1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements all of the non-inline methods for the LLVM instruction
13 //===----------------------------------------------------------------------===//
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/ConstantRange.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
29 //===----------------------------------------------------------------------===//
31 //===----------------------------------------------------------------------===//
33 User::op_iterator CallSite::getCallee() const {
34 Instruction *II(getInstruction());
36 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
40 //===----------------------------------------------------------------------===//
41 // TerminatorInst Class
42 //===----------------------------------------------------------------------===//
44 // Out of line virtual method, so the vtable, etc has a home.
45 TerminatorInst::~TerminatorInst() {
48 //===----------------------------------------------------------------------===//
49 // UnaryInstruction Class
50 //===----------------------------------------------------------------------===//
52 // Out of line virtual method, so the vtable, etc has a home.
53 UnaryInstruction::~UnaryInstruction() {
56 //===----------------------------------------------------------------------===//
58 //===----------------------------------------------------------------------===//
60 /// areInvalidOperands - Return a string if the specified operands are invalid
61 /// for a select operation, otherwise return null.
62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63 if (Op1->getType() != Op2->getType())
64 return "both values to select must have same type";
66 if (Op1->getType()->isTokenTy())
67 return "select values cannot have token type";
69 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
71 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
72 return "vector select condition element type must be i1";
73 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
75 return "selected values for vector select must be vectors";
76 if (ET->getNumElements() != VT->getNumElements())
77 return "vector select requires selected vectors to have "
78 "the same vector length as select condition";
79 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
80 return "select condition must be i1 or <n x i1>";
86 //===----------------------------------------------------------------------===//
88 //===----------------------------------------------------------------------===//
90 PHINode::PHINode(const PHINode &PN)
91 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
92 ReservedSpace(PN.getNumOperands()) {
93 allocHungoffUses(PN.getNumOperands());
94 std::copy(PN.op_begin(), PN.op_end(), op_begin());
95 std::copy(PN.block_begin(), PN.block_end(), block_begin());
96 SubclassOptionalData = PN.SubclassOptionalData;
99 // removeIncomingValue - Remove an incoming value. This is useful if a
100 // predecessor basic block is deleted.
101 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
102 Value *Removed = getIncomingValue(Idx);
104 // Move everything after this operand down.
106 // FIXME: we could just swap with the end of the list, then erase. However,
107 // clients might not expect this to happen. The code as it is thrashes the
108 // use/def lists, which is kinda lame.
109 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
110 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
112 // Nuke the last value.
113 Op<-1>().set(nullptr);
114 setNumHungOffUseOperands(getNumOperands() - 1);
116 // If the PHI node is dead, because it has zero entries, nuke it now.
117 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
118 // If anyone is using this PHI, make them use a dummy value instead...
119 replaceAllUsesWith(UndefValue::get(getType()));
125 /// growOperands - grow operands - This grows the operand list in response
126 /// to a push_back style of operation. This grows the number of ops by 1.5
129 void PHINode::growOperands() {
130 unsigned e = getNumOperands();
131 unsigned NumOps = e + e / 2;
132 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
134 ReservedSpace = NumOps;
135 growHungoffUses(ReservedSpace, /* IsPhi */ true);
138 /// hasConstantValue - If the specified PHI node always merges together the same
139 /// value, return the value, otherwise return null.
140 Value *PHINode::hasConstantValue() const {
141 // Exploit the fact that phi nodes always have at least one entry.
142 Value *ConstantValue = getIncomingValue(0);
143 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
144 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
145 if (ConstantValue != this)
146 return nullptr; // Incoming values not all the same.
147 // The case where the first value is this PHI.
148 ConstantValue = getIncomingValue(i);
150 if (ConstantValue == this)
151 return UndefValue::get(getType());
152 return ConstantValue;
155 //===----------------------------------------------------------------------===//
156 // LandingPadInst Implementation
157 //===----------------------------------------------------------------------===//
159 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
160 const Twine &NameStr, Instruction *InsertBefore)
161 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
162 init(NumReservedValues, NameStr);
165 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
166 const Twine &NameStr, BasicBlock *InsertAtEnd)
167 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
168 init(NumReservedValues, NameStr);
171 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
172 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
173 LP.getNumOperands()),
174 ReservedSpace(LP.getNumOperands()) {
175 allocHungoffUses(LP.getNumOperands());
176 Use *OL = getOperandList();
177 const Use *InOL = LP.getOperandList();
178 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
181 setCleanup(LP.isCleanup());
184 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
185 const Twine &NameStr,
186 Instruction *InsertBefore) {
187 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
190 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
191 const Twine &NameStr,
192 BasicBlock *InsertAtEnd) {
193 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
196 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
197 ReservedSpace = NumReservedValues;
198 setNumHungOffUseOperands(0);
199 allocHungoffUses(ReservedSpace);
204 /// growOperands - grow operands - This grows the operand list in response to a
205 /// push_back style of operation. This grows the number of ops by 2 times.
206 void LandingPadInst::growOperands(unsigned Size) {
207 unsigned e = getNumOperands();
208 if (ReservedSpace >= e + Size) return;
209 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
210 growHungoffUses(ReservedSpace);
213 void LandingPadInst::addClause(Constant *Val) {
214 unsigned OpNo = getNumOperands();
216 assert(OpNo < ReservedSpace && "Growing didn't work!");
217 setNumHungOffUseOperands(getNumOperands() + 1);
218 getOperandList()[OpNo] = Val;
221 //===----------------------------------------------------------------------===//
222 // CallInst Implementation
223 //===----------------------------------------------------------------------===//
225 CallInst::~CallInst() {
228 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
229 const Twine &NameStr) {
231 assert(getNumOperands() == Args.size() + 1 && "NumOperands not set up?");
235 assert((Args.size() == FTy->getNumParams() ||
236 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
237 "Calling a function with bad signature!");
239 for (unsigned i = 0; i != Args.size(); ++i)
240 assert((i >= FTy->getNumParams() ||
241 FTy->getParamType(i) == Args[i]->getType()) &&
242 "Calling a function with a bad signature!");
245 std::copy(Args.begin(), Args.end(), op_begin());
249 void CallInst::init(Value *Func, const Twine &NameStr) {
251 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
252 assert(getNumOperands() == 1 && "NumOperands not set up?");
255 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
260 CallInst::CallInst(Value *Func, const Twine &Name,
261 Instruction *InsertBefore)
262 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
263 ->getElementType())->getReturnType(),
265 OperandTraits<CallInst>::op_end(this) - 1,
270 CallInst::CallInst(Value *Func, const Twine &Name,
271 BasicBlock *InsertAtEnd)
272 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
273 ->getElementType())->getReturnType(),
275 OperandTraits<CallInst>::op_end(this) - 1,
280 CallInst::CallInst(const CallInst &CI)
281 : Instruction(CI.getType(), Instruction::Call,
282 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
283 CI.getNumOperands()),
284 AttributeList(CI.AttributeList), FTy(CI.FTy) {
285 setTailCallKind(CI.getTailCallKind());
286 setCallingConv(CI.getCallingConv());
288 std::copy(CI.op_begin(), CI.op_end(), op_begin());
289 SubclassOptionalData = CI.SubclassOptionalData;
292 void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
293 AttributeSet PAL = getAttributes();
294 PAL = PAL.addAttribute(getContext(), i, attr);
298 void CallInst::addAttribute(unsigned i, StringRef Kind, StringRef Value) {
299 AttributeSet PAL = getAttributes();
300 PAL = PAL.addAttribute(getContext(), i, Kind, Value);
304 void CallInst::removeAttribute(unsigned i, Attribute attr) {
305 AttributeSet PAL = getAttributes();
307 LLVMContext &Context = getContext();
308 PAL = PAL.removeAttributes(Context, i,
309 AttributeSet::get(Context, i, B));
313 void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
314 AttributeSet PAL = getAttributes();
315 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
319 void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
320 AttributeSet PAL = getAttributes();
321 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
325 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
326 if (AttributeList.hasAttribute(i, A))
328 if (const Function *F = getCalledFunction())
329 return F->getAttributes().hasAttribute(i, A);
333 /// IsConstantOne - Return true only if val is constant int 1
334 static bool IsConstantOne(Value *val) {
335 assert(val && "IsConstantOne does not work with nullptr val");
336 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
337 return CVal && CVal->isOne();
340 static Instruction *createMalloc(Instruction *InsertBefore,
341 BasicBlock *InsertAtEnd, Type *IntPtrTy,
342 Type *AllocTy, Value *AllocSize,
343 Value *ArraySize, Function *MallocF,
345 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
346 "createMalloc needs either InsertBefore or InsertAtEnd");
348 // malloc(type) becomes:
349 // bitcast (i8* malloc(typeSize)) to type*
350 // malloc(type, arraySize) becomes:
351 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
353 ArraySize = ConstantInt::get(IntPtrTy, 1);
354 else if (ArraySize->getType() != IntPtrTy) {
356 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
359 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
363 if (!IsConstantOne(ArraySize)) {
364 if (IsConstantOne(AllocSize)) {
365 AllocSize = ArraySize; // Operand * 1 = Operand
366 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
367 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
369 // Malloc arg is constant product of type size and array size
370 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
372 // Multiply type size by the array size...
374 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
375 "mallocsize", InsertBefore);
377 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
378 "mallocsize", InsertAtEnd);
382 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
383 // Create the call to Malloc.
384 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
385 Module* M = BB->getParent()->getParent();
386 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
387 Value *MallocFunc = MallocF;
389 // prototype malloc as "void *malloc(size_t)"
390 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr);
391 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
392 CallInst *MCall = nullptr;
393 Instruction *Result = nullptr;
395 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
397 if (Result->getType() != AllocPtrType)
398 // Create a cast instruction to convert to the right type...
399 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
401 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
403 if (Result->getType() != AllocPtrType) {
404 InsertAtEnd->getInstList().push_back(MCall);
405 // Create a cast instruction to convert to the right type...
406 Result = new BitCastInst(MCall, AllocPtrType, Name);
409 MCall->setTailCall();
410 if (Function *F = dyn_cast<Function>(MallocFunc)) {
411 MCall->setCallingConv(F->getCallingConv());
412 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
414 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
419 /// CreateMalloc - Generate the IR for a call to malloc:
420 /// 1. Compute the malloc call's argument as the specified type's size,
421 /// possibly multiplied by the array size if the array size is not
423 /// 2. Call malloc with that argument.
424 /// 3. Bitcast the result of the malloc call to the specified type.
425 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
426 Type *IntPtrTy, Type *AllocTy,
427 Value *AllocSize, Value *ArraySize,
430 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
431 ArraySize, MallocF, Name);
434 /// CreateMalloc - Generate the IR for a call to malloc:
435 /// 1. Compute the malloc call's argument as the specified type's size,
436 /// possibly multiplied by the array size if the array size is not
438 /// 2. Call malloc with that argument.
439 /// 3. Bitcast the result of the malloc call to the specified type.
440 /// Note: This function does not add the bitcast to the basic block, that is the
441 /// responsibility of the caller.
442 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
443 Type *IntPtrTy, Type *AllocTy,
444 Value *AllocSize, Value *ArraySize,
445 Function *MallocF, const Twine &Name) {
446 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
447 ArraySize, MallocF, Name);
450 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
451 BasicBlock *InsertAtEnd) {
452 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
453 "createFree needs either InsertBefore or InsertAtEnd");
454 assert(Source->getType()->isPointerTy() &&
455 "Can not free something of nonpointer type!");
457 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
458 Module* M = BB->getParent()->getParent();
460 Type *VoidTy = Type::getVoidTy(M->getContext());
461 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
462 // prototype free as "void free(void*)"
463 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr);
464 CallInst* Result = nullptr;
465 Value *PtrCast = Source;
467 if (Source->getType() != IntPtrTy)
468 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
469 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
471 if (Source->getType() != IntPtrTy)
472 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
473 Result = CallInst::Create(FreeFunc, PtrCast, "");
475 Result->setTailCall();
476 if (Function *F = dyn_cast<Function>(FreeFunc))
477 Result->setCallingConv(F->getCallingConv());
482 /// CreateFree - Generate the IR for a call to the builtin free function.
483 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
484 return createFree(Source, InsertBefore, nullptr);
487 /// CreateFree - Generate the IR for a call to the builtin free function.
488 /// Note: This function does not add the call to the basic block, that is the
489 /// responsibility of the caller.
490 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
491 Instruction* FreeCall = createFree(Source, nullptr, InsertAtEnd);
492 assert(FreeCall && "CreateFree did not create a CallInst");
496 //===----------------------------------------------------------------------===//
497 // InvokeInst Implementation
498 //===----------------------------------------------------------------------===//
500 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
501 BasicBlock *IfException, ArrayRef<Value *> Args,
502 const Twine &NameStr) {
505 assert(getNumOperands() == 3 + Args.size() && "NumOperands not set up?");
508 Op<-1>() = IfException;
511 assert(((Args.size() == FTy->getNumParams()) ||
512 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
513 "Invoking a function with bad signature");
515 for (unsigned i = 0, e = Args.size(); i != e; i++)
516 assert((i >= FTy->getNumParams() ||
517 FTy->getParamType(i) == Args[i]->getType()) &&
518 "Invoking a function with a bad signature!");
521 std::copy(Args.begin(), Args.end(), op_begin());
525 InvokeInst::InvokeInst(const InvokeInst &II)
526 : TerminatorInst(II.getType(), Instruction::Invoke,
527 OperandTraits<InvokeInst>::op_end(this) -
529 II.getNumOperands()),
530 AttributeList(II.AttributeList), FTy(II.FTy) {
531 setCallingConv(II.getCallingConv());
532 std::copy(II.op_begin(), II.op_end(), op_begin());
533 SubclassOptionalData = II.SubclassOptionalData;
536 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
537 return getSuccessor(idx);
539 unsigned InvokeInst::getNumSuccessorsV() const {
540 return getNumSuccessors();
542 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
543 return setSuccessor(idx, B);
546 bool InvokeInst::hasFnAttrImpl(Attribute::AttrKind A) const {
547 if (AttributeList.hasAttribute(AttributeSet::FunctionIndex, A))
549 if (const Function *F = getCalledFunction())
550 return F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, A);
554 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
555 if (AttributeList.hasAttribute(i, A))
557 if (const Function *F = getCalledFunction())
558 return F->getAttributes().hasAttribute(i, A);
562 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
563 AttributeSet PAL = getAttributes();
564 PAL = PAL.addAttribute(getContext(), i, attr);
568 void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
569 AttributeSet PAL = getAttributes();
571 PAL = PAL.removeAttributes(getContext(), i,
572 AttributeSet::get(getContext(), i, B));
576 void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
577 AttributeSet PAL = getAttributes();
578 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
582 void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
583 AttributeSet PAL = getAttributes();
584 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
588 LandingPadInst *InvokeInst::getLandingPadInst() const {
589 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
592 //===----------------------------------------------------------------------===//
593 // ReturnInst Implementation
594 //===----------------------------------------------------------------------===//
596 ReturnInst::ReturnInst(const ReturnInst &RI)
597 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
598 OperandTraits<ReturnInst>::op_end(this) -
600 RI.getNumOperands()) {
601 if (RI.getNumOperands())
602 Op<0>() = RI.Op<0>();
603 SubclassOptionalData = RI.SubclassOptionalData;
606 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
607 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
608 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
613 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
614 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
615 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
620 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
621 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
622 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
625 unsigned ReturnInst::getNumSuccessorsV() const {
626 return getNumSuccessors();
629 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
630 /// emit the vtable for the class in this translation unit.
631 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
632 llvm_unreachable("ReturnInst has no successors!");
635 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
636 llvm_unreachable("ReturnInst has no successors!");
639 ReturnInst::~ReturnInst() {
642 //===----------------------------------------------------------------------===//
643 // ResumeInst Implementation
644 //===----------------------------------------------------------------------===//
646 ResumeInst::ResumeInst(const ResumeInst &RI)
647 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
648 OperandTraits<ResumeInst>::op_begin(this), 1) {
649 Op<0>() = RI.Op<0>();
652 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
653 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
654 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
658 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
659 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
660 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
664 unsigned ResumeInst::getNumSuccessorsV() const {
665 return getNumSuccessors();
668 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
669 llvm_unreachable("ResumeInst has no successors!");
672 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
673 llvm_unreachable("ResumeInst has no successors!");
676 //===----------------------------------------------------------------------===//
677 // CleanupReturnInst Implementation
678 //===----------------------------------------------------------------------===//
680 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
681 : TerminatorInst(CRI.getType(), Instruction::CleanupRet,
682 OperandTraits<CleanupReturnInst>::op_end(this) -
683 CRI.getNumOperands(),
684 CRI.getNumOperands()) {
685 SubclassOptionalData = CRI.SubclassOptionalData;
686 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
687 if (Value *RetVal = CRI.getReturnValue())
688 setReturnValue(RetVal);
689 if (BasicBlock *UnwindDest = CRI.getUnwindDest())
690 setUnwindDest(UnwindDest);
693 void CleanupReturnInst::init(Value *RetVal, BasicBlock *UnwindBB) {
694 SubclassOptionalData = 0;
696 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
698 setInstructionSubclassData(getSubclassDataFromInstruction() | 2);
701 setUnwindDest(UnwindBB);
703 setReturnValue(RetVal);
706 CleanupReturnInst::CleanupReturnInst(LLVMContext &C, Value *RetVal,
707 BasicBlock *UnwindBB, unsigned Values,
708 Instruction *InsertBefore)
709 : TerminatorInst(Type::getVoidTy(C), Instruction::CleanupRet,
710 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
711 Values, InsertBefore) {
712 init(RetVal, UnwindBB);
715 CleanupReturnInst::CleanupReturnInst(LLVMContext &C, Value *RetVal,
716 BasicBlock *UnwindBB, unsigned Values,
717 BasicBlock *InsertAtEnd)
718 : TerminatorInst(Type::getVoidTy(C), Instruction::CleanupRet,
719 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
720 Values, InsertAtEnd) {
721 init(RetVal, UnwindBB);
724 BasicBlock *CleanupReturnInst::getUnwindDest() const {
726 return cast<BasicBlock>(getOperand(getUnwindLabelOpIdx()));
729 void CleanupReturnInst::setUnwindDest(BasicBlock *NewDest) {
731 setOperand(getUnwindLabelOpIdx(), NewDest);
734 BasicBlock *CleanupReturnInst::getSuccessorV(unsigned Idx) const {
736 return getUnwindDest();
738 unsigned CleanupReturnInst::getNumSuccessorsV() const {
739 return getNumSuccessors();
741 void CleanupReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
746 //===----------------------------------------------------------------------===//
747 // CatchEndPadInst Implementation
748 //===----------------------------------------------------------------------===//
750 CatchEndPadInst::CatchEndPadInst(const CatchEndPadInst &CRI)
751 : TerminatorInst(CRI.getType(), Instruction::CatchEndPad,
752 OperandTraits<CatchEndPadInst>::op_end(this) -
753 CRI.getNumOperands(),
754 CRI.getNumOperands()) {
755 SubclassOptionalData = CRI.SubclassOptionalData;
756 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
757 if (BasicBlock *UnwindDest = CRI.getUnwindDest())
758 setUnwindDest(UnwindDest);
761 void CatchEndPadInst::init(BasicBlock *UnwindBB) {
762 SubclassOptionalData = 0;
764 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
765 setUnwindDest(UnwindBB);
769 CatchEndPadInst::CatchEndPadInst(LLVMContext &C, BasicBlock *UnwindBB,
770 unsigned Values, Instruction *InsertBefore)
771 : TerminatorInst(Type::getVoidTy(C), Instruction::CatchEndPad,
772 OperandTraits<CatchEndPadInst>::op_end(this) - Values,
773 Values, InsertBefore) {
777 CatchEndPadInst::CatchEndPadInst(LLVMContext &C, BasicBlock *UnwindBB,
778 unsigned Values, BasicBlock *InsertAtEnd)
779 : TerminatorInst(Type::getVoidTy(C), Instruction::CatchEndPad,
780 OperandTraits<CatchEndPadInst>::op_end(this) - Values,
781 Values, InsertAtEnd) {
785 BasicBlock *CatchEndPadInst::getSuccessorV(unsigned Idx) const {
787 return getUnwindDest();
789 unsigned CatchEndPadInst::getNumSuccessorsV() const {
790 return getNumSuccessors();
792 void CatchEndPadInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
797 //===----------------------------------------------------------------------===//
798 // CatchReturnInst Implementation
799 //===----------------------------------------------------------------------===//
800 void CatchReturnInst::init(BasicBlock *BB, Value *RetVal) {
806 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
807 : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
808 OperandTraits<CatchReturnInst>::op_end(this) -
809 CRI.getNumOperands(),
810 CRI.getNumOperands()) {
811 Op<-1>() = CRI.Op<-1>();
812 if (CRI.getNumOperands() != 1) {
813 assert(CRI.getNumOperands() == 2);
814 Op<-2>() = CRI.Op<-2>();
818 CatchReturnInst::CatchReturnInst(BasicBlock *BB, Value *RetVal, unsigned Values,
819 Instruction *InsertBefore)
820 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
821 OperandTraits<CatchReturnInst>::op_end(this) - Values,
822 Values, InsertBefore) {
826 CatchReturnInst::CatchReturnInst(BasicBlock *BB, Value *RetVal, unsigned Values,
827 BasicBlock *InsertAtEnd)
828 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
829 OperandTraits<CatchReturnInst>::op_end(this) - Values,
830 Values, InsertAtEnd) {
834 BasicBlock *CatchReturnInst::getSuccessorV(unsigned Idx) const {
836 return getSuccessor();
838 unsigned CatchReturnInst::getNumSuccessorsV() const {
839 return getNumSuccessors();
841 void CatchReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
846 //===----------------------------------------------------------------------===//
847 // CatchPadInst Implementation
848 //===----------------------------------------------------------------------===//
849 void CatchPadInst::init(BasicBlock *IfNormal, BasicBlock *IfException,
850 ArrayRef<Value *> Args, const Twine &NameStr) {
851 assert(getNumOperands() == 2 + Args.size() && "NumOperands not set up?");
853 Op<-1>() = IfException;
854 std::copy(Args.begin(), Args.end(), op_begin());
858 CatchPadInst::CatchPadInst(const CatchPadInst &CPI)
859 : TerminatorInst(CPI.getType(), Instruction::CatchPad,
860 OperandTraits<CatchPadInst>::op_end(this) -
861 CPI.getNumOperands(),
862 CPI.getNumOperands()) {
863 std::copy(CPI.op_begin(), CPI.op_end(), op_begin());
866 CatchPadInst::CatchPadInst(Type *RetTy, BasicBlock *IfNormal,
867 BasicBlock *IfException, ArrayRef<Value *> Args,
868 unsigned Values, const Twine &NameStr,
869 Instruction *InsertBefore)
870 : TerminatorInst(RetTy, Instruction::CatchPad,
871 OperandTraits<CatchPadInst>::op_end(this) - Values, Values,
873 init(IfNormal, IfException, Args, NameStr);
876 CatchPadInst::CatchPadInst(Type *RetTy, BasicBlock *IfNormal,
877 BasicBlock *IfException, ArrayRef<Value *> Args,
878 unsigned Values, const Twine &NameStr,
879 BasicBlock *InsertAtEnd)
880 : TerminatorInst(RetTy, Instruction::CatchPad,
881 OperandTraits<CatchPadInst>::op_end(this) - Values, Values,
883 init(IfNormal, IfException, Args, NameStr);
886 BasicBlock *CatchPadInst::getSuccessorV(unsigned Idx) const {
887 return getSuccessor(Idx);
889 unsigned CatchPadInst::getNumSuccessorsV() const {
890 return getNumSuccessors();
892 void CatchPadInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
893 return setSuccessor(Idx, B);
896 //===----------------------------------------------------------------------===//
897 // TerminatePadInst Implementation
898 //===----------------------------------------------------------------------===//
899 void TerminatePadInst::init(BasicBlock *BB, ArrayRef<Value *> Args) {
900 SubclassOptionalData = 0;
902 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
905 std::copy(Args.begin(), Args.end(), op_begin());
908 TerminatePadInst::TerminatePadInst(const TerminatePadInst &TPI)
909 : TerminatorInst(TPI.getType(), Instruction::TerminatePad,
910 OperandTraits<TerminatePadInst>::op_end(this) -
911 TPI.getNumOperands(),
912 TPI.getNumOperands()) {
913 SubclassOptionalData = TPI.SubclassOptionalData;
914 setInstructionSubclassData(TPI.getSubclassDataFromInstruction());
915 std::copy(TPI.op_begin(), TPI.op_end(), op_begin());
918 TerminatePadInst::TerminatePadInst(LLVMContext &C, BasicBlock *BB,
919 ArrayRef<Value *> Args, unsigned Values,
920 Instruction *InsertBefore)
921 : TerminatorInst(Type::getVoidTy(C), Instruction::TerminatePad,
922 OperandTraits<TerminatePadInst>::op_end(this) - Values,
923 Values, InsertBefore) {
927 TerminatePadInst::TerminatePadInst(LLVMContext &C, BasicBlock *BB,
928 ArrayRef<Value *> Args, unsigned Values,
929 BasicBlock *InsertAtEnd)
930 : TerminatorInst(Type::getVoidTy(C), Instruction::TerminatePad,
931 OperandTraits<TerminatePadInst>::op_end(this) - Values,
932 Values, InsertAtEnd) {
936 BasicBlock *TerminatePadInst::getSuccessorV(unsigned Idx) const {
938 return getUnwindDest();
940 unsigned TerminatePadInst::getNumSuccessorsV() const {
941 return getNumSuccessors();
943 void TerminatePadInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
945 return setUnwindDest(B);
948 //===----------------------------------------------------------------------===//
949 // CleanupPadInst Implementation
950 //===----------------------------------------------------------------------===//
951 void CleanupPadInst::init(ArrayRef<Value *> Args, const Twine &NameStr) {
952 assert(getNumOperands() == Args.size() && "NumOperands not set up?");
953 std::copy(Args.begin(), Args.end(), op_begin());
957 CleanupPadInst::CleanupPadInst(const CleanupPadInst &CPI)
958 : Instruction(CPI.getType(), Instruction::CleanupPad,
959 OperandTraits<CleanupPadInst>::op_end(this) -
960 CPI.getNumOperands(),
961 CPI.getNumOperands()) {
962 std::copy(CPI.op_begin(), CPI.op_end(), op_begin());
965 CleanupPadInst::CleanupPadInst(Type *RetTy, ArrayRef<Value *> Args,
966 const Twine &NameStr, Instruction *InsertBefore)
967 : Instruction(RetTy, Instruction::CleanupPad,
968 OperandTraits<CleanupPadInst>::op_end(this) - Args.size(),
969 Args.size(), InsertBefore) {
973 CleanupPadInst::CleanupPadInst(Type *RetTy, ArrayRef<Value *> Args,
974 const Twine &NameStr, BasicBlock *InsertAtEnd)
975 : Instruction(RetTy, Instruction::CleanupPad,
976 OperandTraits<CleanupPadInst>::op_end(this) - Args.size(),
977 Args.size(), InsertAtEnd) {
981 //===----------------------------------------------------------------------===//
982 // UnreachableInst Implementation
983 //===----------------------------------------------------------------------===//
985 UnreachableInst::UnreachableInst(LLVMContext &Context,
986 Instruction *InsertBefore)
987 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
988 nullptr, 0, InsertBefore) {
990 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
991 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
992 nullptr, 0, InsertAtEnd) {
995 unsigned UnreachableInst::getNumSuccessorsV() const {
996 return getNumSuccessors();
999 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
1000 llvm_unreachable("UnreachableInst has no successors!");
1003 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
1004 llvm_unreachable("UnreachableInst has no successors!");
1007 //===----------------------------------------------------------------------===//
1008 // BranchInst Implementation
1009 //===----------------------------------------------------------------------===//
1011 void BranchInst::AssertOK() {
1012 if (isConditional())
1013 assert(getCondition()->getType()->isIntegerTy(1) &&
1014 "May only branch on boolean predicates!");
1017 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1018 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1019 OperandTraits<BranchInst>::op_end(this) - 1,
1021 assert(IfTrue && "Branch destination may not be null!");
1024 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1025 Instruction *InsertBefore)
1026 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1027 OperandTraits<BranchInst>::op_end(this) - 3,
1037 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1038 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1039 OperandTraits<BranchInst>::op_end(this) - 1,
1041 assert(IfTrue && "Branch destination may not be null!");
1045 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1046 BasicBlock *InsertAtEnd)
1047 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1048 OperandTraits<BranchInst>::op_end(this) - 3,
1059 BranchInst::BranchInst(const BranchInst &BI) :
1060 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
1061 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1062 BI.getNumOperands()) {
1063 Op<-1>() = BI.Op<-1>();
1064 if (BI.getNumOperands() != 1) {
1065 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1066 Op<-3>() = BI.Op<-3>();
1067 Op<-2>() = BI.Op<-2>();
1069 SubclassOptionalData = BI.SubclassOptionalData;
1072 void BranchInst::swapSuccessors() {
1073 assert(isConditional() &&
1074 "Cannot swap successors of an unconditional branch");
1075 Op<-1>().swap(Op<-2>());
1077 // Update profile metadata if present and it matches our structural
1079 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
1080 if (!ProfileData || ProfileData->getNumOperands() != 3)
1083 // The first operand is the name. Fetch them backwards and build a new one.
1084 Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
1085 ProfileData->getOperand(1)};
1086 setMetadata(LLVMContext::MD_prof,
1087 MDNode::get(ProfileData->getContext(), Ops));
1090 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
1091 return getSuccessor(idx);
1093 unsigned BranchInst::getNumSuccessorsV() const {
1094 return getNumSuccessors();
1096 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
1097 setSuccessor(idx, B);
1101 //===----------------------------------------------------------------------===//
1102 // AllocaInst Implementation
1103 //===----------------------------------------------------------------------===//
1105 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1107 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1109 assert(!isa<BasicBlock>(Amt) &&
1110 "Passed basic block into allocation size parameter! Use other ctor");
1111 assert(Amt->getType()->isIntegerTy() &&
1112 "Allocation array size is not an integer!");
1117 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore)
1118 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1120 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd)
1121 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1123 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
1124 Instruction *InsertBefore)
1125 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1127 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
1128 BasicBlock *InsertAtEnd)
1129 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1131 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
1132 const Twine &Name, Instruction *InsertBefore)
1133 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
1134 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1136 setAlignment(Align);
1137 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1141 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
1142 const Twine &Name, BasicBlock *InsertAtEnd)
1143 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
1144 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1146 setAlignment(Align);
1147 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1151 // Out of line virtual method, so the vtable, etc has a home.
1152 AllocaInst::~AllocaInst() {
1155 void AllocaInst::setAlignment(unsigned Align) {
1156 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1157 assert(Align <= MaximumAlignment &&
1158 "Alignment is greater than MaximumAlignment!");
1159 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1160 (Log2_32(Align) + 1));
1161 assert(getAlignment() == Align && "Alignment representation error!");
1164 bool AllocaInst::isArrayAllocation() const {
1165 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1166 return !CI->isOne();
1170 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1171 /// function and is a constant size. If so, the code generator will fold it
1172 /// into the prolog/epilog code, so it is basically free.
1173 bool AllocaInst::isStaticAlloca() const {
1174 // Must be constant size.
1175 if (!isa<ConstantInt>(getArraySize())) return false;
1177 // Must be in the entry block.
1178 const BasicBlock *Parent = getParent();
1179 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1182 //===----------------------------------------------------------------------===//
1183 // LoadInst Implementation
1184 //===----------------------------------------------------------------------===//
1186 void LoadInst::AssertOK() {
1187 assert(getOperand(0)->getType()->isPointerTy() &&
1188 "Ptr must have pointer type.");
1189 assert(!(isAtomic() && getAlignment() == 0) &&
1190 "Alignment required for atomic load");
1193 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
1194 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1196 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
1197 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1199 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1200 Instruction *InsertBef)
1201 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1203 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1204 BasicBlock *InsertAE)
1205 : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1207 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1208 unsigned Align, Instruction *InsertBef)
1209 : LoadInst(Ty, Ptr, Name, isVolatile, Align, NotAtomic, CrossThread,
1212 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1213 unsigned Align, BasicBlock *InsertAE)
1214 : LoadInst(Ptr, Name, isVolatile, Align, NotAtomic, CrossThread, InsertAE) {
1217 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1218 unsigned Align, AtomicOrdering Order,
1219 SynchronizationScope SynchScope, Instruction *InsertBef)
1220 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1221 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1222 setVolatile(isVolatile);
1223 setAlignment(Align);
1224 setAtomic(Order, SynchScope);
1229 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1230 unsigned Align, AtomicOrdering Order,
1231 SynchronizationScope SynchScope,
1232 BasicBlock *InsertAE)
1233 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1234 Load, Ptr, InsertAE) {
1235 setVolatile(isVolatile);
1236 setAlignment(Align);
1237 setAtomic(Order, SynchScope);
1242 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1243 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1244 Load, Ptr, InsertBef) {
1247 setAtomic(NotAtomic);
1249 if (Name && Name[0]) setName(Name);
1252 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1253 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1254 Load, Ptr, InsertAE) {
1257 setAtomic(NotAtomic);
1259 if (Name && Name[0]) setName(Name);
1262 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile,
1263 Instruction *InsertBef)
1264 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1265 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1266 setVolatile(isVolatile);
1268 setAtomic(NotAtomic);
1270 if (Name && Name[0]) setName(Name);
1273 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1274 BasicBlock *InsertAE)
1275 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1276 Load, Ptr, InsertAE) {
1277 setVolatile(isVolatile);
1279 setAtomic(NotAtomic);
1281 if (Name && Name[0]) setName(Name);
1284 void LoadInst::setAlignment(unsigned Align) {
1285 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1286 assert(Align <= MaximumAlignment &&
1287 "Alignment is greater than MaximumAlignment!");
1288 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1289 ((Log2_32(Align)+1)<<1));
1290 assert(getAlignment() == Align && "Alignment representation error!");
1293 //===----------------------------------------------------------------------===//
1294 // StoreInst Implementation
1295 //===----------------------------------------------------------------------===//
1297 void StoreInst::AssertOK() {
1298 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1299 assert(getOperand(1)->getType()->isPointerTy() &&
1300 "Ptr must have pointer type!");
1301 assert(getOperand(0)->getType() ==
1302 cast<PointerType>(getOperand(1)->getType())->getElementType()
1303 && "Ptr must be a pointer to Val type!");
1304 assert(!(isAtomic() && getAlignment() == 0) &&
1305 "Alignment required for atomic store");
1308 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1309 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1311 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1312 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1314 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1315 Instruction *InsertBefore)
1316 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1318 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1319 BasicBlock *InsertAtEnd)
1320 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1322 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1323 Instruction *InsertBefore)
1324 : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread,
1327 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1328 BasicBlock *InsertAtEnd)
1329 : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread,
1332 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1333 unsigned Align, AtomicOrdering Order,
1334 SynchronizationScope SynchScope,
1335 Instruction *InsertBefore)
1336 : Instruction(Type::getVoidTy(val->getContext()), Store,
1337 OperandTraits<StoreInst>::op_begin(this),
1338 OperandTraits<StoreInst>::operands(this),
1342 setVolatile(isVolatile);
1343 setAlignment(Align);
1344 setAtomic(Order, SynchScope);
1348 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1349 unsigned Align, AtomicOrdering Order,
1350 SynchronizationScope SynchScope,
1351 BasicBlock *InsertAtEnd)
1352 : Instruction(Type::getVoidTy(val->getContext()), Store,
1353 OperandTraits<StoreInst>::op_begin(this),
1354 OperandTraits<StoreInst>::operands(this),
1358 setVolatile(isVolatile);
1359 setAlignment(Align);
1360 setAtomic(Order, SynchScope);
1364 void StoreInst::setAlignment(unsigned Align) {
1365 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1366 assert(Align <= MaximumAlignment &&
1367 "Alignment is greater than MaximumAlignment!");
1368 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1369 ((Log2_32(Align)+1) << 1));
1370 assert(getAlignment() == Align && "Alignment representation error!");
1373 //===----------------------------------------------------------------------===//
1374 // AtomicCmpXchgInst Implementation
1375 //===----------------------------------------------------------------------===//
1377 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1378 AtomicOrdering SuccessOrdering,
1379 AtomicOrdering FailureOrdering,
1380 SynchronizationScope SynchScope) {
1384 setSuccessOrdering(SuccessOrdering);
1385 setFailureOrdering(FailureOrdering);
1386 setSynchScope(SynchScope);
1388 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1389 "All operands must be non-null!");
1390 assert(getOperand(0)->getType()->isPointerTy() &&
1391 "Ptr must have pointer type!");
1392 assert(getOperand(1)->getType() ==
1393 cast<PointerType>(getOperand(0)->getType())->getElementType()
1394 && "Ptr must be a pointer to Cmp type!");
1395 assert(getOperand(2)->getType() ==
1396 cast<PointerType>(getOperand(0)->getType())->getElementType()
1397 && "Ptr must be a pointer to NewVal type!");
1398 assert(SuccessOrdering != NotAtomic &&
1399 "AtomicCmpXchg instructions must be atomic!");
1400 assert(FailureOrdering != NotAtomic &&
1401 "AtomicCmpXchg instructions must be atomic!");
1402 assert(SuccessOrdering >= FailureOrdering &&
1403 "AtomicCmpXchg success ordering must be at least as strong as fail");
1404 assert(FailureOrdering != Release && FailureOrdering != AcquireRelease &&
1405 "AtomicCmpXchg failure ordering cannot include release semantics");
1408 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1409 AtomicOrdering SuccessOrdering,
1410 AtomicOrdering FailureOrdering,
1411 SynchronizationScope SynchScope,
1412 Instruction *InsertBefore)
1414 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1416 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1417 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1418 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1421 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1422 AtomicOrdering SuccessOrdering,
1423 AtomicOrdering FailureOrdering,
1424 SynchronizationScope SynchScope,
1425 BasicBlock *InsertAtEnd)
1427 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1429 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1430 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1431 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1434 //===----------------------------------------------------------------------===//
1435 // AtomicRMWInst Implementation
1436 //===----------------------------------------------------------------------===//
1438 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1439 AtomicOrdering Ordering,
1440 SynchronizationScope SynchScope) {
1443 setOperation(Operation);
1444 setOrdering(Ordering);
1445 setSynchScope(SynchScope);
1447 assert(getOperand(0) && getOperand(1) &&
1448 "All operands must be non-null!");
1449 assert(getOperand(0)->getType()->isPointerTy() &&
1450 "Ptr must have pointer type!");
1451 assert(getOperand(1)->getType() ==
1452 cast<PointerType>(getOperand(0)->getType())->getElementType()
1453 && "Ptr must be a pointer to Val type!");
1454 assert(Ordering != NotAtomic &&
1455 "AtomicRMW instructions must be atomic!");
1458 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1459 AtomicOrdering Ordering,
1460 SynchronizationScope SynchScope,
1461 Instruction *InsertBefore)
1462 : Instruction(Val->getType(), AtomicRMW,
1463 OperandTraits<AtomicRMWInst>::op_begin(this),
1464 OperandTraits<AtomicRMWInst>::operands(this),
1466 Init(Operation, Ptr, Val, Ordering, SynchScope);
1469 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1470 AtomicOrdering Ordering,
1471 SynchronizationScope SynchScope,
1472 BasicBlock *InsertAtEnd)
1473 : Instruction(Val->getType(), AtomicRMW,
1474 OperandTraits<AtomicRMWInst>::op_begin(this),
1475 OperandTraits<AtomicRMWInst>::operands(this),
1477 Init(Operation, Ptr, Val, Ordering, SynchScope);
1480 //===----------------------------------------------------------------------===//
1481 // FenceInst Implementation
1482 //===----------------------------------------------------------------------===//
1484 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1485 SynchronizationScope SynchScope,
1486 Instruction *InsertBefore)
1487 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1488 setOrdering(Ordering);
1489 setSynchScope(SynchScope);
1492 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1493 SynchronizationScope SynchScope,
1494 BasicBlock *InsertAtEnd)
1495 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1496 setOrdering(Ordering);
1497 setSynchScope(SynchScope);
1500 //===----------------------------------------------------------------------===//
1501 // GetElementPtrInst Implementation
1502 //===----------------------------------------------------------------------===//
1504 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1505 const Twine &Name) {
1506 assert(getNumOperands() == 1 + IdxList.size() &&
1507 "NumOperands not initialized?");
1509 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1513 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1514 : Instruction(GEPI.getType(), GetElementPtr,
1515 OperandTraits<GetElementPtrInst>::op_end(this) -
1516 GEPI.getNumOperands(),
1517 GEPI.getNumOperands()),
1518 SourceElementType(GEPI.SourceElementType),
1519 ResultElementType(GEPI.ResultElementType) {
1520 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1521 SubclassOptionalData = GEPI.SubclassOptionalData;
1524 /// getIndexedType - Returns the type of the element that would be accessed with
1525 /// a gep instruction with the specified parameters.
1527 /// The Idxs pointer should point to a continuous piece of memory containing the
1528 /// indices, either as Value* or uint64_t.
1530 /// A null type is returned if the indices are invalid for the specified
1533 template <typename IndexTy>
1534 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1535 // Handle the special case of the empty set index set, which is always valid.
1536 if (IdxList.empty())
1539 // If there is at least one index, the top level type must be sized, otherwise
1540 // it cannot be 'stepped over'.
1541 if (!Agg->isSized())
1544 unsigned CurIdx = 1;
1545 for (; CurIdx != IdxList.size(); ++CurIdx) {
1546 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1547 if (!CT || CT->isPointerTy()) return nullptr;
1548 IndexTy Index = IdxList[CurIdx];
1549 if (!CT->indexValid(Index)) return nullptr;
1550 Agg = CT->getTypeAtIndex(Index);
1552 return CurIdx == IdxList.size() ? Agg : nullptr;
1555 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1556 return getIndexedTypeInternal(Ty, IdxList);
1559 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1560 ArrayRef<Constant *> IdxList) {
1561 return getIndexedTypeInternal(Ty, IdxList);
1564 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1565 return getIndexedTypeInternal(Ty, IdxList);
1568 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1569 /// zeros. If so, the result pointer and the first operand have the same
1570 /// value, just potentially different types.
1571 bool GetElementPtrInst::hasAllZeroIndices() const {
1572 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1573 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1574 if (!CI->isZero()) return false;
1582 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1583 /// constant integers. If so, the result pointer and the first operand have
1584 /// a constant offset between them.
1585 bool GetElementPtrInst::hasAllConstantIndices() const {
1586 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1587 if (!isa<ConstantInt>(getOperand(i)))
1593 void GetElementPtrInst::setIsInBounds(bool B) {
1594 cast<GEPOperator>(this)->setIsInBounds(B);
1597 bool GetElementPtrInst::isInBounds() const {
1598 return cast<GEPOperator>(this)->isInBounds();
1601 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1602 APInt &Offset) const {
1603 // Delegate to the generic GEPOperator implementation.
1604 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1607 //===----------------------------------------------------------------------===//
1608 // ExtractElementInst Implementation
1609 //===----------------------------------------------------------------------===//
1611 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1613 Instruction *InsertBef)
1614 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1616 OperandTraits<ExtractElementInst>::op_begin(this),
1618 assert(isValidOperands(Val, Index) &&
1619 "Invalid extractelement instruction operands!");
1625 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1627 BasicBlock *InsertAE)
1628 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1630 OperandTraits<ExtractElementInst>::op_begin(this),
1632 assert(isValidOperands(Val, Index) &&
1633 "Invalid extractelement instruction operands!");
1641 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1642 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1648 //===----------------------------------------------------------------------===//
1649 // InsertElementInst Implementation
1650 //===----------------------------------------------------------------------===//
1652 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1654 Instruction *InsertBef)
1655 : Instruction(Vec->getType(), InsertElement,
1656 OperandTraits<InsertElementInst>::op_begin(this),
1658 assert(isValidOperands(Vec, Elt, Index) &&
1659 "Invalid insertelement instruction operands!");
1666 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1668 BasicBlock *InsertAE)
1669 : Instruction(Vec->getType(), InsertElement,
1670 OperandTraits<InsertElementInst>::op_begin(this),
1672 assert(isValidOperands(Vec, Elt, Index) &&
1673 "Invalid insertelement instruction operands!");
1681 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1682 const Value *Index) {
1683 if (!Vec->getType()->isVectorTy())
1684 return false; // First operand of insertelement must be vector type.
1686 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1687 return false;// Second operand of insertelement must be vector element type.
1689 if (!Index->getType()->isIntegerTy())
1690 return false; // Third operand of insertelement must be i32.
1695 //===----------------------------------------------------------------------===//
1696 // ShuffleVectorInst Implementation
1697 //===----------------------------------------------------------------------===//
1699 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1701 Instruction *InsertBefore)
1702 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1703 cast<VectorType>(Mask->getType())->getNumElements()),
1705 OperandTraits<ShuffleVectorInst>::op_begin(this),
1706 OperandTraits<ShuffleVectorInst>::operands(this),
1708 assert(isValidOperands(V1, V2, Mask) &&
1709 "Invalid shuffle vector instruction operands!");
1716 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1718 BasicBlock *InsertAtEnd)
1719 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1720 cast<VectorType>(Mask->getType())->getNumElements()),
1722 OperandTraits<ShuffleVectorInst>::op_begin(this),
1723 OperandTraits<ShuffleVectorInst>::operands(this),
1725 assert(isValidOperands(V1, V2, Mask) &&
1726 "Invalid shuffle vector instruction operands!");
1734 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1735 const Value *Mask) {
1736 // V1 and V2 must be vectors of the same type.
1737 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1740 // Mask must be vector of i32.
1741 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1742 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1745 // Check to see if Mask is valid.
1746 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1749 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1750 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1751 for (Value *Op : MV->operands()) {
1752 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1753 if (CI->uge(V1Size*2))
1755 } else if (!isa<UndefValue>(Op)) {
1762 if (const ConstantDataSequential *CDS =
1763 dyn_cast<ConstantDataSequential>(Mask)) {
1764 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1765 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1766 if (CDS->getElementAsInteger(i) >= V1Size*2)
1771 // The bitcode reader can create a place holder for a forward reference
1772 // used as the shuffle mask. When this occurs, the shuffle mask will
1773 // fall into this case and fail. To avoid this error, do this bit of
1774 // ugliness to allow such a mask pass.
1775 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1776 if (CE->getOpcode() == Instruction::UserOp1)
1782 /// getMaskValue - Return the index from the shuffle mask for the specified
1783 /// output result. This is either -1 if the element is undef or a number less
1784 /// than 2*numelements.
1785 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1786 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1787 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1788 return CDS->getElementAsInteger(i);
1789 Constant *C = Mask->getAggregateElement(i);
1790 if (isa<UndefValue>(C))
1792 return cast<ConstantInt>(C)->getZExtValue();
1795 /// getShuffleMask - Return the full mask for this instruction, where each
1796 /// element is the element number and undef's are returned as -1.
1797 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1798 SmallVectorImpl<int> &Result) {
1799 unsigned NumElts = Mask->getType()->getVectorNumElements();
1801 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1802 for (unsigned i = 0; i != NumElts; ++i)
1803 Result.push_back(CDS->getElementAsInteger(i));
1806 for (unsigned i = 0; i != NumElts; ++i) {
1807 Constant *C = Mask->getAggregateElement(i);
1808 Result.push_back(isa<UndefValue>(C) ? -1 :
1809 cast<ConstantInt>(C)->getZExtValue());
1814 //===----------------------------------------------------------------------===//
1815 // InsertValueInst Class
1816 //===----------------------------------------------------------------------===//
1818 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1819 const Twine &Name) {
1820 assert(getNumOperands() == 2 && "NumOperands not initialized?");
1822 // There's no fundamental reason why we require at least one index
1823 // (other than weirdness with &*IdxBegin being invalid; see
1824 // getelementptr's init routine for example). But there's no
1825 // present need to support it.
1826 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1828 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1829 Val->getType() && "Inserted value must match indexed type!");
1833 Indices.append(Idxs.begin(), Idxs.end());
1837 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1838 : Instruction(IVI.getType(), InsertValue,
1839 OperandTraits<InsertValueInst>::op_begin(this), 2),
1840 Indices(IVI.Indices) {
1841 Op<0>() = IVI.getOperand(0);
1842 Op<1>() = IVI.getOperand(1);
1843 SubclassOptionalData = IVI.SubclassOptionalData;
1846 //===----------------------------------------------------------------------===//
1847 // ExtractValueInst Class
1848 //===----------------------------------------------------------------------===//
1850 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1851 assert(getNumOperands() == 1 && "NumOperands not initialized?");
1853 // There's no fundamental reason why we require at least one index.
1854 // But there's no present need to support it.
1855 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1857 Indices.append(Idxs.begin(), Idxs.end());
1861 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1862 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1863 Indices(EVI.Indices) {
1864 SubclassOptionalData = EVI.SubclassOptionalData;
1867 // getIndexedType - Returns the type of the element that would be extracted
1868 // with an extractvalue instruction with the specified parameters.
1870 // A null type is returned if the indices are invalid for the specified
1873 Type *ExtractValueInst::getIndexedType(Type *Agg,
1874 ArrayRef<unsigned> Idxs) {
1875 for (unsigned Index : Idxs) {
1876 // We can't use CompositeType::indexValid(Index) here.
1877 // indexValid() always returns true for arrays because getelementptr allows
1878 // out-of-bounds indices. Since we don't allow those for extractvalue and
1879 // insertvalue we need to check array indexing manually.
1880 // Since the only other types we can index into are struct types it's just
1881 // as easy to check those manually as well.
1882 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1883 if (Index >= AT->getNumElements())
1885 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1886 if (Index >= ST->getNumElements())
1889 // Not a valid type to index into.
1893 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1895 return const_cast<Type*>(Agg);
1898 //===----------------------------------------------------------------------===//
1899 // BinaryOperator Class
1900 //===----------------------------------------------------------------------===//
1902 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1903 Type *Ty, const Twine &Name,
1904 Instruction *InsertBefore)
1905 : Instruction(Ty, iType,
1906 OperandTraits<BinaryOperator>::op_begin(this),
1907 OperandTraits<BinaryOperator>::operands(this),
1915 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1916 Type *Ty, const Twine &Name,
1917 BasicBlock *InsertAtEnd)
1918 : Instruction(Ty, iType,
1919 OperandTraits<BinaryOperator>::op_begin(this),
1920 OperandTraits<BinaryOperator>::operands(this),
1929 void BinaryOperator::init(BinaryOps iType) {
1930 Value *LHS = getOperand(0), *RHS = getOperand(1);
1931 (void)LHS; (void)RHS; // Silence warnings.
1932 assert(LHS->getType() == RHS->getType() &&
1933 "Binary operator operand types must match!");
1938 assert(getType() == LHS->getType() &&
1939 "Arithmetic operation should return same type as operands!");
1940 assert(getType()->isIntOrIntVectorTy() &&
1941 "Tried to create an integer operation on a non-integer type!");
1943 case FAdd: case FSub:
1945 assert(getType() == LHS->getType() &&
1946 "Arithmetic operation should return same type as operands!");
1947 assert(getType()->isFPOrFPVectorTy() &&
1948 "Tried to create a floating-point operation on a "
1949 "non-floating-point type!");
1953 assert(getType() == LHS->getType() &&
1954 "Arithmetic operation should return same type as operands!");
1955 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1956 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1957 "Incorrect operand type (not integer) for S/UDIV");
1960 assert(getType() == LHS->getType() &&
1961 "Arithmetic operation should return same type as operands!");
1962 assert(getType()->isFPOrFPVectorTy() &&
1963 "Incorrect operand type (not floating point) for FDIV");
1967 assert(getType() == LHS->getType() &&
1968 "Arithmetic operation should return same type as operands!");
1969 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1970 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1971 "Incorrect operand type (not integer) for S/UREM");
1974 assert(getType() == LHS->getType() &&
1975 "Arithmetic operation should return same type as operands!");
1976 assert(getType()->isFPOrFPVectorTy() &&
1977 "Incorrect operand type (not floating point) for FREM");
1982 assert(getType() == LHS->getType() &&
1983 "Shift operation should return same type as operands!");
1984 assert((getType()->isIntegerTy() ||
1985 (getType()->isVectorTy() &&
1986 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1987 "Tried to create a shift operation on a non-integral type!");
1991 assert(getType() == LHS->getType() &&
1992 "Logical operation should return same type as operands!");
1993 assert((getType()->isIntegerTy() ||
1994 (getType()->isVectorTy() &&
1995 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1996 "Tried to create a logical operation on a non-integral type!");
2004 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2006 Instruction *InsertBefore) {
2007 assert(S1->getType() == S2->getType() &&
2008 "Cannot create binary operator with two operands of differing type!");
2009 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2012 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2014 BasicBlock *InsertAtEnd) {
2015 BinaryOperator *Res = Create(Op, S1, S2, Name);
2016 InsertAtEnd->getInstList().push_back(Res);
2020 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2021 Instruction *InsertBefore) {
2022 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2023 return new BinaryOperator(Instruction::Sub,
2025 Op->getType(), Name, InsertBefore);
2028 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2029 BasicBlock *InsertAtEnd) {
2030 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2031 return new BinaryOperator(Instruction::Sub,
2033 Op->getType(), Name, InsertAtEnd);
2036 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2037 Instruction *InsertBefore) {
2038 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2039 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2042 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2043 BasicBlock *InsertAtEnd) {
2044 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2045 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2048 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2049 Instruction *InsertBefore) {
2050 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2051 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2054 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2055 BasicBlock *InsertAtEnd) {
2056 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2057 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2060 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2061 Instruction *InsertBefore) {
2062 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2063 return new BinaryOperator(Instruction::FSub, zero, Op,
2064 Op->getType(), Name, InsertBefore);
2067 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2068 BasicBlock *InsertAtEnd) {
2069 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2070 return new BinaryOperator(Instruction::FSub, zero, Op,
2071 Op->getType(), Name, InsertAtEnd);
2074 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2075 Instruction *InsertBefore) {
2076 Constant *C = Constant::getAllOnesValue(Op->getType());
2077 return new BinaryOperator(Instruction::Xor, Op, C,
2078 Op->getType(), Name, InsertBefore);
2081 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2082 BasicBlock *InsertAtEnd) {
2083 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2084 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2085 Op->getType(), Name, InsertAtEnd);
2089 // isConstantAllOnes - Helper function for several functions below
2090 static inline bool isConstantAllOnes(const Value *V) {
2091 if (const Constant *C = dyn_cast<Constant>(V))
2092 return C->isAllOnesValue();
2096 bool BinaryOperator::isNeg(const Value *V) {
2097 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2098 if (Bop->getOpcode() == Instruction::Sub)
2099 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
2100 return C->isNegativeZeroValue();
2104 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
2105 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2106 if (Bop->getOpcode() == Instruction::FSub)
2107 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
2108 if (!IgnoreZeroSign)
2109 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
2110 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
2115 bool BinaryOperator::isNot(const Value *V) {
2116 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2117 return (Bop->getOpcode() == Instruction::Xor &&
2118 (isConstantAllOnes(Bop->getOperand(1)) ||
2119 isConstantAllOnes(Bop->getOperand(0))));
2123 Value *BinaryOperator::getNegArgument(Value *BinOp) {
2124 return cast<BinaryOperator>(BinOp)->getOperand(1);
2127 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
2128 return getNegArgument(const_cast<Value*>(BinOp));
2131 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
2132 return cast<BinaryOperator>(BinOp)->getOperand(1);
2135 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
2136 return getFNegArgument(const_cast<Value*>(BinOp));
2139 Value *BinaryOperator::getNotArgument(Value *BinOp) {
2140 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
2141 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
2142 Value *Op0 = BO->getOperand(0);
2143 Value *Op1 = BO->getOperand(1);
2144 if (isConstantAllOnes(Op0)) return Op1;
2146 assert(isConstantAllOnes(Op1));
2150 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
2151 return getNotArgument(const_cast<Value*>(BinOp));
2155 // swapOperands - Exchange the two operands to this instruction. This
2156 // instruction is safe to use on any binary instruction and does not
2157 // modify the semantics of the instruction. If the instruction is
2158 // order dependent (SetLT f.e.) the opcode is changed.
2160 bool BinaryOperator::swapOperands() {
2161 if (!isCommutative())
2162 return true; // Can't commute operands
2163 Op<0>().swap(Op<1>());
2167 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
2168 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
2171 void BinaryOperator::setHasNoSignedWrap(bool b) {
2172 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
2175 void BinaryOperator::setIsExact(bool b) {
2176 cast<PossiblyExactOperator>(this)->setIsExact(b);
2179 bool BinaryOperator::hasNoUnsignedWrap() const {
2180 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
2183 bool BinaryOperator::hasNoSignedWrap() const {
2184 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
2187 bool BinaryOperator::isExact() const {
2188 return cast<PossiblyExactOperator>(this)->isExact();
2191 void BinaryOperator::copyIRFlags(const Value *V) {
2192 // Copy the wrapping flags.
2193 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
2194 setHasNoSignedWrap(OB->hasNoSignedWrap());
2195 setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
2198 // Copy the exact flag.
2199 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
2200 setIsExact(PE->isExact());
2202 // Copy the fast-math flags.
2203 if (auto *FP = dyn_cast<FPMathOperator>(V))
2204 copyFastMathFlags(FP->getFastMathFlags());
2207 void BinaryOperator::andIRFlags(const Value *V) {
2208 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
2209 setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
2210 setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
2213 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
2214 setIsExact(isExact() & PE->isExact());
2216 if (auto *FP = dyn_cast<FPMathOperator>(V)) {
2217 FastMathFlags FM = getFastMathFlags();
2218 FM &= FP->getFastMathFlags();
2219 copyFastMathFlags(FM);
2224 //===----------------------------------------------------------------------===//
2225 // FPMathOperator Class
2226 //===----------------------------------------------------------------------===//
2228 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2229 /// An accuracy of 0.0 means that the operation should be performed with the
2230 /// default precision.
2231 float FPMathOperator::getFPAccuracy() const {
2233 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2236 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2237 return Accuracy->getValueAPF().convertToFloat();
2241 //===----------------------------------------------------------------------===//
2243 //===----------------------------------------------------------------------===//
2245 void CastInst::anchor() {}
2247 // Just determine if this cast only deals with integral->integral conversion.
2248 bool CastInst::isIntegerCast() const {
2249 switch (getOpcode()) {
2250 default: return false;
2251 case Instruction::ZExt:
2252 case Instruction::SExt:
2253 case Instruction::Trunc:
2255 case Instruction::BitCast:
2256 return getOperand(0)->getType()->isIntegerTy() &&
2257 getType()->isIntegerTy();
2261 bool CastInst::isLosslessCast() const {
2262 // Only BitCast can be lossless, exit fast if we're not BitCast
2263 if (getOpcode() != Instruction::BitCast)
2266 // Identity cast is always lossless
2267 Type* SrcTy = getOperand(0)->getType();
2268 Type* DstTy = getType();
2272 // Pointer to pointer is always lossless.
2273 if (SrcTy->isPointerTy())
2274 return DstTy->isPointerTy();
2275 return false; // Other types have no identity values
2278 /// This function determines if the CastInst does not require any bits to be
2279 /// changed in order to effect the cast. Essentially, it identifies cases where
2280 /// no code gen is necessary for the cast, hence the name no-op cast. For
2281 /// example, the following are all no-op casts:
2282 /// # bitcast i32* %x to i8*
2283 /// # bitcast <2 x i32> %x to <4 x i16>
2284 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2285 /// @brief Determine if the described cast is a no-op.
2286 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2291 default: llvm_unreachable("Invalid CastOp");
2292 case Instruction::Trunc:
2293 case Instruction::ZExt:
2294 case Instruction::SExt:
2295 case Instruction::FPTrunc:
2296 case Instruction::FPExt:
2297 case Instruction::UIToFP:
2298 case Instruction::SIToFP:
2299 case Instruction::FPToUI:
2300 case Instruction::FPToSI:
2301 case Instruction::AddrSpaceCast:
2302 // TODO: Target informations may give a more accurate answer here.
2304 case Instruction::BitCast:
2305 return true; // BitCast never modifies bits.
2306 case Instruction::PtrToInt:
2307 return IntPtrTy->getScalarSizeInBits() ==
2308 DestTy->getScalarSizeInBits();
2309 case Instruction::IntToPtr:
2310 return IntPtrTy->getScalarSizeInBits() ==
2311 SrcTy->getScalarSizeInBits();
2315 /// @brief Determine if a cast is a no-op.
2316 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2317 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2320 bool CastInst::isNoopCast(const DataLayout &DL) const {
2321 Type *PtrOpTy = nullptr;
2322 if (getOpcode() == Instruction::PtrToInt)
2323 PtrOpTy = getOperand(0)->getType();
2324 else if (getOpcode() == Instruction::IntToPtr)
2325 PtrOpTy = getType();
2328 PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0);
2330 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2333 /// This function determines if a pair of casts can be eliminated and what
2334 /// opcode should be used in the elimination. This assumes that there are two
2335 /// instructions like this:
2336 /// * %F = firstOpcode SrcTy %x to MidTy
2337 /// * %S = secondOpcode MidTy %F to DstTy
2338 /// The function returns a resultOpcode so these two casts can be replaced with:
2339 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2340 /// If no such cast is permited, the function returns 0.
2341 unsigned CastInst::isEliminableCastPair(
2342 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2343 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2344 Type *DstIntPtrTy) {
2345 // Define the 144 possibilities for these two cast instructions. The values
2346 // in this matrix determine what to do in a given situation and select the
2347 // case in the switch below. The rows correspond to firstOp, the columns
2348 // correspond to secondOp. In looking at the table below, keep in mind
2349 // the following cast properties:
2351 // Size Compare Source Destination
2352 // Operator Src ? Size Type Sign Type Sign
2353 // -------- ------------ ------------------- ---------------------
2354 // TRUNC > Integer Any Integral Any
2355 // ZEXT < Integral Unsigned Integer Any
2356 // SEXT < Integral Signed Integer Any
2357 // FPTOUI n/a FloatPt n/a Integral Unsigned
2358 // FPTOSI n/a FloatPt n/a Integral Signed
2359 // UITOFP n/a Integral Unsigned FloatPt n/a
2360 // SITOFP n/a Integral Signed FloatPt n/a
2361 // FPTRUNC > FloatPt n/a FloatPt n/a
2362 // FPEXT < FloatPt n/a FloatPt n/a
2363 // PTRTOINT n/a Pointer n/a Integral Unsigned
2364 // INTTOPTR n/a Integral Unsigned Pointer n/a
2365 // BITCAST = FirstClass n/a FirstClass n/a
2366 // ADDRSPCST n/a Pointer n/a Pointer n/a
2368 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2369 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2370 // into "fptoui double to i64", but this loses information about the range
2371 // of the produced value (we no longer know the top-part is all zeros).
2372 // Further this conversion is often much more expensive for typical hardware,
2373 // and causes issues when building libgcc. We disallow fptosi+sext for the
2375 const unsigned numCastOps =
2376 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2377 static const uint8_t CastResults[numCastOps][numCastOps] = {
2378 // T F F U S F F P I B A -+
2379 // R Z S P P I I T P 2 N T S |
2380 // U E E 2 2 2 2 R E I T C C +- secondOp
2381 // N X X U S F F N X N 2 V V |
2382 // C T T I I P P C T T P T T -+
2383 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2384 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2385 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2386 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2387 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2388 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2389 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2390 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2391 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt |
2392 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2393 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2394 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2395 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2398 // If either of the casts are a bitcast from scalar to vector, disallow the
2399 // merging. However, bitcast of A->B->A are allowed.
2400 bool isFirstBitcast = (firstOp == Instruction::BitCast);
2401 bool isSecondBitcast = (secondOp == Instruction::BitCast);
2402 bool chainedBitcast = (SrcTy == DstTy && isFirstBitcast && isSecondBitcast);
2404 // Check if any of the bitcasts convert scalars<->vectors.
2405 if ((isFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2406 (isSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2407 // Unless we are bitcasing to the original type, disallow optimizations.
2408 if (!chainedBitcast) return 0;
2410 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2411 [secondOp-Instruction::CastOpsBegin];
2414 // Categorically disallowed.
2417 // Allowed, use first cast's opcode.
2420 // Allowed, use second cast's opcode.
2423 // No-op cast in second op implies firstOp as long as the DestTy
2424 // is integer and we are not converting between a vector and a
2426 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2430 // No-op cast in second op implies firstOp as long as the DestTy
2431 // is floating point.
2432 if (DstTy->isFloatingPointTy())
2436 // No-op cast in first op implies secondOp as long as the SrcTy
2438 if (SrcTy->isIntegerTy())
2442 // No-op cast in first op implies secondOp as long as the SrcTy
2443 // is a floating point.
2444 if (SrcTy->isFloatingPointTy())
2448 // Cannot simplify if address spaces are different!
2449 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2452 unsigned MidSize = MidTy->getScalarSizeInBits();
2453 // We can still fold this without knowing the actual sizes as long we
2454 // know that the intermediate pointer is the largest possible
2456 // FIXME: Is this always true?
2458 return Instruction::BitCast;
2460 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2461 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2463 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2464 if (MidSize >= PtrSize)
2465 return Instruction::BitCast;
2469 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2470 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2471 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2472 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2473 unsigned DstSize = DstTy->getScalarSizeInBits();
2474 if (SrcSize == DstSize)
2475 return Instruction::BitCast;
2476 else if (SrcSize < DstSize)
2481 // zext, sext -> zext, because sext can't sign extend after zext
2482 return Instruction::ZExt;
2484 // fpext followed by ftrunc is allowed if the bit size returned to is
2485 // the same as the original, in which case its just a bitcast
2487 return Instruction::BitCast;
2488 return 0; // If the types are not the same we can't eliminate it.
2490 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2493 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2494 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2495 unsigned DstSize = DstTy->getScalarSizeInBits();
2496 if (SrcSize <= PtrSize && SrcSize == DstSize)
2497 return Instruction::BitCast;
2501 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2502 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2503 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2504 return Instruction::AddrSpaceCast;
2505 return Instruction::BitCast;
2508 // FIXME: this state can be merged with (1), but the following assert
2509 // is useful to check the correcteness of the sequence due to semantic
2510 // change of bitcast.
2512 SrcTy->isPtrOrPtrVectorTy() &&
2513 MidTy->isPtrOrPtrVectorTy() &&
2514 DstTy->isPtrOrPtrVectorTy() &&
2515 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2516 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2517 "Illegal addrspacecast, bitcast sequence!");
2518 // Allowed, use first cast's opcode
2521 // bitcast, addrspacecast -> addrspacecast if the element type of
2522 // bitcast's source is the same as that of addrspacecast's destination.
2523 if (SrcTy->getPointerElementType() == DstTy->getPointerElementType())
2524 return Instruction::AddrSpaceCast;
2528 // FIXME: this state can be merged with (1), but the following assert
2529 // is useful to check the correcteness of the sequence due to semantic
2530 // change of bitcast.
2532 SrcTy->isIntOrIntVectorTy() &&
2533 MidTy->isPtrOrPtrVectorTy() &&
2534 DstTy->isPtrOrPtrVectorTy() &&
2535 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2536 "Illegal inttoptr, bitcast sequence!");
2537 // Allowed, use first cast's opcode
2540 // FIXME: this state can be merged with (2), but the following assert
2541 // is useful to check the correcteness of the sequence due to semantic
2542 // change of bitcast.
2544 SrcTy->isPtrOrPtrVectorTy() &&
2545 MidTy->isPtrOrPtrVectorTy() &&
2546 DstTy->isIntOrIntVectorTy() &&
2547 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2548 "Illegal bitcast, ptrtoint sequence!");
2549 // Allowed, use second cast's opcode
2552 // (sitofp (zext x)) -> (uitofp x)
2553 return Instruction::UIToFP;
2555 // Cast combination can't happen (error in input). This is for all cases
2556 // where the MidTy is not the same for the two cast instructions.
2557 llvm_unreachable("Invalid Cast Combination");
2559 llvm_unreachable("Error in CastResults table!!!");
2563 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2564 const Twine &Name, Instruction *InsertBefore) {
2565 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2566 // Construct and return the appropriate CastInst subclass
2568 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2569 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2570 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2571 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2572 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2573 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2574 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2575 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2576 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2577 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2578 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2579 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2580 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2581 default: llvm_unreachable("Invalid opcode provided");
2585 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2586 const Twine &Name, BasicBlock *InsertAtEnd) {
2587 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2588 // Construct and return the appropriate CastInst subclass
2590 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2591 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2592 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2593 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2594 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2595 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2596 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2597 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2598 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2599 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2600 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2601 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2602 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2603 default: llvm_unreachable("Invalid opcode provided");
2607 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2609 Instruction *InsertBefore) {
2610 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2611 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2612 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2615 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2617 BasicBlock *InsertAtEnd) {
2618 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2619 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2620 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2623 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2625 Instruction *InsertBefore) {
2626 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2627 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2628 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2631 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2633 BasicBlock *InsertAtEnd) {
2634 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2635 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2636 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2639 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2641 Instruction *InsertBefore) {
2642 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2643 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2644 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2647 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2649 BasicBlock *InsertAtEnd) {
2650 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2651 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2652 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2655 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2657 BasicBlock *InsertAtEnd) {
2658 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2659 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2661 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2662 assert((!Ty->isVectorTy() ||
2663 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2666 if (Ty->isIntOrIntVectorTy())
2667 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2669 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2672 /// @brief Create a BitCast or a PtrToInt cast instruction
2673 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2675 Instruction *InsertBefore) {
2676 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2677 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2679 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2680 assert((!Ty->isVectorTy() ||
2681 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2684 if (Ty->isIntOrIntVectorTy())
2685 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2687 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2690 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2693 BasicBlock *InsertAtEnd) {
2694 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2695 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2697 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2698 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2700 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2703 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2706 Instruction *InsertBefore) {
2707 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2708 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2710 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2711 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2713 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2716 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2718 Instruction *InsertBefore) {
2719 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2720 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2721 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2722 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2724 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2727 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2728 bool isSigned, const Twine &Name,
2729 Instruction *InsertBefore) {
2730 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2731 "Invalid integer cast");
2732 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2733 unsigned DstBits = Ty->getScalarSizeInBits();
2734 Instruction::CastOps opcode =
2735 (SrcBits == DstBits ? Instruction::BitCast :
2736 (SrcBits > DstBits ? Instruction::Trunc :
2737 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2738 return Create(opcode, C, Ty, Name, InsertBefore);
2741 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2742 bool isSigned, const Twine &Name,
2743 BasicBlock *InsertAtEnd) {
2744 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2746 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2747 unsigned DstBits = Ty->getScalarSizeInBits();
2748 Instruction::CastOps opcode =
2749 (SrcBits == DstBits ? Instruction::BitCast :
2750 (SrcBits > DstBits ? Instruction::Trunc :
2751 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2752 return Create(opcode, C, Ty, Name, InsertAtEnd);
2755 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2757 Instruction *InsertBefore) {
2758 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2760 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2761 unsigned DstBits = Ty->getScalarSizeInBits();
2762 Instruction::CastOps opcode =
2763 (SrcBits == DstBits ? Instruction::BitCast :
2764 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2765 return Create(opcode, C, Ty, Name, InsertBefore);
2768 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2770 BasicBlock *InsertAtEnd) {
2771 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2773 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2774 unsigned DstBits = Ty->getScalarSizeInBits();
2775 Instruction::CastOps opcode =
2776 (SrcBits == DstBits ? Instruction::BitCast :
2777 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2778 return Create(opcode, C, Ty, Name, InsertAtEnd);
2781 // Check whether it is valid to call getCastOpcode for these types.
2782 // This routine must be kept in sync with getCastOpcode.
2783 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2784 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2787 if (SrcTy == DestTy)
2790 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2791 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2792 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2793 // An element by element cast. Valid if casting the elements is valid.
2794 SrcTy = SrcVecTy->getElementType();
2795 DestTy = DestVecTy->getElementType();
2798 // Get the bit sizes, we'll need these
2799 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2800 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2802 // Run through the possibilities ...
2803 if (DestTy->isIntegerTy()) { // Casting to integral
2804 if (SrcTy->isIntegerTy()) // Casting from integral
2806 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2808 if (SrcTy->isVectorTy()) // Casting from vector
2809 return DestBits == SrcBits;
2810 // Casting from something else
2811 return SrcTy->isPointerTy();
2813 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2814 if (SrcTy->isIntegerTy()) // Casting from integral
2816 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2818 if (SrcTy->isVectorTy()) // Casting from vector
2819 return DestBits == SrcBits;
2820 // Casting from something else
2823 if (DestTy->isVectorTy()) // Casting to vector
2824 return DestBits == SrcBits;
2825 if (DestTy->isPointerTy()) { // Casting to pointer
2826 if (SrcTy->isPointerTy()) // Casting from pointer
2828 return SrcTy->isIntegerTy(); // Casting from integral
2830 if (DestTy->isX86_MMXTy()) {
2831 if (SrcTy->isVectorTy())
2832 return DestBits == SrcBits; // 64-bit vector to MMX
2834 } // Casting to something else
2838 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2839 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2842 if (SrcTy == DestTy)
2845 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2846 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2847 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2848 // An element by element cast. Valid if casting the elements is valid.
2849 SrcTy = SrcVecTy->getElementType();
2850 DestTy = DestVecTy->getElementType();
2855 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2856 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2857 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2861 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2862 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2864 // Could still have vectors of pointers if the number of elements doesn't
2866 if (SrcBits == 0 || DestBits == 0)
2869 if (SrcBits != DestBits)
2872 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2878 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2879 const DataLayout &DL) {
2880 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2881 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2882 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2883 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2884 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2885 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2887 return isBitCastable(SrcTy, DestTy);
2890 // Provide a way to get a "cast" where the cast opcode is inferred from the
2891 // types and size of the operand. This, basically, is a parallel of the
2892 // logic in the castIsValid function below. This axiom should hold:
2893 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2894 // should not assert in castIsValid. In other words, this produces a "correct"
2895 // casting opcode for the arguments passed to it.
2896 // This routine must be kept in sync with isCastable.
2897 Instruction::CastOps
2898 CastInst::getCastOpcode(
2899 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2900 Type *SrcTy = Src->getType();
2902 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2903 "Only first class types are castable!");
2905 if (SrcTy == DestTy)
2908 // FIXME: Check address space sizes here
2909 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2910 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2911 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2912 // An element by element cast. Find the appropriate opcode based on the
2914 SrcTy = SrcVecTy->getElementType();
2915 DestTy = DestVecTy->getElementType();
2918 // Get the bit sizes, we'll need these
2919 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2920 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2922 // Run through the possibilities ...
2923 if (DestTy->isIntegerTy()) { // Casting to integral
2924 if (SrcTy->isIntegerTy()) { // Casting from integral
2925 if (DestBits < SrcBits)
2926 return Trunc; // int -> smaller int
2927 else if (DestBits > SrcBits) { // its an extension
2929 return SExt; // signed -> SEXT
2931 return ZExt; // unsigned -> ZEXT
2933 return BitCast; // Same size, No-op cast
2935 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2937 return FPToSI; // FP -> sint
2939 return FPToUI; // FP -> uint
2940 } else if (SrcTy->isVectorTy()) {
2941 assert(DestBits == SrcBits &&
2942 "Casting vector to integer of different width");
2943 return BitCast; // Same size, no-op cast
2945 assert(SrcTy->isPointerTy() &&
2946 "Casting from a value that is not first-class type");
2947 return PtrToInt; // ptr -> int
2949 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2950 if (SrcTy->isIntegerTy()) { // Casting from integral
2952 return SIToFP; // sint -> FP
2954 return UIToFP; // uint -> FP
2955 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2956 if (DestBits < SrcBits) {
2957 return FPTrunc; // FP -> smaller FP
2958 } else if (DestBits > SrcBits) {
2959 return FPExt; // FP -> larger FP
2961 return BitCast; // same size, no-op cast
2963 } else if (SrcTy->isVectorTy()) {
2964 assert(DestBits == SrcBits &&
2965 "Casting vector to floating point of different width");
2966 return BitCast; // same size, no-op cast
2968 llvm_unreachable("Casting pointer or non-first class to float");
2969 } else if (DestTy->isVectorTy()) {
2970 assert(DestBits == SrcBits &&
2971 "Illegal cast to vector (wrong type or size)");
2973 } else if (DestTy->isPointerTy()) {
2974 if (SrcTy->isPointerTy()) {
2975 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2976 return AddrSpaceCast;
2977 return BitCast; // ptr -> ptr
2978 } else if (SrcTy->isIntegerTy()) {
2979 return IntToPtr; // int -> ptr
2981 llvm_unreachable("Casting pointer to other than pointer or int");
2982 } else if (DestTy->isX86_MMXTy()) {
2983 if (SrcTy->isVectorTy()) {
2984 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2985 return BitCast; // 64-bit vector to MMX
2987 llvm_unreachable("Illegal cast to X86_MMX");
2989 llvm_unreachable("Casting to type that is not first-class");
2992 //===----------------------------------------------------------------------===//
2993 // CastInst SubClass Constructors
2994 //===----------------------------------------------------------------------===//
2996 /// Check that the construction parameters for a CastInst are correct. This
2997 /// could be broken out into the separate constructors but it is useful to have
2998 /// it in one place and to eliminate the redundant code for getting the sizes
2999 /// of the types involved.
3001 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3003 // Check for type sanity on the arguments
3004 Type *SrcTy = S->getType();
3006 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3007 SrcTy->isAggregateType() || DstTy->isAggregateType())
3010 // Get the size of the types in bits, we'll need this later
3011 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3012 unsigned DstBitSize = DstTy->getScalarSizeInBits();
3014 // If these are vector types, get the lengths of the vectors (using zero for
3015 // scalar types means that checking that vector lengths match also checks that
3016 // scalars are not being converted to vectors or vectors to scalars).
3017 unsigned SrcLength = SrcTy->isVectorTy() ?
3018 cast<VectorType>(SrcTy)->getNumElements() : 0;
3019 unsigned DstLength = DstTy->isVectorTy() ?
3020 cast<VectorType>(DstTy)->getNumElements() : 0;
3022 // Switch on the opcode provided
3024 default: return false; // This is an input error
3025 case Instruction::Trunc:
3026 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3027 SrcLength == DstLength && SrcBitSize > DstBitSize;
3028 case Instruction::ZExt:
3029 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3030 SrcLength == DstLength && SrcBitSize < DstBitSize;
3031 case Instruction::SExt:
3032 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3033 SrcLength == DstLength && SrcBitSize < DstBitSize;
3034 case Instruction::FPTrunc:
3035 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3036 SrcLength == DstLength && SrcBitSize > DstBitSize;
3037 case Instruction::FPExt:
3038 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3039 SrcLength == DstLength && SrcBitSize < DstBitSize;
3040 case Instruction::UIToFP:
3041 case Instruction::SIToFP:
3042 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3043 SrcLength == DstLength;
3044 case Instruction::FPToUI:
3045 case Instruction::FPToSI:
3046 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3047 SrcLength == DstLength;
3048 case Instruction::PtrToInt:
3049 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3051 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3052 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3054 return SrcTy->getScalarType()->isPointerTy() &&
3055 DstTy->getScalarType()->isIntegerTy();
3056 case Instruction::IntToPtr:
3057 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3059 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3060 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3062 return SrcTy->getScalarType()->isIntegerTy() &&
3063 DstTy->getScalarType()->isPointerTy();
3064 case Instruction::BitCast: {
3065 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3066 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3068 // BitCast implies a no-op cast of type only. No bits change.
3069 // However, you can't cast pointers to anything but pointers.
3070 if (!SrcPtrTy != !DstPtrTy)
3073 // For non-pointer cases, the cast is okay if the source and destination bit
3074 // widths are identical.
3076 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3078 // If both are pointers then the address spaces must match.
3079 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3082 // A vector of pointers must have the same number of elements.
3083 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3084 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3085 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3092 case Instruction::AddrSpaceCast: {
3093 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3097 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3101 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3104 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3105 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3106 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3116 TruncInst::TruncInst(
3117 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3118 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3119 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3122 TruncInst::TruncInst(
3123 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3124 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3125 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3129 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3130 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3131 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3135 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3136 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3137 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3140 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3141 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3142 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3146 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3147 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3148 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3151 FPTruncInst::FPTruncInst(
3152 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3153 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3154 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3157 FPTruncInst::FPTruncInst(
3158 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3159 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3160 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3163 FPExtInst::FPExtInst(
3164 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3165 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3166 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3169 FPExtInst::FPExtInst(
3170 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3171 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3172 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3175 UIToFPInst::UIToFPInst(
3176 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3177 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3178 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3181 UIToFPInst::UIToFPInst(
3182 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3183 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3184 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3187 SIToFPInst::SIToFPInst(
3188 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3189 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3190 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3193 SIToFPInst::SIToFPInst(
3194 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3195 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3196 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3199 FPToUIInst::FPToUIInst(
3200 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3201 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3202 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3205 FPToUIInst::FPToUIInst(
3206 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3207 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3208 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3211 FPToSIInst::FPToSIInst(
3212 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3213 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3214 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3217 FPToSIInst::FPToSIInst(
3218 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3219 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3220 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3223 PtrToIntInst::PtrToIntInst(
3224 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3225 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3226 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3229 PtrToIntInst::PtrToIntInst(
3230 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3231 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3232 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3235 IntToPtrInst::IntToPtrInst(
3236 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3237 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3238 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3241 IntToPtrInst::IntToPtrInst(
3242 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3243 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3244 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3247 BitCastInst::BitCastInst(
3248 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3249 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3250 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3253 BitCastInst::BitCastInst(
3254 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3255 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3256 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3259 AddrSpaceCastInst::AddrSpaceCastInst(
3260 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3261 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3262 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3265 AddrSpaceCastInst::AddrSpaceCastInst(
3266 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3267 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3268 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3271 //===----------------------------------------------------------------------===//
3273 //===----------------------------------------------------------------------===//
3275 void CmpInst::anchor() {}
3277 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3278 Value *LHS, Value *RHS, const Twine &Name,
3279 Instruction *InsertBefore)
3280 : Instruction(ty, op,
3281 OperandTraits<CmpInst>::op_begin(this),
3282 OperandTraits<CmpInst>::operands(this),
3286 setPredicate((Predicate)predicate);
3290 CmpInst::CmpInst(Type *ty, OtherOps op, unsigned short predicate,
3291 Value *LHS, Value *RHS, const Twine &Name,
3292 BasicBlock *InsertAtEnd)
3293 : Instruction(ty, op,
3294 OperandTraits<CmpInst>::op_begin(this),
3295 OperandTraits<CmpInst>::operands(this),
3299 setPredicate((Predicate)predicate);
3304 CmpInst::Create(OtherOps Op, unsigned short predicate,
3305 Value *S1, Value *S2,
3306 const Twine &Name, Instruction *InsertBefore) {
3307 if (Op == Instruction::ICmp) {
3309 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3312 return new ICmpInst(CmpInst::Predicate(predicate),
3317 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3320 return new FCmpInst(CmpInst::Predicate(predicate),
3325 CmpInst::Create(OtherOps Op, unsigned short predicate, Value *S1, Value *S2,
3326 const Twine &Name, BasicBlock *InsertAtEnd) {
3327 if (Op == Instruction::ICmp) {
3328 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3331 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3335 void CmpInst::swapOperands() {
3336 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3339 cast<FCmpInst>(this)->swapOperands();
3342 bool CmpInst::isCommutative() const {
3343 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3344 return IC->isCommutative();
3345 return cast<FCmpInst>(this)->isCommutative();
3348 bool CmpInst::isEquality() const {
3349 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3350 return IC->isEquality();
3351 return cast<FCmpInst>(this)->isEquality();
3355 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3357 default: llvm_unreachable("Unknown cmp predicate!");
3358 case ICMP_EQ: return ICMP_NE;
3359 case ICMP_NE: return ICMP_EQ;
3360 case ICMP_UGT: return ICMP_ULE;
3361 case ICMP_ULT: return ICMP_UGE;
3362 case ICMP_UGE: return ICMP_ULT;
3363 case ICMP_ULE: return ICMP_UGT;
3364 case ICMP_SGT: return ICMP_SLE;
3365 case ICMP_SLT: return ICMP_SGE;
3366 case ICMP_SGE: return ICMP_SLT;
3367 case ICMP_SLE: return ICMP_SGT;
3369 case FCMP_OEQ: return FCMP_UNE;
3370 case FCMP_ONE: return FCMP_UEQ;
3371 case FCMP_OGT: return FCMP_ULE;
3372 case FCMP_OLT: return FCMP_UGE;
3373 case FCMP_OGE: return FCMP_ULT;
3374 case FCMP_OLE: return FCMP_UGT;
3375 case FCMP_UEQ: return FCMP_ONE;
3376 case FCMP_UNE: return FCMP_OEQ;
3377 case FCMP_UGT: return FCMP_OLE;
3378 case FCMP_ULT: return FCMP_OGE;
3379 case FCMP_UGE: return FCMP_OLT;
3380 case FCMP_ULE: return FCMP_OGT;
3381 case FCMP_ORD: return FCMP_UNO;
3382 case FCMP_UNO: return FCMP_ORD;
3383 case FCMP_TRUE: return FCMP_FALSE;
3384 case FCMP_FALSE: return FCMP_TRUE;
3388 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3390 default: llvm_unreachable("Unknown icmp predicate!");
3391 case ICMP_EQ: case ICMP_NE:
3392 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3394 case ICMP_UGT: return ICMP_SGT;
3395 case ICMP_ULT: return ICMP_SLT;
3396 case ICMP_UGE: return ICMP_SGE;
3397 case ICMP_ULE: return ICMP_SLE;
3401 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3403 default: llvm_unreachable("Unknown icmp predicate!");
3404 case ICMP_EQ: case ICMP_NE:
3405 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3407 case ICMP_SGT: return ICMP_UGT;
3408 case ICMP_SLT: return ICMP_ULT;
3409 case ICMP_SGE: return ICMP_UGE;
3410 case ICMP_SLE: return ICMP_ULE;
3414 /// Initialize a set of values that all satisfy the condition with C.
3417 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3420 uint32_t BitWidth = C.getBitWidth();
3422 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3423 case ICmpInst::ICMP_EQ: ++Upper; break;
3424 case ICmpInst::ICMP_NE: ++Lower; break;
3425 case ICmpInst::ICMP_ULT:
3426 Lower = APInt::getMinValue(BitWidth);
3427 // Check for an empty-set condition.
3429 return ConstantRange(BitWidth, /*isFullSet=*/false);
3431 case ICmpInst::ICMP_SLT:
3432 Lower = APInt::getSignedMinValue(BitWidth);
3433 // Check for an empty-set condition.
3435 return ConstantRange(BitWidth, /*isFullSet=*/false);
3437 case ICmpInst::ICMP_UGT:
3438 ++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3439 // Check for an empty-set condition.
3441 return ConstantRange(BitWidth, /*isFullSet=*/false);
3443 case ICmpInst::ICMP_SGT:
3444 ++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3445 // Check for an empty-set condition.
3447 return ConstantRange(BitWidth, /*isFullSet=*/false);
3449 case ICmpInst::ICMP_ULE:
3450 Lower = APInt::getMinValue(BitWidth); ++Upper;
3451 // Check for a full-set condition.
3453 return ConstantRange(BitWidth, /*isFullSet=*/true);
3455 case ICmpInst::ICMP_SLE:
3456 Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
3457 // Check for a full-set condition.
3459 return ConstantRange(BitWidth, /*isFullSet=*/true);
3461 case ICmpInst::ICMP_UGE:
3462 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3463 // Check for a full-set condition.
3465 return ConstantRange(BitWidth, /*isFullSet=*/true);
3467 case ICmpInst::ICMP_SGE:
3468 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3469 // Check for a full-set condition.
3471 return ConstantRange(BitWidth, /*isFullSet=*/true);
3474 return ConstantRange(Lower, Upper);
3477 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3479 default: llvm_unreachable("Unknown cmp predicate!");
3480 case ICMP_EQ: case ICMP_NE:
3482 case ICMP_SGT: return ICMP_SLT;
3483 case ICMP_SLT: return ICMP_SGT;
3484 case ICMP_SGE: return ICMP_SLE;
3485 case ICMP_SLE: return ICMP_SGE;
3486 case ICMP_UGT: return ICMP_ULT;
3487 case ICMP_ULT: return ICMP_UGT;
3488 case ICMP_UGE: return ICMP_ULE;
3489 case ICMP_ULE: return ICMP_UGE;
3491 case FCMP_FALSE: case FCMP_TRUE:
3492 case FCMP_OEQ: case FCMP_ONE:
3493 case FCMP_UEQ: case FCMP_UNE:
3494 case FCMP_ORD: case FCMP_UNO:
3496 case FCMP_OGT: return FCMP_OLT;
3497 case FCMP_OLT: return FCMP_OGT;
3498 case FCMP_OGE: return FCMP_OLE;
3499 case FCMP_OLE: return FCMP_OGE;
3500 case FCMP_UGT: return FCMP_ULT;
3501 case FCMP_ULT: return FCMP_UGT;
3502 case FCMP_UGE: return FCMP_ULE;
3503 case FCMP_ULE: return FCMP_UGE;
3507 bool CmpInst::isUnsigned(unsigned short predicate) {
3508 switch (predicate) {
3509 default: return false;
3510 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3511 case ICmpInst::ICMP_UGE: return true;
3515 bool CmpInst::isSigned(unsigned short predicate) {
3516 switch (predicate) {
3517 default: return false;
3518 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3519 case ICmpInst::ICMP_SGE: return true;
3523 bool CmpInst::isOrdered(unsigned short predicate) {
3524 switch (predicate) {
3525 default: return false;
3526 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3527 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3528 case FCmpInst::FCMP_ORD: return true;
3532 bool CmpInst::isUnordered(unsigned short predicate) {
3533 switch (predicate) {
3534 default: return false;
3535 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3536 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3537 case FCmpInst::FCMP_UNO: return true;
3541 bool CmpInst::isTrueWhenEqual(unsigned short predicate) {
3543 default: return false;
3544 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3545 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3549 bool CmpInst::isFalseWhenEqual(unsigned short predicate) {
3551 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3552 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3553 default: return false;
3558 //===----------------------------------------------------------------------===//
3559 // SwitchInst Implementation
3560 //===----------------------------------------------------------------------===//
3562 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3563 assert(Value && Default && NumReserved);
3564 ReservedSpace = NumReserved;
3565 setNumHungOffUseOperands(2);
3566 allocHungoffUses(ReservedSpace);
3572 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3573 /// switch on and a default destination. The number of additional cases can
3574 /// be specified here to make memory allocation more efficient. This
3575 /// constructor can also autoinsert before another instruction.
3576 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3577 Instruction *InsertBefore)
3578 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3579 nullptr, 0, InsertBefore) {
3580 init(Value, Default, 2+NumCases*2);
3583 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3584 /// switch on and a default destination. The number of additional cases can
3585 /// be specified here to make memory allocation more efficient. This
3586 /// constructor also autoinserts at the end of the specified BasicBlock.
3587 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3588 BasicBlock *InsertAtEnd)
3589 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3590 nullptr, 0, InsertAtEnd) {
3591 init(Value, Default, 2+NumCases*2);
3594 SwitchInst::SwitchInst(const SwitchInst &SI)
3595 : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3596 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3597 setNumHungOffUseOperands(SI.getNumOperands());
3598 Use *OL = getOperandList();
3599 const Use *InOL = SI.getOperandList();
3600 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3602 OL[i+1] = InOL[i+1];
3604 SubclassOptionalData = SI.SubclassOptionalData;
3608 /// addCase - Add an entry to the switch instruction...
3610 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3611 unsigned NewCaseIdx = getNumCases();
3612 unsigned OpNo = getNumOperands();
3613 if (OpNo+2 > ReservedSpace)
3614 growOperands(); // Get more space!
3615 // Initialize some new operands.
3616 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3617 setNumHungOffUseOperands(OpNo+2);
3618 CaseIt Case(this, NewCaseIdx);
3619 Case.setValue(OnVal);
3620 Case.setSuccessor(Dest);
3623 /// removeCase - This method removes the specified case and its successor
3624 /// from the switch instruction.
3625 void SwitchInst::removeCase(CaseIt i) {
3626 unsigned idx = i.getCaseIndex();
3628 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3630 unsigned NumOps = getNumOperands();
3631 Use *OL = getOperandList();
3633 // Overwrite this case with the end of the list.
3634 if (2 + (idx + 1) * 2 != NumOps) {
3635 OL[2 + idx * 2] = OL[NumOps - 2];
3636 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3639 // Nuke the last value.
3640 OL[NumOps-2].set(nullptr);
3641 OL[NumOps-2+1].set(nullptr);
3642 setNumHungOffUseOperands(NumOps-2);
3645 /// growOperands - grow operands - This grows the operand list in response
3646 /// to a push_back style of operation. This grows the number of ops by 3 times.
3648 void SwitchInst::growOperands() {
3649 unsigned e = getNumOperands();
3650 unsigned NumOps = e*3;
3652 ReservedSpace = NumOps;
3653 growHungoffUses(ReservedSpace);
3657 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3658 return getSuccessor(idx);
3660 unsigned SwitchInst::getNumSuccessorsV() const {
3661 return getNumSuccessors();
3663 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3664 setSuccessor(idx, B);
3667 //===----------------------------------------------------------------------===//
3668 // IndirectBrInst Implementation
3669 //===----------------------------------------------------------------------===//
3671 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3672 assert(Address && Address->getType()->isPointerTy() &&
3673 "Address of indirectbr must be a pointer");
3674 ReservedSpace = 1+NumDests;
3675 setNumHungOffUseOperands(1);
3676 allocHungoffUses(ReservedSpace);
3682 /// growOperands - grow operands - This grows the operand list in response
3683 /// to a push_back style of operation. This grows the number of ops by 2 times.
3685 void IndirectBrInst::growOperands() {
3686 unsigned e = getNumOperands();
3687 unsigned NumOps = e*2;
3689 ReservedSpace = NumOps;
3690 growHungoffUses(ReservedSpace);
3693 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3694 Instruction *InsertBefore)
3695 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3696 nullptr, 0, InsertBefore) {
3697 init(Address, NumCases);
3700 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3701 BasicBlock *InsertAtEnd)
3702 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3703 nullptr, 0, InsertAtEnd) {
3704 init(Address, NumCases);
3707 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3708 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3709 nullptr, IBI.getNumOperands()) {
3710 allocHungoffUses(IBI.getNumOperands());
3711 Use *OL = getOperandList();
3712 const Use *InOL = IBI.getOperandList();
3713 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3715 SubclassOptionalData = IBI.SubclassOptionalData;
3718 /// addDestination - Add a destination.
3720 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3721 unsigned OpNo = getNumOperands();
3722 if (OpNo+1 > ReservedSpace)
3723 growOperands(); // Get more space!
3724 // Initialize some new operands.
3725 assert(OpNo < ReservedSpace && "Growing didn't work!");
3726 setNumHungOffUseOperands(OpNo+1);
3727 getOperandList()[OpNo] = DestBB;
3730 /// removeDestination - This method removes the specified successor from the
3731 /// indirectbr instruction.
3732 void IndirectBrInst::removeDestination(unsigned idx) {
3733 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3735 unsigned NumOps = getNumOperands();
3736 Use *OL = getOperandList();
3738 // Replace this value with the last one.
3739 OL[idx+1] = OL[NumOps-1];
3741 // Nuke the last value.
3742 OL[NumOps-1].set(nullptr);
3743 setNumHungOffUseOperands(NumOps-1);
3746 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3747 return getSuccessor(idx);
3749 unsigned IndirectBrInst::getNumSuccessorsV() const {
3750 return getNumSuccessors();
3752 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3753 setSuccessor(idx, B);
3756 //===----------------------------------------------------------------------===//
3757 // cloneImpl() implementations
3758 //===----------------------------------------------------------------------===//
3760 // Define these methods here so vtables don't get emitted into every translation
3761 // unit that uses these classes.
3763 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3764 return new (getNumOperands()) GetElementPtrInst(*this);
3767 BinaryOperator *BinaryOperator::cloneImpl() const {
3768 return Create(getOpcode(), Op<0>(), Op<1>());
3771 FCmpInst *FCmpInst::cloneImpl() const {
3772 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3775 ICmpInst *ICmpInst::cloneImpl() const {
3776 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3779 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3780 return new ExtractValueInst(*this);
3783 InsertValueInst *InsertValueInst::cloneImpl() const {
3784 return new InsertValueInst(*this);
3787 AllocaInst *AllocaInst::cloneImpl() const {
3788 AllocaInst *Result = new AllocaInst(getAllocatedType(),
3789 (Value *)getOperand(0), getAlignment());
3790 Result->setUsedWithInAlloca(isUsedWithInAlloca());
3794 LoadInst *LoadInst::cloneImpl() const {
3795 return new LoadInst(getOperand(0), Twine(), isVolatile(),
3796 getAlignment(), getOrdering(), getSynchScope());
3799 StoreInst *StoreInst::cloneImpl() const {
3800 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3801 getAlignment(), getOrdering(), getSynchScope());
3805 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3806 AtomicCmpXchgInst *Result =
3807 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3808 getSuccessOrdering(), getFailureOrdering(),
3810 Result->setVolatile(isVolatile());
3811 Result->setWeak(isWeak());
3815 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3816 AtomicRMWInst *Result =
3817 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3818 getOrdering(), getSynchScope());
3819 Result->setVolatile(isVolatile());
3823 FenceInst *FenceInst::cloneImpl() const {
3824 return new FenceInst(getContext(), getOrdering(), getSynchScope());
3827 TruncInst *TruncInst::cloneImpl() const {
3828 return new TruncInst(getOperand(0), getType());
3831 ZExtInst *ZExtInst::cloneImpl() const {
3832 return new ZExtInst(getOperand(0), getType());
3835 SExtInst *SExtInst::cloneImpl() const {
3836 return new SExtInst(getOperand(0), getType());
3839 FPTruncInst *FPTruncInst::cloneImpl() const {
3840 return new FPTruncInst(getOperand(0), getType());
3843 FPExtInst *FPExtInst::cloneImpl() const {
3844 return new FPExtInst(getOperand(0), getType());
3847 UIToFPInst *UIToFPInst::cloneImpl() const {
3848 return new UIToFPInst(getOperand(0), getType());
3851 SIToFPInst *SIToFPInst::cloneImpl() const {
3852 return new SIToFPInst(getOperand(0), getType());
3855 FPToUIInst *FPToUIInst::cloneImpl() const {
3856 return new FPToUIInst(getOperand(0), getType());
3859 FPToSIInst *FPToSIInst::cloneImpl() const {
3860 return new FPToSIInst(getOperand(0), getType());
3863 PtrToIntInst *PtrToIntInst::cloneImpl() const {
3864 return new PtrToIntInst(getOperand(0), getType());
3867 IntToPtrInst *IntToPtrInst::cloneImpl() const {
3868 return new IntToPtrInst(getOperand(0), getType());
3871 BitCastInst *BitCastInst::cloneImpl() const {
3872 return new BitCastInst(getOperand(0), getType());
3875 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
3876 return new AddrSpaceCastInst(getOperand(0), getType());
3879 CallInst *CallInst::cloneImpl() const {
3880 return new(getNumOperands()) CallInst(*this);
3883 SelectInst *SelectInst::cloneImpl() const {
3884 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3887 VAArgInst *VAArgInst::cloneImpl() const {
3888 return new VAArgInst(getOperand(0), getType());
3891 ExtractElementInst *ExtractElementInst::cloneImpl() const {
3892 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3895 InsertElementInst *InsertElementInst::cloneImpl() const {
3896 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3899 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
3900 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3903 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
3905 LandingPadInst *LandingPadInst::cloneImpl() const {
3906 return new LandingPadInst(*this);
3909 ReturnInst *ReturnInst::cloneImpl() const {
3910 return new(getNumOperands()) ReturnInst(*this);
3913 BranchInst *BranchInst::cloneImpl() const {
3914 return new(getNumOperands()) BranchInst(*this);
3917 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
3919 IndirectBrInst *IndirectBrInst::cloneImpl() const {
3920 return new IndirectBrInst(*this);
3923 InvokeInst *InvokeInst::cloneImpl() const {
3924 return new(getNumOperands()) InvokeInst(*this);
3927 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
3929 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
3930 return new (getNumOperands()) CleanupReturnInst(*this);
3933 CatchEndPadInst *CatchEndPadInst::cloneImpl() const {
3934 return new (getNumOperands()) CatchEndPadInst(*this);
3937 CatchReturnInst *CatchReturnInst::cloneImpl() const {
3938 return new (getNumOperands()) CatchReturnInst(*this);
3941 CatchPadInst *CatchPadInst::cloneImpl() const {
3942 return new (getNumOperands()) CatchPadInst(*this);
3945 TerminatePadInst *TerminatePadInst::cloneImpl() const {
3946 return new (getNumOperands()) TerminatePadInst(*this);
3949 CleanupPadInst *CleanupPadInst::cloneImpl() const {
3950 return new (getNumOperands()) CleanupPadInst(*this);
3953 UnreachableInst *UnreachableInst::cloneImpl() const {
3954 LLVMContext &Context = getContext();
3955 return new UnreachableInst(Context);