1 //===-- Instructions.cpp - Implement the LLVM instructions ----------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements all of the non-inline methods for the LLVM instruction
13 //===----------------------------------------------------------------------===//
15 #include "llvm/IR/Instructions.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/IR/CallSite.h"
18 #include "llvm/IR/ConstantRange.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Function.h"
23 #include "llvm/IR/Module.h"
24 #include "llvm/IR/Operator.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
29 //===----------------------------------------------------------------------===//
31 //===----------------------------------------------------------------------===//
33 User::op_iterator CallSite::getCallee() const {
34 Instruction *II(getInstruction());
36 ? cast<CallInst>(II)->op_end() - 1 // Skip Callee
37 : cast<InvokeInst>(II)->op_end() - 3; // Skip BB, BB, Callee
40 //===----------------------------------------------------------------------===//
41 // TerminatorInst Class
42 //===----------------------------------------------------------------------===//
44 // Out of line virtual method, so the vtable, etc has a home.
45 TerminatorInst::~TerminatorInst() {
48 //===----------------------------------------------------------------------===//
49 // UnaryInstruction Class
50 //===----------------------------------------------------------------------===//
52 // Out of line virtual method, so the vtable, etc has a home.
53 UnaryInstruction::~UnaryInstruction() {
56 //===----------------------------------------------------------------------===//
58 //===----------------------------------------------------------------------===//
60 /// areInvalidOperands - Return a string if the specified operands are invalid
61 /// for a select operation, otherwise return null.
62 const char *SelectInst::areInvalidOperands(Value *Op0, Value *Op1, Value *Op2) {
63 if (Op1->getType() != Op2->getType())
64 return "both values to select must have same type";
66 if (Op1->getType()->isTokenTy())
67 return "select values cannot have token type";
69 if (VectorType *VT = dyn_cast<VectorType>(Op0->getType())) {
71 if (VT->getElementType() != Type::getInt1Ty(Op0->getContext()))
72 return "vector select condition element type must be i1";
73 VectorType *ET = dyn_cast<VectorType>(Op1->getType());
75 return "selected values for vector select must be vectors";
76 if (ET->getNumElements() != VT->getNumElements())
77 return "vector select requires selected vectors to have "
78 "the same vector length as select condition";
79 } else if (Op0->getType() != Type::getInt1Ty(Op0->getContext())) {
80 return "select condition must be i1 or <n x i1>";
86 //===----------------------------------------------------------------------===//
88 //===----------------------------------------------------------------------===//
90 void PHINode::anchor() {}
92 PHINode::PHINode(const PHINode &PN)
93 : Instruction(PN.getType(), Instruction::PHI, nullptr, PN.getNumOperands()),
94 ReservedSpace(PN.getNumOperands()) {
95 allocHungoffUses(PN.getNumOperands());
96 std::copy(PN.op_begin(), PN.op_end(), op_begin());
97 std::copy(PN.block_begin(), PN.block_end(), block_begin());
98 SubclassOptionalData = PN.SubclassOptionalData;
101 // removeIncomingValue - Remove an incoming value. This is useful if a
102 // predecessor basic block is deleted.
103 Value *PHINode::removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty) {
104 Value *Removed = getIncomingValue(Idx);
106 // Move everything after this operand down.
108 // FIXME: we could just swap with the end of the list, then erase. However,
109 // clients might not expect this to happen. The code as it is thrashes the
110 // use/def lists, which is kinda lame.
111 std::copy(op_begin() + Idx + 1, op_end(), op_begin() + Idx);
112 std::copy(block_begin() + Idx + 1, block_end(), block_begin() + Idx);
114 // Nuke the last value.
115 Op<-1>().set(nullptr);
116 setNumHungOffUseOperands(getNumOperands() - 1);
118 // If the PHI node is dead, because it has zero entries, nuke it now.
119 if (getNumOperands() == 0 && DeletePHIIfEmpty) {
120 // If anyone is using this PHI, make them use a dummy value instead...
121 replaceAllUsesWith(UndefValue::get(getType()));
127 /// growOperands - grow operands - This grows the operand list in response
128 /// to a push_back style of operation. This grows the number of ops by 1.5
131 void PHINode::growOperands() {
132 unsigned e = getNumOperands();
133 unsigned NumOps = e + e / 2;
134 if (NumOps < 2) NumOps = 2; // 2 op PHI nodes are VERY common.
136 ReservedSpace = NumOps;
137 growHungoffUses(ReservedSpace, /* IsPhi */ true);
140 /// hasConstantValue - If the specified PHI node always merges together the same
141 /// value, return the value, otherwise return null.
142 Value *PHINode::hasConstantValue() const {
143 // Exploit the fact that phi nodes always have at least one entry.
144 Value *ConstantValue = getIncomingValue(0);
145 for (unsigned i = 1, e = getNumIncomingValues(); i != e; ++i)
146 if (getIncomingValue(i) != ConstantValue && getIncomingValue(i) != this) {
147 if (ConstantValue != this)
148 return nullptr; // Incoming values not all the same.
149 // The case where the first value is this PHI.
150 ConstantValue = getIncomingValue(i);
152 if (ConstantValue == this)
153 return UndefValue::get(getType());
154 return ConstantValue;
157 //===----------------------------------------------------------------------===//
158 // LandingPadInst Implementation
159 //===----------------------------------------------------------------------===//
161 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
162 const Twine &NameStr, Instruction *InsertBefore)
163 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertBefore) {
164 init(NumReservedValues, NameStr);
167 LandingPadInst::LandingPadInst(Type *RetTy, unsigned NumReservedValues,
168 const Twine &NameStr, BasicBlock *InsertAtEnd)
169 : Instruction(RetTy, Instruction::LandingPad, nullptr, 0, InsertAtEnd) {
170 init(NumReservedValues, NameStr);
173 LandingPadInst::LandingPadInst(const LandingPadInst &LP)
174 : Instruction(LP.getType(), Instruction::LandingPad, nullptr,
175 LP.getNumOperands()),
176 ReservedSpace(LP.getNumOperands()) {
177 allocHungoffUses(LP.getNumOperands());
178 Use *OL = getOperandList();
179 const Use *InOL = LP.getOperandList();
180 for (unsigned I = 0, E = ReservedSpace; I != E; ++I)
183 setCleanup(LP.isCleanup());
186 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
187 const Twine &NameStr,
188 Instruction *InsertBefore) {
189 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertBefore);
192 LandingPadInst *LandingPadInst::Create(Type *RetTy, unsigned NumReservedClauses,
193 const Twine &NameStr,
194 BasicBlock *InsertAtEnd) {
195 return new LandingPadInst(RetTy, NumReservedClauses, NameStr, InsertAtEnd);
198 void LandingPadInst::init(unsigned NumReservedValues, const Twine &NameStr) {
199 ReservedSpace = NumReservedValues;
200 setNumHungOffUseOperands(0);
201 allocHungoffUses(ReservedSpace);
206 /// growOperands - grow operands - This grows the operand list in response to a
207 /// push_back style of operation. This grows the number of ops by 2 times.
208 void LandingPadInst::growOperands(unsigned Size) {
209 unsigned e = getNumOperands();
210 if (ReservedSpace >= e + Size) return;
211 ReservedSpace = (std::max(e, 1U) + Size / 2) * 2;
212 growHungoffUses(ReservedSpace);
215 void LandingPadInst::addClause(Constant *Val) {
216 unsigned OpNo = getNumOperands();
218 assert(OpNo < ReservedSpace && "Growing didn't work!");
219 setNumHungOffUseOperands(getNumOperands() + 1);
220 getOperandList()[OpNo] = Val;
223 //===----------------------------------------------------------------------===//
224 // CallInst Implementation
225 //===----------------------------------------------------------------------===//
227 CallInst::~CallInst() {
230 void CallInst::init(FunctionType *FTy, Value *Func, ArrayRef<Value *> Args,
231 ArrayRef<OperandBundleDef> Bundles, const Twine &NameStr) {
233 assert(getNumOperands() == Args.size() + CountBundleInputs(Bundles) + 1 &&
234 "NumOperands not set up?");
238 assert((Args.size() == FTy->getNumParams() ||
239 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
240 "Calling a function with bad signature!");
242 for (unsigned i = 0; i != Args.size(); ++i)
243 assert((i >= FTy->getNumParams() ||
244 FTy->getParamType(i) == Args[i]->getType()) &&
245 "Calling a function with a bad signature!");
248 std::copy(Args.begin(), Args.end(), op_begin());
250 auto It = populateBundleOperandInfos(Bundles, Args.size());
252 assert(It + 1 == op_end() && "Should add up!");
257 void CallInst::init(Value *Func, const Twine &NameStr) {
259 cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
260 assert(getNumOperands() == 1 && "NumOperands not set up?");
263 assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
268 CallInst::CallInst(Value *Func, const Twine &Name,
269 Instruction *InsertBefore)
270 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
271 ->getElementType())->getReturnType(),
273 OperandTraits<CallInst>::op_end(this) - 1,
278 CallInst::CallInst(Value *Func, const Twine &Name,
279 BasicBlock *InsertAtEnd)
280 : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
281 ->getElementType())->getReturnType(),
283 OperandTraits<CallInst>::op_end(this) - 1,
288 CallInst::CallInst(const CallInst &CI)
289 : Instruction(CI.getType(), Instruction::Call,
290 OperandTraits<CallInst>::op_end(this) - CI.getNumOperands(),
291 CI.getNumOperands()),
292 AttributeList(CI.AttributeList), FTy(CI.FTy) {
293 setTailCallKind(CI.getTailCallKind());
294 setCallingConv(CI.getCallingConv());
296 std::copy(CI.op_begin(), CI.op_end(), op_begin());
297 std::copy(CI.bundle_op_info_begin(), CI.bundle_op_info_end(),
298 bundle_op_info_begin());
299 SubclassOptionalData = CI.SubclassOptionalData;
302 CallInst *CallInst::Create(CallInst *CI, ArrayRef<OperandBundleDef> OpB,
303 Instruction *InsertPt) {
304 std::vector<Value *> Args(CI->arg_begin(), CI->arg_end());
306 auto *NewCI = CallInst::Create(CI->getCalledValue(), Args, OpB, CI->getName(),
308 NewCI->setTailCallKind(CI->getTailCallKind());
309 NewCI->setCallingConv(CI->getCallingConv());
310 NewCI->SubclassOptionalData = CI->SubclassOptionalData;
311 NewCI->setAttributes(CI->getAttributes());
315 void CallInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
316 AttributeSet PAL = getAttributes();
317 PAL = PAL.addAttribute(getContext(), i, attr);
321 void CallInst::addAttribute(unsigned i, StringRef Kind, StringRef Value) {
322 AttributeSet PAL = getAttributes();
323 PAL = PAL.addAttribute(getContext(), i, Kind, Value);
327 void CallInst::removeAttribute(unsigned i, Attribute attr) {
328 AttributeSet PAL = getAttributes();
330 LLVMContext &Context = getContext();
331 PAL = PAL.removeAttributes(Context, i,
332 AttributeSet::get(Context, i, B));
336 void CallInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
337 AttributeSet PAL = getAttributes();
338 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
342 void CallInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
343 AttributeSet PAL = getAttributes();
344 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
348 bool CallInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
349 assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!");
351 if (AttributeList.hasAttribute(i, A))
353 if (const Function *F = getCalledFunction())
354 return F->getAttributes().hasAttribute(i, A);
358 bool CallInst::dataOperandHasImpliedAttr(unsigned i,
359 Attribute::AttrKind A) const {
361 // There are getNumOperands() - 1 data operands. The last operand is the
363 assert(i < getNumOperands() && "Data operand index out of bounds!");
365 // The attribute A can either be directly specified, if the operand in
366 // question is a call argument; or be indirectly implied by the kind of its
367 // containing operand bundle, if the operand is a bundle operand.
369 if (i < (getNumArgOperands() + 1))
370 return paramHasAttr(i, A);
372 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
373 "Must be either a call argument or an operand bundle!");
374 return bundleOperandHasAttr(i - 1, A);
377 /// IsConstantOne - Return true only if val is constant int 1
378 static bool IsConstantOne(Value *val) {
379 assert(val && "IsConstantOne does not work with nullptr val");
380 const ConstantInt *CVal = dyn_cast<ConstantInt>(val);
381 return CVal && CVal->isOne();
384 static Instruction *createMalloc(Instruction *InsertBefore,
385 BasicBlock *InsertAtEnd, Type *IntPtrTy,
386 Type *AllocTy, Value *AllocSize,
387 Value *ArraySize, Function *MallocF,
389 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
390 "createMalloc needs either InsertBefore or InsertAtEnd");
392 // malloc(type) becomes:
393 // bitcast (i8* malloc(typeSize)) to type*
394 // malloc(type, arraySize) becomes:
395 // bitcast (i8 *malloc(typeSize*arraySize)) to type*
397 ArraySize = ConstantInt::get(IntPtrTy, 1);
398 else if (ArraySize->getType() != IntPtrTy) {
400 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
403 ArraySize = CastInst::CreateIntegerCast(ArraySize, IntPtrTy, false,
407 if (!IsConstantOne(ArraySize)) {
408 if (IsConstantOne(AllocSize)) {
409 AllocSize = ArraySize; // Operand * 1 = Operand
410 } else if (Constant *CO = dyn_cast<Constant>(ArraySize)) {
411 Constant *Scale = ConstantExpr::getIntegerCast(CO, IntPtrTy,
413 // Malloc arg is constant product of type size and array size
414 AllocSize = ConstantExpr::getMul(Scale, cast<Constant>(AllocSize));
416 // Multiply type size by the array size...
418 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
419 "mallocsize", InsertBefore);
421 AllocSize = BinaryOperator::CreateMul(ArraySize, AllocSize,
422 "mallocsize", InsertAtEnd);
426 assert(AllocSize->getType() == IntPtrTy && "malloc arg is wrong size");
427 // Create the call to Malloc.
428 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
429 Module* M = BB->getParent()->getParent();
430 Type *BPTy = Type::getInt8PtrTy(BB->getContext());
431 Value *MallocFunc = MallocF;
433 // prototype malloc as "void *malloc(size_t)"
434 MallocFunc = M->getOrInsertFunction("malloc", BPTy, IntPtrTy, nullptr);
435 PointerType *AllocPtrType = PointerType::getUnqual(AllocTy);
436 CallInst *MCall = nullptr;
437 Instruction *Result = nullptr;
439 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall", InsertBefore);
441 if (Result->getType() != AllocPtrType)
442 // Create a cast instruction to convert to the right type...
443 Result = new BitCastInst(MCall, AllocPtrType, Name, InsertBefore);
445 MCall = CallInst::Create(MallocFunc, AllocSize, "malloccall");
447 if (Result->getType() != AllocPtrType) {
448 InsertAtEnd->getInstList().push_back(MCall);
449 // Create a cast instruction to convert to the right type...
450 Result = new BitCastInst(MCall, AllocPtrType, Name);
453 MCall->setTailCall();
454 if (Function *F = dyn_cast<Function>(MallocFunc)) {
455 MCall->setCallingConv(F->getCallingConv());
456 if (!F->doesNotAlias(0)) F->setDoesNotAlias(0);
458 assert(!MCall->getType()->isVoidTy() && "Malloc has void return type");
463 /// CreateMalloc - Generate the IR for a call to malloc:
464 /// 1. Compute the malloc call's argument as the specified type's size,
465 /// possibly multiplied by the array size if the array size is not
467 /// 2. Call malloc with that argument.
468 /// 3. Bitcast the result of the malloc call to the specified type.
469 Instruction *CallInst::CreateMalloc(Instruction *InsertBefore,
470 Type *IntPtrTy, Type *AllocTy,
471 Value *AllocSize, Value *ArraySize,
474 return createMalloc(InsertBefore, nullptr, IntPtrTy, AllocTy, AllocSize,
475 ArraySize, MallocF, Name);
478 /// CreateMalloc - Generate the IR for a call to malloc:
479 /// 1. Compute the malloc call's argument as the specified type's size,
480 /// possibly multiplied by the array size if the array size is not
482 /// 2. Call malloc with that argument.
483 /// 3. Bitcast the result of the malloc call to the specified type.
484 /// Note: This function does not add the bitcast to the basic block, that is the
485 /// responsibility of the caller.
486 Instruction *CallInst::CreateMalloc(BasicBlock *InsertAtEnd,
487 Type *IntPtrTy, Type *AllocTy,
488 Value *AllocSize, Value *ArraySize,
489 Function *MallocF, const Twine &Name) {
490 return createMalloc(nullptr, InsertAtEnd, IntPtrTy, AllocTy, AllocSize,
491 ArraySize, MallocF, Name);
494 static Instruction* createFree(Value* Source, Instruction *InsertBefore,
495 BasicBlock *InsertAtEnd) {
496 assert(((!InsertBefore && InsertAtEnd) || (InsertBefore && !InsertAtEnd)) &&
497 "createFree needs either InsertBefore or InsertAtEnd");
498 assert(Source->getType()->isPointerTy() &&
499 "Can not free something of nonpointer type!");
501 BasicBlock* BB = InsertBefore ? InsertBefore->getParent() : InsertAtEnd;
502 Module* M = BB->getParent()->getParent();
504 Type *VoidTy = Type::getVoidTy(M->getContext());
505 Type *IntPtrTy = Type::getInt8PtrTy(M->getContext());
506 // prototype free as "void free(void*)"
507 Value *FreeFunc = M->getOrInsertFunction("free", VoidTy, IntPtrTy, nullptr);
508 CallInst* Result = nullptr;
509 Value *PtrCast = Source;
511 if (Source->getType() != IntPtrTy)
512 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertBefore);
513 Result = CallInst::Create(FreeFunc, PtrCast, "", InsertBefore);
515 if (Source->getType() != IntPtrTy)
516 PtrCast = new BitCastInst(Source, IntPtrTy, "", InsertAtEnd);
517 Result = CallInst::Create(FreeFunc, PtrCast, "");
519 Result->setTailCall();
520 if (Function *F = dyn_cast<Function>(FreeFunc))
521 Result->setCallingConv(F->getCallingConv());
526 /// CreateFree - Generate the IR for a call to the builtin free function.
527 Instruction * CallInst::CreateFree(Value* Source, Instruction *InsertBefore) {
528 return createFree(Source, InsertBefore, nullptr);
531 /// CreateFree - Generate the IR for a call to the builtin free function.
532 /// Note: This function does not add the call to the basic block, that is the
533 /// responsibility of the caller.
534 Instruction* CallInst::CreateFree(Value* Source, BasicBlock *InsertAtEnd) {
535 Instruction* FreeCall = createFree(Source, nullptr, InsertAtEnd);
536 assert(FreeCall && "CreateFree did not create a CallInst");
540 //===----------------------------------------------------------------------===//
541 // InvokeInst Implementation
542 //===----------------------------------------------------------------------===//
544 void InvokeInst::init(FunctionType *FTy, Value *Fn, BasicBlock *IfNormal,
545 BasicBlock *IfException, ArrayRef<Value *> Args,
546 ArrayRef<OperandBundleDef> Bundles,
547 const Twine &NameStr) {
550 assert(getNumOperands() == 3 + Args.size() + CountBundleInputs(Bundles) &&
551 "NumOperands not set up?");
554 Op<-1>() = IfException;
557 assert(((Args.size() == FTy->getNumParams()) ||
558 (FTy->isVarArg() && Args.size() > FTy->getNumParams())) &&
559 "Invoking a function with bad signature");
561 for (unsigned i = 0, e = Args.size(); i != e; i++)
562 assert((i >= FTy->getNumParams() ||
563 FTy->getParamType(i) == Args[i]->getType()) &&
564 "Invoking a function with a bad signature!");
567 std::copy(Args.begin(), Args.end(), op_begin());
569 auto It = populateBundleOperandInfos(Bundles, Args.size());
571 assert(It + 3 == op_end() && "Should add up!");
576 InvokeInst::InvokeInst(const InvokeInst &II)
577 : TerminatorInst(II.getType(), Instruction::Invoke,
578 OperandTraits<InvokeInst>::op_end(this) -
580 II.getNumOperands()),
581 AttributeList(II.AttributeList), FTy(II.FTy) {
582 setCallingConv(II.getCallingConv());
583 std::copy(II.op_begin(), II.op_end(), op_begin());
584 std::copy(II.bundle_op_info_begin(), II.bundle_op_info_end(),
585 bundle_op_info_begin());
586 SubclassOptionalData = II.SubclassOptionalData;
589 InvokeInst *InvokeInst::Create(InvokeInst *II, ArrayRef<OperandBundleDef> OpB,
590 Instruction *InsertPt) {
591 std::vector<Value *> Args(II->arg_begin(), II->arg_end());
593 auto *NewII = InvokeInst::Create(II->getCalledValue(), II->getNormalDest(),
594 II->getUnwindDest(), Args, OpB,
595 II->getName(), InsertPt);
596 NewII->setCallingConv(II->getCallingConv());
597 NewII->SubclassOptionalData = II->SubclassOptionalData;
598 NewII->setAttributes(II->getAttributes());
602 BasicBlock *InvokeInst::getSuccessorV(unsigned idx) const {
603 return getSuccessor(idx);
605 unsigned InvokeInst::getNumSuccessorsV() const {
606 return getNumSuccessors();
608 void InvokeInst::setSuccessorV(unsigned idx, BasicBlock *B) {
609 return setSuccessor(idx, B);
612 bool InvokeInst::paramHasAttr(unsigned i, Attribute::AttrKind A) const {
613 assert(i < (getNumArgOperands() + 1) && "Param index out of bounds!");
615 if (AttributeList.hasAttribute(i, A))
617 if (const Function *F = getCalledFunction())
618 return F->getAttributes().hasAttribute(i, A);
622 bool InvokeInst::dataOperandHasImpliedAttr(unsigned i,
623 Attribute::AttrKind A) const {
624 // There are getNumOperands() - 3 data operands. The last three operands are
625 // the callee and the two successor basic blocks.
626 assert(i < (getNumOperands() - 2) && "Data operand index out of bounds!");
628 // The attribute A can either be directly specified, if the operand in
629 // question is an invoke argument; or be indirectly implied by the kind of its
630 // containing operand bundle, if the operand is a bundle operand.
632 if (i < (getNumArgOperands() + 1))
633 return paramHasAttr(i, A);
635 assert(hasOperandBundles() && i >= (getBundleOperandsStartIndex() + 1) &&
636 "Must be either an invoke argument or an operand bundle!");
637 return bundleOperandHasAttr(i - 1, A);
640 void InvokeInst::addAttribute(unsigned i, Attribute::AttrKind attr) {
641 AttributeSet PAL = getAttributes();
642 PAL = PAL.addAttribute(getContext(), i, attr);
646 void InvokeInst::removeAttribute(unsigned i, Attribute attr) {
647 AttributeSet PAL = getAttributes();
649 PAL = PAL.removeAttributes(getContext(), i,
650 AttributeSet::get(getContext(), i, B));
654 void InvokeInst::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
655 AttributeSet PAL = getAttributes();
656 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
660 void InvokeInst::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
661 AttributeSet PAL = getAttributes();
662 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
666 LandingPadInst *InvokeInst::getLandingPadInst() const {
667 return cast<LandingPadInst>(getUnwindDest()->getFirstNonPHI());
670 //===----------------------------------------------------------------------===//
671 // ReturnInst Implementation
672 //===----------------------------------------------------------------------===//
674 ReturnInst::ReturnInst(const ReturnInst &RI)
675 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Ret,
676 OperandTraits<ReturnInst>::op_end(this) -
678 RI.getNumOperands()) {
679 if (RI.getNumOperands())
680 Op<0>() = RI.Op<0>();
681 SubclassOptionalData = RI.SubclassOptionalData;
684 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, Instruction *InsertBefore)
685 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
686 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
691 ReturnInst::ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd)
692 : TerminatorInst(Type::getVoidTy(C), Instruction::Ret,
693 OperandTraits<ReturnInst>::op_end(this) - !!retVal, !!retVal,
698 ReturnInst::ReturnInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
699 : TerminatorInst(Type::getVoidTy(Context), Instruction::Ret,
700 OperandTraits<ReturnInst>::op_end(this), 0, InsertAtEnd) {
703 unsigned ReturnInst::getNumSuccessorsV() const {
704 return getNumSuccessors();
707 /// Out-of-line ReturnInst method, put here so the C++ compiler can choose to
708 /// emit the vtable for the class in this translation unit.
709 void ReturnInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
710 llvm_unreachable("ReturnInst has no successors!");
713 BasicBlock *ReturnInst::getSuccessorV(unsigned idx) const {
714 llvm_unreachable("ReturnInst has no successors!");
717 ReturnInst::~ReturnInst() {
720 //===----------------------------------------------------------------------===//
721 // ResumeInst Implementation
722 //===----------------------------------------------------------------------===//
724 ResumeInst::ResumeInst(const ResumeInst &RI)
725 : TerminatorInst(Type::getVoidTy(RI.getContext()), Instruction::Resume,
726 OperandTraits<ResumeInst>::op_begin(this), 1) {
727 Op<0>() = RI.Op<0>();
730 ResumeInst::ResumeInst(Value *Exn, Instruction *InsertBefore)
731 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
732 OperandTraits<ResumeInst>::op_begin(this), 1, InsertBefore) {
736 ResumeInst::ResumeInst(Value *Exn, BasicBlock *InsertAtEnd)
737 : TerminatorInst(Type::getVoidTy(Exn->getContext()), Instruction::Resume,
738 OperandTraits<ResumeInst>::op_begin(this), 1, InsertAtEnd) {
742 unsigned ResumeInst::getNumSuccessorsV() const {
743 return getNumSuccessors();
746 void ResumeInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
747 llvm_unreachable("ResumeInst has no successors!");
750 BasicBlock *ResumeInst::getSuccessorV(unsigned idx) const {
751 llvm_unreachable("ResumeInst has no successors!");
754 //===----------------------------------------------------------------------===//
755 // CleanupReturnInst Implementation
756 //===----------------------------------------------------------------------===//
758 CleanupReturnInst::CleanupReturnInst(const CleanupReturnInst &CRI)
759 : TerminatorInst(CRI.getType(), Instruction::CleanupRet,
760 OperandTraits<CleanupReturnInst>::op_end(this) -
761 CRI.getNumOperands(),
762 CRI.getNumOperands()) {
763 setInstructionSubclassData(CRI.getSubclassDataFromInstruction());
764 Op<0>() = CRI.Op<0>();
765 if (CRI.hasUnwindDest())
766 Op<1>() = CRI.Op<1>();
769 void CleanupReturnInst::init(Value *CleanupPad, BasicBlock *UnwindBB) {
771 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
773 Op<0>() = CleanupPad;
778 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
779 unsigned Values, Instruction *InsertBefore)
780 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
781 Instruction::CleanupRet,
782 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
783 Values, InsertBefore) {
784 init(CleanupPad, UnwindBB);
787 CleanupReturnInst::CleanupReturnInst(Value *CleanupPad, BasicBlock *UnwindBB,
788 unsigned Values, BasicBlock *InsertAtEnd)
789 : TerminatorInst(Type::getVoidTy(CleanupPad->getContext()),
790 Instruction::CleanupRet,
791 OperandTraits<CleanupReturnInst>::op_end(this) - Values,
792 Values, InsertAtEnd) {
793 init(CleanupPad, UnwindBB);
796 BasicBlock *CleanupReturnInst::getSuccessorV(unsigned Idx) const {
798 return getUnwindDest();
800 unsigned CleanupReturnInst::getNumSuccessorsV() const {
801 return getNumSuccessors();
803 void CleanupReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
808 //===----------------------------------------------------------------------===//
809 // CatchReturnInst Implementation
810 //===----------------------------------------------------------------------===//
811 void CatchReturnInst::init(Value *CatchPad, BasicBlock *BB) {
816 CatchReturnInst::CatchReturnInst(const CatchReturnInst &CRI)
817 : TerminatorInst(Type::getVoidTy(CRI.getContext()), Instruction::CatchRet,
818 OperandTraits<CatchReturnInst>::op_begin(this), 2) {
819 Op<0>() = CRI.Op<0>();
820 Op<1>() = CRI.Op<1>();
823 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
824 Instruction *InsertBefore)
825 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
826 OperandTraits<CatchReturnInst>::op_begin(this), 2,
831 CatchReturnInst::CatchReturnInst(Value *CatchPad, BasicBlock *BB,
832 BasicBlock *InsertAtEnd)
833 : TerminatorInst(Type::getVoidTy(BB->getContext()), Instruction::CatchRet,
834 OperandTraits<CatchReturnInst>::op_begin(this), 2,
839 BasicBlock *CatchReturnInst::getSuccessorV(unsigned Idx) const {
840 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
841 return getSuccessor();
843 unsigned CatchReturnInst::getNumSuccessorsV() const {
844 return getNumSuccessors();
846 void CatchReturnInst::setSuccessorV(unsigned Idx, BasicBlock *B) {
847 assert(Idx < getNumSuccessors() && "Successor # out of range for catchret!");
851 //===----------------------------------------------------------------------===//
852 // CatchSwitchInst Implementation
853 //===----------------------------------------------------------------------===//
855 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
856 unsigned NumReservedValues,
857 const Twine &NameStr,
858 Instruction *InsertBefore)
859 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
863 init(ParentPad, UnwindDest, NumReservedValues + 1);
867 CatchSwitchInst::CatchSwitchInst(Value *ParentPad, BasicBlock *UnwindDest,
868 unsigned NumReservedValues,
869 const Twine &NameStr, BasicBlock *InsertAtEnd)
870 : TerminatorInst(ParentPad->getType(), Instruction::CatchSwitch, nullptr, 0,
874 init(ParentPad, UnwindDest, NumReservedValues + 1);
878 CatchSwitchInst::CatchSwitchInst(const CatchSwitchInst &CSI)
879 : TerminatorInst(CSI.getType(), Instruction::CatchSwitch, nullptr,
880 CSI.getNumOperands()) {
881 init(CSI.getParentPad(), CSI.getUnwindDest(), CSI.getNumOperands());
882 setNumHungOffUseOperands(ReservedSpace);
883 Use *OL = getOperandList();
884 const Use *InOL = CSI.getOperandList();
885 for (unsigned I = 1, E = ReservedSpace; I != E; ++I)
889 void CatchSwitchInst::init(Value *ParentPad, BasicBlock *UnwindDest,
890 unsigned NumReservedValues) {
891 assert(ParentPad && NumReservedValues);
893 ReservedSpace = NumReservedValues;
894 setNumHungOffUseOperands(UnwindDest ? 2 : 1);
895 allocHungoffUses(ReservedSpace);
899 setInstructionSubclassData(getSubclassDataFromInstruction() | 1);
900 setUnwindDest(UnwindDest);
904 /// growOperands - grow operands - This grows the operand list in response to a
905 /// push_back style of operation. This grows the number of ops by 2 times.
906 void CatchSwitchInst::growOperands(unsigned Size) {
907 unsigned NumOperands = getNumOperands();
908 assert(NumOperands >= 1);
909 if (ReservedSpace >= NumOperands + Size)
911 ReservedSpace = (NumOperands + Size / 2) * 2;
912 growHungoffUses(ReservedSpace);
915 void CatchSwitchInst::addHandler(BasicBlock *Handler) {
916 unsigned OpNo = getNumOperands();
918 assert(OpNo < ReservedSpace && "Growing didn't work!");
919 setNumHungOffUseOperands(getNumOperands() + 1);
920 getOperandList()[OpNo] = Handler;
923 void CatchSwitchInst::removeHandler(handler_iterator HI) {
924 // Move all subsequent handlers up one.
925 Use *EndDst = op_end() - 1;
926 for (Use *CurDst = HI.getCurrent(); CurDst != EndDst; ++CurDst)
927 *CurDst = *(CurDst + 1);
928 // Null out the last handler use.
931 setNumHungOffUseOperands(getNumOperands() - 1);
934 BasicBlock *CatchSwitchInst::getSuccessorV(unsigned idx) const {
935 return getSuccessor(idx);
937 unsigned CatchSwitchInst::getNumSuccessorsV() const {
938 return getNumSuccessors();
940 void CatchSwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
941 setSuccessor(idx, B);
944 //===----------------------------------------------------------------------===//
945 // FuncletPadInst Implementation
946 //===----------------------------------------------------------------------===//
947 void FuncletPadInst::init(Value *ParentPad, ArrayRef<Value *> Args,
948 const Twine &NameStr) {
949 assert(getNumOperands() == 1 + Args.size() && "NumOperands not set up?");
950 std::copy(Args.begin(), Args.end(), op_begin());
951 setParentPad(ParentPad);
955 FuncletPadInst::FuncletPadInst(const FuncletPadInst &FPI)
956 : Instruction(FPI.getType(), FPI.getOpcode(),
957 OperandTraits<FuncletPadInst>::op_end(this) -
958 FPI.getNumOperands(),
959 FPI.getNumOperands()) {
960 std::copy(FPI.op_begin(), FPI.op_end(), op_begin());
961 setParentPad(FPI.getParentPad());
964 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
965 ArrayRef<Value *> Args, unsigned Values,
966 const Twine &NameStr, Instruction *InsertBefore)
967 : Instruction(ParentPad->getType(), Op,
968 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
970 init(ParentPad, Args, NameStr);
973 FuncletPadInst::FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
974 ArrayRef<Value *> Args, unsigned Values,
975 const Twine &NameStr, BasicBlock *InsertAtEnd)
976 : Instruction(ParentPad->getType(), Op,
977 OperandTraits<FuncletPadInst>::op_end(this) - Values, Values,
979 init(ParentPad, Args, NameStr);
982 //===----------------------------------------------------------------------===//
983 // UnreachableInst Implementation
984 //===----------------------------------------------------------------------===//
986 UnreachableInst::UnreachableInst(LLVMContext &Context,
987 Instruction *InsertBefore)
988 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
989 nullptr, 0, InsertBefore) {
991 UnreachableInst::UnreachableInst(LLVMContext &Context, BasicBlock *InsertAtEnd)
992 : TerminatorInst(Type::getVoidTy(Context), Instruction::Unreachable,
993 nullptr, 0, InsertAtEnd) {
996 unsigned UnreachableInst::getNumSuccessorsV() const {
997 return getNumSuccessors();
1000 void UnreachableInst::setSuccessorV(unsigned idx, BasicBlock *NewSucc) {
1001 llvm_unreachable("UnreachableInst has no successors!");
1004 BasicBlock *UnreachableInst::getSuccessorV(unsigned idx) const {
1005 llvm_unreachable("UnreachableInst has no successors!");
1008 //===----------------------------------------------------------------------===//
1009 // BranchInst Implementation
1010 //===----------------------------------------------------------------------===//
1012 void BranchInst::AssertOK() {
1013 if (isConditional())
1014 assert(getCondition()->getType()->isIntegerTy(1) &&
1015 "May only branch on boolean predicates!");
1018 BranchInst::BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore)
1019 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1020 OperandTraits<BranchInst>::op_end(this) - 1,
1022 assert(IfTrue && "Branch destination may not be null!");
1025 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1026 Instruction *InsertBefore)
1027 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1028 OperandTraits<BranchInst>::op_end(this) - 3,
1038 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd)
1039 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1040 OperandTraits<BranchInst>::op_end(this) - 1,
1042 assert(IfTrue && "Branch destination may not be null!");
1046 BranchInst::BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
1047 BasicBlock *InsertAtEnd)
1048 : TerminatorInst(Type::getVoidTy(IfTrue->getContext()), Instruction::Br,
1049 OperandTraits<BranchInst>::op_end(this) - 3,
1060 BranchInst::BranchInst(const BranchInst &BI) :
1061 TerminatorInst(Type::getVoidTy(BI.getContext()), Instruction::Br,
1062 OperandTraits<BranchInst>::op_end(this) - BI.getNumOperands(),
1063 BI.getNumOperands()) {
1064 Op<-1>() = BI.Op<-1>();
1065 if (BI.getNumOperands() != 1) {
1066 assert(BI.getNumOperands() == 3 && "BR can have 1 or 3 operands!");
1067 Op<-3>() = BI.Op<-3>();
1068 Op<-2>() = BI.Op<-2>();
1070 SubclassOptionalData = BI.SubclassOptionalData;
1073 void BranchInst::swapSuccessors() {
1074 assert(isConditional() &&
1075 "Cannot swap successors of an unconditional branch");
1076 Op<-1>().swap(Op<-2>());
1078 // Update profile metadata if present and it matches our structural
1080 MDNode *ProfileData = getMetadata(LLVMContext::MD_prof);
1081 if (!ProfileData || ProfileData->getNumOperands() != 3)
1084 // The first operand is the name. Fetch them backwards and build a new one.
1085 Metadata *Ops[] = {ProfileData->getOperand(0), ProfileData->getOperand(2),
1086 ProfileData->getOperand(1)};
1087 setMetadata(LLVMContext::MD_prof,
1088 MDNode::get(ProfileData->getContext(), Ops));
1091 BasicBlock *BranchInst::getSuccessorV(unsigned idx) const {
1092 return getSuccessor(idx);
1094 unsigned BranchInst::getNumSuccessorsV() const {
1095 return getNumSuccessors();
1097 void BranchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
1098 setSuccessor(idx, B);
1102 //===----------------------------------------------------------------------===//
1103 // AllocaInst Implementation
1104 //===----------------------------------------------------------------------===//
1106 static Value *getAISize(LLVMContext &Context, Value *Amt) {
1108 Amt = ConstantInt::get(Type::getInt32Ty(Context), 1);
1110 assert(!isa<BasicBlock>(Amt) &&
1111 "Passed basic block into allocation size parameter! Use other ctor");
1112 assert(Amt->getType()->isIntegerTy() &&
1113 "Allocation array size is not an integer!");
1118 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore)
1119 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertBefore) {}
1121 AllocaInst::AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd)
1122 : AllocaInst(Ty, /*ArraySize=*/nullptr, Name, InsertAtEnd) {}
1124 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
1125 Instruction *InsertBefore)
1126 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertBefore) {}
1128 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, const Twine &Name,
1129 BasicBlock *InsertAtEnd)
1130 : AllocaInst(Ty, ArraySize, /*Align=*/0, Name, InsertAtEnd) {}
1132 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
1133 const Twine &Name, Instruction *InsertBefore)
1134 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
1135 getAISize(Ty->getContext(), ArraySize), InsertBefore),
1137 setAlignment(Align);
1138 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1142 AllocaInst::AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
1143 const Twine &Name, BasicBlock *InsertAtEnd)
1144 : UnaryInstruction(PointerType::getUnqual(Ty), Alloca,
1145 getAISize(Ty->getContext(), ArraySize), InsertAtEnd),
1147 setAlignment(Align);
1148 assert(!Ty->isVoidTy() && "Cannot allocate void!");
1152 // Out of line virtual method, so the vtable, etc has a home.
1153 AllocaInst::~AllocaInst() {
1156 void AllocaInst::setAlignment(unsigned Align) {
1157 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1158 assert(Align <= MaximumAlignment &&
1159 "Alignment is greater than MaximumAlignment!");
1160 setInstructionSubclassData((getSubclassDataFromInstruction() & ~31) |
1161 (Log2_32(Align) + 1));
1162 assert(getAlignment() == Align && "Alignment representation error!");
1165 bool AllocaInst::isArrayAllocation() const {
1166 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(0)))
1167 return !CI->isOne();
1171 /// isStaticAlloca - Return true if this alloca is in the entry block of the
1172 /// function and is a constant size. If so, the code generator will fold it
1173 /// into the prolog/epilog code, so it is basically free.
1174 bool AllocaInst::isStaticAlloca() const {
1175 // Must be constant size.
1176 if (!isa<ConstantInt>(getArraySize())) return false;
1178 // Must be in the entry block.
1179 const BasicBlock *Parent = getParent();
1180 return Parent == &Parent->getParent()->front() && !isUsedWithInAlloca();
1183 //===----------------------------------------------------------------------===//
1184 // LoadInst Implementation
1185 //===----------------------------------------------------------------------===//
1187 void LoadInst::AssertOK() {
1188 assert(getOperand(0)->getType()->isPointerTy() &&
1189 "Ptr must have pointer type.");
1190 assert(!(isAtomic() && getAlignment() == 0) &&
1191 "Alignment required for atomic load");
1194 LoadInst::LoadInst(Value *Ptr, const Twine &Name, Instruction *InsertBef)
1195 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertBef) {}
1197 LoadInst::LoadInst(Value *Ptr, const Twine &Name, BasicBlock *InsertAE)
1198 : LoadInst(Ptr, Name, /*isVolatile=*/false, InsertAE) {}
1200 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1201 Instruction *InsertBef)
1202 : LoadInst(Ty, Ptr, Name, isVolatile, /*Align=*/0, InsertBef) {}
1204 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1205 BasicBlock *InsertAE)
1206 : LoadInst(Ptr, Name, isVolatile, /*Align=*/0, InsertAE) {}
1208 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1209 unsigned Align, Instruction *InsertBef)
1210 : LoadInst(Ty, Ptr, Name, isVolatile, Align, NotAtomic, CrossThread,
1213 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1214 unsigned Align, BasicBlock *InsertAE)
1215 : LoadInst(Ptr, Name, isVolatile, Align, NotAtomic, CrossThread, InsertAE) {
1218 LoadInst::LoadInst(Type *Ty, Value *Ptr, const Twine &Name, bool isVolatile,
1219 unsigned Align, AtomicOrdering Order,
1220 SynchronizationScope SynchScope, Instruction *InsertBef)
1221 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1222 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1223 setVolatile(isVolatile);
1224 setAlignment(Align);
1225 setAtomic(Order, SynchScope);
1230 LoadInst::LoadInst(Value *Ptr, const Twine &Name, bool isVolatile,
1231 unsigned Align, AtomicOrdering Order,
1232 SynchronizationScope SynchScope,
1233 BasicBlock *InsertAE)
1234 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1235 Load, Ptr, InsertAE) {
1236 setVolatile(isVolatile);
1237 setAlignment(Align);
1238 setAtomic(Order, SynchScope);
1243 LoadInst::LoadInst(Value *Ptr, const char *Name, Instruction *InsertBef)
1244 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1245 Load, Ptr, InsertBef) {
1248 setAtomic(NotAtomic);
1250 if (Name && Name[0]) setName(Name);
1253 LoadInst::LoadInst(Value *Ptr, const char *Name, BasicBlock *InsertAE)
1254 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1255 Load, Ptr, InsertAE) {
1258 setAtomic(NotAtomic);
1260 if (Name && Name[0]) setName(Name);
1263 LoadInst::LoadInst(Type *Ty, Value *Ptr, const char *Name, bool isVolatile,
1264 Instruction *InsertBef)
1265 : UnaryInstruction(Ty, Load, Ptr, InsertBef) {
1266 assert(Ty == cast<PointerType>(Ptr->getType())->getElementType());
1267 setVolatile(isVolatile);
1269 setAtomic(NotAtomic);
1271 if (Name && Name[0]) setName(Name);
1274 LoadInst::LoadInst(Value *Ptr, const char *Name, bool isVolatile,
1275 BasicBlock *InsertAE)
1276 : UnaryInstruction(cast<PointerType>(Ptr->getType())->getElementType(),
1277 Load, Ptr, InsertAE) {
1278 setVolatile(isVolatile);
1280 setAtomic(NotAtomic);
1282 if (Name && Name[0]) setName(Name);
1285 void LoadInst::setAlignment(unsigned Align) {
1286 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1287 assert(Align <= MaximumAlignment &&
1288 "Alignment is greater than MaximumAlignment!");
1289 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1290 ((Log2_32(Align)+1)<<1));
1291 assert(getAlignment() == Align && "Alignment representation error!");
1294 //===----------------------------------------------------------------------===//
1295 // StoreInst Implementation
1296 //===----------------------------------------------------------------------===//
1298 void StoreInst::AssertOK() {
1299 assert(getOperand(0) && getOperand(1) && "Both operands must be non-null!");
1300 assert(getOperand(1)->getType()->isPointerTy() &&
1301 "Ptr must have pointer type!");
1302 assert(getOperand(0)->getType() ==
1303 cast<PointerType>(getOperand(1)->getType())->getElementType()
1304 && "Ptr must be a pointer to Val type!");
1305 assert(!(isAtomic() && getAlignment() == 0) &&
1306 "Alignment required for atomic store");
1309 StoreInst::StoreInst(Value *val, Value *addr, Instruction *InsertBefore)
1310 : StoreInst(val, addr, /*isVolatile=*/false, InsertBefore) {}
1312 StoreInst::StoreInst(Value *val, Value *addr, BasicBlock *InsertAtEnd)
1313 : StoreInst(val, addr, /*isVolatile=*/false, InsertAtEnd) {}
1315 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1316 Instruction *InsertBefore)
1317 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertBefore) {}
1319 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1320 BasicBlock *InsertAtEnd)
1321 : StoreInst(val, addr, isVolatile, /*Align=*/0, InsertAtEnd) {}
1323 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1324 Instruction *InsertBefore)
1325 : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread,
1328 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile, unsigned Align,
1329 BasicBlock *InsertAtEnd)
1330 : StoreInst(val, addr, isVolatile, Align, NotAtomic, CrossThread,
1333 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1334 unsigned Align, AtomicOrdering Order,
1335 SynchronizationScope SynchScope,
1336 Instruction *InsertBefore)
1337 : Instruction(Type::getVoidTy(val->getContext()), Store,
1338 OperandTraits<StoreInst>::op_begin(this),
1339 OperandTraits<StoreInst>::operands(this),
1343 setVolatile(isVolatile);
1344 setAlignment(Align);
1345 setAtomic(Order, SynchScope);
1349 StoreInst::StoreInst(Value *val, Value *addr, bool isVolatile,
1350 unsigned Align, AtomicOrdering Order,
1351 SynchronizationScope SynchScope,
1352 BasicBlock *InsertAtEnd)
1353 : Instruction(Type::getVoidTy(val->getContext()), Store,
1354 OperandTraits<StoreInst>::op_begin(this),
1355 OperandTraits<StoreInst>::operands(this),
1359 setVolatile(isVolatile);
1360 setAlignment(Align);
1361 setAtomic(Order, SynchScope);
1365 void StoreInst::setAlignment(unsigned Align) {
1366 assert((Align & (Align-1)) == 0 && "Alignment is not a power of 2!");
1367 assert(Align <= MaximumAlignment &&
1368 "Alignment is greater than MaximumAlignment!");
1369 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(31 << 1)) |
1370 ((Log2_32(Align)+1) << 1));
1371 assert(getAlignment() == Align && "Alignment representation error!");
1374 //===----------------------------------------------------------------------===//
1375 // AtomicCmpXchgInst Implementation
1376 //===----------------------------------------------------------------------===//
1378 void AtomicCmpXchgInst::Init(Value *Ptr, Value *Cmp, Value *NewVal,
1379 AtomicOrdering SuccessOrdering,
1380 AtomicOrdering FailureOrdering,
1381 SynchronizationScope SynchScope) {
1385 setSuccessOrdering(SuccessOrdering);
1386 setFailureOrdering(FailureOrdering);
1387 setSynchScope(SynchScope);
1389 assert(getOperand(0) && getOperand(1) && getOperand(2) &&
1390 "All operands must be non-null!");
1391 assert(getOperand(0)->getType()->isPointerTy() &&
1392 "Ptr must have pointer type!");
1393 assert(getOperand(1)->getType() ==
1394 cast<PointerType>(getOperand(0)->getType())->getElementType()
1395 && "Ptr must be a pointer to Cmp type!");
1396 assert(getOperand(2)->getType() ==
1397 cast<PointerType>(getOperand(0)->getType())->getElementType()
1398 && "Ptr must be a pointer to NewVal type!");
1399 assert(SuccessOrdering != NotAtomic &&
1400 "AtomicCmpXchg instructions must be atomic!");
1401 assert(FailureOrdering != NotAtomic &&
1402 "AtomicCmpXchg instructions must be atomic!");
1403 assert(SuccessOrdering >= FailureOrdering &&
1404 "AtomicCmpXchg success ordering must be at least as strong as fail");
1405 assert(FailureOrdering != Release && FailureOrdering != AcquireRelease &&
1406 "AtomicCmpXchg failure ordering cannot include release semantics");
1409 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1410 AtomicOrdering SuccessOrdering,
1411 AtomicOrdering FailureOrdering,
1412 SynchronizationScope SynchScope,
1413 Instruction *InsertBefore)
1415 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1417 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1418 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertBefore) {
1419 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1422 AtomicCmpXchgInst::AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
1423 AtomicOrdering SuccessOrdering,
1424 AtomicOrdering FailureOrdering,
1425 SynchronizationScope SynchScope,
1426 BasicBlock *InsertAtEnd)
1428 StructType::get(Cmp->getType(), Type::getInt1Ty(Cmp->getContext()),
1430 AtomicCmpXchg, OperandTraits<AtomicCmpXchgInst>::op_begin(this),
1431 OperandTraits<AtomicCmpXchgInst>::operands(this), InsertAtEnd) {
1432 Init(Ptr, Cmp, NewVal, SuccessOrdering, FailureOrdering, SynchScope);
1435 //===----------------------------------------------------------------------===//
1436 // AtomicRMWInst Implementation
1437 //===----------------------------------------------------------------------===//
1439 void AtomicRMWInst::Init(BinOp Operation, Value *Ptr, Value *Val,
1440 AtomicOrdering Ordering,
1441 SynchronizationScope SynchScope) {
1444 setOperation(Operation);
1445 setOrdering(Ordering);
1446 setSynchScope(SynchScope);
1448 assert(getOperand(0) && getOperand(1) &&
1449 "All operands must be non-null!");
1450 assert(getOperand(0)->getType()->isPointerTy() &&
1451 "Ptr must have pointer type!");
1452 assert(getOperand(1)->getType() ==
1453 cast<PointerType>(getOperand(0)->getType())->getElementType()
1454 && "Ptr must be a pointer to Val type!");
1455 assert(Ordering != NotAtomic &&
1456 "AtomicRMW instructions must be atomic!");
1459 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1460 AtomicOrdering Ordering,
1461 SynchronizationScope SynchScope,
1462 Instruction *InsertBefore)
1463 : Instruction(Val->getType(), AtomicRMW,
1464 OperandTraits<AtomicRMWInst>::op_begin(this),
1465 OperandTraits<AtomicRMWInst>::operands(this),
1467 Init(Operation, Ptr, Val, Ordering, SynchScope);
1470 AtomicRMWInst::AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
1471 AtomicOrdering Ordering,
1472 SynchronizationScope SynchScope,
1473 BasicBlock *InsertAtEnd)
1474 : Instruction(Val->getType(), AtomicRMW,
1475 OperandTraits<AtomicRMWInst>::op_begin(this),
1476 OperandTraits<AtomicRMWInst>::operands(this),
1478 Init(Operation, Ptr, Val, Ordering, SynchScope);
1481 //===----------------------------------------------------------------------===//
1482 // FenceInst Implementation
1483 //===----------------------------------------------------------------------===//
1485 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1486 SynchronizationScope SynchScope,
1487 Instruction *InsertBefore)
1488 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertBefore) {
1489 setOrdering(Ordering);
1490 setSynchScope(SynchScope);
1493 FenceInst::FenceInst(LLVMContext &C, AtomicOrdering Ordering,
1494 SynchronizationScope SynchScope,
1495 BasicBlock *InsertAtEnd)
1496 : Instruction(Type::getVoidTy(C), Fence, nullptr, 0, InsertAtEnd) {
1497 setOrdering(Ordering);
1498 setSynchScope(SynchScope);
1501 //===----------------------------------------------------------------------===//
1502 // GetElementPtrInst Implementation
1503 //===----------------------------------------------------------------------===//
1505 void GetElementPtrInst::anchor() {}
1507 void GetElementPtrInst::init(Value *Ptr, ArrayRef<Value *> IdxList,
1508 const Twine &Name) {
1509 assert(getNumOperands() == 1 + IdxList.size() &&
1510 "NumOperands not initialized?");
1512 std::copy(IdxList.begin(), IdxList.end(), op_begin() + 1);
1516 GetElementPtrInst::GetElementPtrInst(const GetElementPtrInst &GEPI)
1517 : Instruction(GEPI.getType(), GetElementPtr,
1518 OperandTraits<GetElementPtrInst>::op_end(this) -
1519 GEPI.getNumOperands(),
1520 GEPI.getNumOperands()),
1521 SourceElementType(GEPI.SourceElementType),
1522 ResultElementType(GEPI.ResultElementType) {
1523 std::copy(GEPI.op_begin(), GEPI.op_end(), op_begin());
1524 SubclassOptionalData = GEPI.SubclassOptionalData;
1527 /// getIndexedType - Returns the type of the element that would be accessed with
1528 /// a gep instruction with the specified parameters.
1530 /// The Idxs pointer should point to a continuous piece of memory containing the
1531 /// indices, either as Value* or uint64_t.
1533 /// A null type is returned if the indices are invalid for the specified
1536 template <typename IndexTy>
1537 static Type *getIndexedTypeInternal(Type *Agg, ArrayRef<IndexTy> IdxList) {
1538 // Handle the special case of the empty set index set, which is always valid.
1539 if (IdxList.empty())
1542 // If there is at least one index, the top level type must be sized, otherwise
1543 // it cannot be 'stepped over'.
1544 if (!Agg->isSized())
1547 unsigned CurIdx = 1;
1548 for (; CurIdx != IdxList.size(); ++CurIdx) {
1549 CompositeType *CT = dyn_cast<CompositeType>(Agg);
1550 if (!CT || CT->isPointerTy()) return nullptr;
1551 IndexTy Index = IdxList[CurIdx];
1552 if (!CT->indexValid(Index)) return nullptr;
1553 Agg = CT->getTypeAtIndex(Index);
1555 return CurIdx == IdxList.size() ? Agg : nullptr;
1558 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<Value *> IdxList) {
1559 return getIndexedTypeInternal(Ty, IdxList);
1562 Type *GetElementPtrInst::getIndexedType(Type *Ty,
1563 ArrayRef<Constant *> IdxList) {
1564 return getIndexedTypeInternal(Ty, IdxList);
1567 Type *GetElementPtrInst::getIndexedType(Type *Ty, ArrayRef<uint64_t> IdxList) {
1568 return getIndexedTypeInternal(Ty, IdxList);
1571 /// hasAllZeroIndices - Return true if all of the indices of this GEP are
1572 /// zeros. If so, the result pointer and the first operand have the same
1573 /// value, just potentially different types.
1574 bool GetElementPtrInst::hasAllZeroIndices() const {
1575 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1576 if (ConstantInt *CI = dyn_cast<ConstantInt>(getOperand(i))) {
1577 if (!CI->isZero()) return false;
1585 /// hasAllConstantIndices - Return true if all of the indices of this GEP are
1586 /// constant integers. If so, the result pointer and the first operand have
1587 /// a constant offset between them.
1588 bool GetElementPtrInst::hasAllConstantIndices() const {
1589 for (unsigned i = 1, e = getNumOperands(); i != e; ++i) {
1590 if (!isa<ConstantInt>(getOperand(i)))
1596 void GetElementPtrInst::setIsInBounds(bool B) {
1597 cast<GEPOperator>(this)->setIsInBounds(B);
1600 bool GetElementPtrInst::isInBounds() const {
1601 return cast<GEPOperator>(this)->isInBounds();
1604 bool GetElementPtrInst::accumulateConstantOffset(const DataLayout &DL,
1605 APInt &Offset) const {
1606 // Delegate to the generic GEPOperator implementation.
1607 return cast<GEPOperator>(this)->accumulateConstantOffset(DL, Offset);
1610 //===----------------------------------------------------------------------===//
1611 // ExtractElementInst Implementation
1612 //===----------------------------------------------------------------------===//
1614 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1616 Instruction *InsertBef)
1617 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1619 OperandTraits<ExtractElementInst>::op_begin(this),
1621 assert(isValidOperands(Val, Index) &&
1622 "Invalid extractelement instruction operands!");
1628 ExtractElementInst::ExtractElementInst(Value *Val, Value *Index,
1630 BasicBlock *InsertAE)
1631 : Instruction(cast<VectorType>(Val->getType())->getElementType(),
1633 OperandTraits<ExtractElementInst>::op_begin(this),
1635 assert(isValidOperands(Val, Index) &&
1636 "Invalid extractelement instruction operands!");
1644 bool ExtractElementInst::isValidOperands(const Value *Val, const Value *Index) {
1645 if (!Val->getType()->isVectorTy() || !Index->getType()->isIntegerTy())
1651 //===----------------------------------------------------------------------===//
1652 // InsertElementInst Implementation
1653 //===----------------------------------------------------------------------===//
1655 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1657 Instruction *InsertBef)
1658 : Instruction(Vec->getType(), InsertElement,
1659 OperandTraits<InsertElementInst>::op_begin(this),
1661 assert(isValidOperands(Vec, Elt, Index) &&
1662 "Invalid insertelement instruction operands!");
1669 InsertElementInst::InsertElementInst(Value *Vec, Value *Elt, Value *Index,
1671 BasicBlock *InsertAE)
1672 : Instruction(Vec->getType(), InsertElement,
1673 OperandTraits<InsertElementInst>::op_begin(this),
1675 assert(isValidOperands(Vec, Elt, Index) &&
1676 "Invalid insertelement instruction operands!");
1684 bool InsertElementInst::isValidOperands(const Value *Vec, const Value *Elt,
1685 const Value *Index) {
1686 if (!Vec->getType()->isVectorTy())
1687 return false; // First operand of insertelement must be vector type.
1689 if (Elt->getType() != cast<VectorType>(Vec->getType())->getElementType())
1690 return false;// Second operand of insertelement must be vector element type.
1692 if (!Index->getType()->isIntegerTy())
1693 return false; // Third operand of insertelement must be i32.
1698 //===----------------------------------------------------------------------===//
1699 // ShuffleVectorInst Implementation
1700 //===----------------------------------------------------------------------===//
1702 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1704 Instruction *InsertBefore)
1705 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1706 cast<VectorType>(Mask->getType())->getNumElements()),
1708 OperandTraits<ShuffleVectorInst>::op_begin(this),
1709 OperandTraits<ShuffleVectorInst>::operands(this),
1711 assert(isValidOperands(V1, V2, Mask) &&
1712 "Invalid shuffle vector instruction operands!");
1719 ShuffleVectorInst::ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
1721 BasicBlock *InsertAtEnd)
1722 : Instruction(VectorType::get(cast<VectorType>(V1->getType())->getElementType(),
1723 cast<VectorType>(Mask->getType())->getNumElements()),
1725 OperandTraits<ShuffleVectorInst>::op_begin(this),
1726 OperandTraits<ShuffleVectorInst>::operands(this),
1728 assert(isValidOperands(V1, V2, Mask) &&
1729 "Invalid shuffle vector instruction operands!");
1737 bool ShuffleVectorInst::isValidOperands(const Value *V1, const Value *V2,
1738 const Value *Mask) {
1739 // V1 and V2 must be vectors of the same type.
1740 if (!V1->getType()->isVectorTy() || V1->getType() != V2->getType())
1743 // Mask must be vector of i32.
1744 VectorType *MaskTy = dyn_cast<VectorType>(Mask->getType());
1745 if (!MaskTy || !MaskTy->getElementType()->isIntegerTy(32))
1748 // Check to see if Mask is valid.
1749 if (isa<UndefValue>(Mask) || isa<ConstantAggregateZero>(Mask))
1752 if (const ConstantVector *MV = dyn_cast<ConstantVector>(Mask)) {
1753 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1754 for (Value *Op : MV->operands()) {
1755 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
1756 if (CI->uge(V1Size*2))
1758 } else if (!isa<UndefValue>(Op)) {
1765 if (const ConstantDataSequential *CDS =
1766 dyn_cast<ConstantDataSequential>(Mask)) {
1767 unsigned V1Size = cast<VectorType>(V1->getType())->getNumElements();
1768 for (unsigned i = 0, e = MaskTy->getNumElements(); i != e; ++i)
1769 if (CDS->getElementAsInteger(i) >= V1Size*2)
1774 // The bitcode reader can create a place holder for a forward reference
1775 // used as the shuffle mask. When this occurs, the shuffle mask will
1776 // fall into this case and fail. To avoid this error, do this bit of
1777 // ugliness to allow such a mask pass.
1778 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(Mask))
1779 if (CE->getOpcode() == Instruction::UserOp1)
1785 /// getMaskValue - Return the index from the shuffle mask for the specified
1786 /// output result. This is either -1 if the element is undef or a number less
1787 /// than 2*numelements.
1788 int ShuffleVectorInst::getMaskValue(Constant *Mask, unsigned i) {
1789 assert(i < Mask->getType()->getVectorNumElements() && "Index out of range");
1790 if (ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(Mask))
1791 return CDS->getElementAsInteger(i);
1792 Constant *C = Mask->getAggregateElement(i);
1793 if (isa<UndefValue>(C))
1795 return cast<ConstantInt>(C)->getZExtValue();
1798 /// getShuffleMask - Return the full mask for this instruction, where each
1799 /// element is the element number and undef's are returned as -1.
1800 void ShuffleVectorInst::getShuffleMask(Constant *Mask,
1801 SmallVectorImpl<int> &Result) {
1802 unsigned NumElts = Mask->getType()->getVectorNumElements();
1804 if (ConstantDataSequential *CDS=dyn_cast<ConstantDataSequential>(Mask)) {
1805 for (unsigned i = 0; i != NumElts; ++i)
1806 Result.push_back(CDS->getElementAsInteger(i));
1809 for (unsigned i = 0; i != NumElts; ++i) {
1810 Constant *C = Mask->getAggregateElement(i);
1811 Result.push_back(isa<UndefValue>(C) ? -1 :
1812 cast<ConstantInt>(C)->getZExtValue());
1817 //===----------------------------------------------------------------------===//
1818 // InsertValueInst Class
1819 //===----------------------------------------------------------------------===//
1821 void InsertValueInst::init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
1822 const Twine &Name) {
1823 assert(getNumOperands() == 2 && "NumOperands not initialized?");
1825 // There's no fundamental reason why we require at least one index
1826 // (other than weirdness with &*IdxBegin being invalid; see
1827 // getelementptr's init routine for example). But there's no
1828 // present need to support it.
1829 assert(Idxs.size() > 0 && "InsertValueInst must have at least one index");
1831 assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) ==
1832 Val->getType() && "Inserted value must match indexed type!");
1836 Indices.append(Idxs.begin(), Idxs.end());
1840 InsertValueInst::InsertValueInst(const InsertValueInst &IVI)
1841 : Instruction(IVI.getType(), InsertValue,
1842 OperandTraits<InsertValueInst>::op_begin(this), 2),
1843 Indices(IVI.Indices) {
1844 Op<0>() = IVI.getOperand(0);
1845 Op<1>() = IVI.getOperand(1);
1846 SubclassOptionalData = IVI.SubclassOptionalData;
1849 //===----------------------------------------------------------------------===//
1850 // ExtractValueInst Class
1851 //===----------------------------------------------------------------------===//
1853 void ExtractValueInst::init(ArrayRef<unsigned> Idxs, const Twine &Name) {
1854 assert(getNumOperands() == 1 && "NumOperands not initialized?");
1856 // There's no fundamental reason why we require at least one index.
1857 // But there's no present need to support it.
1858 assert(Idxs.size() > 0 && "ExtractValueInst must have at least one index");
1860 Indices.append(Idxs.begin(), Idxs.end());
1864 ExtractValueInst::ExtractValueInst(const ExtractValueInst &EVI)
1865 : UnaryInstruction(EVI.getType(), ExtractValue, EVI.getOperand(0)),
1866 Indices(EVI.Indices) {
1867 SubclassOptionalData = EVI.SubclassOptionalData;
1870 // getIndexedType - Returns the type of the element that would be extracted
1871 // with an extractvalue instruction with the specified parameters.
1873 // A null type is returned if the indices are invalid for the specified
1876 Type *ExtractValueInst::getIndexedType(Type *Agg,
1877 ArrayRef<unsigned> Idxs) {
1878 for (unsigned Index : Idxs) {
1879 // We can't use CompositeType::indexValid(Index) here.
1880 // indexValid() always returns true for arrays because getelementptr allows
1881 // out-of-bounds indices. Since we don't allow those for extractvalue and
1882 // insertvalue we need to check array indexing manually.
1883 // Since the only other types we can index into are struct types it's just
1884 // as easy to check those manually as well.
1885 if (ArrayType *AT = dyn_cast<ArrayType>(Agg)) {
1886 if (Index >= AT->getNumElements())
1888 } else if (StructType *ST = dyn_cast<StructType>(Agg)) {
1889 if (Index >= ST->getNumElements())
1892 // Not a valid type to index into.
1896 Agg = cast<CompositeType>(Agg)->getTypeAtIndex(Index);
1898 return const_cast<Type*>(Agg);
1901 //===----------------------------------------------------------------------===//
1902 // BinaryOperator Class
1903 //===----------------------------------------------------------------------===//
1905 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1906 Type *Ty, const Twine &Name,
1907 Instruction *InsertBefore)
1908 : Instruction(Ty, iType,
1909 OperandTraits<BinaryOperator>::op_begin(this),
1910 OperandTraits<BinaryOperator>::operands(this),
1918 BinaryOperator::BinaryOperator(BinaryOps iType, Value *S1, Value *S2,
1919 Type *Ty, const Twine &Name,
1920 BasicBlock *InsertAtEnd)
1921 : Instruction(Ty, iType,
1922 OperandTraits<BinaryOperator>::op_begin(this),
1923 OperandTraits<BinaryOperator>::operands(this),
1932 void BinaryOperator::init(BinaryOps iType) {
1933 Value *LHS = getOperand(0), *RHS = getOperand(1);
1934 (void)LHS; (void)RHS; // Silence warnings.
1935 assert(LHS->getType() == RHS->getType() &&
1936 "Binary operator operand types must match!");
1941 assert(getType() == LHS->getType() &&
1942 "Arithmetic operation should return same type as operands!");
1943 assert(getType()->isIntOrIntVectorTy() &&
1944 "Tried to create an integer operation on a non-integer type!");
1946 case FAdd: case FSub:
1948 assert(getType() == LHS->getType() &&
1949 "Arithmetic operation should return same type as operands!");
1950 assert(getType()->isFPOrFPVectorTy() &&
1951 "Tried to create a floating-point operation on a "
1952 "non-floating-point type!");
1956 assert(getType() == LHS->getType() &&
1957 "Arithmetic operation should return same type as operands!");
1958 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1959 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1960 "Incorrect operand type (not integer) for S/UDIV");
1963 assert(getType() == LHS->getType() &&
1964 "Arithmetic operation should return same type as operands!");
1965 assert(getType()->isFPOrFPVectorTy() &&
1966 "Incorrect operand type (not floating point) for FDIV");
1970 assert(getType() == LHS->getType() &&
1971 "Arithmetic operation should return same type as operands!");
1972 assert((getType()->isIntegerTy() || (getType()->isVectorTy() &&
1973 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1974 "Incorrect operand type (not integer) for S/UREM");
1977 assert(getType() == LHS->getType() &&
1978 "Arithmetic operation should return same type as operands!");
1979 assert(getType()->isFPOrFPVectorTy() &&
1980 "Incorrect operand type (not floating point) for FREM");
1985 assert(getType() == LHS->getType() &&
1986 "Shift operation should return same type as operands!");
1987 assert((getType()->isIntegerTy() ||
1988 (getType()->isVectorTy() &&
1989 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1990 "Tried to create a shift operation on a non-integral type!");
1994 assert(getType() == LHS->getType() &&
1995 "Logical operation should return same type as operands!");
1996 assert((getType()->isIntegerTy() ||
1997 (getType()->isVectorTy() &&
1998 cast<VectorType>(getType())->getElementType()->isIntegerTy())) &&
1999 "Tried to create a logical operation on a non-integral type!");
2007 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2009 Instruction *InsertBefore) {
2010 assert(S1->getType() == S2->getType() &&
2011 "Cannot create binary operator with two operands of differing type!");
2012 return new BinaryOperator(Op, S1, S2, S1->getType(), Name, InsertBefore);
2015 BinaryOperator *BinaryOperator::Create(BinaryOps Op, Value *S1, Value *S2,
2017 BasicBlock *InsertAtEnd) {
2018 BinaryOperator *Res = Create(Op, S1, S2, Name);
2019 InsertAtEnd->getInstList().push_back(Res);
2023 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2024 Instruction *InsertBefore) {
2025 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2026 return new BinaryOperator(Instruction::Sub,
2028 Op->getType(), Name, InsertBefore);
2031 BinaryOperator *BinaryOperator::CreateNeg(Value *Op, const Twine &Name,
2032 BasicBlock *InsertAtEnd) {
2033 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2034 return new BinaryOperator(Instruction::Sub,
2036 Op->getType(), Name, InsertAtEnd);
2039 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2040 Instruction *InsertBefore) {
2041 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2042 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertBefore);
2045 BinaryOperator *BinaryOperator::CreateNSWNeg(Value *Op, const Twine &Name,
2046 BasicBlock *InsertAtEnd) {
2047 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2048 return BinaryOperator::CreateNSWSub(zero, Op, Name, InsertAtEnd);
2051 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2052 Instruction *InsertBefore) {
2053 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2054 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertBefore);
2057 BinaryOperator *BinaryOperator::CreateNUWNeg(Value *Op, const Twine &Name,
2058 BasicBlock *InsertAtEnd) {
2059 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2060 return BinaryOperator::CreateNUWSub(zero, Op, Name, InsertAtEnd);
2063 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2064 Instruction *InsertBefore) {
2065 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2066 return new BinaryOperator(Instruction::FSub, zero, Op,
2067 Op->getType(), Name, InsertBefore);
2070 BinaryOperator *BinaryOperator::CreateFNeg(Value *Op, const Twine &Name,
2071 BasicBlock *InsertAtEnd) {
2072 Value *zero = ConstantFP::getZeroValueForNegation(Op->getType());
2073 return new BinaryOperator(Instruction::FSub, zero, Op,
2074 Op->getType(), Name, InsertAtEnd);
2077 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2078 Instruction *InsertBefore) {
2079 Constant *C = Constant::getAllOnesValue(Op->getType());
2080 return new BinaryOperator(Instruction::Xor, Op, C,
2081 Op->getType(), Name, InsertBefore);
2084 BinaryOperator *BinaryOperator::CreateNot(Value *Op, const Twine &Name,
2085 BasicBlock *InsertAtEnd) {
2086 Constant *AllOnes = Constant::getAllOnesValue(Op->getType());
2087 return new BinaryOperator(Instruction::Xor, Op, AllOnes,
2088 Op->getType(), Name, InsertAtEnd);
2092 // isConstantAllOnes - Helper function for several functions below
2093 static inline bool isConstantAllOnes(const Value *V) {
2094 if (const Constant *C = dyn_cast<Constant>(V))
2095 return C->isAllOnesValue();
2099 bool BinaryOperator::isNeg(const Value *V) {
2100 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2101 if (Bop->getOpcode() == Instruction::Sub)
2102 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0)))
2103 return C->isNegativeZeroValue();
2107 bool BinaryOperator::isFNeg(const Value *V, bool IgnoreZeroSign) {
2108 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2109 if (Bop->getOpcode() == Instruction::FSub)
2110 if (Constant* C = dyn_cast<Constant>(Bop->getOperand(0))) {
2111 if (!IgnoreZeroSign)
2112 IgnoreZeroSign = cast<Instruction>(V)->hasNoSignedZeros();
2113 return !IgnoreZeroSign ? C->isNegativeZeroValue() : C->isZeroValue();
2118 bool BinaryOperator::isNot(const Value *V) {
2119 if (const BinaryOperator *Bop = dyn_cast<BinaryOperator>(V))
2120 return (Bop->getOpcode() == Instruction::Xor &&
2121 (isConstantAllOnes(Bop->getOperand(1)) ||
2122 isConstantAllOnes(Bop->getOperand(0))));
2126 Value *BinaryOperator::getNegArgument(Value *BinOp) {
2127 return cast<BinaryOperator>(BinOp)->getOperand(1);
2130 const Value *BinaryOperator::getNegArgument(const Value *BinOp) {
2131 return getNegArgument(const_cast<Value*>(BinOp));
2134 Value *BinaryOperator::getFNegArgument(Value *BinOp) {
2135 return cast<BinaryOperator>(BinOp)->getOperand(1);
2138 const Value *BinaryOperator::getFNegArgument(const Value *BinOp) {
2139 return getFNegArgument(const_cast<Value*>(BinOp));
2142 Value *BinaryOperator::getNotArgument(Value *BinOp) {
2143 assert(isNot(BinOp) && "getNotArgument on non-'not' instruction!");
2144 BinaryOperator *BO = cast<BinaryOperator>(BinOp);
2145 Value *Op0 = BO->getOperand(0);
2146 Value *Op1 = BO->getOperand(1);
2147 if (isConstantAllOnes(Op0)) return Op1;
2149 assert(isConstantAllOnes(Op1));
2153 const Value *BinaryOperator::getNotArgument(const Value *BinOp) {
2154 return getNotArgument(const_cast<Value*>(BinOp));
2158 // swapOperands - Exchange the two operands to this instruction. This
2159 // instruction is safe to use on any binary instruction and does not
2160 // modify the semantics of the instruction. If the instruction is
2161 // order dependent (SetLT f.e.) the opcode is changed.
2163 bool BinaryOperator::swapOperands() {
2164 if (!isCommutative())
2165 return true; // Can't commute operands
2166 Op<0>().swap(Op<1>());
2170 void BinaryOperator::setHasNoUnsignedWrap(bool b) {
2171 cast<OverflowingBinaryOperator>(this)->setHasNoUnsignedWrap(b);
2174 void BinaryOperator::setHasNoSignedWrap(bool b) {
2175 cast<OverflowingBinaryOperator>(this)->setHasNoSignedWrap(b);
2178 void BinaryOperator::setIsExact(bool b) {
2179 cast<PossiblyExactOperator>(this)->setIsExact(b);
2182 bool BinaryOperator::hasNoUnsignedWrap() const {
2183 return cast<OverflowingBinaryOperator>(this)->hasNoUnsignedWrap();
2186 bool BinaryOperator::hasNoSignedWrap() const {
2187 return cast<OverflowingBinaryOperator>(this)->hasNoSignedWrap();
2190 bool BinaryOperator::isExact() const {
2191 return cast<PossiblyExactOperator>(this)->isExact();
2194 void BinaryOperator::copyIRFlags(const Value *V) {
2195 // Copy the wrapping flags.
2196 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
2197 setHasNoSignedWrap(OB->hasNoSignedWrap());
2198 setHasNoUnsignedWrap(OB->hasNoUnsignedWrap());
2201 // Copy the exact flag.
2202 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
2203 setIsExact(PE->isExact());
2205 // Copy the fast-math flags.
2206 if (auto *FP = dyn_cast<FPMathOperator>(V))
2207 copyFastMathFlags(FP->getFastMathFlags());
2210 void BinaryOperator::andIRFlags(const Value *V) {
2211 if (auto *OB = dyn_cast<OverflowingBinaryOperator>(V)) {
2212 setHasNoSignedWrap(hasNoSignedWrap() & OB->hasNoSignedWrap());
2213 setHasNoUnsignedWrap(hasNoUnsignedWrap() & OB->hasNoUnsignedWrap());
2216 if (auto *PE = dyn_cast<PossiblyExactOperator>(V))
2217 setIsExact(isExact() & PE->isExact());
2219 if (auto *FP = dyn_cast<FPMathOperator>(V)) {
2220 FastMathFlags FM = getFastMathFlags();
2221 FM &= FP->getFastMathFlags();
2222 copyFastMathFlags(FM);
2227 //===----------------------------------------------------------------------===//
2228 // FPMathOperator Class
2229 //===----------------------------------------------------------------------===//
2231 /// getFPAccuracy - Get the maximum error permitted by this operation in ULPs.
2232 /// An accuracy of 0.0 means that the operation should be performed with the
2233 /// default precision.
2234 float FPMathOperator::getFPAccuracy() const {
2236 cast<Instruction>(this)->getMetadata(LLVMContext::MD_fpmath);
2239 ConstantFP *Accuracy = mdconst::extract<ConstantFP>(MD->getOperand(0));
2240 return Accuracy->getValueAPF().convertToFloat();
2244 //===----------------------------------------------------------------------===//
2246 //===----------------------------------------------------------------------===//
2248 void CastInst::anchor() {}
2250 // Just determine if this cast only deals with integral->integral conversion.
2251 bool CastInst::isIntegerCast() const {
2252 switch (getOpcode()) {
2253 default: return false;
2254 case Instruction::ZExt:
2255 case Instruction::SExt:
2256 case Instruction::Trunc:
2258 case Instruction::BitCast:
2259 return getOperand(0)->getType()->isIntegerTy() &&
2260 getType()->isIntegerTy();
2264 bool CastInst::isLosslessCast() const {
2265 // Only BitCast can be lossless, exit fast if we're not BitCast
2266 if (getOpcode() != Instruction::BitCast)
2269 // Identity cast is always lossless
2270 Type* SrcTy = getOperand(0)->getType();
2271 Type* DstTy = getType();
2275 // Pointer to pointer is always lossless.
2276 if (SrcTy->isPointerTy())
2277 return DstTy->isPointerTy();
2278 return false; // Other types have no identity values
2281 /// This function determines if the CastInst does not require any bits to be
2282 /// changed in order to effect the cast. Essentially, it identifies cases where
2283 /// no code gen is necessary for the cast, hence the name no-op cast. For
2284 /// example, the following are all no-op casts:
2285 /// # bitcast i32* %x to i8*
2286 /// # bitcast <2 x i32> %x to <4 x i16>
2287 /// # ptrtoint i32* %x to i32 ; on 32-bit plaforms only
2288 /// @brief Determine if the described cast is a no-op.
2289 bool CastInst::isNoopCast(Instruction::CastOps Opcode,
2294 default: llvm_unreachable("Invalid CastOp");
2295 case Instruction::Trunc:
2296 case Instruction::ZExt:
2297 case Instruction::SExt:
2298 case Instruction::FPTrunc:
2299 case Instruction::FPExt:
2300 case Instruction::UIToFP:
2301 case Instruction::SIToFP:
2302 case Instruction::FPToUI:
2303 case Instruction::FPToSI:
2304 case Instruction::AddrSpaceCast:
2305 // TODO: Target informations may give a more accurate answer here.
2307 case Instruction::BitCast:
2308 return true; // BitCast never modifies bits.
2309 case Instruction::PtrToInt:
2310 return IntPtrTy->getScalarSizeInBits() ==
2311 DestTy->getScalarSizeInBits();
2312 case Instruction::IntToPtr:
2313 return IntPtrTy->getScalarSizeInBits() ==
2314 SrcTy->getScalarSizeInBits();
2318 /// @brief Determine if a cast is a no-op.
2319 bool CastInst::isNoopCast(Type *IntPtrTy) const {
2320 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2323 bool CastInst::isNoopCast(const DataLayout &DL) const {
2324 Type *PtrOpTy = nullptr;
2325 if (getOpcode() == Instruction::PtrToInt)
2326 PtrOpTy = getOperand(0)->getType();
2327 else if (getOpcode() == Instruction::IntToPtr)
2328 PtrOpTy = getType();
2331 PtrOpTy ? DL.getIntPtrType(PtrOpTy) : DL.getIntPtrType(getContext(), 0);
2333 return isNoopCast(getOpcode(), getOperand(0)->getType(), getType(), IntPtrTy);
2336 /// This function determines if a pair of casts can be eliminated and what
2337 /// opcode should be used in the elimination. This assumes that there are two
2338 /// instructions like this:
2339 /// * %F = firstOpcode SrcTy %x to MidTy
2340 /// * %S = secondOpcode MidTy %F to DstTy
2341 /// The function returns a resultOpcode so these two casts can be replaced with:
2342 /// * %Replacement = resultOpcode %SrcTy %x to DstTy
2343 /// If no such cast is permitted, the function returns 0.
2344 unsigned CastInst::isEliminableCastPair(
2345 Instruction::CastOps firstOp, Instruction::CastOps secondOp,
2346 Type *SrcTy, Type *MidTy, Type *DstTy, Type *SrcIntPtrTy, Type *MidIntPtrTy,
2347 Type *DstIntPtrTy) {
2348 // Define the 144 possibilities for these two cast instructions. The values
2349 // in this matrix determine what to do in a given situation and select the
2350 // case in the switch below. The rows correspond to firstOp, the columns
2351 // correspond to secondOp. In looking at the table below, keep in mind
2352 // the following cast properties:
2354 // Size Compare Source Destination
2355 // Operator Src ? Size Type Sign Type Sign
2356 // -------- ------------ ------------------- ---------------------
2357 // TRUNC > Integer Any Integral Any
2358 // ZEXT < Integral Unsigned Integer Any
2359 // SEXT < Integral Signed Integer Any
2360 // FPTOUI n/a FloatPt n/a Integral Unsigned
2361 // FPTOSI n/a FloatPt n/a Integral Signed
2362 // UITOFP n/a Integral Unsigned FloatPt n/a
2363 // SITOFP n/a Integral Signed FloatPt n/a
2364 // FPTRUNC > FloatPt n/a FloatPt n/a
2365 // FPEXT < FloatPt n/a FloatPt n/a
2366 // PTRTOINT n/a Pointer n/a Integral Unsigned
2367 // INTTOPTR n/a Integral Unsigned Pointer n/a
2368 // BITCAST = FirstClass n/a FirstClass n/a
2369 // ADDRSPCST n/a Pointer n/a Pointer n/a
2371 // NOTE: some transforms are safe, but we consider them to be non-profitable.
2372 // For example, we could merge "fptoui double to i32" + "zext i32 to i64",
2373 // into "fptoui double to i64", but this loses information about the range
2374 // of the produced value (we no longer know the top-part is all zeros).
2375 // Further this conversion is often much more expensive for typical hardware,
2376 // and causes issues when building libgcc. We disallow fptosi+sext for the
2378 const unsigned numCastOps =
2379 Instruction::CastOpsEnd - Instruction::CastOpsBegin;
2380 static const uint8_t CastResults[numCastOps][numCastOps] = {
2381 // T F F U S F F P I B A -+
2382 // R Z S P P I I T P 2 N T S |
2383 // U E E 2 2 2 2 R E I T C C +- secondOp
2384 // N X X U S F F N X N 2 V V |
2385 // C T T I I P P C T T P T T -+
2386 { 1, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // Trunc -+
2387 { 8, 1, 9,99,99, 2,17,99,99,99, 2, 3, 0}, // ZExt |
2388 { 8, 0, 1,99,99, 0, 2,99,99,99, 0, 3, 0}, // SExt |
2389 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToUI |
2390 { 0, 0, 0,99,99, 0, 0,99,99,99, 0, 3, 0}, // FPToSI |
2391 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // UIToFP +- firstOp
2392 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // SIToFP |
2393 { 99,99,99, 0, 0,99,99, 0, 0,99,99, 4, 0}, // FPTrunc |
2394 { 99,99,99, 2, 2,99,99,10, 2,99,99, 4, 0}, // FPExt |
2395 { 1, 0, 0,99,99, 0, 0,99,99,99, 7, 3, 0}, // PtrToInt |
2396 { 99,99,99,99,99,99,99,99,99,11,99,15, 0}, // IntToPtr |
2397 { 5, 5, 5, 6, 6, 5, 5, 6, 6,16, 5, 1,14}, // BitCast |
2398 { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,13,12}, // AddrSpaceCast -+
2401 // TODO: This logic could be encoded into the table above and handled in the
2403 // If either of the casts are a bitcast from scalar to vector, disallow the
2404 // merging. However, any pair of bitcasts are allowed.
2405 bool IsFirstBitcast = (firstOp == Instruction::BitCast);
2406 bool IsSecondBitcast = (secondOp == Instruction::BitCast);
2407 bool AreBothBitcasts = IsFirstBitcast && IsSecondBitcast;
2409 // Check if any of the casts convert scalars <-> vectors.
2410 if ((IsFirstBitcast && isa<VectorType>(SrcTy) != isa<VectorType>(MidTy)) ||
2411 (IsSecondBitcast && isa<VectorType>(MidTy) != isa<VectorType>(DstTy)))
2412 if (!AreBothBitcasts)
2415 int ElimCase = CastResults[firstOp-Instruction::CastOpsBegin]
2416 [secondOp-Instruction::CastOpsBegin];
2419 // Categorically disallowed.
2422 // Allowed, use first cast's opcode.
2425 // Allowed, use second cast's opcode.
2428 // No-op cast in second op implies firstOp as long as the DestTy
2429 // is integer and we are not converting between a vector and a
2431 if (!SrcTy->isVectorTy() && DstTy->isIntegerTy())
2435 // No-op cast in second op implies firstOp as long as the DestTy
2436 // is floating point.
2437 if (DstTy->isFloatingPointTy())
2441 // No-op cast in first op implies secondOp as long as the SrcTy
2443 if (SrcTy->isIntegerTy())
2447 // No-op cast in first op implies secondOp as long as the SrcTy
2448 // is a floating point.
2449 if (SrcTy->isFloatingPointTy())
2453 // Cannot simplify if address spaces are different!
2454 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2457 unsigned MidSize = MidTy->getScalarSizeInBits();
2458 // We can still fold this without knowing the actual sizes as long we
2459 // know that the intermediate pointer is the largest possible
2461 // FIXME: Is this always true?
2463 return Instruction::BitCast;
2465 // ptrtoint, inttoptr -> bitcast (ptr -> ptr) if int size is >= ptr size.
2466 if (!SrcIntPtrTy || DstIntPtrTy != SrcIntPtrTy)
2468 unsigned PtrSize = SrcIntPtrTy->getScalarSizeInBits();
2469 if (MidSize >= PtrSize)
2470 return Instruction::BitCast;
2474 // ext, trunc -> bitcast, if the SrcTy and DstTy are same size
2475 // ext, trunc -> ext, if sizeof(SrcTy) < sizeof(DstTy)
2476 // ext, trunc -> trunc, if sizeof(SrcTy) > sizeof(DstTy)
2477 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2478 unsigned DstSize = DstTy->getScalarSizeInBits();
2479 if (SrcSize == DstSize)
2480 return Instruction::BitCast;
2481 else if (SrcSize < DstSize)
2486 // zext, sext -> zext, because sext can't sign extend after zext
2487 return Instruction::ZExt;
2489 // fpext followed by ftrunc is allowed if the bit size returned to is
2490 // the same as the original, in which case its just a bitcast
2492 return Instruction::BitCast;
2493 return 0; // If the types are not the same we can't eliminate it.
2495 // inttoptr, ptrtoint -> bitcast if SrcSize<=PtrSize and SrcSize==DstSize
2498 unsigned PtrSize = MidIntPtrTy->getScalarSizeInBits();
2499 unsigned SrcSize = SrcTy->getScalarSizeInBits();
2500 unsigned DstSize = DstTy->getScalarSizeInBits();
2501 if (SrcSize <= PtrSize && SrcSize == DstSize)
2502 return Instruction::BitCast;
2506 // addrspacecast, addrspacecast -> bitcast, if SrcAS == DstAS
2507 // addrspacecast, addrspacecast -> addrspacecast, if SrcAS != DstAS
2508 if (SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace())
2509 return Instruction::AddrSpaceCast;
2510 return Instruction::BitCast;
2513 // FIXME: this state can be merged with (1), but the following assert
2514 // is useful to check the correcteness of the sequence due to semantic
2515 // change of bitcast.
2517 SrcTy->isPtrOrPtrVectorTy() &&
2518 MidTy->isPtrOrPtrVectorTy() &&
2519 DstTy->isPtrOrPtrVectorTy() &&
2520 SrcTy->getPointerAddressSpace() != MidTy->getPointerAddressSpace() &&
2521 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2522 "Illegal addrspacecast, bitcast sequence!");
2523 // Allowed, use first cast's opcode
2526 // bitcast, addrspacecast -> addrspacecast if the element type of
2527 // bitcast's source is the same as that of addrspacecast's destination.
2528 if (SrcTy->getPointerElementType() == DstTy->getPointerElementType())
2529 return Instruction::AddrSpaceCast;
2533 // FIXME: this state can be merged with (1), but the following assert
2534 // is useful to check the correcteness of the sequence due to semantic
2535 // change of bitcast.
2537 SrcTy->isIntOrIntVectorTy() &&
2538 MidTy->isPtrOrPtrVectorTy() &&
2539 DstTy->isPtrOrPtrVectorTy() &&
2540 MidTy->getPointerAddressSpace() == DstTy->getPointerAddressSpace() &&
2541 "Illegal inttoptr, bitcast sequence!");
2542 // Allowed, use first cast's opcode
2545 // FIXME: this state can be merged with (2), but the following assert
2546 // is useful to check the correcteness of the sequence due to semantic
2547 // change of bitcast.
2549 SrcTy->isPtrOrPtrVectorTy() &&
2550 MidTy->isPtrOrPtrVectorTy() &&
2551 DstTy->isIntOrIntVectorTy() &&
2552 SrcTy->getPointerAddressSpace() == MidTy->getPointerAddressSpace() &&
2553 "Illegal bitcast, ptrtoint sequence!");
2554 // Allowed, use second cast's opcode
2557 // (sitofp (zext x)) -> (uitofp x)
2558 return Instruction::UIToFP;
2560 // Cast combination can't happen (error in input). This is for all cases
2561 // where the MidTy is not the same for the two cast instructions.
2562 llvm_unreachable("Invalid Cast Combination");
2564 llvm_unreachable("Error in CastResults table!!!");
2568 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2569 const Twine &Name, Instruction *InsertBefore) {
2570 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2571 // Construct and return the appropriate CastInst subclass
2573 case Trunc: return new TruncInst (S, Ty, Name, InsertBefore);
2574 case ZExt: return new ZExtInst (S, Ty, Name, InsertBefore);
2575 case SExt: return new SExtInst (S, Ty, Name, InsertBefore);
2576 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertBefore);
2577 case FPExt: return new FPExtInst (S, Ty, Name, InsertBefore);
2578 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertBefore);
2579 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertBefore);
2580 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertBefore);
2581 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertBefore);
2582 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertBefore);
2583 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertBefore);
2584 case BitCast: return new BitCastInst (S, Ty, Name, InsertBefore);
2585 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertBefore);
2586 default: llvm_unreachable("Invalid opcode provided");
2590 CastInst *CastInst::Create(Instruction::CastOps op, Value *S, Type *Ty,
2591 const Twine &Name, BasicBlock *InsertAtEnd) {
2592 assert(castIsValid(op, S, Ty) && "Invalid cast!");
2593 // Construct and return the appropriate CastInst subclass
2595 case Trunc: return new TruncInst (S, Ty, Name, InsertAtEnd);
2596 case ZExt: return new ZExtInst (S, Ty, Name, InsertAtEnd);
2597 case SExt: return new SExtInst (S, Ty, Name, InsertAtEnd);
2598 case FPTrunc: return new FPTruncInst (S, Ty, Name, InsertAtEnd);
2599 case FPExt: return new FPExtInst (S, Ty, Name, InsertAtEnd);
2600 case UIToFP: return new UIToFPInst (S, Ty, Name, InsertAtEnd);
2601 case SIToFP: return new SIToFPInst (S, Ty, Name, InsertAtEnd);
2602 case FPToUI: return new FPToUIInst (S, Ty, Name, InsertAtEnd);
2603 case FPToSI: return new FPToSIInst (S, Ty, Name, InsertAtEnd);
2604 case PtrToInt: return new PtrToIntInst (S, Ty, Name, InsertAtEnd);
2605 case IntToPtr: return new IntToPtrInst (S, Ty, Name, InsertAtEnd);
2606 case BitCast: return new BitCastInst (S, Ty, Name, InsertAtEnd);
2607 case AddrSpaceCast: return new AddrSpaceCastInst (S, Ty, Name, InsertAtEnd);
2608 default: llvm_unreachable("Invalid opcode provided");
2612 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2614 Instruction *InsertBefore) {
2615 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2616 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2617 return Create(Instruction::ZExt, S, Ty, Name, InsertBefore);
2620 CastInst *CastInst::CreateZExtOrBitCast(Value *S, Type *Ty,
2622 BasicBlock *InsertAtEnd) {
2623 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2624 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2625 return Create(Instruction::ZExt, S, Ty, Name, InsertAtEnd);
2628 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2630 Instruction *InsertBefore) {
2631 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2632 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2633 return Create(Instruction::SExt, S, Ty, Name, InsertBefore);
2636 CastInst *CastInst::CreateSExtOrBitCast(Value *S, Type *Ty,
2638 BasicBlock *InsertAtEnd) {
2639 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2640 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2641 return Create(Instruction::SExt, S, Ty, Name, InsertAtEnd);
2644 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2646 Instruction *InsertBefore) {
2647 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2648 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2649 return Create(Instruction::Trunc, S, Ty, Name, InsertBefore);
2652 CastInst *CastInst::CreateTruncOrBitCast(Value *S, Type *Ty,
2654 BasicBlock *InsertAtEnd) {
2655 if (S->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits())
2656 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2657 return Create(Instruction::Trunc, S, Ty, Name, InsertAtEnd);
2660 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2662 BasicBlock *InsertAtEnd) {
2663 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2664 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2666 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2667 assert((!Ty->isVectorTy() ||
2668 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2671 if (Ty->isIntOrIntVectorTy())
2672 return Create(Instruction::PtrToInt, S, Ty, Name, InsertAtEnd);
2674 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertAtEnd);
2677 /// @brief Create a BitCast or a PtrToInt cast instruction
2678 CastInst *CastInst::CreatePointerCast(Value *S, Type *Ty,
2680 Instruction *InsertBefore) {
2681 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2682 assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) &&
2684 assert(Ty->isVectorTy() == S->getType()->isVectorTy() && "Invalid cast");
2685 assert((!Ty->isVectorTy() ||
2686 Ty->getVectorNumElements() == S->getType()->getVectorNumElements()) &&
2689 if (Ty->isIntOrIntVectorTy())
2690 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2692 return CreatePointerBitCastOrAddrSpaceCast(S, Ty, Name, InsertBefore);
2695 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2698 BasicBlock *InsertAtEnd) {
2699 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2700 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2702 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2703 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertAtEnd);
2705 return Create(Instruction::BitCast, S, Ty, Name, InsertAtEnd);
2708 CastInst *CastInst::CreatePointerBitCastOrAddrSpaceCast(
2711 Instruction *InsertBefore) {
2712 assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast");
2713 assert(Ty->isPtrOrPtrVectorTy() && "Invalid cast");
2715 if (S->getType()->getPointerAddressSpace() != Ty->getPointerAddressSpace())
2716 return Create(Instruction::AddrSpaceCast, S, Ty, Name, InsertBefore);
2718 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2721 CastInst *CastInst::CreateBitOrPointerCast(Value *S, Type *Ty,
2723 Instruction *InsertBefore) {
2724 if (S->getType()->isPointerTy() && Ty->isIntegerTy())
2725 return Create(Instruction::PtrToInt, S, Ty, Name, InsertBefore);
2726 if (S->getType()->isIntegerTy() && Ty->isPointerTy())
2727 return Create(Instruction::IntToPtr, S, Ty, Name, InsertBefore);
2729 return Create(Instruction::BitCast, S, Ty, Name, InsertBefore);
2732 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2733 bool isSigned, const Twine &Name,
2734 Instruction *InsertBefore) {
2735 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2736 "Invalid integer cast");
2737 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2738 unsigned DstBits = Ty->getScalarSizeInBits();
2739 Instruction::CastOps opcode =
2740 (SrcBits == DstBits ? Instruction::BitCast :
2741 (SrcBits > DstBits ? Instruction::Trunc :
2742 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2743 return Create(opcode, C, Ty, Name, InsertBefore);
2746 CastInst *CastInst::CreateIntegerCast(Value *C, Type *Ty,
2747 bool isSigned, const Twine &Name,
2748 BasicBlock *InsertAtEnd) {
2749 assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() &&
2751 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2752 unsigned DstBits = Ty->getScalarSizeInBits();
2753 Instruction::CastOps opcode =
2754 (SrcBits == DstBits ? Instruction::BitCast :
2755 (SrcBits > DstBits ? Instruction::Trunc :
2756 (isSigned ? Instruction::SExt : Instruction::ZExt)));
2757 return Create(opcode, C, Ty, Name, InsertAtEnd);
2760 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2762 Instruction *InsertBefore) {
2763 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2765 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2766 unsigned DstBits = Ty->getScalarSizeInBits();
2767 Instruction::CastOps opcode =
2768 (SrcBits == DstBits ? Instruction::BitCast :
2769 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2770 return Create(opcode, C, Ty, Name, InsertBefore);
2773 CastInst *CastInst::CreateFPCast(Value *C, Type *Ty,
2775 BasicBlock *InsertAtEnd) {
2776 assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() &&
2778 unsigned SrcBits = C->getType()->getScalarSizeInBits();
2779 unsigned DstBits = Ty->getScalarSizeInBits();
2780 Instruction::CastOps opcode =
2781 (SrcBits == DstBits ? Instruction::BitCast :
2782 (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt));
2783 return Create(opcode, C, Ty, Name, InsertAtEnd);
2786 // Check whether it is valid to call getCastOpcode for these types.
2787 // This routine must be kept in sync with getCastOpcode.
2788 bool CastInst::isCastable(Type *SrcTy, Type *DestTy) {
2789 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2792 if (SrcTy == DestTy)
2795 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2796 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2797 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2798 // An element by element cast. Valid if casting the elements is valid.
2799 SrcTy = SrcVecTy->getElementType();
2800 DestTy = DestVecTy->getElementType();
2803 // Get the bit sizes, we'll need these
2804 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2805 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2807 // Run through the possibilities ...
2808 if (DestTy->isIntegerTy()) { // Casting to integral
2809 if (SrcTy->isIntegerTy()) // Casting from integral
2811 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2813 if (SrcTy->isVectorTy()) // Casting from vector
2814 return DestBits == SrcBits;
2815 // Casting from something else
2816 return SrcTy->isPointerTy();
2818 if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2819 if (SrcTy->isIntegerTy()) // Casting from integral
2821 if (SrcTy->isFloatingPointTy()) // Casting from floating pt
2823 if (SrcTy->isVectorTy()) // Casting from vector
2824 return DestBits == SrcBits;
2825 // Casting from something else
2828 if (DestTy->isVectorTy()) // Casting to vector
2829 return DestBits == SrcBits;
2830 if (DestTy->isPointerTy()) { // Casting to pointer
2831 if (SrcTy->isPointerTy()) // Casting from pointer
2833 return SrcTy->isIntegerTy(); // Casting from integral
2835 if (DestTy->isX86_MMXTy()) {
2836 if (SrcTy->isVectorTy())
2837 return DestBits == SrcBits; // 64-bit vector to MMX
2839 } // Casting to something else
2843 bool CastInst::isBitCastable(Type *SrcTy, Type *DestTy) {
2844 if (!SrcTy->isFirstClassType() || !DestTy->isFirstClassType())
2847 if (SrcTy == DestTy)
2850 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
2851 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy)) {
2852 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2853 // An element by element cast. Valid if casting the elements is valid.
2854 SrcTy = SrcVecTy->getElementType();
2855 DestTy = DestVecTy->getElementType();
2860 if (PointerType *DestPtrTy = dyn_cast<PointerType>(DestTy)) {
2861 if (PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy)) {
2862 return SrcPtrTy->getAddressSpace() == DestPtrTy->getAddressSpace();
2866 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2867 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2869 // Could still have vectors of pointers if the number of elements doesn't
2871 if (SrcBits == 0 || DestBits == 0)
2874 if (SrcBits != DestBits)
2877 if (DestTy->isX86_MMXTy() || SrcTy->isX86_MMXTy())
2883 bool CastInst::isBitOrNoopPointerCastable(Type *SrcTy, Type *DestTy,
2884 const DataLayout &DL) {
2885 if (auto *PtrTy = dyn_cast<PointerType>(SrcTy))
2886 if (auto *IntTy = dyn_cast<IntegerType>(DestTy))
2887 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2888 if (auto *PtrTy = dyn_cast<PointerType>(DestTy))
2889 if (auto *IntTy = dyn_cast<IntegerType>(SrcTy))
2890 return IntTy->getBitWidth() == DL.getPointerTypeSizeInBits(PtrTy);
2892 return isBitCastable(SrcTy, DestTy);
2895 // Provide a way to get a "cast" where the cast opcode is inferred from the
2896 // types and size of the operand. This, basically, is a parallel of the
2897 // logic in the castIsValid function below. This axiom should hold:
2898 // castIsValid( getCastOpcode(Val, Ty), Val, Ty)
2899 // should not assert in castIsValid. In other words, this produces a "correct"
2900 // casting opcode for the arguments passed to it.
2901 // This routine must be kept in sync with isCastable.
2902 Instruction::CastOps
2903 CastInst::getCastOpcode(
2904 const Value *Src, bool SrcIsSigned, Type *DestTy, bool DestIsSigned) {
2905 Type *SrcTy = Src->getType();
2907 assert(SrcTy->isFirstClassType() && DestTy->isFirstClassType() &&
2908 "Only first class types are castable!");
2910 if (SrcTy == DestTy)
2913 // FIXME: Check address space sizes here
2914 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy))
2915 if (VectorType *DestVecTy = dyn_cast<VectorType>(DestTy))
2916 if (SrcVecTy->getNumElements() == DestVecTy->getNumElements()) {
2917 // An element by element cast. Find the appropriate opcode based on the
2919 SrcTy = SrcVecTy->getElementType();
2920 DestTy = DestVecTy->getElementType();
2923 // Get the bit sizes, we'll need these
2924 unsigned SrcBits = SrcTy->getPrimitiveSizeInBits(); // 0 for ptr
2925 unsigned DestBits = DestTy->getPrimitiveSizeInBits(); // 0 for ptr
2927 // Run through the possibilities ...
2928 if (DestTy->isIntegerTy()) { // Casting to integral
2929 if (SrcTy->isIntegerTy()) { // Casting from integral
2930 if (DestBits < SrcBits)
2931 return Trunc; // int -> smaller int
2932 else if (DestBits > SrcBits) { // its an extension
2934 return SExt; // signed -> SEXT
2936 return ZExt; // unsigned -> ZEXT
2938 return BitCast; // Same size, No-op cast
2940 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2942 return FPToSI; // FP -> sint
2944 return FPToUI; // FP -> uint
2945 } else if (SrcTy->isVectorTy()) {
2946 assert(DestBits == SrcBits &&
2947 "Casting vector to integer of different width");
2948 return BitCast; // Same size, no-op cast
2950 assert(SrcTy->isPointerTy() &&
2951 "Casting from a value that is not first-class type");
2952 return PtrToInt; // ptr -> int
2954 } else if (DestTy->isFloatingPointTy()) { // Casting to floating pt
2955 if (SrcTy->isIntegerTy()) { // Casting from integral
2957 return SIToFP; // sint -> FP
2959 return UIToFP; // uint -> FP
2960 } else if (SrcTy->isFloatingPointTy()) { // Casting from floating pt
2961 if (DestBits < SrcBits) {
2962 return FPTrunc; // FP -> smaller FP
2963 } else if (DestBits > SrcBits) {
2964 return FPExt; // FP -> larger FP
2966 return BitCast; // same size, no-op cast
2968 } else if (SrcTy->isVectorTy()) {
2969 assert(DestBits == SrcBits &&
2970 "Casting vector to floating point of different width");
2971 return BitCast; // same size, no-op cast
2973 llvm_unreachable("Casting pointer or non-first class to float");
2974 } else if (DestTy->isVectorTy()) {
2975 assert(DestBits == SrcBits &&
2976 "Illegal cast to vector (wrong type or size)");
2978 } else if (DestTy->isPointerTy()) {
2979 if (SrcTy->isPointerTy()) {
2980 if (DestTy->getPointerAddressSpace() != SrcTy->getPointerAddressSpace())
2981 return AddrSpaceCast;
2982 return BitCast; // ptr -> ptr
2983 } else if (SrcTy->isIntegerTy()) {
2984 return IntToPtr; // int -> ptr
2986 llvm_unreachable("Casting pointer to other than pointer or int");
2987 } else if (DestTy->isX86_MMXTy()) {
2988 if (SrcTy->isVectorTy()) {
2989 assert(DestBits == SrcBits && "Casting vector of wrong width to X86_MMX");
2990 return BitCast; // 64-bit vector to MMX
2992 llvm_unreachable("Illegal cast to X86_MMX");
2994 llvm_unreachable("Casting to type that is not first-class");
2997 //===----------------------------------------------------------------------===//
2998 // CastInst SubClass Constructors
2999 //===----------------------------------------------------------------------===//
3001 /// Check that the construction parameters for a CastInst are correct. This
3002 /// could be broken out into the separate constructors but it is useful to have
3003 /// it in one place and to eliminate the redundant code for getting the sizes
3004 /// of the types involved.
3006 CastInst::castIsValid(Instruction::CastOps op, Value *S, Type *DstTy) {
3008 // Check for type sanity on the arguments
3009 Type *SrcTy = S->getType();
3011 if (!SrcTy->isFirstClassType() || !DstTy->isFirstClassType() ||
3012 SrcTy->isAggregateType() || DstTy->isAggregateType())
3015 // Get the size of the types in bits, we'll need this later
3016 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
3017 unsigned DstBitSize = DstTy->getScalarSizeInBits();
3019 // If these are vector types, get the lengths of the vectors (using zero for
3020 // scalar types means that checking that vector lengths match also checks that
3021 // scalars are not being converted to vectors or vectors to scalars).
3022 unsigned SrcLength = SrcTy->isVectorTy() ?
3023 cast<VectorType>(SrcTy)->getNumElements() : 0;
3024 unsigned DstLength = DstTy->isVectorTy() ?
3025 cast<VectorType>(DstTy)->getNumElements() : 0;
3027 // Switch on the opcode provided
3029 default: return false; // This is an input error
3030 case Instruction::Trunc:
3031 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3032 SrcLength == DstLength && SrcBitSize > DstBitSize;
3033 case Instruction::ZExt:
3034 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3035 SrcLength == DstLength && SrcBitSize < DstBitSize;
3036 case Instruction::SExt:
3037 return SrcTy->isIntOrIntVectorTy() && DstTy->isIntOrIntVectorTy() &&
3038 SrcLength == DstLength && SrcBitSize < DstBitSize;
3039 case Instruction::FPTrunc:
3040 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3041 SrcLength == DstLength && SrcBitSize > DstBitSize;
3042 case Instruction::FPExt:
3043 return SrcTy->isFPOrFPVectorTy() && DstTy->isFPOrFPVectorTy() &&
3044 SrcLength == DstLength && SrcBitSize < DstBitSize;
3045 case Instruction::UIToFP:
3046 case Instruction::SIToFP:
3047 return SrcTy->isIntOrIntVectorTy() && DstTy->isFPOrFPVectorTy() &&
3048 SrcLength == DstLength;
3049 case Instruction::FPToUI:
3050 case Instruction::FPToSI:
3051 return SrcTy->isFPOrFPVectorTy() && DstTy->isIntOrIntVectorTy() &&
3052 SrcLength == DstLength;
3053 case Instruction::PtrToInt:
3054 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3056 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3057 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3059 return SrcTy->getScalarType()->isPointerTy() &&
3060 DstTy->getScalarType()->isIntegerTy();
3061 case Instruction::IntToPtr:
3062 if (isa<VectorType>(SrcTy) != isa<VectorType>(DstTy))
3064 if (VectorType *VT = dyn_cast<VectorType>(SrcTy))
3065 if (VT->getNumElements() != cast<VectorType>(DstTy)->getNumElements())
3067 return SrcTy->getScalarType()->isIntegerTy() &&
3068 DstTy->getScalarType()->isPointerTy();
3069 case Instruction::BitCast: {
3070 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3071 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3073 // BitCast implies a no-op cast of type only. No bits change.
3074 // However, you can't cast pointers to anything but pointers.
3075 if (!SrcPtrTy != !DstPtrTy)
3078 // For non-pointer cases, the cast is okay if the source and destination bit
3079 // widths are identical.
3081 return SrcTy->getPrimitiveSizeInBits() == DstTy->getPrimitiveSizeInBits();
3083 // If both are pointers then the address spaces must match.
3084 if (SrcPtrTy->getAddressSpace() != DstPtrTy->getAddressSpace())
3087 // A vector of pointers must have the same number of elements.
3088 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3089 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3090 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3097 case Instruction::AddrSpaceCast: {
3098 PointerType *SrcPtrTy = dyn_cast<PointerType>(SrcTy->getScalarType());
3102 PointerType *DstPtrTy = dyn_cast<PointerType>(DstTy->getScalarType());
3106 if (SrcPtrTy->getAddressSpace() == DstPtrTy->getAddressSpace())
3109 if (VectorType *SrcVecTy = dyn_cast<VectorType>(SrcTy)) {
3110 if (VectorType *DstVecTy = dyn_cast<VectorType>(DstTy))
3111 return (SrcVecTy->getNumElements() == DstVecTy->getNumElements());
3121 TruncInst::TruncInst(
3122 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3123 ) : CastInst(Ty, Trunc, S, Name, InsertBefore) {
3124 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3127 TruncInst::TruncInst(
3128 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3129 ) : CastInst(Ty, Trunc, S, Name, InsertAtEnd) {
3130 assert(castIsValid(getOpcode(), S, Ty) && "Illegal Trunc");
3134 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3135 ) : CastInst(Ty, ZExt, S, Name, InsertBefore) {
3136 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3140 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3141 ) : CastInst(Ty, ZExt, S, Name, InsertAtEnd) {
3142 assert(castIsValid(getOpcode(), S, Ty) && "Illegal ZExt");
3145 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3146 ) : CastInst(Ty, SExt, S, Name, InsertBefore) {
3147 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3151 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3152 ) : CastInst(Ty, SExt, S, Name, InsertAtEnd) {
3153 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SExt");
3156 FPTruncInst::FPTruncInst(
3157 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3158 ) : CastInst(Ty, FPTrunc, S, Name, InsertBefore) {
3159 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3162 FPTruncInst::FPTruncInst(
3163 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3164 ) : CastInst(Ty, FPTrunc, S, Name, InsertAtEnd) {
3165 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPTrunc");
3168 FPExtInst::FPExtInst(
3169 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3170 ) : CastInst(Ty, FPExt, S, Name, InsertBefore) {
3171 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3174 FPExtInst::FPExtInst(
3175 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3176 ) : CastInst(Ty, FPExt, S, Name, InsertAtEnd) {
3177 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPExt");
3180 UIToFPInst::UIToFPInst(
3181 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3182 ) : CastInst(Ty, UIToFP, S, Name, InsertBefore) {
3183 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3186 UIToFPInst::UIToFPInst(
3187 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3188 ) : CastInst(Ty, UIToFP, S, Name, InsertAtEnd) {
3189 assert(castIsValid(getOpcode(), S, Ty) && "Illegal UIToFP");
3192 SIToFPInst::SIToFPInst(
3193 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3194 ) : CastInst(Ty, SIToFP, S, Name, InsertBefore) {
3195 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3198 SIToFPInst::SIToFPInst(
3199 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3200 ) : CastInst(Ty, SIToFP, S, Name, InsertAtEnd) {
3201 assert(castIsValid(getOpcode(), S, Ty) && "Illegal SIToFP");
3204 FPToUIInst::FPToUIInst(
3205 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3206 ) : CastInst(Ty, FPToUI, S, Name, InsertBefore) {
3207 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3210 FPToUIInst::FPToUIInst(
3211 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3212 ) : CastInst(Ty, FPToUI, S, Name, InsertAtEnd) {
3213 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToUI");
3216 FPToSIInst::FPToSIInst(
3217 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3218 ) : CastInst(Ty, FPToSI, S, Name, InsertBefore) {
3219 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3222 FPToSIInst::FPToSIInst(
3223 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3224 ) : CastInst(Ty, FPToSI, S, Name, InsertAtEnd) {
3225 assert(castIsValid(getOpcode(), S, Ty) && "Illegal FPToSI");
3228 PtrToIntInst::PtrToIntInst(
3229 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3230 ) : CastInst(Ty, PtrToInt, S, Name, InsertBefore) {
3231 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3234 PtrToIntInst::PtrToIntInst(
3235 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3236 ) : CastInst(Ty, PtrToInt, S, Name, InsertAtEnd) {
3237 assert(castIsValid(getOpcode(), S, Ty) && "Illegal PtrToInt");
3240 IntToPtrInst::IntToPtrInst(
3241 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3242 ) : CastInst(Ty, IntToPtr, S, Name, InsertBefore) {
3243 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3246 IntToPtrInst::IntToPtrInst(
3247 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3248 ) : CastInst(Ty, IntToPtr, S, Name, InsertAtEnd) {
3249 assert(castIsValid(getOpcode(), S, Ty) && "Illegal IntToPtr");
3252 BitCastInst::BitCastInst(
3253 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3254 ) : CastInst(Ty, BitCast, S, Name, InsertBefore) {
3255 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3258 BitCastInst::BitCastInst(
3259 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3260 ) : CastInst(Ty, BitCast, S, Name, InsertAtEnd) {
3261 assert(castIsValid(getOpcode(), S, Ty) && "Illegal BitCast");
3264 AddrSpaceCastInst::AddrSpaceCastInst(
3265 Value *S, Type *Ty, const Twine &Name, Instruction *InsertBefore
3266 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertBefore) {
3267 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3270 AddrSpaceCastInst::AddrSpaceCastInst(
3271 Value *S, Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd
3272 ) : CastInst(Ty, AddrSpaceCast, S, Name, InsertAtEnd) {
3273 assert(castIsValid(getOpcode(), S, Ty) && "Illegal AddrSpaceCast");
3276 //===----------------------------------------------------------------------===//
3278 //===----------------------------------------------------------------------===//
3280 void CmpInst::anchor() {}
3282 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3283 Value *RHS, const Twine &Name, Instruction *InsertBefore)
3284 : Instruction(ty, op,
3285 OperandTraits<CmpInst>::op_begin(this),
3286 OperandTraits<CmpInst>::operands(this),
3290 setPredicate((Predicate)predicate);
3294 CmpInst::CmpInst(Type *ty, OtherOps op, Predicate predicate, Value *LHS,
3295 Value *RHS, const Twine &Name, BasicBlock *InsertAtEnd)
3296 : Instruction(ty, op,
3297 OperandTraits<CmpInst>::op_begin(this),
3298 OperandTraits<CmpInst>::operands(this),
3302 setPredicate((Predicate)predicate);
3307 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3308 const Twine &Name, Instruction *InsertBefore) {
3309 if (Op == Instruction::ICmp) {
3311 return new ICmpInst(InsertBefore, CmpInst::Predicate(predicate),
3314 return new ICmpInst(CmpInst::Predicate(predicate),
3319 return new FCmpInst(InsertBefore, CmpInst::Predicate(predicate),
3322 return new FCmpInst(CmpInst::Predicate(predicate),
3327 CmpInst::Create(OtherOps Op, Predicate predicate, Value *S1, Value *S2,
3328 const Twine &Name, BasicBlock *InsertAtEnd) {
3329 if (Op == Instruction::ICmp) {
3330 return new ICmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3333 return new FCmpInst(*InsertAtEnd, CmpInst::Predicate(predicate),
3337 void CmpInst::swapOperands() {
3338 if (ICmpInst *IC = dyn_cast<ICmpInst>(this))
3341 cast<FCmpInst>(this)->swapOperands();
3344 bool CmpInst::isCommutative() const {
3345 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3346 return IC->isCommutative();
3347 return cast<FCmpInst>(this)->isCommutative();
3350 bool CmpInst::isEquality() const {
3351 if (const ICmpInst *IC = dyn_cast<ICmpInst>(this))
3352 return IC->isEquality();
3353 return cast<FCmpInst>(this)->isEquality();
3357 CmpInst::Predicate CmpInst::getInversePredicate(Predicate pred) {
3359 default: llvm_unreachable("Unknown cmp predicate!");
3360 case ICMP_EQ: return ICMP_NE;
3361 case ICMP_NE: return ICMP_EQ;
3362 case ICMP_UGT: return ICMP_ULE;
3363 case ICMP_ULT: return ICMP_UGE;
3364 case ICMP_UGE: return ICMP_ULT;
3365 case ICMP_ULE: return ICMP_UGT;
3366 case ICMP_SGT: return ICMP_SLE;
3367 case ICMP_SLT: return ICMP_SGE;
3368 case ICMP_SGE: return ICMP_SLT;
3369 case ICMP_SLE: return ICMP_SGT;
3371 case FCMP_OEQ: return FCMP_UNE;
3372 case FCMP_ONE: return FCMP_UEQ;
3373 case FCMP_OGT: return FCMP_ULE;
3374 case FCMP_OLT: return FCMP_UGE;
3375 case FCMP_OGE: return FCMP_ULT;
3376 case FCMP_OLE: return FCMP_UGT;
3377 case FCMP_UEQ: return FCMP_ONE;
3378 case FCMP_UNE: return FCMP_OEQ;
3379 case FCMP_UGT: return FCMP_OLE;
3380 case FCMP_ULT: return FCMP_OGE;
3381 case FCMP_UGE: return FCMP_OLT;
3382 case FCMP_ULE: return FCMP_OGT;
3383 case FCMP_ORD: return FCMP_UNO;
3384 case FCMP_UNO: return FCMP_ORD;
3385 case FCMP_TRUE: return FCMP_FALSE;
3386 case FCMP_FALSE: return FCMP_TRUE;
3390 void ICmpInst::anchor() {}
3392 ICmpInst::Predicate ICmpInst::getSignedPredicate(Predicate pred) {
3394 default: llvm_unreachable("Unknown icmp predicate!");
3395 case ICMP_EQ: case ICMP_NE:
3396 case ICMP_SGT: case ICMP_SLT: case ICMP_SGE: case ICMP_SLE:
3398 case ICMP_UGT: return ICMP_SGT;
3399 case ICMP_ULT: return ICMP_SLT;
3400 case ICMP_UGE: return ICMP_SGE;
3401 case ICMP_ULE: return ICMP_SLE;
3405 ICmpInst::Predicate ICmpInst::getUnsignedPredicate(Predicate pred) {
3407 default: llvm_unreachable("Unknown icmp predicate!");
3408 case ICMP_EQ: case ICMP_NE:
3409 case ICMP_UGT: case ICMP_ULT: case ICMP_UGE: case ICMP_ULE:
3411 case ICMP_SGT: return ICMP_UGT;
3412 case ICMP_SLT: return ICMP_ULT;
3413 case ICMP_SGE: return ICMP_UGE;
3414 case ICMP_SLE: return ICMP_ULE;
3418 /// Initialize a set of values that all satisfy the condition with C.
3421 ICmpInst::makeConstantRange(Predicate pred, const APInt &C) {
3424 uint32_t BitWidth = C.getBitWidth();
3426 default: llvm_unreachable("Invalid ICmp opcode to ConstantRange ctor!");
3427 case ICmpInst::ICMP_EQ: ++Upper; break;
3428 case ICmpInst::ICMP_NE: ++Lower; break;
3429 case ICmpInst::ICMP_ULT:
3430 Lower = APInt::getMinValue(BitWidth);
3431 // Check for an empty-set condition.
3433 return ConstantRange(BitWidth, /*isFullSet=*/false);
3435 case ICmpInst::ICMP_SLT:
3436 Lower = APInt::getSignedMinValue(BitWidth);
3437 // Check for an empty-set condition.
3439 return ConstantRange(BitWidth, /*isFullSet=*/false);
3441 case ICmpInst::ICMP_UGT:
3442 ++Lower; Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3443 // Check for an empty-set condition.
3445 return ConstantRange(BitWidth, /*isFullSet=*/false);
3447 case ICmpInst::ICMP_SGT:
3448 ++Lower; Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3449 // Check for an empty-set condition.
3451 return ConstantRange(BitWidth, /*isFullSet=*/false);
3453 case ICmpInst::ICMP_ULE:
3454 Lower = APInt::getMinValue(BitWidth); ++Upper;
3455 // Check for a full-set condition.
3457 return ConstantRange(BitWidth, /*isFullSet=*/true);
3459 case ICmpInst::ICMP_SLE:
3460 Lower = APInt::getSignedMinValue(BitWidth); ++Upper;
3461 // Check for a full-set condition.
3463 return ConstantRange(BitWidth, /*isFullSet=*/true);
3465 case ICmpInst::ICMP_UGE:
3466 Upper = APInt::getMinValue(BitWidth); // Min = Next(Max)
3467 // Check for a full-set condition.
3469 return ConstantRange(BitWidth, /*isFullSet=*/true);
3471 case ICmpInst::ICMP_SGE:
3472 Upper = APInt::getSignedMinValue(BitWidth); // Min = Next(Max)
3473 // Check for a full-set condition.
3475 return ConstantRange(BitWidth, /*isFullSet=*/true);
3478 return ConstantRange(Lower, Upper);
3481 CmpInst::Predicate CmpInst::getSwappedPredicate(Predicate pred) {
3483 default: llvm_unreachable("Unknown cmp predicate!");
3484 case ICMP_EQ: case ICMP_NE:
3486 case ICMP_SGT: return ICMP_SLT;
3487 case ICMP_SLT: return ICMP_SGT;
3488 case ICMP_SGE: return ICMP_SLE;
3489 case ICMP_SLE: return ICMP_SGE;
3490 case ICMP_UGT: return ICMP_ULT;
3491 case ICMP_ULT: return ICMP_UGT;
3492 case ICMP_UGE: return ICMP_ULE;
3493 case ICMP_ULE: return ICMP_UGE;
3495 case FCMP_FALSE: case FCMP_TRUE:
3496 case FCMP_OEQ: case FCMP_ONE:
3497 case FCMP_UEQ: case FCMP_UNE:
3498 case FCMP_ORD: case FCMP_UNO:
3500 case FCMP_OGT: return FCMP_OLT;
3501 case FCMP_OLT: return FCMP_OGT;
3502 case FCMP_OGE: return FCMP_OLE;
3503 case FCMP_OLE: return FCMP_OGE;
3504 case FCMP_UGT: return FCMP_ULT;
3505 case FCMP_ULT: return FCMP_UGT;
3506 case FCMP_UGE: return FCMP_ULE;
3507 case FCMP_ULE: return FCMP_UGE;
3511 CmpInst::Predicate CmpInst::getSignedPredicate(Predicate pred) {
3512 assert(CmpInst::isUnsigned(pred) && "Call only with signed predicates!");
3516 llvm_unreachable("Unknown predicate!");
3517 case CmpInst::ICMP_ULT:
3518 return CmpInst::ICMP_SLT;
3519 case CmpInst::ICMP_ULE:
3520 return CmpInst::ICMP_SLE;
3521 case CmpInst::ICMP_UGT:
3522 return CmpInst::ICMP_SGT;
3523 case CmpInst::ICMP_UGE:
3524 return CmpInst::ICMP_SGE;
3528 bool CmpInst::isUnsigned(Predicate predicate) {
3529 switch (predicate) {
3530 default: return false;
3531 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_ULE: case ICmpInst::ICMP_UGT:
3532 case ICmpInst::ICMP_UGE: return true;
3536 bool CmpInst::isSigned(Predicate predicate) {
3537 switch (predicate) {
3538 default: return false;
3539 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_SLE: case ICmpInst::ICMP_SGT:
3540 case ICmpInst::ICMP_SGE: return true;
3544 bool CmpInst::isOrdered(Predicate predicate) {
3545 switch (predicate) {
3546 default: return false;
3547 case FCmpInst::FCMP_OEQ: case FCmpInst::FCMP_ONE: case FCmpInst::FCMP_OGT:
3548 case FCmpInst::FCMP_OLT: case FCmpInst::FCMP_OGE: case FCmpInst::FCMP_OLE:
3549 case FCmpInst::FCMP_ORD: return true;
3553 bool CmpInst::isUnordered(Predicate predicate) {
3554 switch (predicate) {
3555 default: return false;
3556 case FCmpInst::FCMP_UEQ: case FCmpInst::FCMP_UNE: case FCmpInst::FCMP_UGT:
3557 case FCmpInst::FCMP_ULT: case FCmpInst::FCMP_UGE: case FCmpInst::FCMP_ULE:
3558 case FCmpInst::FCMP_UNO: return true;
3562 bool CmpInst::isTrueWhenEqual(Predicate predicate) {
3564 default: return false;
3565 case ICMP_EQ: case ICMP_UGE: case ICMP_ULE: case ICMP_SGE: case ICMP_SLE:
3566 case FCMP_TRUE: case FCMP_UEQ: case FCMP_UGE: case FCMP_ULE: return true;
3570 bool CmpInst::isFalseWhenEqual(Predicate predicate) {
3572 case ICMP_NE: case ICMP_UGT: case ICMP_ULT: case ICMP_SGT: case ICMP_SLT:
3573 case FCMP_FALSE: case FCMP_ONE: case FCMP_OGT: case FCMP_OLT: return true;
3574 default: return false;
3579 //===----------------------------------------------------------------------===//
3580 // SwitchInst Implementation
3581 //===----------------------------------------------------------------------===//
3583 void SwitchInst::init(Value *Value, BasicBlock *Default, unsigned NumReserved) {
3584 assert(Value && Default && NumReserved);
3585 ReservedSpace = NumReserved;
3586 setNumHungOffUseOperands(2);
3587 allocHungoffUses(ReservedSpace);
3593 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3594 /// switch on and a default destination. The number of additional cases can
3595 /// be specified here to make memory allocation more efficient. This
3596 /// constructor can also autoinsert before another instruction.
3597 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3598 Instruction *InsertBefore)
3599 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3600 nullptr, 0, InsertBefore) {
3601 init(Value, Default, 2+NumCases*2);
3604 /// SwitchInst ctor - Create a new switch instruction, specifying a value to
3605 /// switch on and a default destination. The number of additional cases can
3606 /// be specified here to make memory allocation more efficient. This
3607 /// constructor also autoinserts at the end of the specified BasicBlock.
3608 SwitchInst::SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
3609 BasicBlock *InsertAtEnd)
3610 : TerminatorInst(Type::getVoidTy(Value->getContext()), Instruction::Switch,
3611 nullptr, 0, InsertAtEnd) {
3612 init(Value, Default, 2+NumCases*2);
3615 SwitchInst::SwitchInst(const SwitchInst &SI)
3616 : TerminatorInst(SI.getType(), Instruction::Switch, nullptr, 0) {
3617 init(SI.getCondition(), SI.getDefaultDest(), SI.getNumOperands());
3618 setNumHungOffUseOperands(SI.getNumOperands());
3619 Use *OL = getOperandList();
3620 const Use *InOL = SI.getOperandList();
3621 for (unsigned i = 2, E = SI.getNumOperands(); i != E; i += 2) {
3623 OL[i+1] = InOL[i+1];
3625 SubclassOptionalData = SI.SubclassOptionalData;
3629 /// addCase - Add an entry to the switch instruction...
3631 void SwitchInst::addCase(ConstantInt *OnVal, BasicBlock *Dest) {
3632 unsigned NewCaseIdx = getNumCases();
3633 unsigned OpNo = getNumOperands();
3634 if (OpNo+2 > ReservedSpace)
3635 growOperands(); // Get more space!
3636 // Initialize some new operands.
3637 assert(OpNo+1 < ReservedSpace && "Growing didn't work!");
3638 setNumHungOffUseOperands(OpNo+2);
3639 CaseIt Case(this, NewCaseIdx);
3640 Case.setValue(OnVal);
3641 Case.setSuccessor(Dest);
3644 /// removeCase - This method removes the specified case and its successor
3645 /// from the switch instruction.
3646 void SwitchInst::removeCase(CaseIt i) {
3647 unsigned idx = i.getCaseIndex();
3649 assert(2 + idx*2 < getNumOperands() && "Case index out of range!!!");
3651 unsigned NumOps = getNumOperands();
3652 Use *OL = getOperandList();
3654 // Overwrite this case with the end of the list.
3655 if (2 + (idx + 1) * 2 != NumOps) {
3656 OL[2 + idx * 2] = OL[NumOps - 2];
3657 OL[2 + idx * 2 + 1] = OL[NumOps - 1];
3660 // Nuke the last value.
3661 OL[NumOps-2].set(nullptr);
3662 OL[NumOps-2+1].set(nullptr);
3663 setNumHungOffUseOperands(NumOps-2);
3666 /// growOperands - grow operands - This grows the operand list in response
3667 /// to a push_back style of operation. This grows the number of ops by 3 times.
3669 void SwitchInst::growOperands() {
3670 unsigned e = getNumOperands();
3671 unsigned NumOps = e*3;
3673 ReservedSpace = NumOps;
3674 growHungoffUses(ReservedSpace);
3678 BasicBlock *SwitchInst::getSuccessorV(unsigned idx) const {
3679 return getSuccessor(idx);
3681 unsigned SwitchInst::getNumSuccessorsV() const {
3682 return getNumSuccessors();
3684 void SwitchInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3685 setSuccessor(idx, B);
3688 //===----------------------------------------------------------------------===//
3689 // IndirectBrInst Implementation
3690 //===----------------------------------------------------------------------===//
3692 void IndirectBrInst::init(Value *Address, unsigned NumDests) {
3693 assert(Address && Address->getType()->isPointerTy() &&
3694 "Address of indirectbr must be a pointer");
3695 ReservedSpace = 1+NumDests;
3696 setNumHungOffUseOperands(1);
3697 allocHungoffUses(ReservedSpace);
3703 /// growOperands - grow operands - This grows the operand list in response
3704 /// to a push_back style of operation. This grows the number of ops by 2 times.
3706 void IndirectBrInst::growOperands() {
3707 unsigned e = getNumOperands();
3708 unsigned NumOps = e*2;
3710 ReservedSpace = NumOps;
3711 growHungoffUses(ReservedSpace);
3714 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3715 Instruction *InsertBefore)
3716 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3717 nullptr, 0, InsertBefore) {
3718 init(Address, NumCases);
3721 IndirectBrInst::IndirectBrInst(Value *Address, unsigned NumCases,
3722 BasicBlock *InsertAtEnd)
3723 : TerminatorInst(Type::getVoidTy(Address->getContext()),Instruction::IndirectBr,
3724 nullptr, 0, InsertAtEnd) {
3725 init(Address, NumCases);
3728 IndirectBrInst::IndirectBrInst(const IndirectBrInst &IBI)
3729 : TerminatorInst(Type::getVoidTy(IBI.getContext()), Instruction::IndirectBr,
3730 nullptr, IBI.getNumOperands()) {
3731 allocHungoffUses(IBI.getNumOperands());
3732 Use *OL = getOperandList();
3733 const Use *InOL = IBI.getOperandList();
3734 for (unsigned i = 0, E = IBI.getNumOperands(); i != E; ++i)
3736 SubclassOptionalData = IBI.SubclassOptionalData;
3739 /// addDestination - Add a destination.
3741 void IndirectBrInst::addDestination(BasicBlock *DestBB) {
3742 unsigned OpNo = getNumOperands();
3743 if (OpNo+1 > ReservedSpace)
3744 growOperands(); // Get more space!
3745 // Initialize some new operands.
3746 assert(OpNo < ReservedSpace && "Growing didn't work!");
3747 setNumHungOffUseOperands(OpNo+1);
3748 getOperandList()[OpNo] = DestBB;
3751 /// removeDestination - This method removes the specified successor from the
3752 /// indirectbr instruction.
3753 void IndirectBrInst::removeDestination(unsigned idx) {
3754 assert(idx < getNumOperands()-1 && "Successor index out of range!");
3756 unsigned NumOps = getNumOperands();
3757 Use *OL = getOperandList();
3759 // Replace this value with the last one.
3760 OL[idx+1] = OL[NumOps-1];
3762 // Nuke the last value.
3763 OL[NumOps-1].set(nullptr);
3764 setNumHungOffUseOperands(NumOps-1);
3767 BasicBlock *IndirectBrInst::getSuccessorV(unsigned idx) const {
3768 return getSuccessor(idx);
3770 unsigned IndirectBrInst::getNumSuccessorsV() const {
3771 return getNumSuccessors();
3773 void IndirectBrInst::setSuccessorV(unsigned idx, BasicBlock *B) {
3774 setSuccessor(idx, B);
3777 //===----------------------------------------------------------------------===//
3778 // cloneImpl() implementations
3779 //===----------------------------------------------------------------------===//
3781 // Define these methods here so vtables don't get emitted into every translation
3782 // unit that uses these classes.
3784 GetElementPtrInst *GetElementPtrInst::cloneImpl() const {
3785 return new (getNumOperands()) GetElementPtrInst(*this);
3788 BinaryOperator *BinaryOperator::cloneImpl() const {
3789 return Create(getOpcode(), Op<0>(), Op<1>());
3792 FCmpInst *FCmpInst::cloneImpl() const {
3793 return new FCmpInst(getPredicate(), Op<0>(), Op<1>());
3796 ICmpInst *ICmpInst::cloneImpl() const {
3797 return new ICmpInst(getPredicate(), Op<0>(), Op<1>());
3800 ExtractValueInst *ExtractValueInst::cloneImpl() const {
3801 return new ExtractValueInst(*this);
3804 InsertValueInst *InsertValueInst::cloneImpl() const {
3805 return new InsertValueInst(*this);
3808 AllocaInst *AllocaInst::cloneImpl() const {
3809 AllocaInst *Result = new AllocaInst(getAllocatedType(),
3810 (Value *)getOperand(0), getAlignment());
3811 Result->setUsedWithInAlloca(isUsedWithInAlloca());
3815 LoadInst *LoadInst::cloneImpl() const {
3816 return new LoadInst(getOperand(0), Twine(), isVolatile(),
3817 getAlignment(), getOrdering(), getSynchScope());
3820 StoreInst *StoreInst::cloneImpl() const {
3821 return new StoreInst(getOperand(0), getOperand(1), isVolatile(),
3822 getAlignment(), getOrdering(), getSynchScope());
3826 AtomicCmpXchgInst *AtomicCmpXchgInst::cloneImpl() const {
3827 AtomicCmpXchgInst *Result =
3828 new AtomicCmpXchgInst(getOperand(0), getOperand(1), getOperand(2),
3829 getSuccessOrdering(), getFailureOrdering(),
3831 Result->setVolatile(isVolatile());
3832 Result->setWeak(isWeak());
3836 AtomicRMWInst *AtomicRMWInst::cloneImpl() const {
3837 AtomicRMWInst *Result =
3838 new AtomicRMWInst(getOperation(),getOperand(0), getOperand(1),
3839 getOrdering(), getSynchScope());
3840 Result->setVolatile(isVolatile());
3844 FenceInst *FenceInst::cloneImpl() const {
3845 return new FenceInst(getContext(), getOrdering(), getSynchScope());
3848 TruncInst *TruncInst::cloneImpl() const {
3849 return new TruncInst(getOperand(0), getType());
3852 ZExtInst *ZExtInst::cloneImpl() const {
3853 return new ZExtInst(getOperand(0), getType());
3856 SExtInst *SExtInst::cloneImpl() const {
3857 return new SExtInst(getOperand(0), getType());
3860 FPTruncInst *FPTruncInst::cloneImpl() const {
3861 return new FPTruncInst(getOperand(0), getType());
3864 FPExtInst *FPExtInst::cloneImpl() const {
3865 return new FPExtInst(getOperand(0), getType());
3868 UIToFPInst *UIToFPInst::cloneImpl() const {
3869 return new UIToFPInst(getOperand(0), getType());
3872 SIToFPInst *SIToFPInst::cloneImpl() const {
3873 return new SIToFPInst(getOperand(0), getType());
3876 FPToUIInst *FPToUIInst::cloneImpl() const {
3877 return new FPToUIInst(getOperand(0), getType());
3880 FPToSIInst *FPToSIInst::cloneImpl() const {
3881 return new FPToSIInst(getOperand(0), getType());
3884 PtrToIntInst *PtrToIntInst::cloneImpl() const {
3885 return new PtrToIntInst(getOperand(0), getType());
3888 IntToPtrInst *IntToPtrInst::cloneImpl() const {
3889 return new IntToPtrInst(getOperand(0), getType());
3892 BitCastInst *BitCastInst::cloneImpl() const {
3893 return new BitCastInst(getOperand(0), getType());
3896 AddrSpaceCastInst *AddrSpaceCastInst::cloneImpl() const {
3897 return new AddrSpaceCastInst(getOperand(0), getType());
3900 CallInst *CallInst::cloneImpl() const {
3901 if (hasOperandBundles()) {
3902 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3903 return new(getNumOperands(), DescriptorBytes) CallInst(*this);
3905 return new(getNumOperands()) CallInst(*this);
3908 SelectInst *SelectInst::cloneImpl() const {
3909 return SelectInst::Create(getOperand(0), getOperand(1), getOperand(2));
3912 VAArgInst *VAArgInst::cloneImpl() const {
3913 return new VAArgInst(getOperand(0), getType());
3916 ExtractElementInst *ExtractElementInst::cloneImpl() const {
3917 return ExtractElementInst::Create(getOperand(0), getOperand(1));
3920 InsertElementInst *InsertElementInst::cloneImpl() const {
3921 return InsertElementInst::Create(getOperand(0), getOperand(1), getOperand(2));
3924 ShuffleVectorInst *ShuffleVectorInst::cloneImpl() const {
3925 return new ShuffleVectorInst(getOperand(0), getOperand(1), getOperand(2));
3928 PHINode *PHINode::cloneImpl() const { return new PHINode(*this); }
3930 LandingPadInst *LandingPadInst::cloneImpl() const {
3931 return new LandingPadInst(*this);
3934 ReturnInst *ReturnInst::cloneImpl() const {
3935 return new(getNumOperands()) ReturnInst(*this);
3938 BranchInst *BranchInst::cloneImpl() const {
3939 return new(getNumOperands()) BranchInst(*this);
3942 SwitchInst *SwitchInst::cloneImpl() const { return new SwitchInst(*this); }
3944 IndirectBrInst *IndirectBrInst::cloneImpl() const {
3945 return new IndirectBrInst(*this);
3948 InvokeInst *InvokeInst::cloneImpl() const {
3949 if (hasOperandBundles()) {
3950 unsigned DescriptorBytes = getNumOperandBundles() * sizeof(BundleOpInfo);
3951 return new(getNumOperands(), DescriptorBytes) InvokeInst(*this);
3953 return new(getNumOperands()) InvokeInst(*this);
3956 ResumeInst *ResumeInst::cloneImpl() const { return new (1) ResumeInst(*this); }
3958 CleanupReturnInst *CleanupReturnInst::cloneImpl() const {
3959 return new (getNumOperands()) CleanupReturnInst(*this);
3962 CatchReturnInst *CatchReturnInst::cloneImpl() const {
3963 return new (getNumOperands()) CatchReturnInst(*this);
3966 CatchSwitchInst *CatchSwitchInst::cloneImpl() const {
3967 return new CatchSwitchInst(*this);
3970 FuncletPadInst *FuncletPadInst::cloneImpl() const {
3971 return new (getNumOperands()) FuncletPadInst(*this);
3974 UnreachableInst *UnreachableInst::cloneImpl() const {
3975 LLVMContext &Context = getContext();
3976 return new UnreachableInst(Context);