1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Instruction class for the IR library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/CallSite.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/Type.h"
23 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
24 Instruction *InsertBefore)
25 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
27 // If requested, insert this instruction into a basic block...
29 BasicBlock *BB = InsertBefore->getParent();
30 assert(BB && "Instruction to insert before is not in a basic block!");
31 BB->getInstList().insert(InsertBefore, this);
35 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
36 BasicBlock *InsertAtEnd)
37 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
39 // append this instruction into the basic block
40 assert(InsertAtEnd && "Basic block to append to may not be NULL!");
41 InsertAtEnd->getInstList().push_back(this);
45 // Out of line virtual method, so the vtable, etc has a home.
46 Instruction::~Instruction() {
47 assert(!Parent && "Instruction still linked in the program!");
48 if (hasMetadataHashEntry())
49 clearMetadataHashEntries();
53 void Instruction::setParent(BasicBlock *P) {
57 const Module *Instruction::getModule() const {
58 return getParent()->getModule();
61 Module *Instruction::getModule() {
62 return getParent()->getModule();
66 void Instruction::removeFromParent() {
67 getParent()->getInstList().remove(this);
70 iplist<Instruction>::iterator Instruction::eraseFromParent() {
71 return getParent()->getInstList().erase(this);
74 /// insertBefore - Insert an unlinked instructions into a basic block
75 /// immediately before the specified instruction.
76 void Instruction::insertBefore(Instruction *InsertPos) {
77 InsertPos->getParent()->getInstList().insert(InsertPos, this);
80 /// insertAfter - Insert an unlinked instructions into a basic block
81 /// immediately after the specified instruction.
82 void Instruction::insertAfter(Instruction *InsertPos) {
83 InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
86 /// moveBefore - Unlink this instruction from its current basic block and
87 /// insert it into the basic block that MovePos lives in, right before
89 void Instruction::moveBefore(Instruction *MovePos) {
90 MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
94 /// Set or clear the unsafe-algebra flag on this instruction, which must be an
95 /// operator which supports this flag. See LangRef.html for the meaning of this
97 void Instruction::setHasUnsafeAlgebra(bool B) {
98 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
99 cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B);
102 /// Set or clear the NoNaNs flag on this instruction, which must be an operator
103 /// which supports this flag. See LangRef.html for the meaning of this flag.
104 void Instruction::setHasNoNaNs(bool B) {
105 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
106 cast<FPMathOperator>(this)->setHasNoNaNs(B);
109 /// Set or clear the no-infs flag on this instruction, which must be an operator
110 /// which supports this flag. See LangRef.html for the meaning of this flag.
111 void Instruction::setHasNoInfs(bool B) {
112 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
113 cast<FPMathOperator>(this)->setHasNoInfs(B);
116 /// Set or clear the no-signed-zeros flag on this instruction, which must be an
117 /// operator which supports this flag. See LangRef.html for the meaning of this
119 void Instruction::setHasNoSignedZeros(bool B) {
120 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
121 cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
124 /// Set or clear the allow-reciprocal flag on this instruction, which must be an
125 /// operator which supports this flag. See LangRef.html for the meaning of this
127 void Instruction::setHasAllowReciprocal(bool B) {
128 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
129 cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
132 /// Convenience function for setting all the fast-math flags on this
133 /// instruction, which must be an operator which supports these flags. See
134 /// LangRef.html for the meaning of these flats.
135 void Instruction::setFastMathFlags(FastMathFlags FMF) {
136 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
137 cast<FPMathOperator>(this)->setFastMathFlags(FMF);
140 void Instruction::copyFastMathFlags(FastMathFlags FMF) {
141 assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
142 cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
145 /// Determine whether the unsafe-algebra flag is set.
146 bool Instruction::hasUnsafeAlgebra() const {
147 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
148 return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
151 /// Determine whether the no-NaNs flag is set.
152 bool Instruction::hasNoNaNs() const {
153 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
154 return cast<FPMathOperator>(this)->hasNoNaNs();
157 /// Determine whether the no-infs flag is set.
158 bool Instruction::hasNoInfs() const {
159 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
160 return cast<FPMathOperator>(this)->hasNoInfs();
163 /// Determine whether the no-signed-zeros flag is set.
164 bool Instruction::hasNoSignedZeros() const {
165 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
166 return cast<FPMathOperator>(this)->hasNoSignedZeros();
169 /// Determine whether the allow-reciprocal flag is set.
170 bool Instruction::hasAllowReciprocal() const {
171 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
172 return cast<FPMathOperator>(this)->hasAllowReciprocal();
175 /// Convenience function for getting all the fast-math flags, which must be an
176 /// operator which supports these flags. See LangRef.html for the meaning of
178 FastMathFlags Instruction::getFastMathFlags() const {
179 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
180 return cast<FPMathOperator>(this)->getFastMathFlags();
183 /// Copy I's fast-math flags
184 void Instruction::copyFastMathFlags(const Instruction *I) {
185 copyFastMathFlags(I->getFastMathFlags());
189 const char *Instruction::getOpcodeName(unsigned OpCode) {
192 case Ret: return "ret";
193 case Br: return "br";
194 case Switch: return "switch";
195 case IndirectBr: return "indirectbr";
196 case Invoke: return "invoke";
197 case Resume: return "resume";
198 case Unreachable: return "unreachable";
199 case CleanupRet: return "cleanupret";
200 case CatchEndPad: return "catchendpad";
201 case CatchRet: return "catchret";
202 case CatchPad: return "catchpad";
203 case TerminatePad: return "terminatepad";
205 // Standard binary operators...
206 case Add: return "add";
207 case FAdd: return "fadd";
208 case Sub: return "sub";
209 case FSub: return "fsub";
210 case Mul: return "mul";
211 case FMul: return "fmul";
212 case UDiv: return "udiv";
213 case SDiv: return "sdiv";
214 case FDiv: return "fdiv";
215 case URem: return "urem";
216 case SRem: return "srem";
217 case FRem: return "frem";
219 // Logical operators...
220 case And: return "and";
221 case Or : return "or";
222 case Xor: return "xor";
224 // Memory instructions...
225 case Alloca: return "alloca";
226 case Load: return "load";
227 case Store: return "store";
228 case AtomicCmpXchg: return "cmpxchg";
229 case AtomicRMW: return "atomicrmw";
230 case Fence: return "fence";
231 case GetElementPtr: return "getelementptr";
233 // Convert instructions...
234 case Trunc: return "trunc";
235 case ZExt: return "zext";
236 case SExt: return "sext";
237 case FPTrunc: return "fptrunc";
238 case FPExt: return "fpext";
239 case FPToUI: return "fptoui";
240 case FPToSI: return "fptosi";
241 case UIToFP: return "uitofp";
242 case SIToFP: return "sitofp";
243 case IntToPtr: return "inttoptr";
244 case PtrToInt: return "ptrtoint";
245 case BitCast: return "bitcast";
246 case AddrSpaceCast: return "addrspacecast";
248 // Other instructions...
249 case ICmp: return "icmp";
250 case FCmp: return "fcmp";
251 case PHI: return "phi";
252 case Select: return "select";
253 case Call: return "call";
254 case Shl: return "shl";
255 case LShr: return "lshr";
256 case AShr: return "ashr";
257 case VAArg: return "va_arg";
258 case ExtractElement: return "extractelement";
259 case InsertElement: return "insertelement";
260 case ShuffleVector: return "shufflevector";
261 case ExtractValue: return "extractvalue";
262 case InsertValue: return "insertvalue";
263 case LandingPad: return "landingpad";
264 case CleanupPad: return "cleanuppad";
266 default: return "<Invalid operator> ";
270 /// Return true if both instructions have the same special state
271 /// This must be kept in sync with lib/Transforms/IPO/MergeFunctions.cpp.
272 static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
273 bool IgnoreAlignment = false) {
274 assert(I1->getOpcode() == I2->getOpcode() &&
275 "Can not compare special state of different instructions");
277 if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
278 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
279 (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
281 LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
282 LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
283 if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
284 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
285 (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
287 SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
288 SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
289 if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
290 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
291 if (const CallInst *CI = dyn_cast<CallInst>(I1))
292 return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
293 CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
294 CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
295 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
296 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
297 CI->getAttributes() ==
298 cast<InvokeInst>(I2)->getAttributes();
299 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
300 return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
301 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
302 return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
303 if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
304 return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
305 FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
306 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
307 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
308 CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
309 CXI->getSuccessOrdering() ==
310 cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
311 CXI->getFailureOrdering() ==
312 cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
313 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
314 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
315 return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
316 RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
317 RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
318 RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
323 /// isIdenticalTo - Return true if the specified instruction is exactly
324 /// identical to the current one. This means that all operands match and any
325 /// extra information (e.g. load is volatile) agree.
326 bool Instruction::isIdenticalTo(const Instruction *I) const {
327 return isIdenticalToWhenDefined(I) &&
328 SubclassOptionalData == I->SubclassOptionalData;
331 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
332 /// ignores the SubclassOptionalData flags, which specify conditions
333 /// under which the instruction's result is undefined.
334 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
335 if (getOpcode() != I->getOpcode() ||
336 getNumOperands() != I->getNumOperands() ||
337 getType() != I->getType())
340 // If both instructions have no operands, they are identical.
341 if (getNumOperands() == 0 && I->getNumOperands() == 0)
342 return haveSameSpecialState(this, I);
344 // We have two instructions of identical opcode and #operands. Check to see
345 // if all operands are the same.
346 if (!std::equal(op_begin(), op_end(), I->op_begin()))
349 if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
350 const PHINode *otherPHI = cast<PHINode>(I);
351 return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
352 otherPHI->block_begin());
355 return haveSameSpecialState(this, I);
359 // This should be kept in sync with isEquivalentOperation in
360 // lib/Transforms/IPO/MergeFunctions.cpp.
361 bool Instruction::isSameOperationAs(const Instruction *I,
362 unsigned flags) const {
363 bool IgnoreAlignment = flags & CompareIgnoringAlignment;
364 bool UseScalarTypes = flags & CompareUsingScalarTypes;
366 if (getOpcode() != I->getOpcode() ||
367 getNumOperands() != I->getNumOperands() ||
369 getType()->getScalarType() != I->getType()->getScalarType() :
370 getType() != I->getType()))
373 // We have two instructions of identical opcode and #operands. Check to see
374 // if all operands are the same type
375 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
377 getOperand(i)->getType()->getScalarType() !=
378 I->getOperand(i)->getType()->getScalarType() :
379 getOperand(i)->getType() != I->getOperand(i)->getType())
382 return haveSameSpecialState(this, I, IgnoreAlignment);
385 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
386 /// specified block. Note that PHI nodes are considered to evaluate their
387 /// operands in the corresponding predecessor block.
388 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
389 for (const Use &U : uses()) {
390 // PHI nodes uses values in the corresponding predecessor block. For other
391 // instructions, just check to see whether the parent of the use matches up.
392 const Instruction *I = cast<Instruction>(U.getUser());
393 const PHINode *PN = dyn_cast<PHINode>(I);
395 if (I->getParent() != BB)
400 if (PN->getIncomingBlock(U) != BB)
406 /// mayReadFromMemory - Return true if this instruction may read memory.
408 bool Instruction::mayReadFromMemory() const {
409 switch (getOpcode()) {
410 default: return false;
411 case Instruction::VAArg:
412 case Instruction::Load:
413 case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
414 case Instruction::AtomicCmpXchg:
415 case Instruction::AtomicRMW:
416 case Instruction::CatchRet:
417 case Instruction::TerminatePad:
419 case Instruction::Call:
420 return !cast<CallInst>(this)->doesNotAccessMemory();
421 case Instruction::Invoke:
422 return !cast<InvokeInst>(this)->doesNotAccessMemory();
423 case Instruction::Store:
424 return !cast<StoreInst>(this)->isUnordered();
428 /// mayWriteToMemory - Return true if this instruction may modify memory.
430 bool Instruction::mayWriteToMemory() const {
431 switch (getOpcode()) {
432 default: return false;
433 case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
434 case Instruction::Store:
435 case Instruction::VAArg:
436 case Instruction::AtomicCmpXchg:
437 case Instruction::AtomicRMW:
438 case Instruction::CatchRet:
439 case Instruction::TerminatePad:
441 case Instruction::Call:
442 return !cast<CallInst>(this)->onlyReadsMemory();
443 case Instruction::Invoke:
444 return !cast<InvokeInst>(this)->onlyReadsMemory();
445 case Instruction::Load:
446 return !cast<LoadInst>(this)->isUnordered();
450 bool Instruction::isAtomic() const {
451 switch (getOpcode()) {
454 case Instruction::AtomicCmpXchg:
455 case Instruction::AtomicRMW:
456 case Instruction::Fence:
458 case Instruction::Load:
459 return cast<LoadInst>(this)->getOrdering() != NotAtomic;
460 case Instruction::Store:
461 return cast<StoreInst>(this)->getOrdering() != NotAtomic;
465 bool Instruction::mayThrow() const {
466 if (const CallInst *CI = dyn_cast<CallInst>(this))
467 return !CI->doesNotThrow();
468 if (const auto *CRI = dyn_cast<CleanupReturnInst>(this))
469 return CRI->unwindsToCaller();
470 if (const auto *CEPI = dyn_cast<CatchEndPadInst>(this))
471 return CEPI->unwindsToCaller();
472 if (const auto *TPI = dyn_cast<TerminatePadInst>(this))
473 return TPI->unwindsToCaller();
474 return isa<ResumeInst>(this);
477 bool Instruction::mayReturn() const {
478 if (const CallInst *CI = dyn_cast<CallInst>(this))
479 return !CI->doesNotReturn();
483 /// isAssociative - Return true if the instruction is associative:
485 /// Associative operators satisfy: x op (y op z) === (x op y) op z
487 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
489 bool Instruction::isAssociative(unsigned Opcode) {
490 return Opcode == And || Opcode == Or || Opcode == Xor ||
491 Opcode == Add || Opcode == Mul;
494 bool Instruction::isAssociative() const {
495 unsigned Opcode = getOpcode();
496 if (isAssociative(Opcode))
502 return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
508 /// isCommutative - Return true if the instruction is commutative:
510 /// Commutative operators satisfy: (x op y) === (y op x)
512 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
513 /// applied to any type.
515 bool Instruction::isCommutative(unsigned op) {
530 /// isIdempotent - Return true if the instruction is idempotent:
532 /// Idempotent operators satisfy: x op x === x
534 /// In LLVM, the And and Or operators are idempotent.
536 bool Instruction::isIdempotent(unsigned Opcode) {
537 return Opcode == And || Opcode == Or;
540 /// isNilpotent - Return true if the instruction is nilpotent:
542 /// Nilpotent operators satisfy: x op x === Id,
544 /// where Id is the identity for the operator, i.e. a constant such that
545 /// x op Id === x and Id op x === x for all x.
547 /// In LLVM, the Xor operator is nilpotent.
549 bool Instruction::isNilpotent(unsigned Opcode) {
550 return Opcode == Xor;
553 Instruction *Instruction::cloneImpl() const {
554 llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
557 Instruction *Instruction::clone() const {
558 Instruction *New = nullptr;
559 switch (getOpcode()) {
561 llvm_unreachable("Unhandled Opcode.");
562 #define HANDLE_INST(num, opc, clas) \
563 case Instruction::opc: \
564 New = cast<clas>(this)->cloneImpl(); \
566 #include "llvm/IR/Instruction.def"
570 New->SubclassOptionalData = SubclassOptionalData;
574 // Otherwise, enumerate and copy over metadata from the old instruction to the
576 SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
577 getAllMetadataOtherThanDebugLoc(TheMDs);
578 for (const auto &MD : TheMDs)
579 New->setMetadata(MD.first, MD.second);
581 New->setDebugLoc(getDebugLoc());