Use isIntrinsic() instead of checking for "llvm."
[oota-llvm.git] / lib / IR / LLVMContextImpl.h
1 //===-- LLVMContextImpl.h - The LLVMContextImpl opaque class ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file declares LLVMContextImpl, the opaque implementation 
11 //  of LLVMContext.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #ifndef LLVM_LLVMCONTEXT_IMPL_H
16 #define LLVM_LLVMCONTEXT_IMPL_H
17
18 #include "AttributeImpl.h"
19 #include "ConstantsContext.h"
20 #include "LeaksContext.h"
21 #include "llvm/ADT/APFloat.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/ArrayRef.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/FoldingSet.h"
26 #include "llvm/ADT/Hashing.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/StringMap.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/LLVMContext.h"
32 #include "llvm/IR/Metadata.h"
33 #include "llvm/Support/ValueHandle.h"
34 #include <vector>
35
36 namespace llvm {
37
38 class ConstantInt;
39 class ConstantFP;
40 class LLVMContext;
41 class Type;
42 class Value;
43
44 struct DenseMapAPIntKeyInfo {
45   struct KeyTy {
46     APInt val;
47     Type* type;
48     KeyTy(const APInt& V, Type* Ty) : val(V), type(Ty) {}
49     bool operator==(const KeyTy& that) const {
50       return type == that.type && this->val == that.val;
51     }
52     bool operator!=(const KeyTy& that) const {
53       return !this->operator==(that);
54     }
55     friend hash_code hash_value(const KeyTy &Key) {
56       return hash_combine(Key.type, Key.val);
57     }
58   };
59   static inline KeyTy getEmptyKey() { return KeyTy(APInt(1,0), 0); }
60   static inline KeyTy getTombstoneKey() { return KeyTy(APInt(1,1), 0); }
61   static unsigned getHashValue(const KeyTy &Key) {
62     return static_cast<unsigned>(hash_value(Key));
63   }
64   static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
65     return LHS == RHS;
66   }
67 };
68
69 struct DenseMapAPFloatKeyInfo {
70   struct KeyTy {
71     APFloat val;
72     KeyTy(const APFloat& V) : val(V){}
73     bool operator==(const KeyTy& that) const {
74       return this->val.bitwiseIsEqual(that.val);
75     }
76     bool operator!=(const KeyTy& that) const {
77       return !this->operator==(that);
78     }
79     friend hash_code hash_value(const KeyTy &Key) {
80       return hash_combine(Key.val);
81     }
82   };
83   static inline KeyTy getEmptyKey() { 
84     return KeyTy(APFloat(APFloat::Bogus,1));
85   }
86   static inline KeyTy getTombstoneKey() { 
87     return KeyTy(APFloat(APFloat::Bogus,2)); 
88   }
89   static unsigned getHashValue(const KeyTy &Key) {
90     return static_cast<unsigned>(hash_value(Key));
91   }
92   static bool isEqual(const KeyTy &LHS, const KeyTy &RHS) {
93     return LHS == RHS;
94   }
95 };
96
97 struct AnonStructTypeKeyInfo {
98   struct KeyTy {
99     ArrayRef<Type*> ETypes;
100     bool isPacked;
101     KeyTy(const ArrayRef<Type*>& E, bool P) :
102       ETypes(E), isPacked(P) {}
103     KeyTy(const StructType* ST) :
104       ETypes(ArrayRef<Type*>(ST->element_begin(), ST->element_end())),
105       isPacked(ST->isPacked()) {}
106     bool operator==(const KeyTy& that) const {
107       if (isPacked != that.isPacked)
108         return false;
109       if (ETypes != that.ETypes)
110         return false;
111       return true;
112     }
113     bool operator!=(const KeyTy& that) const {
114       return !this->operator==(that);
115     }
116   };
117   static inline StructType* getEmptyKey() {
118     return DenseMapInfo<StructType*>::getEmptyKey();
119   }
120   static inline StructType* getTombstoneKey() {
121     return DenseMapInfo<StructType*>::getTombstoneKey();
122   }
123   static unsigned getHashValue(const KeyTy& Key) {
124     return hash_combine(hash_combine_range(Key.ETypes.begin(),
125                                            Key.ETypes.end()),
126                         Key.isPacked);
127   }
128   static unsigned getHashValue(const StructType *ST) {
129     return getHashValue(KeyTy(ST));
130   }
131   static bool isEqual(const KeyTy& LHS, const StructType *RHS) {
132     if (RHS == getEmptyKey() || RHS == getTombstoneKey())
133       return false;
134     return LHS == KeyTy(RHS);
135   }
136   static bool isEqual(const StructType *LHS, const StructType *RHS) {
137     return LHS == RHS;
138   }
139 };
140
141 struct FunctionTypeKeyInfo {
142   struct KeyTy {
143     const Type *ReturnType;
144     ArrayRef<Type*> Params;
145     bool isVarArg;
146     KeyTy(const Type* R, const ArrayRef<Type*>& P, bool V) :
147       ReturnType(R), Params(P), isVarArg(V) {}
148     KeyTy(const FunctionType* FT) :
149       ReturnType(FT->getReturnType()),
150       Params(ArrayRef<Type*>(FT->param_begin(), FT->param_end())),
151       isVarArg(FT->isVarArg()) {}
152     bool operator==(const KeyTy& that) const {
153       if (ReturnType != that.ReturnType)
154         return false;
155       if (isVarArg != that.isVarArg)
156         return false;
157       if (Params != that.Params)
158         return false;
159       return true;
160     }
161     bool operator!=(const KeyTy& that) const {
162       return !this->operator==(that);
163     }
164   };
165   static inline FunctionType* getEmptyKey() {
166     return DenseMapInfo<FunctionType*>::getEmptyKey();
167   }
168   static inline FunctionType* getTombstoneKey() {
169     return DenseMapInfo<FunctionType*>::getTombstoneKey();
170   }
171   static unsigned getHashValue(const KeyTy& Key) {
172     return hash_combine(Key.ReturnType,
173                         hash_combine_range(Key.Params.begin(),
174                                            Key.Params.end()),
175                         Key.isVarArg);
176   }
177   static unsigned getHashValue(const FunctionType *FT) {
178     return getHashValue(KeyTy(FT));
179   }
180   static bool isEqual(const KeyTy& LHS, const FunctionType *RHS) {
181     if (RHS == getEmptyKey() || RHS == getTombstoneKey())
182       return false;
183     return LHS == KeyTy(RHS);
184   }
185   static bool isEqual(const FunctionType *LHS, const FunctionType *RHS) {
186     return LHS == RHS;
187   }
188 };
189
190 // Provide a FoldingSetTrait::Equals specialization for MDNode that can use a
191 // shortcut to avoid comparing all operands.
192 template<> struct FoldingSetTrait<MDNode> : DefaultFoldingSetTrait<MDNode> {
193   static bool Equals(const MDNode &X, const FoldingSetNodeID &ID,
194                      unsigned IDHash, FoldingSetNodeID &TempID) {
195     assert(!X.isNotUniqued() && "Non-uniqued MDNode in FoldingSet?");
196     // First, check if the cached hashes match.  If they don't we can skip the
197     // expensive operand walk.
198     if (X.Hash != IDHash)
199       return false;
200
201     // If they match we have to compare the operands.
202     X.Profile(TempID);
203     return TempID == ID;
204   }
205   static unsigned ComputeHash(const MDNode &X, FoldingSetNodeID &) {
206     return X.Hash; // Return cached hash.
207   }
208 };
209
210 /// DebugRecVH - This is a CallbackVH used to keep the Scope -> index maps
211 /// up to date as MDNodes mutate.  This class is implemented in DebugLoc.cpp.
212 class DebugRecVH : public CallbackVH {
213   /// Ctx - This is the LLVM Context being referenced.
214   LLVMContextImpl *Ctx;
215   
216   /// Idx - The index into either ScopeRecordIdx or ScopeInlinedAtRecords that
217   /// this reference lives in.  If this is zero, then it represents a
218   /// non-canonical entry that has no DenseMap value.  This can happen due to
219   /// RAUW.
220   int Idx;
221 public:
222   DebugRecVH(MDNode *n, LLVMContextImpl *ctx, int idx)
223     : CallbackVH(n), Ctx(ctx), Idx(idx) {}
224   
225   MDNode *get() const {
226     return cast_or_null<MDNode>(getValPtr());
227   }
228   
229   virtual void deleted();
230   virtual void allUsesReplacedWith(Value *VNew);
231 };
232   
233 class LLVMContextImpl {
234 public:
235   /// OwnedModules - The set of modules instantiated in this context, and which
236   /// will be automatically deleted if this context is deleted.
237   SmallPtrSet<Module*, 4> OwnedModules;
238   
239   LLVMContext::InlineAsmDiagHandlerTy InlineAsmDiagHandler;
240   void *InlineAsmDiagContext;
241   
242   typedef DenseMap<DenseMapAPIntKeyInfo::KeyTy, ConstantInt*, 
243                          DenseMapAPIntKeyInfo> IntMapTy;
244   IntMapTy IntConstants;
245   
246   typedef DenseMap<DenseMapAPFloatKeyInfo::KeyTy, ConstantFP*, 
247                          DenseMapAPFloatKeyInfo> FPMapTy;
248   FPMapTy FPConstants;
249
250   FoldingSet<AttributeImpl> AttrsSet;
251   FoldingSet<AttributeSetImpl> AttrsLists;
252   FoldingSet<AttributeSetNode> AttrsSetNodes;
253
254   StringMap<Value*> MDStringCache;
255
256   FoldingSet<MDNode> MDNodeSet;
257
258   // MDNodes may be uniqued or not uniqued.  When they're not uniqued, they
259   // aren't in the MDNodeSet, but they're still shared between objects, so no
260   // one object can destroy them.  This set allows us to at least destroy them
261   // on Context destruction.
262   SmallPtrSet<MDNode*, 1> NonUniquedMDNodes;
263   
264   DenseMap<Type*, ConstantAggregateZero*> CAZConstants;
265
266   typedef ConstantAggrUniqueMap<ArrayType, ConstantArray> ArrayConstantsTy;
267   ArrayConstantsTy ArrayConstants;
268   
269   typedef ConstantAggrUniqueMap<StructType, ConstantStruct> StructConstantsTy;
270   StructConstantsTy StructConstants;
271   
272   typedef ConstantAggrUniqueMap<VectorType, ConstantVector> VectorConstantsTy;
273   VectorConstantsTy VectorConstants;
274   
275   DenseMap<PointerType*, ConstantPointerNull*> CPNConstants;
276
277   DenseMap<Type*, UndefValue*> UVConstants;
278   
279   StringMap<ConstantDataSequential*> CDSConstants;
280
281   
282   DenseMap<std::pair<Function*, BasicBlock*> , BlockAddress*> BlockAddresses;
283   ConstantUniqueMap<ExprMapKeyType, const ExprMapKeyType&, Type, ConstantExpr>
284     ExprConstants;
285
286   ConstantUniqueMap<InlineAsmKeyType, const InlineAsmKeyType&, PointerType,
287                     InlineAsm> InlineAsms;
288   
289   ConstantInt *TheTrueVal;
290   ConstantInt *TheFalseVal;
291   
292   LeakDetectorImpl<Value> LLVMObjects;
293   
294   // Basic type instances.
295   Type VoidTy, LabelTy, HalfTy, FloatTy, DoubleTy, MetadataTy;
296   Type X86_FP80Ty, FP128Ty, PPC_FP128Ty, X86_MMXTy;
297   IntegerType Int1Ty, Int8Ty, Int16Ty, Int32Ty, Int64Ty;
298
299   
300   /// TypeAllocator - All dynamically allocated types are allocated from this.
301   /// They live forever until the context is torn down.
302   BumpPtrAllocator TypeAllocator;
303   
304   DenseMap<unsigned, IntegerType*> IntegerTypes;
305   
306   typedef DenseMap<FunctionType*, bool, FunctionTypeKeyInfo> FunctionTypeMap;
307   FunctionTypeMap FunctionTypes;
308   typedef DenseMap<StructType*, bool, AnonStructTypeKeyInfo> StructTypeMap;
309   StructTypeMap AnonStructTypes;
310   StringMap<StructType*> NamedStructTypes;
311   unsigned NamedStructTypesUniqueID;
312     
313   DenseMap<std::pair<Type *, uint64_t>, ArrayType*> ArrayTypes;
314   DenseMap<std::pair<Type *, unsigned>, VectorType*> VectorTypes;
315   DenseMap<Type*, PointerType*> PointerTypes;  // Pointers in AddrSpace = 0
316   DenseMap<std::pair<Type*, unsigned>, PointerType*> ASPointerTypes;
317
318
319   /// ValueHandles - This map keeps track of all of the value handles that are
320   /// watching a Value*.  The Value::HasValueHandle bit is used to know
321   /// whether or not a value has an entry in this map.
322   typedef DenseMap<Value*, ValueHandleBase*> ValueHandlesTy;
323   ValueHandlesTy ValueHandles;
324   
325   /// CustomMDKindNames - Map to hold the metadata string to ID mapping.
326   StringMap<unsigned> CustomMDKindNames;
327   
328   typedef std::pair<unsigned, TrackingVH<MDNode> > MDPairTy;
329   typedef SmallVector<MDPairTy, 2> MDMapTy;
330
331   /// MetadataStore - Collection of per-instruction metadata used in this
332   /// context.
333   DenseMap<const Instruction *, MDMapTy> MetadataStore;
334   
335   /// ScopeRecordIdx - This is the index in ScopeRecords for an MDNode scope
336   /// entry with no "inlined at" element.
337   DenseMap<MDNode*, int> ScopeRecordIdx;
338   
339   /// ScopeRecords - These are the actual mdnodes (in a value handle) for an
340   /// index.  The ValueHandle ensures that ScopeRecordIdx stays up to date if
341   /// the MDNode is RAUW'd.
342   std::vector<DebugRecVH> ScopeRecords;
343   
344   /// ScopeInlinedAtIdx - This is the index in ScopeInlinedAtRecords for an
345   /// scope/inlined-at pair.
346   DenseMap<std::pair<MDNode*, MDNode*>, int> ScopeInlinedAtIdx;
347   
348   /// ScopeInlinedAtRecords - These are the actual mdnodes (in value handles)
349   /// for an index.  The ValueHandle ensures that ScopeINlinedAtIdx stays up
350   /// to date.
351   std::vector<std::pair<DebugRecVH, DebugRecVH> > ScopeInlinedAtRecords;
352   
353   /// IntrinsicIDCache - Cache of intrinsic name (string) to numeric ID mappings
354   /// requested in this context
355   typedef DenseMap<const Function*, unsigned> IntrinsicIDCacheTy;
356   IntrinsicIDCacheTy IntrinsicIDCache;
357
358   /// \brief Mapping from a function to its prefix data, which is stored as the
359   /// operand of an unparented ReturnInst so that the prefix data has a Use.
360   typedef DenseMap<const Function *, ReturnInst *> PrefixDataMapTy;
361   PrefixDataMapTy PrefixDataMap;
362
363   int getOrAddScopeRecordIdxEntry(MDNode *N, int ExistingIdx);
364   int getOrAddScopeInlinedAtIdxEntry(MDNode *Scope, MDNode *IA,int ExistingIdx);
365   
366   LLVMContextImpl(LLVMContext &C);
367   ~LLVMContextImpl();
368 };
369
370 }
371
372 #endif