1 //===-- Instruction.cpp - Implement the Instruction class -----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the Instruction class for the IR library.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/IR/Instruction.h"
15 #include "llvm/IR/CallSite.h"
16 #include "llvm/IR/Constants.h"
17 #include "llvm/IR/Instructions.h"
18 #include "llvm/IR/Module.h"
19 #include "llvm/IR/Operator.h"
20 #include "llvm/IR/Type.h"
23 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
24 Instruction *InsertBefore)
25 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
27 // If requested, insert this instruction into a basic block...
29 BasicBlock *BB = InsertBefore->getParent();
30 assert(BB && "Instruction to insert before is not in a basic block!");
31 BB->getInstList().insert(InsertBefore, this);
35 Instruction::Instruction(Type *ty, unsigned it, Use *Ops, unsigned NumOps,
36 BasicBlock *InsertAtEnd)
37 : User(ty, Value::InstructionVal + it, Ops, NumOps), Parent(nullptr) {
39 // append this instruction into the basic block
40 assert(InsertAtEnd && "Basic block to append to may not be NULL!");
41 InsertAtEnd->getInstList().push_back(this);
45 // Out of line virtual method, so the vtable, etc has a home.
46 Instruction::~Instruction() {
47 assert(!Parent && "Instruction still linked in the program!");
48 if (hasMetadataHashEntry())
49 clearMetadataHashEntries();
53 void Instruction::setParent(BasicBlock *P) {
57 const Module *Instruction::getModule() const {
58 return getParent()->getModule();
61 Module *Instruction::getModule() {
62 return getParent()->getModule();
66 void Instruction::removeFromParent() {
67 getParent()->getInstList().remove(this);
70 iplist<Instruction>::iterator Instruction::eraseFromParent() {
71 return getParent()->getInstList().erase(this);
74 /// insertBefore - Insert an unlinked instructions into a basic block
75 /// immediately before the specified instruction.
76 void Instruction::insertBefore(Instruction *InsertPos) {
77 InsertPos->getParent()->getInstList().insert(InsertPos, this);
80 /// insertAfter - Insert an unlinked instructions into a basic block
81 /// immediately after the specified instruction.
82 void Instruction::insertAfter(Instruction *InsertPos) {
83 InsertPos->getParent()->getInstList().insertAfter(InsertPos, this);
86 /// moveBefore - Unlink this instruction from its current basic block and
87 /// insert it into the basic block that MovePos lives in, right before
89 void Instruction::moveBefore(Instruction *MovePos) {
90 MovePos->getParent()->getInstList().splice(MovePos,getParent()->getInstList(),
94 /// Set or clear the unsafe-algebra flag on this instruction, which must be an
95 /// operator which supports this flag. See LangRef.html for the meaning of this
97 void Instruction::setHasUnsafeAlgebra(bool B) {
98 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
99 cast<FPMathOperator>(this)->setHasUnsafeAlgebra(B);
102 /// Set or clear the NoNaNs flag on this instruction, which must be an operator
103 /// which supports this flag. See LangRef.html for the meaning of this flag.
104 void Instruction::setHasNoNaNs(bool B) {
105 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
106 cast<FPMathOperator>(this)->setHasNoNaNs(B);
109 /// Set or clear the no-infs flag on this instruction, which must be an operator
110 /// which supports this flag. See LangRef.html for the meaning of this flag.
111 void Instruction::setHasNoInfs(bool B) {
112 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
113 cast<FPMathOperator>(this)->setHasNoInfs(B);
116 /// Set or clear the no-signed-zeros flag on this instruction, which must be an
117 /// operator which supports this flag. See LangRef.html for the meaning of this
119 void Instruction::setHasNoSignedZeros(bool B) {
120 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
121 cast<FPMathOperator>(this)->setHasNoSignedZeros(B);
124 /// Set or clear the allow-reciprocal flag on this instruction, which must be an
125 /// operator which supports this flag. See LangRef.html for the meaning of this
127 void Instruction::setHasAllowReciprocal(bool B) {
128 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
129 cast<FPMathOperator>(this)->setHasAllowReciprocal(B);
132 /// Convenience function for setting all the fast-math flags on this
133 /// instruction, which must be an operator which supports these flags. See
134 /// LangRef.html for the meaning of these flats.
135 void Instruction::setFastMathFlags(FastMathFlags FMF) {
136 assert(isa<FPMathOperator>(this) && "setting fast-math flag on invalid op");
137 cast<FPMathOperator>(this)->setFastMathFlags(FMF);
140 void Instruction::copyFastMathFlags(FastMathFlags FMF) {
141 assert(isa<FPMathOperator>(this) && "copying fast-math flag on invalid op");
142 cast<FPMathOperator>(this)->copyFastMathFlags(FMF);
145 /// Determine whether the unsafe-algebra flag is set.
146 bool Instruction::hasUnsafeAlgebra() const {
147 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
148 return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
151 /// Determine whether the no-NaNs flag is set.
152 bool Instruction::hasNoNaNs() const {
153 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
154 return cast<FPMathOperator>(this)->hasNoNaNs();
157 /// Determine whether the no-infs flag is set.
158 bool Instruction::hasNoInfs() const {
159 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
160 return cast<FPMathOperator>(this)->hasNoInfs();
163 /// Determine whether the no-signed-zeros flag is set.
164 bool Instruction::hasNoSignedZeros() const {
165 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
166 return cast<FPMathOperator>(this)->hasNoSignedZeros();
169 /// Determine whether the allow-reciprocal flag is set.
170 bool Instruction::hasAllowReciprocal() const {
171 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
172 return cast<FPMathOperator>(this)->hasAllowReciprocal();
175 /// Convenience function for getting all the fast-math flags, which must be an
176 /// operator which supports these flags. See LangRef.html for the meaning of
178 FastMathFlags Instruction::getFastMathFlags() const {
179 assert(isa<FPMathOperator>(this) && "getting fast-math flag on invalid op");
180 return cast<FPMathOperator>(this)->getFastMathFlags();
183 /// Copy I's fast-math flags
184 void Instruction::copyFastMathFlags(const Instruction *I) {
185 copyFastMathFlags(I->getFastMathFlags());
189 const char *Instruction::getOpcodeName(unsigned OpCode) {
192 case Ret: return "ret";
193 case Br: return "br";
194 case Switch: return "switch";
195 case IndirectBr: return "indirectbr";
196 case Invoke: return "invoke";
197 case Resume: return "resume";
198 case Unreachable: return "unreachable";
199 case CleanupEndPad: return "cleanupendpad";
200 case CleanupRet: return "cleanupret";
201 case CatchEndPad: return "catchendpad";
202 case CatchRet: return "catchret";
203 case CatchPad: return "catchpad";
204 case TerminatePad: return "terminatepad";
206 // Standard binary operators...
207 case Add: return "add";
208 case FAdd: return "fadd";
209 case Sub: return "sub";
210 case FSub: return "fsub";
211 case Mul: return "mul";
212 case FMul: return "fmul";
213 case UDiv: return "udiv";
214 case SDiv: return "sdiv";
215 case FDiv: return "fdiv";
216 case URem: return "urem";
217 case SRem: return "srem";
218 case FRem: return "frem";
220 // Logical operators...
221 case And: return "and";
222 case Or : return "or";
223 case Xor: return "xor";
225 // Memory instructions...
226 case Alloca: return "alloca";
227 case Load: return "load";
228 case Store: return "store";
229 case AtomicCmpXchg: return "cmpxchg";
230 case AtomicRMW: return "atomicrmw";
231 case Fence: return "fence";
232 case GetElementPtr: return "getelementptr";
234 // Convert instructions...
235 case Trunc: return "trunc";
236 case ZExt: return "zext";
237 case SExt: return "sext";
238 case FPTrunc: return "fptrunc";
239 case FPExt: return "fpext";
240 case FPToUI: return "fptoui";
241 case FPToSI: return "fptosi";
242 case UIToFP: return "uitofp";
243 case SIToFP: return "sitofp";
244 case IntToPtr: return "inttoptr";
245 case PtrToInt: return "ptrtoint";
246 case BitCast: return "bitcast";
247 case AddrSpaceCast: return "addrspacecast";
249 // Other instructions...
250 case ICmp: return "icmp";
251 case FCmp: return "fcmp";
252 case PHI: return "phi";
253 case Select: return "select";
254 case Call: return "call";
255 case Shl: return "shl";
256 case LShr: return "lshr";
257 case AShr: return "ashr";
258 case VAArg: return "va_arg";
259 case ExtractElement: return "extractelement";
260 case InsertElement: return "insertelement";
261 case ShuffleVector: return "shufflevector";
262 case ExtractValue: return "extractvalue";
263 case InsertValue: return "insertvalue";
264 case LandingPad: return "landingpad";
265 case CleanupPad: return "cleanuppad";
267 default: return "<Invalid operator> ";
271 /// Return true if both instructions have the same special state
272 /// This must be kept in sync with lib/Transforms/IPO/MergeFunctions.cpp.
273 static bool haveSameSpecialState(const Instruction *I1, const Instruction *I2,
274 bool IgnoreAlignment = false) {
275 assert(I1->getOpcode() == I2->getOpcode() &&
276 "Can not compare special state of different instructions");
278 if (const LoadInst *LI = dyn_cast<LoadInst>(I1))
279 return LI->isVolatile() == cast<LoadInst>(I2)->isVolatile() &&
280 (LI->getAlignment() == cast<LoadInst>(I2)->getAlignment() ||
282 LI->getOrdering() == cast<LoadInst>(I2)->getOrdering() &&
283 LI->getSynchScope() == cast<LoadInst>(I2)->getSynchScope();
284 if (const StoreInst *SI = dyn_cast<StoreInst>(I1))
285 return SI->isVolatile() == cast<StoreInst>(I2)->isVolatile() &&
286 (SI->getAlignment() == cast<StoreInst>(I2)->getAlignment() ||
288 SI->getOrdering() == cast<StoreInst>(I2)->getOrdering() &&
289 SI->getSynchScope() == cast<StoreInst>(I2)->getSynchScope();
290 if (const CmpInst *CI = dyn_cast<CmpInst>(I1))
291 return CI->getPredicate() == cast<CmpInst>(I2)->getPredicate();
292 if (const CallInst *CI = dyn_cast<CallInst>(I1))
293 return CI->isTailCall() == cast<CallInst>(I2)->isTailCall() &&
294 CI->getCallingConv() == cast<CallInst>(I2)->getCallingConv() &&
295 CI->getAttributes() == cast<CallInst>(I2)->getAttributes();
296 if (const InvokeInst *CI = dyn_cast<InvokeInst>(I1))
297 return CI->getCallingConv() == cast<InvokeInst>(I2)->getCallingConv() &&
298 CI->getAttributes() ==
299 cast<InvokeInst>(I2)->getAttributes();
300 if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(I1))
301 return IVI->getIndices() == cast<InsertValueInst>(I2)->getIndices();
302 if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(I1))
303 return EVI->getIndices() == cast<ExtractValueInst>(I2)->getIndices();
304 if (const FenceInst *FI = dyn_cast<FenceInst>(I1))
305 return FI->getOrdering() == cast<FenceInst>(I2)->getOrdering() &&
306 FI->getSynchScope() == cast<FenceInst>(I2)->getSynchScope();
307 if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I1))
308 return CXI->isVolatile() == cast<AtomicCmpXchgInst>(I2)->isVolatile() &&
309 CXI->isWeak() == cast<AtomicCmpXchgInst>(I2)->isWeak() &&
310 CXI->getSuccessOrdering() ==
311 cast<AtomicCmpXchgInst>(I2)->getSuccessOrdering() &&
312 CXI->getFailureOrdering() ==
313 cast<AtomicCmpXchgInst>(I2)->getFailureOrdering() &&
314 CXI->getSynchScope() == cast<AtomicCmpXchgInst>(I2)->getSynchScope();
315 if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I1))
316 return RMWI->getOperation() == cast<AtomicRMWInst>(I2)->getOperation() &&
317 RMWI->isVolatile() == cast<AtomicRMWInst>(I2)->isVolatile() &&
318 RMWI->getOrdering() == cast<AtomicRMWInst>(I2)->getOrdering() &&
319 RMWI->getSynchScope() == cast<AtomicRMWInst>(I2)->getSynchScope();
324 /// isIdenticalTo - Return true if the specified instruction is exactly
325 /// identical to the current one. This means that all operands match and any
326 /// extra information (e.g. load is volatile) agree.
327 bool Instruction::isIdenticalTo(const Instruction *I) const {
328 return isIdenticalToWhenDefined(I) &&
329 SubclassOptionalData == I->SubclassOptionalData;
332 /// isIdenticalToWhenDefined - This is like isIdenticalTo, except that it
333 /// ignores the SubclassOptionalData flags, which specify conditions
334 /// under which the instruction's result is undefined.
335 bool Instruction::isIdenticalToWhenDefined(const Instruction *I) const {
336 if (getOpcode() != I->getOpcode() ||
337 getNumOperands() != I->getNumOperands() ||
338 getType() != I->getType())
341 // If both instructions have no operands, they are identical.
342 if (getNumOperands() == 0 && I->getNumOperands() == 0)
343 return haveSameSpecialState(this, I);
345 // We have two instructions of identical opcode and #operands. Check to see
346 // if all operands are the same.
347 if (!std::equal(op_begin(), op_end(), I->op_begin()))
350 if (const PHINode *thisPHI = dyn_cast<PHINode>(this)) {
351 const PHINode *otherPHI = cast<PHINode>(I);
352 return std::equal(thisPHI->block_begin(), thisPHI->block_end(),
353 otherPHI->block_begin());
356 return haveSameSpecialState(this, I);
360 // This should be kept in sync with isEquivalentOperation in
361 // lib/Transforms/IPO/MergeFunctions.cpp.
362 bool Instruction::isSameOperationAs(const Instruction *I,
363 unsigned flags) const {
364 bool IgnoreAlignment = flags & CompareIgnoringAlignment;
365 bool UseScalarTypes = flags & CompareUsingScalarTypes;
367 if (getOpcode() != I->getOpcode() ||
368 getNumOperands() != I->getNumOperands() ||
370 getType()->getScalarType() != I->getType()->getScalarType() :
371 getType() != I->getType()))
374 // We have two instructions of identical opcode and #operands. Check to see
375 // if all operands are the same type
376 for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
378 getOperand(i)->getType()->getScalarType() !=
379 I->getOperand(i)->getType()->getScalarType() :
380 getOperand(i)->getType() != I->getOperand(i)->getType())
383 return haveSameSpecialState(this, I, IgnoreAlignment);
386 /// isUsedOutsideOfBlock - Return true if there are any uses of I outside of the
387 /// specified block. Note that PHI nodes are considered to evaluate their
388 /// operands in the corresponding predecessor block.
389 bool Instruction::isUsedOutsideOfBlock(const BasicBlock *BB) const {
390 for (const Use &U : uses()) {
391 // PHI nodes uses values in the corresponding predecessor block. For other
392 // instructions, just check to see whether the parent of the use matches up.
393 const Instruction *I = cast<Instruction>(U.getUser());
394 const PHINode *PN = dyn_cast<PHINode>(I);
396 if (I->getParent() != BB)
401 if (PN->getIncomingBlock(U) != BB)
407 /// mayReadFromMemory - Return true if this instruction may read memory.
409 bool Instruction::mayReadFromMemory() const {
410 switch (getOpcode()) {
411 default: return false;
412 case Instruction::VAArg:
413 case Instruction::Load:
414 case Instruction::Fence: // FIXME: refine definition of mayReadFromMemory
415 case Instruction::AtomicCmpXchg:
416 case Instruction::AtomicRMW:
417 case Instruction::CatchRet:
418 case Instruction::TerminatePad:
420 case Instruction::Call:
421 return !cast<CallInst>(this)->doesNotAccessMemory();
422 case Instruction::Invoke:
423 return !cast<InvokeInst>(this)->doesNotAccessMemory();
424 case Instruction::Store:
425 return !cast<StoreInst>(this)->isUnordered();
429 /// mayWriteToMemory - Return true if this instruction may modify memory.
431 bool Instruction::mayWriteToMemory() const {
432 switch (getOpcode()) {
433 default: return false;
434 case Instruction::Fence: // FIXME: refine definition of mayWriteToMemory
435 case Instruction::Store:
436 case Instruction::VAArg:
437 case Instruction::AtomicCmpXchg:
438 case Instruction::AtomicRMW:
439 case Instruction::CatchRet:
440 case Instruction::TerminatePad:
442 case Instruction::Call:
443 return !cast<CallInst>(this)->onlyReadsMemory();
444 case Instruction::Invoke:
445 return !cast<InvokeInst>(this)->onlyReadsMemory();
446 case Instruction::Load:
447 return !cast<LoadInst>(this)->isUnordered();
451 bool Instruction::isAtomic() const {
452 switch (getOpcode()) {
455 case Instruction::AtomicCmpXchg:
456 case Instruction::AtomicRMW:
457 case Instruction::Fence:
459 case Instruction::Load:
460 return cast<LoadInst>(this)->getOrdering() != NotAtomic;
461 case Instruction::Store:
462 return cast<StoreInst>(this)->getOrdering() != NotAtomic;
466 bool Instruction::mayThrow() const {
467 if (const CallInst *CI = dyn_cast<CallInst>(this))
468 return !CI->doesNotThrow();
469 if (const auto *CRI = dyn_cast<CleanupReturnInst>(this))
470 return CRI->unwindsToCaller();
471 if (const auto *CEPI = dyn_cast<CleanupEndPadInst>(this))
472 return CEPI->unwindsToCaller();
473 if (const auto *CEPI = dyn_cast<CatchEndPadInst>(this))
474 return CEPI->unwindsToCaller();
475 if (const auto *TPI = dyn_cast<TerminatePadInst>(this))
476 return TPI->unwindsToCaller();
477 return isa<ResumeInst>(this);
480 bool Instruction::mayReturn() const {
481 if (const CallInst *CI = dyn_cast<CallInst>(this))
482 return !CI->doesNotReturn();
486 /// isAssociative - Return true if the instruction is associative:
488 /// Associative operators satisfy: x op (y op z) === (x op y) op z
490 /// In LLVM, the Add, Mul, And, Or, and Xor operators are associative.
492 bool Instruction::isAssociative(unsigned Opcode) {
493 return Opcode == And || Opcode == Or || Opcode == Xor ||
494 Opcode == Add || Opcode == Mul;
497 bool Instruction::isAssociative() const {
498 unsigned Opcode = getOpcode();
499 if (isAssociative(Opcode))
505 return cast<FPMathOperator>(this)->hasUnsafeAlgebra();
511 /// isCommutative - Return true if the instruction is commutative:
513 /// Commutative operators satisfy: (x op y) === (y op x)
515 /// In LLVM, these are the associative operators, plus SetEQ and SetNE, when
516 /// applied to any type.
518 bool Instruction::isCommutative(unsigned op) {
533 /// isIdempotent - Return true if the instruction is idempotent:
535 /// Idempotent operators satisfy: x op x === x
537 /// In LLVM, the And and Or operators are idempotent.
539 bool Instruction::isIdempotent(unsigned Opcode) {
540 return Opcode == And || Opcode == Or;
543 /// isNilpotent - Return true if the instruction is nilpotent:
545 /// Nilpotent operators satisfy: x op x === Id,
547 /// where Id is the identity for the operator, i.e. a constant such that
548 /// x op Id === x and Id op x === x for all x.
550 /// In LLVM, the Xor operator is nilpotent.
552 bool Instruction::isNilpotent(unsigned Opcode) {
553 return Opcode == Xor;
556 Instruction *Instruction::cloneImpl() const {
557 llvm_unreachable("Subclass of Instruction failed to implement cloneImpl");
560 Instruction *Instruction::clone() const {
561 Instruction *New = nullptr;
562 switch (getOpcode()) {
564 llvm_unreachable("Unhandled Opcode.");
565 #define HANDLE_INST(num, opc, clas) \
566 case Instruction::opc: \
567 New = cast<clas>(this)->cloneImpl(); \
569 #include "llvm/IR/Instruction.def"
573 New->SubclassOptionalData = SubclassOptionalData;
577 // Otherwise, enumerate and copy over metadata from the old instruction to the
579 SmallVector<std::pair<unsigned, MDNode *>, 4> TheMDs;
580 getAllMetadataOtherThanDebugLoc(TheMDs);
581 for (const auto &MD : TheMDs)
582 New->setMetadata(MD.first, MD.second);
584 New->setDebugLoc(getDebugLoc());