 ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V,
583 return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned));
586 ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) {
587 return get(Ty, V, true);
590 Constant *ConstantInt::getSigned(Type *Ty, int64_t V) {
591 return get(Ty, V, true);
594 Constant *ConstantInt::get(Type *Ty, const APInt& V) {
595 ConstantInt *C = get(Ty->getContext(), V);
596 assert(C->getType() == Ty->getScalarType() &&
597 "ConstantInt type doesn't match the type implied by its value!");
599 // For vectors, broadcast the value.
600 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
601 return ConstantVector::getSplat(VTy->getNumElements(), C);
606 ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str,
608 return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix));
611 //===----------------------------------------------------------------------===//
613 //===----------------------------------------------------------------------===//
615 static const fltSemantics *TypeToFloatSemantics(Type *Ty) {
617 return &APFloat::IEEEhalf;
619 return &APFloat::IEEEsingle;
620 if (Ty->isDoubleTy())
621 return &APFloat::IEEEdouble;
622 if (Ty->isX86_FP80Ty())
623 return &APFloat::x87DoubleExtended;
624 else if (Ty->isFP128Ty())
625 return &APFloat::IEEEquad;
627 assert(Ty->isPPC_FP128Ty() && "Unknown FP format");
628 return &APFloat::PPCDoubleDouble;
631 void ConstantFP::anchor() { }
633 /// get() - This returns a constant fp for the specified value in the
634 /// specified type. This should only be used for simple constant values like
635 /// 2.0/1.0 etc, that are known-valid both as double and as the target format.
636 Constant *ConstantFP::get(Type *Ty, double V) {
637 LLVMContext &Context = Ty->getContext();
641 FV.convert(*TypeToFloatSemantics(Ty->getScalarType()),
642 APFloat::rmNearestTiesToEven, &ignored);
643 Constant *C = get(Context, FV);
645 // For vectors, broadcast the value.
646 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
647 return ConstantVector::getSplat(VTy->getNumElements(), C);
653 Constant *ConstantFP::get(Type *Ty, StringRef Str) {
654 LLVMContext &Context = Ty->getContext();
656 APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str);
657 Constant *C = get(Context, FV);
659 // For vectors, broadcast the value.
660 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
661 return ConstantVector::getSplat(VTy->getNumElements(), C);
666 Constant *ConstantFP::getNaN(Type *Ty, bool Negative, unsigned Type) {
667 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
668 APFloat NaN = APFloat::getNaN(Semantics, Negative, Type);
669 Constant *C = get(Ty->getContext(), NaN);
671 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
672 return ConstantVector::getSplat(VTy->getNumElements(), C);
677 Constant *ConstantFP::getNegativeZero(Type *Ty) {
678 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
679 APFloat NegZero = APFloat::getZero(Semantics, /*Negative=*/true);
680 Constant *C = get(Ty->getContext(), NegZero);
682 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
683 return ConstantVector::getSplat(VTy->getNumElements(), C);
689 Constant *ConstantFP::getZeroValueForNegation(Type *Ty) {
690 if (Ty->isFPOrFPVectorTy())
691 return getNegativeZero(Ty);
693 return Constant::getNullValue(Ty);
697 // ConstantFP accessors.
698 ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) {
699 LLVMContextImpl* pImpl = Context.pImpl;
701 ConstantFP *&Slot = pImpl->FPConstants[V];
705 if (&V.getSemantics() == &APFloat::IEEEhalf)
706 Ty = Type::getHalfTy(Context);
707 else if (&V.getSemantics() == &APFloat::IEEEsingle)
708 Ty = Type::getFloatTy(Context);
709 else if (&V.getSemantics() == &APFloat::IEEEdouble)
710 Ty = Type::getDoubleTy(Context);
711 else if (&V.getSemantics() == &APFloat::x87DoubleExtended)
712 Ty = Type::getX86_FP80Ty(Context);
713 else if (&V.getSemantics() == &APFloat::IEEEquad)
714 Ty = Type::getFP128Ty(Context);
716 assert(&V.getSemantics() == &APFloat::PPCDoubleDouble &&
717 "Unknown FP format");
718 Ty = Type::getPPC_FP128Ty(Context);
720 Slot = new ConstantFP(Ty, V);
726 Constant *ConstantFP::getInfinity(Type *Ty, bool Negative) {
727 const fltSemantics &Semantics = *TypeToFloatSemantics(Ty->getScalarType());
728 Constant *C = get(Ty->getContext(), APFloat::getInf(Semantics, Negative));
730 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
731 return ConstantVector::getSplat(VTy->getNumElements(), C);
736 ConstantFP::ConstantFP(Type *Ty, const APFloat& V)
737 : Constant(Ty, ConstantFPVal, nullptr, 0), Val(V) {
738 assert(&V.getSemantics() == TypeToFloatSemantics(Ty) &&
742 bool ConstantFP::isExactlyValue(const APFloat &V) const {
743 return Val.bitwiseIsEqual(V);
746 //===----------------------------------------------------------------------===//
747 // ConstantAggregateZero Implementation
748 //===----------------------------------------------------------------------===//
750 /// getSequentialElement - If this CAZ has array or vector type, return a zero
751 /// with the right element type.
752 Constant *ConstantAggregateZero::getSequentialElement() const {
753 return Constant::getNullValue(getType()->getSequentialElementType());
756 /// getStructElement - If this CAZ has struct type, return a zero with the
757 /// right element type for the specified element.
758 Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const {
759 return Constant::getNullValue(getType()->getStructElementType(Elt));
762 /// getElementValue - Return a zero of the right value for the specified GEP
763 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
764 Constant *ConstantAggregateZero::getElementValue(Constant *C) const {
765 if (isa<SequentialType>(getType()))
766 return getSequentialElement();
767 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
770 /// getElementValue - Return a zero of the right value for the specified GEP
772 Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const {
773 if (isa<SequentialType>(getType()))
774 return getSequentialElement();
775 return getStructElement(Idx);
778 unsigned ConstantAggregateZero::getNumElements() const {
779 const Type *Ty = getType();
780 if (const auto *AT = dyn_cast<ArrayType>(Ty))
781 return AT->getNumElements();
782 if (const auto *VT = dyn_cast<VectorType>(Ty))
783 return VT->getNumElements();
784 return Ty->getStructNumElements();
787 //===----------------------------------------------------------------------===//
788 // UndefValue Implementation
789 //===----------------------------------------------------------------------===//
791 /// getSequentialElement - If this undef has array or vector type, return an
792 /// undef with the right element type.
793 UndefValue *UndefValue::getSequentialElement() const {
794 return UndefValue::get(getType()->getSequentialElementType());
797 /// getStructElement - If this undef has struct type, return a zero with the
798 /// right element type for the specified element.
799 UndefValue *UndefValue::getStructElement(unsigned Elt) const {
800 return UndefValue::get(getType()->getStructElementType(Elt));
803 /// getElementValue - Return an undef of the right value for the specified GEP
804 /// index if we can, otherwise return null (e.g. if C is a ConstantExpr).
805 UndefValue *UndefValue::getElementValue(Constant *C) const {
806 if (isa<SequentialType>(getType()))
807 return getSequentialElement();
808 return getStructElement(cast<ConstantInt>(C)->getZExtValue());
811 /// getElementValue - Return an undef of the right value for the specified GEP
813 UndefValue *UndefValue::getElementValue(unsigned Idx) const {
814 if (isa<SequentialType>(getType()))
815 return getSequentialElement();
816 return getStructElement(Idx);
819 unsigned UndefValue::getNumElements() const {
820 const Type *Ty = getType();
821 if (const auto *AT = dyn_cast<ArrayType>(Ty))
822 return AT->getNumElements();
823 if (const auto *VT = dyn_cast<VectorType>(Ty))
824 return VT->getNumElements();
825 return Ty->getStructNumElements();
828 //===----------------------------------------------------------------------===//
829 // ConstantXXX Classes
830 //===----------------------------------------------------------------------===//
832 template <typename ItTy, typename EltTy>
833 static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) {
834 for (; Start != End; ++Start)
840 ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V)
841 : Constant(T, ConstantArrayVal,
842 OperandTraits<ConstantArray>::op_end(this) - V.size(),
844 assert(V.size() == T->getNumElements() &&
845 "Invalid initializer vector for constant array");
846 for (unsigned i = 0, e = V.size(); i != e; ++i)
847 assert(V[i]->getType() == T->getElementType() &&
848 "Initializer for array element doesn't match array element type!");
849 std::copy(V.begin(), V.end(), op_begin());
852 Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) {
853 if (Constant *C = getImpl(Ty, V))
855 return Ty->getContext().pImpl->ArrayConstants.getOrCreate(Ty, V);
857 Constant *ConstantArray::getImpl(ArrayType *Ty, ArrayRef<Constant*> V) {
858 // Empty arrays are canonicalized to ConstantAggregateZero.
860 return ConstantAggregateZero::get(Ty);
862 for (unsigned i = 0, e = V.size(); i != e; ++i) {
863 assert(V[i]->getType() == Ty->getElementType() &&
864 "Wrong type in array element initializer");
867 // If this is an all-zero array, return a ConstantAggregateZero object. If
868 // all undef, return an UndefValue, if "all simple", then return a
869 // ConstantDataArray.
871 if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C))
872 return UndefValue::get(Ty);
874 if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C))
875 return ConstantAggregateZero::get(Ty);
877 // Check to see if all of the elements are ConstantFP or ConstantInt and if
878 // the element type is compatible with ConstantDataVector. If so, use it.
879 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
880 // We speculatively build the elements here even if it turns out that there
881 // is a constantexpr or something else weird in the array, since it is so
882 // uncommon for that to happen.
883 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
884 if (CI->getType()->isIntegerTy(8)) {
885 SmallVector<uint8_t, 16> Elts;
886 for (unsigned i = 0, e = V.size(); i != e; ++i)
887 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
888 Elts.push_back(CI->getZExtValue());
891 if (Elts.size() == V.size())
892 return ConstantDataArray::get(C->getContext(), Elts);
893 } else if (CI->getType()->isIntegerTy(16)) {
894 SmallVector<uint16_t, 16> Elts;
895 for (unsigned i = 0, e = V.size(); i != e; ++i)
896 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
897 Elts.push_back(CI->getZExtValue());
900 if (Elts.size() == V.size())
901 return ConstantDataArray::get(C->getContext(), Elts);
902 } else if (CI->getType()->isIntegerTy(32)) {
903 SmallVector<uint32_t, 16> Elts;
904 for (unsigned i = 0, e = V.size(); i != e; ++i)
905 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
906 Elts.push_back(CI->getZExtValue());
909 if (Elts.size() == V.size())
910 return ConstantDataArray::get(C->getContext(), Elts);
911 } else if (CI->getType()->isIntegerTy(64)) {
912 SmallVector<uint64_t, 16> Elts;
913 for (unsigned i = 0, e = V.size(); i != e; ++i)
914 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
915 Elts.push_back(CI->getZExtValue());
918 if (Elts.size() == V.size())
919 return ConstantDataArray::get(C->getContext(), Elts);
923 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
924 if (CFP->getType()->isFloatTy()) {
925 SmallVector<uint32_t, 16> Elts;
926 for (unsigned i = 0, e = V.size(); i != e; ++i)
927 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
929 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
932 if (Elts.size() == V.size())
933 return ConstantDataArray::getFP(C->getContext(), Elts);
934 } else if (CFP->getType()->isDoubleTy()) {
935 SmallVector<uint64_t, 16> Elts;
936 for (unsigned i = 0, e = V.size(); i != e; ++i)
937 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
939 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
942 if (Elts.size() == V.size())
943 return ConstantDataArray::getFP(C->getContext(), Elts);
948 // Otherwise, we really do want to create a ConstantArray.
952 /// getTypeForElements - Return an anonymous struct type to use for a constant
953 /// with the specified set of elements. The list must not be empty.
954 StructType *ConstantStruct::getTypeForElements(LLVMContext &Context,
955 ArrayRef<Constant*> V,
957 unsigned VecSize = V.size();
958 SmallVector<Type*, 16> EltTypes(VecSize);
959 for (unsigned i = 0; i != VecSize; ++i)
960 EltTypes[i] = V[i]->getType();
962 return StructType::get(Context, EltTypes, Packed);
966 StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V,
969 "ConstantStruct::getTypeForElements cannot be called on empty list");
970 return getTypeForElements(V[0]->getContext(), V, Packed);
974 ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V)
975 : Constant(T, ConstantStructVal,
976 OperandTraits<ConstantStruct>::op_end(this) - V.size(),
978 assert(V.size() == T->getNumElements() &&
979 "Invalid initializer vector for constant structure");
980 for (unsigned i = 0, e = V.size(); i != e; ++i)
981 assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) &&
982 "Initializer for struct element doesn't match struct element type!");
983 std::copy(V.begin(), V.end(), op_begin());
986 // ConstantStruct accessors.
987 Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) {
988 assert((ST->isOpaque() || ST->getNumElements() == V.size()) &&
989 "Incorrect # elements specified to ConstantStruct::get");
991 // Create a ConstantAggregateZero value if all elements are zeros.
993 bool isUndef = false;
996 isUndef = isa<UndefValue>(V[0]);
997 isZero = V[0]->isNullValue();
998 if (isUndef || isZero) {
999 for (unsigned i = 0, e = V.size(); i != e; ++i) {
1000 if (!V[i]->isNullValue())
1002 if (!isa<UndefValue>(V[i]))
1008 return ConstantAggregateZero::get(ST);
1010 return UndefValue::get(ST);
1012 return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V);
1015 Constant *ConstantStruct::get(StructType *T, ...) {
1017 SmallVector<Constant*, 8> Values;
1019 while (Constant *Val = va_arg(ap, llvm::Constant*))
1020 Values.push_back(Val);
1022 return get(T, Values);
1025 ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V)
1026 : Constant(T, ConstantVectorVal,
1027 OperandTraits<ConstantVector>::op_end(this) - V.size(),
1029 for (size_t i = 0, e = V.size(); i != e; i++)
1030 assert(V[i]->getType() == T->getElementType() &&
1031 "Initializer for vector element doesn't match vector element type!");
1032 std::copy(V.begin(), V.end(), op_begin());
1035 // ConstantVector accessors.
1036 Constant *ConstantVector::get(ArrayRef<Constant*> V) {
1037 if (Constant *C = getImpl(V))
1039 VectorType *Ty = VectorType::get(V.front()->getType(), V.size());
1040 return Ty->getContext().pImpl->VectorConstants.getOrCreate(Ty, V);
1042 Constant *ConstantVector::getImpl(ArrayRef<Constant*> V) {
1043 assert(!V.empty() && "Vectors can't be empty");
1044 VectorType *T = VectorType::get(V.front()->getType(), V.size());
1046 // If this is an all-undef or all-zero vector, return a
1047 // ConstantAggregateZero or UndefValue.
1049 bool isZero = C->isNullValue();
1050 bool isUndef = isa<UndefValue>(C);
1052 if (isZero || isUndef) {
1053 for (unsigned i = 1, e = V.size(); i != e; ++i)
1055 isZero = isUndef = false;
1061 return ConstantAggregateZero::get(T);
1063 return UndefValue::get(T);
1065 // Check to see if all of the elements are ConstantFP or ConstantInt and if
1066 // the element type is compatible with ConstantDataVector. If so, use it.
1067 if (ConstantDataSequential::isElementTypeCompatible(C->getType())) {
1068 // We speculatively build the elements here even if it turns out that there
1069 // is a constantexpr or something else weird in the array, since it is so
1070 // uncommon for that to happen.
1071 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) {
1072 if (CI->getType()->isIntegerTy(8)) {
1073 SmallVector<uint8_t, 16> Elts;
1074 for (unsigned i = 0, e = V.size(); i != e; ++i)
1075 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1076 Elts.push_back(CI->getZExtValue());
1079 if (Elts.size() == V.size())
1080 return ConstantDataVector::get(C->getContext(), Elts);
1081 } else if (CI->getType()->isIntegerTy(16)) {
1082 SmallVector<uint16_t, 16> Elts;
1083 for (unsigned i = 0, e = V.size(); i != e; ++i)
1084 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1085 Elts.push_back(CI->getZExtValue());
1088 if (Elts.size() == V.size())
1089 return ConstantDataVector::get(C->getContext(), Elts);
1090 } else if (CI->getType()->isIntegerTy(32)) {
1091 SmallVector<uint32_t, 16> Elts;
1092 for (unsigned i = 0, e = V.size(); i != e; ++i)
1093 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1094 Elts.push_back(CI->getZExtValue());
1097 if (Elts.size() == V.size())
1098 return ConstantDataVector::get(C->getContext(), Elts);
1099 } else if (CI->getType()->isIntegerTy(64)) {
1100 SmallVector<uint64_t, 16> Elts;
1101 for (unsigned i = 0, e = V.size(); i != e; ++i)
1102 if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i]))
1103 Elts.push_back(CI->getZExtValue());
1106 if (Elts.size() == V.size())
1107 return ConstantDataVector::get(C->getContext(), Elts);
1111 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
1112 if (CFP->getType()->isFloatTy()) {
1113 SmallVector<uint32_t, 16> Elts;
1114 for (unsigned i = 0, e = V.size(); i != e; ++i)
1115 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1117 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1120 if (Elts.size() == V.size())
1121 return ConstantDataVector::getFP(C->getContext(), Elts);
1122 } else if (CFP->getType()->isDoubleTy()) {
1123 SmallVector<uint64_t, 16> Elts;
1124 for (unsigned i = 0, e = V.size(); i != e; ++i)
1125 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i]))
1127 CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
1130 if (Elts.size() == V.size())
1131 return ConstantDataVector::getFP(C->getContext(), Elts);
1136 // Otherwise, the element type isn't compatible with ConstantDataVector, or
1137 // the operand list constants a ConstantExpr or something else strange.
1141 Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) {
1142 // If this splat is compatible with ConstantDataVector, use it instead of
1144 if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) &&
1145 ConstantDataSequential::isElementTypeCompatible(V->getType()))
1146 return ConstantDataVector::getSplat(NumElts, V);
1148 SmallVector<Constant*, 32> Elts(NumElts, V);
1153 // Utility function for determining if a ConstantExpr is a CastOp or not. This
1154 // can't be inline because we don't want to #include Instruction.h into
1156 bool ConstantExpr::isCast() const {
1157 return Instruction::isCast(getOpcode());
1160 bool ConstantExpr::isCompare() const {
1161 return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp;
1164 bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const {
1165 if (getOpcode() != Instruction::GetElementPtr) return false;
1167 gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this);
1168 User::const_op_iterator OI = std::next(this->op_begin());
1170 // Skip the first index, as it has no static limit.
1174 // The remaining indices must be compile-time known integers within the
1175 // bounds of the corresponding notional static array types.
1176 for (; GEPI != E; ++GEPI, ++OI) {
1177 ConstantInt *CI = dyn_cast<ConstantInt>(*OI);
1178 if (!CI) return false;
1179 if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI))
1180 if (CI->getValue().getActiveBits() > 64 ||
1181 CI->getZExtValue() >= ATy->getNumElements())
1185 // All the indices checked out.
1189 bool ConstantExpr::hasIndices() const {
1190 return getOpcode() == Instruction::ExtractValue ||
1191 getOpcode() == Instruction::InsertValue;
1194 ArrayRef<unsigned> ConstantExpr::getIndices() const {
1195 if (const ExtractValueConstantExpr *EVCE =
1196 dyn_cast<ExtractValueConstantExpr>(this))
1197 return EVCE->Indices;
1199 return cast<InsertValueConstantExpr>(this)->Indices;
1202 unsigned ConstantExpr::getPredicate() const {
1203 assert(isCompare());
1204 return ((const CompareConstantExpr*)this)->predicate;
1207 /// getWithOperandReplaced - Return a constant expression identical to this
1208 /// one, but with the specified operand set to the specified value.
1210 ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const {
1211 assert(Op->getType() == getOperand(OpNo)->getType() &&
1212 "Replacing operand with value of different type!");
1213 if (getOperand(OpNo) == Op)
1214 return const_cast<ConstantExpr*>(this);
1216 SmallVector<Constant*, 8> NewOps;
1217 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1218 NewOps.push_back(i == OpNo ? Op : getOperand(i));
1220 return getWithOperands(NewOps);
1223 /// getWithOperands - This returns the current constant expression with the
1224 /// operands replaced with the specified values. The specified array must
1225 /// have the same number of operands as our current one.
1226 Constant *ConstantExpr::getWithOperands(ArrayRef<Constant *> Ops, Type *Ty,
1227 bool OnlyIfReduced) const {
1228 assert(Ops.size() == getNumOperands() && "Operand count mismatch!");
1230 // If no operands changed return self.
1231 if (Ty == getType() && std::equal(Ops.begin(), Ops.end(), op_begin()))
1232 return const_cast<ConstantExpr*>(this);
1234 Type *OnlyIfReducedTy = OnlyIfReduced ? Ty : nullptr;
1235 switch (getOpcode()) {
1236 case Instruction::Trunc:
1237 case Instruction::ZExt:
1238 case Instruction::SExt:
1239 case Instruction::FPTrunc:
1240 case Instruction::FPExt:
1241 case Instruction::UIToFP:
1242 case Instruction::SIToFP:
1243 case Instruction::FPToUI:
1244 case Instruction::FPToSI:
1245 case Instruction::PtrToInt:
1246 case Instruction::IntToPtr:
1247 case Instruction::BitCast:
1248 case Instruction::AddrSpaceCast:
1249 return ConstantExpr::getCast(getOpcode(), Ops[0], Ty, OnlyIfReduced);
1250 case Instruction::Select:
1251 return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2], OnlyIfReducedTy);
1252 case Instruction::InsertElement:
1253 return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2],
1255 case Instruction::ExtractElement:
1256 return ConstantExpr::getExtractElement(Ops[0], Ops[1], OnlyIfReducedTy);
1257 case Instruction::InsertValue:
1258 return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices(),
1260 case Instruction::ExtractValue:
1261 return ConstantExpr::getExtractValue(Ops[0], getIndices(), OnlyIfReducedTy);
1262 case Instruction::ShuffleVector:
1263 return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2],
1265 case Instruction::GetElementPtr:
1266 return ConstantExpr::getGetElementPtr(nullptr, Ops[0], Ops.slice(1),
1267 cast<GEPOperator>(this)->isInBounds(),
1269 case Instruction::ICmp:
1270 case Instruction::FCmp:
1271 return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1],
1274 assert(getNumOperands() == 2 && "Must be binary operator?");
1275 return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData,
1281 //===----------------------------------------------------------------------===//
1282 // isValueValidForType implementations
1284 bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) {
1285 unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay
1286 if (Ty->isIntegerTy(1))
1287 return Val == 0 || Val == 1;
1289 return true; // always true, has to fit in largest type
1290 uint64_t Max = (1ll << NumBits) - 1;
1294 bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) {
1295 unsigned NumBits = Ty->getIntegerBitWidth();
1296 if (Ty->isIntegerTy(1))
1297 return Val == 0 || Val == 1 || Val == -1;
1299 return true; // always true, has to fit in largest type
1300 int64_t Min = -(1ll << (NumBits-1));
1301 int64_t Max = (1ll << (NumBits-1)) - 1;
1302 return (Val >= Min && Val <= Max);
1305 bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) {
1306 // convert modifies in place, so make a copy.
1307 APFloat Val2 = APFloat(Val);
1309 switch (Ty->getTypeID()) {
1311 return false; // These can't be represented as floating point!
1313 // FIXME rounding mode needs to be more flexible
1314 case Type::HalfTyID: {
1315 if (&Val2.getSemantics() == &APFloat::IEEEhalf)
1317 Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo);
1320 case Type::FloatTyID: {
1321 if (&Val2.getSemantics() == &APFloat::IEEEsingle)
1323 Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo);
1326 case Type::DoubleTyID: {
1327 if (&Val2.getSemantics() == &APFloat::IEEEhalf ||
1328 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1329 &Val2.getSemantics() == &APFloat::IEEEdouble)
1331 Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo);
1334 case Type::X86_FP80TyID:
1335 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1336 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1337 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1338 &Val2.getSemantics() == &APFloat::x87DoubleExtended;
1339 case Type::FP128TyID:
1340 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1341 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1342 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1343 &Val2.getSemantics() == &APFloat::IEEEquad;
1344 case Type::PPC_FP128TyID:
1345 return &Val2.getSemantics() == &APFloat::IEEEhalf ||
1346 &Val2.getSemantics() == &APFloat::IEEEsingle ||
1347 &Val2.getSemantics() == &APFloat::IEEEdouble ||
1348 &Val2.getSemantics() == &APFloat::PPCDoubleDouble;
1353 //===----------------------------------------------------------------------===//
1354 // Factory Function Implementation
1356 ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) {
1357 assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) &&
1358 "Cannot create an aggregate zero of non-aggregate type!");
1360 ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty];
1362 Entry = new ConstantAggregateZero(Ty);
1367 /// destroyConstant - Remove the constant from the constant table.
1369 void ConstantAggregateZero::destroyConstant() {
1370 getContext().pImpl->CAZConstants.erase(getType());
1371 destroyConstantImpl();
1374 /// destroyConstant - Remove the constant from the constant table...
1376 void ConstantArray::destroyConstant() {
1377 getType()->getContext().pImpl->ArrayConstants.remove(this);
1378 destroyConstantImpl();
1382 //---- ConstantStruct::get() implementation...
1385 // destroyConstant - Remove the constant from the constant table...
1387 void ConstantStruct::destroyConstant() {
1388 getType()->getContext().pImpl->StructConstants.remove(this);
1389 destroyConstantImpl();
1392 // destroyConstant - Remove the constant from the constant table...
1394 void ConstantVector::destroyConstant() {
1395 getType()->getContext().pImpl->VectorConstants.remove(this);
1396 destroyConstantImpl();
1399 /// getSplatValue - If this is a splat vector constant, meaning that all of
1400 /// the elements have the same value, return that value. Otherwise return 0.
1401 Constant *Constant::getSplatValue() const {
1402 assert(this->getType()->isVectorTy() && "Only valid for vectors!");
1403 if (isa<ConstantAggregateZero>(this))
1404 return getNullValue(this->getType()->getVectorElementType());
1405 if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this))
1406 return CV->getSplatValue();
1407 if (const ConstantVector *CV = dyn_cast<ConstantVector>(this))
1408 return CV->getSplatValue();
1412 /// getSplatValue - If this is a splat constant, where all of the
1413 /// elements have the same value, return that value. Otherwise return null.
1414 Constant *ConstantVector::getSplatValue() const {
1415 // Check out first element.
1416 Constant *Elt = getOperand(0);
1417 // Then make sure all remaining elements point to the same value.
1418 for (unsigned I = 1, E = getNumOperands(); I < E; ++I)
1419 if (getOperand(I) != Elt)
1424 /// If C is a constant integer then return its value, otherwise C must be a
1425 /// vector of constant integers, all equal, and the common value is returned.
1426 const APInt &Constant::getUniqueInteger() const {
1427 if (const ConstantInt *CI = dyn_cast<ConstantInt>(this))
1428 return CI->getValue();
1429 assert(this->getSplatValue() && "Doesn't contain a unique integer!");
1430 const Constant *C = this->getAggregateElement(0U);
1431 assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!");
1432 return cast<ConstantInt>(C)->getValue();
1436 //---- ConstantPointerNull::get() implementation.
1439 ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) {
1440 ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty];
1442 Entry = new ConstantPointerNull(Ty);
1447 // destroyConstant - Remove the constant from the constant table...
1449 void ConstantPointerNull::destroyConstant() {
1450 getContext().pImpl->CPNConstants.erase(getType());
1451 // Free the constant and any dangling references to it.
1452 destroyConstantImpl();
1456 //---- UndefValue::get() implementation.
1459 UndefValue *UndefValue::get(Type *Ty) {
1460 UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty];
1462 Entry = new UndefValue(Ty);
1467 // destroyConstant - Remove the constant from the constant table.
1469 void UndefValue::destroyConstant() {
1470 // Free the constant and any dangling references to it.
1471 getContext().pImpl->UVConstants.erase(getType());
1472 destroyConstantImpl();
1475 //---- BlockAddress::get() implementation.
1478 BlockAddress *BlockAddress::get(BasicBlock *BB) {
1479 assert(BB->getParent() && "Block must have a parent");
1480 return get(BB->getParent(), BB);
1483 BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) {
1485 F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)];
1487 BA = new BlockAddress(F, BB);
1489 assert(BA->getFunction() == F && "Basic block moved between functions");
1493 BlockAddress::BlockAddress(Function *F, BasicBlock *BB)
1494 : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal,
1498 BB->AdjustBlockAddressRefCount(1);
1501 BlockAddress *BlockAddress::lookup(const BasicBlock *BB) {
1502 if (!BB->hasAddressTaken())
1505 const Function *F = BB->getParent();
1506 assert(F && "Block must have a parent");
1508 F->getContext().pImpl->BlockAddresses.lookup(std::make_pair(F, BB));
1509 assert(BA && "Refcount and block address map disagree!");
1513 // destroyConstant - Remove the constant from the constant table.
1515 void BlockAddress::destroyConstant() {
1516 getFunction()->getType()->getContext().pImpl
1517 ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock()));
1518 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1519 destroyConstantImpl();
1522 void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) {
1523 // This could be replacing either the Basic Block or the Function. In either
1524 // case, we have to remove the map entry.
1525 Function *NewF = getFunction();
1526 BasicBlock *NewBB = getBasicBlock();
1529 NewF = cast<Function>(To->stripPointerCasts());
1531 NewBB = cast<BasicBlock>(To);
1533 // See if the 'new' entry already exists, if not, just update this in place
1534 // and return early.
1535 BlockAddress *&NewBA =
1536 getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)];
1538 replaceUsesOfWithOnConstantImpl(NewBA);
1542 getBasicBlock()->AdjustBlockAddressRefCount(-1);
1544 // Remove the old entry, this can't cause the map to rehash (just a
1545 // tombstone will get added).
1546 getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(),
1549 setOperand(0, NewF);
1550 setOperand(1, NewBB);
1551 getBasicBlock()->AdjustBlockAddressRefCount(1);
1554 //---- ConstantExpr::get() implementations.
1557 /// This is a utility function to handle folding of casts and lookup of the
1558 /// cast in the ExprConstants map. It is used by the various get* methods below.
1559 static Constant *getFoldedCast(Instruction::CastOps opc, Constant *C, Type *Ty,
1560 bool OnlyIfReduced = false) {
1561 assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!");
1562 // Fold a few common cases
1563 if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty))
1569 LLVMContextImpl *pImpl = Ty->getContext().pImpl;
1571 // Look up the constant in the table first to ensure uniqueness.
1572 ConstantExprKeyType Key(opc, C);
1574 return pImpl->ExprConstants.getOrCreate(Ty, Key);
1577 Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty,
1578 bool OnlyIfReduced) {
1579 Instruction::CastOps opc = Instruction::CastOps(oc);
1580 assert(Instruction::isCast(opc) && "opcode out of range");
1581 assert(C && Ty && "Null arguments to getCast");
1582 assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!");
1586 llvm_unreachable("Invalid cast opcode");
1587 case Instruction::Trunc:
1588 return getTrunc(C, Ty, OnlyIfReduced);
1589 case Instruction::ZExt:
1590 return getZExt(C, Ty, OnlyIfReduced);
1591 case Instruction::SExt:
1592 return getSExt(C, Ty, OnlyIfReduced);
1593 case Instruction::FPTrunc:
1594 return getFPTrunc(C, Ty, OnlyIfReduced);
1595 case Instruction::FPExt:
1596 return getFPExtend(C, Ty, OnlyIfReduced);
1597 case Instruction::UIToFP:
1598 return getUIToFP(C, Ty, OnlyIfReduced);
1599 case Instruction::SIToFP:
1600 return getSIToFP(C, Ty, OnlyIfReduced);
1601 case Instruction::FPToUI:
1602 return getFPToUI(C, Ty, OnlyIfReduced);
1603 case Instruction::FPToSI:
1604 return getFPToSI(C, Ty, OnlyIfReduced);
1605 case Instruction::PtrToInt:
1606 return getPtrToInt(C, Ty, OnlyIfReduced);
1607 case Instruction::IntToPtr:
1608 return getIntToPtr(C, Ty, OnlyIfReduced);
1609 case Instruction::BitCast:
1610 return getBitCast(C, Ty, OnlyIfReduced);
1611 case Instruction::AddrSpaceCast:
1612 return getAddrSpaceCast(C, Ty, OnlyIfReduced);
1616 Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) {
1617 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1618 return getBitCast(C, Ty);
1619 return getZExt(C, Ty);
1622 Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) {
1623 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1624 return getBitCast(C, Ty);
1625 return getSExt(C, Ty);
1628 Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) {
1629 if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
1630 return getBitCast(C, Ty);
1631 return getTrunc(C, Ty);
1634 Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) {
1635 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1636 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
1639 if (Ty->isIntOrIntVectorTy())
1640 return getPtrToInt(S, Ty);
1642 unsigned SrcAS = S->getType()->getPointerAddressSpace();
1643 if (Ty->isPtrOrPtrVectorTy() && SrcAS != Ty->getPointerAddressSpace())
1644 return getAddrSpaceCast(S, Ty);
1646 return getBitCast(S, Ty);
1649 Constant *ConstantExpr::getPointerBitCastOrAddrSpaceCast(Constant *S,
1651 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
1652 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
1654 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
1655 return getAddrSpaceCast(S, Ty);
1657 return getBitCast(S, Ty);
1660 Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty,
1662 assert(C->getType()->isIntOrIntVectorTy() &&
1663 Ty->isIntOrIntVectorTy() && "Invalid cast");
1664 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1665 unsigned DstBits = Ty->getScalarSizeInBits();
1666 Instruction::CastOps opcode =
1667 (SrcBits == DstBits ? Instruction::BitCast :
1668 (SrcBits > DstBits ? Instruction::Trunc :
1669 (isSigned ? Instruction::SExt : Instruction::ZExt)));
1670 return getCast(opcode, C, Ty);
1673 Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) {
1674 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1676 unsigned SrcBits = C->getType()->getScalarSizeInBits();
1677 unsigned DstBits = Ty->getScalarSizeInBits();
1678 if (SrcBits == DstBits)
1679 return C; // Avoid a useless cast
1680 Instruction::CastOps opcode =
1681 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt);
1682 return getCast(opcode, C, Ty);
1685 Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1687 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1688 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1690 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1691 assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer");
1692 assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral");
1693 assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1694 "SrcTy must be larger than DestTy for Trunc!");
1696 return getFoldedCast(Instruction::Trunc, C, Ty, OnlyIfReduced);
1699 Constant *ConstantExpr::getSExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1701 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1702 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1704 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1705 assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral");
1706 assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer");
1707 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1708 "SrcTy must be smaller than DestTy for SExt!");
1710 return getFoldedCast(Instruction::SExt, C, Ty, OnlyIfReduced);
1713 Constant *ConstantExpr::getZExt(Constant *C, Type *Ty, bool OnlyIfReduced) {
1715 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1716 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1718 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1719 assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral");
1720 assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer");
1721 assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1722 "SrcTy must be smaller than DestTy for ZExt!");
1724 return getFoldedCast(Instruction::ZExt, C, Ty, OnlyIfReduced);
1727 Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty, bool OnlyIfReduced) {
1729 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1730 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1732 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1733 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1734 C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&&
1735 "This is an illegal floating point truncation!");
1736 return getFoldedCast(Instruction::FPTrunc, C, Ty, OnlyIfReduced);
1739 Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty, bool OnlyIfReduced) {
1741 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1742 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1744 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1745 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
1746 C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&&
1747 "This is an illegal floating point extension!");
1748 return getFoldedCast(Instruction::FPExt, C, Ty, OnlyIfReduced);
1751 Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1753 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1754 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1756 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1757 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1758 "This is an illegal uint to floating point cast!");
1759 return getFoldedCast(Instruction::UIToFP, C, Ty, OnlyIfReduced);
1762 Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty, bool OnlyIfReduced) {
1764 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1765 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1767 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1768 assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() &&
1769 "This is an illegal sint to floating point cast!");
1770 return getFoldedCast(Instruction::SIToFP, C, Ty, OnlyIfReduced);
1773 Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1775 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1776 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1778 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1779 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1780 "This is an illegal floating point to uint cast!");
1781 return getFoldedCast(Instruction::FPToUI, C, Ty, OnlyIfReduced);
1784 Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty, bool OnlyIfReduced) {
1786 bool fromVec = C->getType()->getTypeID() == Type::VectorTyID;
1787 bool toVec = Ty->getTypeID() == Type::VectorTyID;
1789 assert((fromVec == toVec) && "Cannot convert from scalar to/from vector");
1790 assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() &&
1791 "This is an illegal floating point to sint cast!");
1792 return getFoldedCast(Instruction::FPToSI, C, Ty, OnlyIfReduced);
1795 Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy,
1796 bool OnlyIfReduced) {
1797 assert(C->getType()->getScalarType()->isPointerTy() &&
1798 "PtrToInt source must be pointer or pointer vector");
1799 assert(DstTy->getScalarType()->isIntegerTy() &&
1800 "PtrToInt destination must be integer or integer vector");
1801 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1802 if (isa<VectorType>(C->getType()))
1803 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1804 "Invalid cast between a different number of vector elements");
1805 return getFoldedCast(Instruction::PtrToInt, C, DstTy, OnlyIfReduced);
1808 Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy,
1809 bool OnlyIfReduced) {
1810 assert(C->getType()->getScalarType()->isIntegerTy() &&
1811 "IntToPtr source must be integer or integer vector");
1812 assert(DstTy->getScalarType()->isPointerTy() &&
1813 "IntToPtr destination must be a pointer or pointer vector");
1814 assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy));
1815 if (isa<VectorType>(C->getType()))
1816 assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&&
1817 "Invalid cast between a different number of vector elements");
1818 return getFoldedCast(Instruction::IntToPtr, C, DstTy, OnlyIfReduced);
1821 Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy,
1822 bool OnlyIfReduced) {
1823 assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) &&
1824 "Invalid constantexpr bitcast!");
1826 // It is common to ask for a bitcast of a value to its own type, handle this
1828 if (C->getType() == DstTy) return C;
1830 return getFoldedCast(Instruction::BitCast, C, DstTy, OnlyIfReduced);
1833 Constant *ConstantExpr::getAddrSpaceCast(Constant *C, Type *DstTy,
1834 bool OnlyIfReduced) {
1835 assert(CastInst::castIsValid(Instruction::AddrSpaceCast, C, DstTy) &&
1836 "Invalid constantexpr addrspacecast!");
1838 // Canonicalize addrspacecasts between different pointer types by first
1839 // bitcasting the pointer type and then converting the address space.
1840 PointerType *SrcScalarTy = cast<PointerType>(C->getType()->getScalarType());
1841 PointerType *DstScalarTy = cast<PointerType>(DstTy->getScalarType());
1842 Type *DstElemTy = DstScalarTy->getElementType();
1843 if (SrcScalarTy->getElementType() != DstElemTy) {
1844 Type *MidTy = PointerType::get(DstElemTy, SrcScalarTy->getAddressSpace());
1845 if (VectorType *VT = dyn_cast<VectorType>(DstTy)) {
1846 // Handle vectors of pointers.
1847 MidTy = VectorType::get(MidTy, VT->getNumElements());
1849 C = getBitCast(C, MidTy);
1851 return getFoldedCast(Instruction::AddrSpaceCast, C, DstTy, OnlyIfReduced);
1854 Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2,
1855 unsigned Flags, Type *OnlyIfReducedTy) {
1856 // Check the operands for consistency first.
1857 assert(Opcode >= Instruction::BinaryOpsBegin &&
1858 Opcode < Instruction::BinaryOpsEnd &&
1859 "Invalid opcode in binary constant expression");
1860 assert(C1->getType() == C2->getType() &&
1861 "Operand types in binary constant expression should match");
1865 case Instruction::Add:
1866 case Instruction::Sub:
1867 case Instruction::Mul:
1868 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1869 assert(C1->getType()->isIntOrIntVectorTy() &&
1870 "Tried to create an integer operation on a non-integer type!");
1872 case Instruction::FAdd:
1873 case Instruction::FSub:
1874 case Instruction::FMul:
1875 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1876 assert(C1->getType()->isFPOrFPVectorTy() &&
1877 "Tried to create a floating-point operation on a "
1878 "non-floating-point type!");
1880 case Instruction::UDiv:
1881 case Instruction::SDiv:
1882 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1883 assert(C1->getType()->isIntOrIntVectorTy() &&
1884 "Tried to create an arithmetic operation on a non-arithmetic type!");
1886 case Instruction::FDiv:
1887 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1888 assert(C1->getType()->isFPOrFPVectorTy() &&
1889 "Tried to create an arithmetic operation on a non-arithmetic type!");
1891 case Instruction::URem:
1892 case Instruction::SRem:
1893 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1894 assert(C1->getType()->isIntOrIntVectorTy() &&
1895 "Tried to create an arithmetic operation on a non-arithmetic type!");
1897 case Instruction::FRem:
1898 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1899 assert(C1->getType()->isFPOrFPVectorTy() &&
1900 "Tried to create an arithmetic operation on a non-arithmetic type!");
1902 case Instruction::And:
1903 case Instruction::Or:
1904 case Instruction::Xor:
1905 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1906 assert(C1->getType()->isIntOrIntVectorTy() &&
1907 "Tried to create a logical operation on a non-integral type!");
1909 case Instruction::Shl:
1910 case Instruction::LShr:
1911 case Instruction::AShr:
1912 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1913 assert(C1->getType()->isIntOrIntVectorTy() &&
1914 "Tried to create a shift operation on a non-integer type!");
1921 if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2))
1922 return FC; // Fold a few common cases.
1924 if (OnlyIfReducedTy == C1->getType())
1927 Constant *ArgVec[] = { C1, C2 };
1928 ConstantExprKeyType Key(Opcode, ArgVec, 0, Flags);
1930 LLVMContextImpl *pImpl = C1->getContext().pImpl;
1931 return pImpl->ExprConstants.getOrCreate(C1->getType(), Key);
1934 Constant *ConstantExpr::getSizeOf(Type* Ty) {
1935 // sizeof is implemented as: (i64) gep (Ty*)null, 1
1936 // Note that a non-inbounds gep is used, as null isn't within any object.
1937 Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1938 Constant *GEP = getGetElementPtr(
1939 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1940 return getPtrToInt(GEP,
1941 Type::getInt64Ty(Ty->getContext()));
1944 Constant *ConstantExpr::getAlignOf(Type* Ty) {
1945 // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1
1946 // Note that a non-inbounds gep is used, as null isn't within any object.
1948 StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, nullptr);
1949 Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo(0));
1950 Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0);
1951 Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1);
1952 Constant *Indices[2] = { Zero, One };
1953 Constant *GEP = getGetElementPtr(AligningTy, NullPtr, Indices);
1954 return getPtrToInt(GEP,
1955 Type::getInt64Ty(Ty->getContext()));
1958 Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) {
1959 return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()),
1963 Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) {
1964 // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo
1965 // Note that a non-inbounds gep is used, as null isn't within any object.
1966 Constant *GEPIdx[] = {
1967 ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0),
1970 Constant *GEP = getGetElementPtr(
1971 Ty, Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx);
1972 return getPtrToInt(GEP,
1973 Type::getInt64Ty(Ty->getContext()));
1976 Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1,
1977 Constant *C2, bool OnlyIfReduced) {
1978 assert(C1->getType() == C2->getType() && "Op types should be identical!");
1980 switch (Predicate) {
1981 default: llvm_unreachable("Invalid CmpInst predicate");
1982 case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT:
1983 case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE:
1984 case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO:
1985 case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE:
1986 case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE:
1987 case CmpInst::FCMP_TRUE:
1988 return getFCmp(Predicate, C1, C2, OnlyIfReduced);
1990 case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT:
1991 case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE:
1992 case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT:
1993 case CmpInst::ICMP_SLE:
1994 return getICmp(Predicate, C1, C2, OnlyIfReduced);
1998 Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2,
1999 Type *OnlyIfReducedTy) {
2000 assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands");
2002 if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2))
2003 return SC; // Fold common cases
2005 if (OnlyIfReducedTy == V1->getType())
2008 Constant *ArgVec[] = { C, V1, V2 };
2009 ConstantExprKeyType Key(Instruction::Select, ArgVec);
2011 LLVMContextImpl *pImpl = C->getContext().pImpl;
2012 return pImpl->ExprConstants.getOrCreate(V1->getType(), Key);
2015 Constant *ConstantExpr::getGetElementPtr(Type *Ty, Constant *C,
2016 ArrayRef<Value *> Idxs, bool InBounds,
2017 Type *OnlyIfReducedTy) {
2019 Ty = cast<PointerType>(C->getType()->getScalarType())->getElementType();
2023 cast<PointerType>(C->getType()->getScalarType())->getContainedType(0u));
2025 if (Constant *FC = ConstantFoldGetElementPtr(Ty, C, InBounds, Idxs))
2026 return FC; // Fold a few common cases.
2028 // Get the result type of the getelementptr!
2029 Type *DestTy = GetElementPtrInst::getIndexedType(Ty, Idxs);
2030 assert(DestTy && "GEP indices invalid!");
2031 unsigned AS = C->getType()->getPointerAddressSpace();
2032 Type *ReqTy = DestTy->getPointerTo(AS);
2033 if (VectorType *VecTy = dyn_cast<VectorType>(C->getType()))
2034 ReqTy = VectorType::get(ReqTy, VecTy->getNumElements());
2036 if (OnlyIfReducedTy == ReqTy)
2039 // Look up the constant in the table first to ensure uniqueness
2040 std::vector<Constant*> ArgVec;
2041 ArgVec.reserve(1 + Idxs.size());
2042 ArgVec.push_back(C);
2043 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
2044 assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() &&
2045 "getelementptr index type missmatch");
2046 assert((!Idxs[i]->getType()->isVectorTy() ||
2047 ReqTy->getVectorNumElements() ==
2048 Idxs[i]->getType()->getVectorNumElements()) &&
2049 "getelementptr index type missmatch");
2050 ArgVec.push_back(cast<Constant>(Idxs[i]));
2052 const ConstantExprKeyType Key(Instruction::GetElementPtr, ArgVec, 0,
2053 InBounds ? GEPOperator::IsInBounds : 0);
2055 LLVMContextImpl *pImpl = C->getContext().pImpl;
2056 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2059 Constant *ConstantExpr::getICmp(unsigned short pred, Constant *LHS,
2060 Constant *RHS, bool OnlyIfReduced) {
2061 assert(LHS->getType() == RHS->getType());
2062 assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE &&
2063 pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate");
2065 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2066 return FC; // Fold a few common cases...
2071 // Look up the constant in the table first to ensure uniqueness
2072 Constant *ArgVec[] = { LHS, RHS };
2073 // Get the key type with both the opcode and predicate
2074 const ConstantExprKeyType Key(Instruction::ICmp, ArgVec, pred);
2076 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2077 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2078 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2080 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2081 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2084 Constant *ConstantExpr::getFCmp(unsigned short pred, Constant *LHS,
2085 Constant *RHS, bool OnlyIfReduced) {
2086 assert(LHS->getType() == RHS->getType());
2087 assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate");
2089 if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS))
2090 return FC; // Fold a few common cases...
2095 // Look up the constant in the table first to ensure uniqueness
2096 Constant *ArgVec[] = { LHS, RHS };
2097 // Get the key type with both the opcode and predicate
2098 const ConstantExprKeyType Key(Instruction::FCmp, ArgVec, pred);
2100 Type *ResultTy = Type::getInt1Ty(LHS->getContext());
2101 if (VectorType *VT = dyn_cast<VectorType>(LHS->getType()))
2102 ResultTy = VectorType::get(ResultTy, VT->getNumElements());
2104 LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl;
2105 return pImpl->ExprConstants.getOrCreate(ResultTy, Key);
2108 Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx,
2109 Type *OnlyIfReducedTy) {
2110 assert(Val->getType()->isVectorTy() &&
2111 "Tried to create extractelement operation on non-vector type!");
2112 assert(Idx->getType()->isIntegerTy() &&
2113 "Extractelement index must be an integer type!");
2115 if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx))
2116 return FC; // Fold a few common cases.
2118 Type *ReqTy = Val->getType()->getVectorElementType();
2119 if (OnlyIfReducedTy == ReqTy)
2122 // Look up the constant in the table first to ensure uniqueness
2123 Constant *ArgVec[] = { Val, Idx };
2124 const ConstantExprKeyType Key(Instruction::ExtractElement, ArgVec);
2126 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2127 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2130 Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt,
2131 Constant *Idx, Type *OnlyIfReducedTy) {
2132 assert(Val->getType()->isVectorTy() &&
2133 "Tried to create insertelement operation on non-vector type!");
2134 assert(Elt->getType() == Val->getType()->getVectorElementType() &&
2135 "Insertelement types must match!");
2136 assert(Idx->getType()->isIntegerTy() &&
2137 "Insertelement index must be i32 type!");
2139 if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx))
2140 return FC; // Fold a few common cases.
2142 if (OnlyIfReducedTy == Val->getType())
2145 // Look up the constant in the table first to ensure uniqueness
2146 Constant *ArgVec[] = { Val, Elt, Idx };
2147 const ConstantExprKeyType Key(Instruction::InsertElement, ArgVec);
2149 LLVMContextImpl *pImpl = Val->getContext().pImpl;
2150 return pImpl->ExprConstants.getOrCreate(Val->getType(), Key);
2153 Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2,
2154 Constant *Mask, Type *OnlyIfReducedTy) {
2155 assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) &&
2156 "Invalid shuffle vector constant expr operands!");
2158 if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask))
2159 return FC; // Fold a few common cases.
2161 unsigned NElts = Mask->getType()->getVectorNumElements();
2162 Type *EltTy = V1->getType()->getVectorElementType();
2163 Type *ShufTy = VectorType::get(EltTy, NElts);
2165 if (OnlyIfReducedTy == ShufTy)
2168 // Look up the constant in the table first to ensure uniqueness
2169 Constant *ArgVec[] = { V1, V2, Mask };
2170 const ConstantExprKeyType Key(Instruction::ShuffleVector, ArgVec);
2172 LLVMContextImpl *pImpl = ShufTy->getContext().pImpl;
2173 return pImpl->ExprConstants.getOrCreate(ShufTy, Key);
2176 Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val,
2177 ArrayRef<unsigned> Idxs,
2178 Type *OnlyIfReducedTy) {
2179 assert(Agg->getType()->isFirstClassType() &&
2180 "Non-first-class type for constant insertvalue expression");
2182 assert(ExtractValueInst::getIndexedType(Agg->getType(),
2183 Idxs) == Val->getType() &&
2184 "insertvalue indices invalid!");
2185 Type *ReqTy = Val->getType();
2187 if (Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs))
2190 if (OnlyIfReducedTy == ReqTy)
2193 Constant *ArgVec[] = { Agg, Val };
2194 const ConstantExprKeyType Key(Instruction::InsertValue, ArgVec, 0, 0, Idxs);
2196 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2197 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2200 Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs,
2201 Type *OnlyIfReducedTy) {
2202 assert(Agg->getType()->isFirstClassType() &&
2203 "Tried to create extractelement operation on non-first-class type!");
2205 Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs);
2207 assert(ReqTy && "extractvalue indices invalid!");
2209 assert(Agg->getType()->isFirstClassType() &&
2210 "Non-first-class type for constant extractvalue expression");
2211 if (Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs))
2214 if (OnlyIfReducedTy == ReqTy)
2217 Constant *ArgVec[] = { Agg };
2218 const ConstantExprKeyType Key(Instruction::ExtractValue, ArgVec, 0, 0, Idxs);
2220 LLVMContextImpl *pImpl = Agg->getContext().pImpl;
2221 return pImpl->ExprConstants.getOrCreate(ReqTy, Key);
2224 Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) {
2225 assert(C->getType()->isIntOrIntVectorTy() &&
2226 "Cannot NEG a nonintegral value!");
2227 return getSub(ConstantFP::getZeroValueForNegation(C->getType()),
2231 Constant *ConstantExpr::getFNeg(Constant *C) {
2232 assert(C->getType()->isFPOrFPVectorTy() &&
2233 "Cannot FNEG a non-floating-point value!");
2234 return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C);
2237 Constant *ConstantExpr::getNot(Constant *C) {
2238 assert(C->getType()->isIntOrIntVectorTy() &&
2239 "Cannot NOT a nonintegral value!");
2240 return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType()));
2243 Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2,
2244 bool HasNUW, bool HasNSW) {
2245 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2246 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2247 return get(Instruction::Add, C1, C2, Flags);
2250 Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) {
2251 return get(Instruction::FAdd, C1, C2);
2254 Constant *ConstantExpr::getSub(Constant *C1, Constant *C2,
2255 bool HasNUW, bool HasNSW) {
2256 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2257 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2258 return get(Instruction::Sub, C1, C2, Flags);
2261 Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) {
2262 return get(Instruction::FSub, C1, C2);
2265 Constant *ConstantExpr::getMul(Constant *C1, Constant *C2,
2266 bool HasNUW, bool HasNSW) {
2267 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2268 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2269 return get(Instruction::Mul, C1, C2, Flags);
2272 Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) {
2273 return get(Instruction::FMul, C1, C2);
2276 Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) {
2277 return get(Instruction::UDiv, C1, C2,
2278 isExact ? PossiblyExactOperator::IsExact : 0);
2281 Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) {
2282 return get(Instruction::SDiv, C1, C2,
2283 isExact ? PossiblyExactOperator::IsExact : 0);
2286 Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) {
2287 return get(Instruction::FDiv, C1, C2);
2290 Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) {
2291 return get(Instruction::URem, C1, C2);
2294 Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) {
2295 return get(Instruction::SRem, C1, C2);
2298 Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) {
2299 return get(Instruction::FRem, C1, C2);
2302 Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) {
2303 return get(Instruction::And, C1, C2);
2306 Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) {
2307 return get(Instruction::Or, C1, C2);
2310 Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) {
2311 return get(Instruction::Xor, C1, C2);
2314 Constant *ConstantExpr::getShl(Constant *C1, Constant *C2,
2315 bool HasNUW, bool HasNSW) {
2316 unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) |
2317 (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0);
2318 return get(Instruction::Shl, C1, C2, Flags);
2321 Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) {
2322 return get(Instruction::LShr, C1, C2,
2323 isExact ? PossiblyExactOperator::IsExact : 0);
2326 Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) {
2327 return get(Instruction::AShr, C1, C2,
2328 isExact ? PossiblyExactOperator::IsExact : 0);
2331 /// getBinOpIdentity - Return the identity for the given binary operation,
2332 /// i.e. a constant C such that X op C = X and C op X = X for every X. It
2333 /// returns null if the operator doesn't have an identity.
2334 Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) {
2337 // Doesn't have an identity.
2340 case Instruction::Add:
2341 case Instruction::Or:
2342 case Instruction::Xor:
2343 return Constant::getNullValue(Ty);
2345 case Instruction::Mul:
2346 return ConstantInt::get(Ty, 1);
2348 case Instruction::And:
2349 return Constant::getAllOnesValue(Ty);
2353 /// getBinOpAbsorber - Return the absorbing element for the given binary
2354 /// operation, i.e. a constant C such that X op C = C and C op X = C for
2355 /// every X. For example, this returns zero for integer multiplication.
2356 /// It returns null if the operator doesn't have an absorbing element.
2357 Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) {
2360 // Doesn't have an absorber.
2363 case Instruction::Or:
2364 return Constant::getAllOnesValue(Ty);
2366 case Instruction::And:
2367 case Instruction::Mul:
2368 return Constant::getNullValue(Ty);
2372 // destroyConstant - Remove the constant from the constant table...
2374 void ConstantExpr::destroyConstant() {
2375 getType()->getContext().pImpl->ExprConstants.remove(this);
2376 destroyConstantImpl();
2379 const char *ConstantExpr::getOpcodeName() const {
2380 return Instruction::getOpcodeName(getOpcode());
2385 GetElementPtrConstantExpr::
2386 GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList,
2388 : ConstantExpr(DestTy, Instruction::GetElementPtr,
2389 OperandTraits<GetElementPtrConstantExpr>::op_end(this)
2390 - (IdxList.size()+1), IdxList.size()+1) {
2392 for (unsigned i = 0, E = IdxList.size(); i != E; ++i)
2393 OperandList[i+1] = IdxList[i];
2396 //===----------------------------------------------------------------------===//
2397 // ConstantData* implementations
2399 void ConstantDataArray::anchor() {}
2400 void ConstantDataVector::anchor() {}
2402 /// getElementType - Return the element type of the array/vector.
2403 Type *ConstantDataSequential::getElementType() const {
2404 return getType()->getElementType();
2407 StringRef ConstantDataSequential::getRawDataValues() const {
2408 return StringRef(DataElements, getNumElements()*getElementByteSize());
2411 /// isElementTypeCompatible - Return true if a ConstantDataSequential can be
2412 /// formed with a vector or array of the specified element type.
2413 /// ConstantDataArray only works with normal float and int types that are
2414 /// stored densely in memory, not with things like i42 or x86_f80.
2415 bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) {
2416 if (Ty->isFloatTy() || Ty->isDoubleTy()) return true;
2417 if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) {
2418 switch (IT->getBitWidth()) {
2430 /// getNumElements - Return the number of elements in the array or vector.
2431 unsigned ConstantDataSequential::getNumElements() const {
2432 if (ArrayType *AT = dyn_cast<ArrayType>(getType()))
2433 return AT->getNumElements();
2434 return getType()->getVectorNumElements();
2438 /// getElementByteSize - Return the size in bytes of the elements in the data.
2439 uint64_t ConstantDataSequential::getElementByteSize() const {
2440 return getElementType()->getPrimitiveSizeInBits()/8;
2443 /// getElementPointer - Return the start of the specified element.
2444 const char *ConstantDataSequential::getElementPointer(unsigned Elt) const {
2445 assert(Elt < getNumElements() && "Invalid Elt");
2446 return DataElements+Elt*getElementByteSize();
2450 /// isAllZeros - return true if the array is empty or all zeros.
2451 static bool isAllZeros(StringRef Arr) {
2452 for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I)
2458 /// getImpl - This is the underlying implementation of all of the
2459 /// ConstantDataSequential::get methods. They all thunk down to here, providing
2460 /// the correct element type. We take the bytes in as a StringRef because
2461 /// we *want* an underlying "char*" to avoid TBAA type punning violations.
2462 Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) {
2463 assert(isElementTypeCompatible(Ty->getSequentialElementType()));
2464 // If the elements are all zero or there are no elements, return a CAZ, which
2465 // is more dense and canonical.
2466 if (isAllZeros(Elements))
2467 return ConstantAggregateZero::get(Ty);
2469 // Do a lookup to see if we have already formed one of these.
2472 .pImpl->CDSConstants.insert(std::make_pair(Elements, nullptr))
2475 // The bucket can point to a linked list of different CDS's that have the same
2476 // body but different types. For example, 0,0,0,1 could be a 4 element array
2477 // of i8, or a 1-element array of i32. They'll both end up in the same
2478 /// StringMap bucket, linked up by their Next pointers. Walk the list.
2479 ConstantDataSequential **Entry = &Slot.second;
2480 for (ConstantDataSequential *Node = *Entry; Node;
2481 Entry = &Node->Next, Node = *Entry)
2482 if (Node->getType() == Ty)
2485 // Okay, we didn't get a hit. Create a node of the right class, link it in,
2487 if (isa<ArrayType>(Ty))
2488 return *Entry = new ConstantDataArray(Ty, Slot.first().data());
2490 assert(isa<VectorType>(Ty));
2491 return *Entry = new ConstantDataVector(Ty, Slot.first().data());
2494 void ConstantDataSequential::destroyConstant() {
2495 // Remove the constant from the StringMap.
2496 StringMap<ConstantDataSequential*> &CDSConstants =
2497 getType()->getContext().pImpl->CDSConstants;
2499 StringMap<ConstantDataSequential*>::iterator Slot =
2500 CDSConstants.find(getRawDataValues());
2502 assert(Slot != CDSConstants.end() && "CDS not found in uniquing table");
2504 ConstantDataSequential **Entry = &Slot->getValue();
2506 // Remove the entry from the hash table.
2507 if (!(*Entry)->Next) {
2508 // If there is only one value in the bucket (common case) it must be this
2509 // entry, and removing the entry should remove the bucket completely.
2510 assert((*Entry) == this && "Hash mismatch in ConstantDataSequential");
2511 getContext().pImpl->CDSConstants.erase(Slot);
2513 // Otherwise, there are multiple entries linked off the bucket, unlink the
2514 // node we care about but keep the bucket around.
2515 for (ConstantDataSequential *Node = *Entry; ;
2516 Entry = &Node->Next, Node = *Entry) {
2517 assert(Node && "Didn't find entry in its uniquing hash table!");
2518 // If we found our entry, unlink it from the list and we're done.
2520 *Entry = Node->Next;
2526 // If we were part of a list, make sure that we don't delete the list that is
2527 // still owned by the uniquing map.
2530 // Finally, actually delete it.
2531 destroyConstantImpl();
2534 /// get() constructors - Return a constant with array type with an element
2535 /// count and element type matching the ArrayRef passed in. Note that this
2536 /// can return a ConstantAggregateZero object.
2537 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) {
2538 Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size());
2539 const char *Data = reinterpret_cast<const char *>(Elts.data());
2540 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2542 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2543 Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size());
2544 const char *Data = reinterpret_cast<const char *>(Elts.data());
2545 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2547 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2548 Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size());
2549 const char *Data = reinterpret_cast<const char *>(Elts.data());
2550 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2552 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2553 Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size());
2554 const char *Data = reinterpret_cast<const char *>(Elts.data());
2555 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2557 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) {
2558 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2559 const char *Data = reinterpret_cast<const char *>(Elts.data());
2560 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2562 Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) {
2563 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2564 const char *Data = reinterpret_cast<const char *>(Elts.data());
2565 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2568 /// getFP() constructors - Return a constant with array type with an element
2569 /// count and element type of float with precision matching the number of
2570 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2571 /// double for 64bits) Note that this can return a ConstantAggregateZero
2573 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2574 ArrayRef<uint16_t> Elts) {
2575 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2576 const char *Data = reinterpret_cast<const char *>(Elts.data());
2577 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2579 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2580 ArrayRef<uint32_t> Elts) {
2581 Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size());
2582 const char *Data = reinterpret_cast<const char *>(Elts.data());
2583 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2585 Constant *ConstantDataArray::getFP(LLVMContext &Context,
2586 ArrayRef<uint64_t> Elts) {
2587 Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size());
2588 const char *Data = reinterpret_cast<const char *>(Elts.data());
2589 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2592 /// getString - This method constructs a CDS and initializes it with a text
2593 /// string. The default behavior (AddNull==true) causes a null terminator to
2594 /// be placed at the end of the array (increasing the length of the string by
2595 /// one more than the StringRef would normally indicate. Pass AddNull=false
2596 /// to disable this behavior.
2597 Constant *ConstantDataArray::getString(LLVMContext &Context,
2598 StringRef Str, bool AddNull) {
2600 const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data());
2601 return get(Context, makeArrayRef(const_cast<uint8_t *>(Data),
2605 SmallVector<uint8_t, 64> ElementVals;
2606 ElementVals.append(Str.begin(), Str.end());
2607 ElementVals.push_back(0);
2608 return get(Context, ElementVals);
2611 /// get() constructors - Return a constant with vector type with an element
2612 /// count and element type matching the ArrayRef passed in. Note that this
2613 /// can return a ConstantAggregateZero object.
2614 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){
2615 Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size());
2616 const char *Data = reinterpret_cast<const char *>(Elts.data());
2617 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty);
2619 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){
2620 Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size());
2621 const char *Data = reinterpret_cast<const char *>(Elts.data());
2622 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty);
2624 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){
2625 Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size());
2626 const char *Data = reinterpret_cast<const char *>(Elts.data());
2627 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2629 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){
2630 Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size());
2631 const char *Data = reinterpret_cast<const char *>(Elts.data());
2632 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty);
2634 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) {
2635 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2636 const char *Data = reinterpret_cast<const char *>(Elts.data());
2637 return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty);
2639 Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) {
2640 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2641 const char *Data = reinterpret_cast<const char *>(Elts.data());
2642 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2645 /// getFP() constructors - Return a constant with vector type with an element
2646 /// count and element type of float with the precision matching the number of
2647 /// bits in the ArrayRef passed in. (i.e. half for 16bits, float for 32bits,
2648 /// double for 64bits) Note that this can return a ConstantAggregateZero
2650 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2651 ArrayRef<uint16_t> Elts) {
2652 Type *Ty = VectorType::get(Type::getHalfTy(Context), Elts.size());
2653 const char *Data = reinterpret_cast<const char *>(Elts.data());
2654 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 2), Ty);
2656 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2657 ArrayRef<uint32_t> Elts) {
2658 Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size());
2659 const char *Data = reinterpret_cast<const char *>(Elts.data());
2660 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 4), Ty);
2662 Constant *ConstantDataVector::getFP(LLVMContext &Context,
2663 ArrayRef<uint64_t> Elts) {
2664 Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size());
2665 const char *Data = reinterpret_cast<const char *>(Elts.data());
2666 return getImpl(StringRef(const_cast<char *>(Data), Elts.size() * 8), Ty);
2669 Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) {
2670 assert(isElementTypeCompatible(V->getType()) &&
2671 "Element type not compatible with ConstantData");
2672 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
2673 if (CI->getType()->isIntegerTy(8)) {
2674 SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue());
2675 return get(V->getContext(), Elts);
2677 if (CI->getType()->isIntegerTy(16)) {
2678 SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue());
2679 return get(V->getContext(), Elts);
2681 if (CI->getType()->isIntegerTy(32)) {
2682 SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue());
2683 return get(V->getContext(), Elts);
2685 assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type");
2686 SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue());
2687 return get(V->getContext(), Elts);
2690 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
2691 if (CFP->getType()->isFloatTy()) {
2692 SmallVector<uint32_t, 16> Elts(
2693 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2694 return getFP(V->getContext(), Elts);
2696 if (CFP->getType()->isDoubleTy()) {
2697 SmallVector<uint64_t, 16> Elts(
2698 NumElts, CFP->getValueAPF().bitcastToAPInt().getLimitedValue());
2699 return getFP(V->getContext(), Elts);
2702 return ConstantVector::getSplat(NumElts, V);
2706 /// getElementAsInteger - If this is a sequential container of integers (of
2707 /// any size), return the specified element in the low bits of a uint64_t.
2708 uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const {
2709 assert(isa<IntegerType>(getElementType()) &&
2710 "Accessor can only be used when element is an integer");
2711 const char *EltPtr = getElementPointer(Elt);
2713 // The data is stored in host byte order, make sure to cast back to the right
2714 // type to load with the right endianness.
2715 switch (getElementType()->getIntegerBitWidth()) {
2716 default: llvm_unreachable("Invalid bitwidth for CDS");
2718 return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr));
2720 return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr));
2722 return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr));
2724 return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr));
2728 /// getElementAsAPFloat - If this is a sequential container of floating point
2729 /// type, return the specified element as an APFloat.
2730 APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const {
2731 const char *EltPtr = getElementPointer(Elt);
2733 switch (getElementType()->getTypeID()) {
2735 llvm_unreachable("Accessor can only be used when element is float/double!");
2736 case Type::FloatTyID: {
2737 auto EltVal = *reinterpret_cast<const uint32_t *>(EltPtr);
2738 return APFloat(APFloat::IEEEsingle, APInt(32, EltVal));
2740 case Type::DoubleTyID: {
2741 auto EltVal = *reinterpret_cast<const uint64_t *>(EltPtr);
2742 return APFloat(APFloat::IEEEdouble, APInt(64, EltVal));
2747 /// getElementAsFloat - If this is an sequential container of floats, return
2748 /// the specified element as a float.
2749 float ConstantDataSequential::getElementAsFloat(unsigned Elt) const {
2750 assert(getElementType()->isFloatTy() &&
2751 "Accessor can only be used when element is a 'float'");
2752 const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt));
2753 return *const_cast<float *>(EltPtr);
2756 /// getElementAsDouble - If this is an sequential container of doubles, return
2757 /// the specified element as a float.
2758 double ConstantDataSequential::getElementAsDouble(unsigned Elt) const {
2759 assert(getElementType()->isDoubleTy() &&
2760 "Accessor can only be used when element is a 'float'");
2761 const double *EltPtr =
2762 reinterpret_cast<const double *>(getElementPointer(Elt));
2763 return *const_cast<double *>(EltPtr);
2766 /// getElementAsConstant - Return a Constant for a specified index's element.
2767 /// Note that this has to compute a new constant to return, so it isn't as
2768 /// efficient as getElementAsInteger/Float/Double.
2769 Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const {
2770 if (getElementType()->isFloatTy() || getElementType()->isDoubleTy())
2771 return ConstantFP::get(getContext(), getElementAsAPFloat(Elt));
2773 return ConstantInt::get(getElementType(), getElementAsInteger(Elt));
2776 /// isString - This method returns true if this is an array of i8.
2777 bool ConstantDataSequential::isString() const {
2778 return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8);
2781 /// isCString - This method returns true if the array "isString", ends with a
2782 /// nul byte, and does not contains any other nul bytes.
2783 bool ConstantDataSequential::isCString() const {
2787 StringRef Str = getAsString();
2789 // The last value must be nul.
2790 if (Str.back() != 0) return false;
2792 // Other elements must be non-nul.
2793 return Str.drop_back().find(0) == StringRef::npos;
2796 /// getSplatValue - If this is a splat constant, meaning that all of the
2797 /// elements have the same value, return that value. Otherwise return nullptr.
2798 Constant *ConstantDataVector::getSplatValue() const {
2799 const char *Base = getRawDataValues().data();
2801 // Compare elements 1+ to the 0'th element.
2802 unsigned EltSize = getElementByteSize();
2803 for (unsigned i = 1, e = getNumElements(); i != e; ++i)
2804 if (memcmp(Base, Base+i*EltSize, EltSize))
2807 // If they're all the same, return the 0th one as a representative.
2808 return getElementAsConstant(0);
2811 //===----------------------------------------------------------------------===//
2812 // replaceUsesOfWithOnConstant implementations
2814 /// replaceUsesOfWithOnConstant - Update this constant array to change uses of
2815 /// 'From' to be uses of 'To'. This must update the uniquing data structures
2818 /// Note that we intentionally replace all uses of From with To here. Consider
2819 /// a large array that uses 'From' 1000 times. By handling this case all here,
2820 /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that
2821 /// single invocation handles all 1000 uses. Handling them one at a time would
2822 /// work, but would be really slow because it would have to unique each updated
2825 void Constant::replaceUsesOfWithOnConstantImpl(Constant *Replacement) {
2826 // I do need to replace this with an existing value.
2827 assert(Replacement != this && "I didn't contain From!");
2829 // Everyone using this now uses the replacement.
2830 replaceAllUsesWith(Replacement);
2832 // Delete the old constant!
2836 void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To,
2838 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2839 Constant *ToC = cast<Constant>(To);
2841 SmallVector<Constant*, 8> Values;
2842 Values.reserve(getNumOperands()); // Build replacement array.
2844 // Fill values with the modified operands of the constant array. Also,
2845 // compute whether this turns into an all-zeros array.
2846 unsigned NumUpdated = 0;
2848 // Keep track of whether all the values in the array are "ToC".
2849 bool AllSame = true;
2850 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2851 Constant *Val = cast<Constant>(O->get());
2856 Values.push_back(Val);
2857 AllSame &= Val == ToC;
2860 if (AllSame && ToC->isNullValue()) {
2861 replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
2864 if (AllSame && isa<UndefValue>(ToC)) {
2865 replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
2869 // Check for any other type of constant-folding.
2870 if (Constant *C = getImpl(getType(), Values)) {
2871 replaceUsesOfWithOnConstantImpl(C);
2875 // Update to the new value.
2876 if (Constant *C = getContext().pImpl->ArrayConstants.replaceOperandsInPlace(
2877 Values, this, From, ToC, NumUpdated, U - OperandList))
2878 replaceUsesOfWithOnConstantImpl(C);
2881 void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To,
2883 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2884 Constant *ToC = cast<Constant>(To);
2886 unsigned OperandToUpdate = U-OperandList;
2887 assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!");
2889 SmallVector<Constant*, 8> Values;
2890 Values.reserve(getNumOperands()); // Build replacement struct.
2892 // Fill values with the modified operands of the constant struct. Also,
2893 // compute whether this turns into an all-zeros struct.
2894 bool isAllZeros = false;
2895 bool isAllUndef = false;
2896 if (ToC->isNullValue()) {
2898 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2899 Constant *Val = cast<Constant>(O->get());
2900 Values.push_back(Val);
2901 if (isAllZeros) isAllZeros = Val->isNullValue();
2903 } else if (isa<UndefValue>(ToC)) {
2905 for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) {
2906 Constant *Val = cast<Constant>(O->get());
2907 Values.push_back(Val);
2908 if (isAllUndef) isAllUndef = isa<UndefValue>(Val);
2911 for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O)
2912 Values.push_back(cast<Constant>(O->get()));
2914 Values[OperandToUpdate] = ToC;
2917 replaceUsesOfWithOnConstantImpl(ConstantAggregateZero::get(getType()));
2921 replaceUsesOfWithOnConstantImpl(UndefValue::get(getType()));
2925 // Update to the new value.
2926 if (Constant *C = getContext().pImpl->StructConstants.replaceOperandsInPlace(
2927 Values, this, From, ToC))
2928 replaceUsesOfWithOnConstantImpl(C);
2931 void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To,
2933 assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!");
2934 Constant *ToC = cast<Constant>(To);
2936 SmallVector<Constant*, 8> Values;
2937 Values.reserve(getNumOperands()); // Build replacement array...
2938 unsigned NumUpdated = 0;
2939 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2940 Constant *Val = getOperand(i);
2945 Values.push_back(Val);
2948 if (Constant *C = getImpl(Values)) {
2949 replaceUsesOfWithOnConstantImpl(C);
2953 // Update to the new value.
2954 if (Constant *C = getContext().pImpl->VectorConstants.replaceOperandsInPlace(
2955 Values, this, From, ToC, NumUpdated, U - OperandList))
2956 replaceUsesOfWithOnConstantImpl(C);
2959 void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV,
2961 assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!");
2962 Constant *To = cast<Constant>(ToV);
2964 SmallVector<Constant*, 8> NewOps;
2965 unsigned NumUpdated = 0;
2966 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
2967 Constant *Op = getOperand(i);
2972 NewOps.push_back(Op);
2974 assert(NumUpdated && "I didn't contain From!");
2976 if (Constant *C = getWithOperands(NewOps, getType(), true)) {
2977 replaceUsesOfWithOnConstantImpl(C);
2981 // Update to the new value.
2982 if (Constant *C = getContext().pImpl->ExprConstants.replaceOperandsInPlace(
2983 NewOps, this, From, To, NumUpdated, U - OperandList))
2984 replaceUsesOfWithOnConstantImpl(C);
2987 Instruction *ConstantExpr::getAsInstruction() {
2988 SmallVector<Value *, 4> ValueOperands(op_begin(), op_end());
2989 ArrayRef<Value*> Ops(ValueOperands);
2991 switch (getOpcode()) {
2992 case Instruction::Trunc:
2993 case Instruction::ZExt:
2994 case Instruction::SExt:
2995 case Instruction::FPTrunc:
2996 case Instruction::FPExt:
2997 case Instruction::UIToFP:
2998 case Instruction::SIToFP:
2999 case Instruction::FPToUI:
3000 case Instruction::FPToSI:
3001 case Instruction::PtrToInt:
3002 case Instruction::IntToPtr:
3003 case Instruction::BitCast:
3004 case Instruction::AddrSpaceCast:
3005 return CastInst::Create((Instruction::CastOps)getOpcode(),
3007 case Instruction::Select:
3008 return SelectInst::Create(Ops[0], Ops[1], Ops[2]);
3009 case Instruction::InsertElement:
3010 return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]);
3011 case Instruction::ExtractElement:
3012 return ExtractElementInst::Create(Ops[0], Ops[1]);
3013 case Instruction::InsertValue:
3014 return InsertValueInst::Create(Ops[0], Ops[1], getIndices());
3015 case Instruction::ExtractValue:
3016 return ExtractValueInst::Create(Ops[0], getIndices());
3017 case Instruction::ShuffleVector:
3018 return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]);
3020 case Instruction::GetElementPtr: {
3021 const auto *GO = cast<GEPOperator>(this);
3022 if (GO->isInBounds())
3023 return GetElementPtrInst::CreateInBounds(GO->getSourceElementType(),
3024 Ops[0], Ops.slice(1));
3025 return GetElementPtrInst::Create(GO->getSourceElementType(), Ops[0],
3028 case Instruction::ICmp:
3029 case Instruction::FCmp:
3030 return CmpInst::Create((Instruction::OtherOps)getOpcode(),
3031 getPredicate(), Ops[0], Ops[1]);
3034 assert(getNumOperands() == 2 && "Must be binary operator?");
3035 BinaryOperator *BO =
3036 BinaryOperator::Create((Instruction::BinaryOps)getOpcode(),
3038 if (isa<OverflowingBinaryOperator>(BO)) {
3039 BO->setHasNoUnsignedWrap(SubclassOptionalData &
3040 OverflowingBinaryOperator::NoUnsignedWrap);
3041 BO->setHasNoSignedWrap(SubclassOptionalData &
3042 OverflowingBinaryOperator::NoSignedWrap);
3044 if (isa<PossiblyExactOperator>(BO))
3045 BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact);