1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file defines the function verifier interface, that can be used for some
11 // sanity checking of input to the system.
13 // Note that this does not provide full `Java style' security and verifications,
14 // instead it just tries to ensure that code is well-formed.
16 // * Both of a binary operator's parameters are of the same type
17 // * Verify that the indices of mem access instructions match other operands
18 // * Verify that arithmetic and other things are only performed on first-class
19 // types. Verify that shifts & logicals only happen on integrals f.e.
20 // * All of the constants in a switch statement are of the correct type
21 // * The code is in valid SSA form
22 // * It should be illegal to put a label into any other type (like a structure)
23 // or to return one. [except constant arrays!]
24 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
25 // * PHI nodes must have an entry for each predecessor, with no extras.
26 // * PHI nodes must be the first thing in a basic block, all grouped together
27 // * PHI nodes must have at least one entry
28 // * All basic blocks should only end with terminator insts, not contain them
29 // * The entry node to a function must not have predecessors
30 // * All Instructions must be embedded into a basic block
31 // * Functions cannot take a void-typed parameter
32 // * Verify that a function's argument list agrees with it's declared type.
33 // * It is illegal to specify a name for a void value.
34 // * It is illegal to have a internal global value with no initializer
35 // * It is illegal to have a ret instruction that returns a value that does not
36 // agree with the function return value type.
37 // * Function call argument types match the function prototype
38 // * A landing pad is defined by a landingpad instruction, and can be jumped to
39 // only by the unwind edge of an invoke instruction.
40 // * A landingpad instruction must be the first non-PHI instruction in the
42 // * All landingpad instructions must use the same personality function with
44 // * All other things that are tested by asserts spread about the code...
46 //===----------------------------------------------------------------------===//
48 #include "llvm/IR/Verifier.h"
49 #include "llvm/ADT/STLExtras.h"
50 #include "llvm/ADT/SetVector.h"
51 #include "llvm/ADT/SmallPtrSet.h"
52 #include "llvm/ADT/SmallVector.h"
53 #include "llvm/ADT/StringExtras.h"
54 #include "llvm/DebugInfo.h"
55 #include "llvm/IR/CallingConv.h"
56 #include "llvm/IR/Constants.h"
57 #include "llvm/IR/DataLayout.h"
58 #include "llvm/IR/DerivedTypes.h"
59 #include "llvm/IR/Dominators.h"
60 #include "llvm/IR/InlineAsm.h"
61 #include "llvm/IR/IntrinsicInst.h"
62 #include "llvm/IR/LLVMContext.h"
63 #include "llvm/IR/Metadata.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/InstVisitor.h"
66 #include "llvm/Pass.h"
67 #include "llvm/PassManager.h"
68 #include "llvm/Support/CFG.h"
69 #include "llvm/Support/CallSite.h"
70 #include "llvm/Support/CommandLine.h"
71 #include "llvm/Support/ConstantRange.h"
72 #include "llvm/Support/Debug.h"
73 #include "llvm/Support/ErrorHandling.h"
74 #include "llvm/Support/raw_ostream.h"
79 static cl::opt<bool> DisableDebugInfoVerifier("disable-debug-info-verifier",
82 namespace { // Anonymous namespace for class
83 struct PreVerifier : public FunctionPass {
84 static char ID; // Pass ID, replacement for typeid
86 PreVerifier() : FunctionPass(ID) {
87 initializePreVerifierPass(*PassRegistry::getPassRegistry());
90 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
94 // Check that the prerequisites for successful DominatorTree construction
96 bool runOnFunction(Function &F) {
99 for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
100 if (I->empty() || !I->back().isTerminator()) {
101 dbgs() << "Basic Block in function '" << F.getName()
102 << "' does not have terminator!\n";
103 I->printAsOperand(dbgs(), true);
110 report_fatal_error("Broken module, no Basic Block terminator!");
117 char PreVerifier::ID = 0;
118 INITIALIZE_PASS(PreVerifier, "preverify", "Preliminary module verification",
120 static char &PreVerifyID = PreVerifier::ID;
123 struct Verifier : public FunctionPass, public InstVisitor<Verifier> {
124 static char ID; // Pass ID, replacement for typeid
125 bool Broken; // Is this module found to be broken?
126 VerifierFailureAction action;
127 // What to do if verification fails.
128 Module *Mod; // Module we are verifying right now
129 LLVMContext *Context; // Context within which we are verifying
130 DominatorTree *DT; // Dominator Tree, caution can be null!
131 const DataLayout *DL;
133 std::string Messages;
134 raw_string_ostream MessagesStr;
136 /// InstInThisBlock - when verifying a basic block, keep track of all of the
137 /// instructions we have seen so far. This allows us to do efficient
138 /// dominance checks for the case when an instruction has an operand that is
139 /// an instruction in the same block.
140 SmallPtrSet<Instruction*, 16> InstsInThisBlock;
142 /// MDNodes - keep track of the metadata nodes that have been checked
144 SmallPtrSet<MDNode *, 32> MDNodes;
146 /// PersonalityFn - The personality function referenced by the
147 /// LandingPadInsts. All LandingPadInsts within the same function must use
148 /// the same personality function.
149 const Value *PersonalityFn;
151 /// Finder keeps track of all debug info MDNodes in a Module.
152 DebugInfoFinder Finder;
155 : FunctionPass(ID), Broken(false),
156 action(AbortProcessAction), Mod(0), Context(0), DT(0), DL(0),
157 MessagesStr(Messages), PersonalityFn(0) {
158 initializeVerifierPass(*PassRegistry::getPassRegistry());
160 explicit Verifier(VerifierFailureAction ctn)
161 : FunctionPass(ID), Broken(false), action(ctn), Mod(0),
162 Context(0), DT(0), DL(0), MessagesStr(Messages), PersonalityFn(0) {
163 initializeVerifierPass(*PassRegistry::getPassRegistry());
166 bool doInitialization(Module &M) {
168 Context = &M.getContext();
170 DL = getAnalysisIfAvailable<DataLayout>();
172 // We must abort before returning back to the pass manager, or else the
173 // pass manager may try to run other passes on the broken module.
174 return abortIfBroken();
177 bool runOnFunction(Function &F) {
178 // Get dominator information if we are being run by PassManager
179 DT = &getAnalysis<DominatorTree>();
182 if (!Context) Context = &F.getContext();
186 InstsInThisBlock.clear();
189 if (!DisableDebugInfoVerifier)
190 // Verify Debug Info.
193 // We must abort before returning back to the pass manager, or else the
194 // pass manager may try to run other passes on the broken module.
195 return abortIfBroken();
198 bool doFinalization(Module &M) {
199 // Scan through, checking all of the external function's linkage now...
200 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
201 visitGlobalValue(*I);
203 // Check to make sure function prototypes are okay.
204 if (I->isDeclaration()) visitFunction(*I);
207 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
209 visitGlobalVariable(*I);
211 for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
213 visitGlobalAlias(*I);
215 for (Module::named_metadata_iterator I = M.named_metadata_begin(),
216 E = M.named_metadata_end(); I != E; ++I)
217 visitNamedMDNode(*I);
220 visitModuleIdents(M);
222 if (!DisableDebugInfoVerifier) {
224 Finder.processModule(M);
225 // Verify Debug Info.
229 // If the module is broken, abort at this time.
230 return abortIfBroken();
233 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
234 AU.setPreservesAll();
235 AU.addRequiredID(PreVerifyID);
236 AU.addRequired<DominatorTree>();
239 /// abortIfBroken - If the module is broken and we are supposed to abort on
240 /// this condition, do so.
242 bool abortIfBroken() {
243 if (!Broken) return false;
244 MessagesStr << "Broken module found, ";
246 case AbortProcessAction:
247 MessagesStr << "compilation aborted!\n";
248 dbgs() << MessagesStr.str();
249 // Client should choose different reaction if abort is not desired
251 case PrintMessageAction:
252 MessagesStr << "verification continues.\n";
253 dbgs() << MessagesStr.str();
255 case ReturnStatusAction:
256 MessagesStr << "compilation terminated.\n";
259 llvm_unreachable("Invalid action");
263 // Verification methods...
264 void visitGlobalValue(GlobalValue &GV);
265 void visitGlobalVariable(GlobalVariable &GV);
266 void visitGlobalAlias(GlobalAlias &GA);
267 void visitNamedMDNode(NamedMDNode &NMD);
268 void visitMDNode(MDNode &MD, Function *F);
269 void visitModuleIdents(Module &M);
270 void visitModuleFlags(Module &M);
271 void visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*> &SeenIDs,
272 SmallVectorImpl<MDNode*> &Requirements);
273 void visitFunction(Function &F);
274 void visitBasicBlock(BasicBlock &BB);
275 using InstVisitor<Verifier>::visit;
277 void visit(Instruction &I);
279 void visitTruncInst(TruncInst &I);
280 void visitZExtInst(ZExtInst &I);
281 void visitSExtInst(SExtInst &I);
282 void visitFPTruncInst(FPTruncInst &I);
283 void visitFPExtInst(FPExtInst &I);
284 void visitFPToUIInst(FPToUIInst &I);
285 void visitFPToSIInst(FPToSIInst &I);
286 void visitUIToFPInst(UIToFPInst &I);
287 void visitSIToFPInst(SIToFPInst &I);
288 void visitIntToPtrInst(IntToPtrInst &I);
289 void visitPtrToIntInst(PtrToIntInst &I);
290 void visitBitCastInst(BitCastInst &I);
291 void visitAddrSpaceCastInst(AddrSpaceCastInst &I);
292 void visitPHINode(PHINode &PN);
293 void visitBinaryOperator(BinaryOperator &B);
294 void visitICmpInst(ICmpInst &IC);
295 void visitFCmpInst(FCmpInst &FC);
296 void visitExtractElementInst(ExtractElementInst &EI);
297 void visitInsertElementInst(InsertElementInst &EI);
298 void visitShuffleVectorInst(ShuffleVectorInst &EI);
299 void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
300 void visitCallInst(CallInst &CI);
301 void visitInvokeInst(InvokeInst &II);
302 void visitGetElementPtrInst(GetElementPtrInst &GEP);
303 void visitLoadInst(LoadInst &LI);
304 void visitStoreInst(StoreInst &SI);
305 void verifyDominatesUse(Instruction &I, unsigned i);
306 void visitInstruction(Instruction &I);
307 void visitTerminatorInst(TerminatorInst &I);
308 void visitBranchInst(BranchInst &BI);
309 void visitReturnInst(ReturnInst &RI);
310 void visitSwitchInst(SwitchInst &SI);
311 void visitIndirectBrInst(IndirectBrInst &BI);
312 void visitSelectInst(SelectInst &SI);
313 void visitUserOp1(Instruction &I);
314 void visitUserOp2(Instruction &I) { visitUserOp1(I); }
315 void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
316 void visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI);
317 void visitAtomicRMWInst(AtomicRMWInst &RMWI);
318 void visitFenceInst(FenceInst &FI);
319 void visitAllocaInst(AllocaInst &AI);
320 void visitExtractValueInst(ExtractValueInst &EVI);
321 void visitInsertValueInst(InsertValueInst &IVI);
322 void visitLandingPadInst(LandingPadInst &LPI);
324 void VerifyCallSite(CallSite CS);
325 bool PerformTypeCheck(Intrinsic::ID ID, Function *F, Type *Ty,
326 int VT, unsigned ArgNo, std::string &Suffix);
327 bool VerifyIntrinsicType(Type *Ty,
328 ArrayRef<Intrinsic::IITDescriptor> &Infos,
329 SmallVectorImpl<Type*> &ArgTys);
330 bool VerifyIntrinsicIsVarArg(bool isVarArg,
331 ArrayRef<Intrinsic::IITDescriptor> &Infos);
332 bool VerifyAttributeCount(AttributeSet Attrs, unsigned Params);
333 void VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
334 bool isFunction, const Value *V);
335 void VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
336 bool isReturnValue, const Value *V);
337 void VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
340 void VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy);
341 void VerifyConstantExprBitcastType(const ConstantExpr *CE);
343 void verifyDebugInfo();
345 void WriteValue(const Value *V) {
347 if (isa<Instruction>(V)) {
348 MessagesStr << *V << '\n';
350 V->printAsOperand(MessagesStr, true, Mod);
355 void WriteType(Type *T) {
357 MessagesStr << ' ' << *T;
361 // CheckFailed - A check failed, so print out the condition and the message
362 // that failed. This provides a nice place to put a breakpoint if you want
363 // to see why something is not correct.
364 void CheckFailed(const Twine &Message,
365 const Value *V1 = 0, const Value *V2 = 0,
366 const Value *V3 = 0, const Value *V4 = 0) {
367 MessagesStr << Message.str() << "\n";
375 void CheckFailed(const Twine &Message, const Value *V1,
376 Type *T2, const Value *V3 = 0) {
377 MessagesStr << Message.str() << "\n";
384 void CheckFailed(const Twine &Message, Type *T1,
385 Type *T2 = 0, Type *T3 = 0) {
386 MessagesStr << Message.str() << "\n";
393 } // End anonymous namespace
395 char Verifier::ID = 0;
396 INITIALIZE_PASS_BEGIN(Verifier, "verify", "Module Verifier", false, false)
397 INITIALIZE_PASS_DEPENDENCY(PreVerifier)
398 INITIALIZE_PASS_DEPENDENCY(DominatorTree)
399 INITIALIZE_PASS_END(Verifier, "verify", "Module Verifier", false, false)
401 // Assert - We know that cond should be true, if not print an error message.
402 #define Assert(C, M) \
403 do { if (!(C)) { CheckFailed(M); return; } } while (0)
404 #define Assert1(C, M, V1) \
405 do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
406 #define Assert2(C, M, V1, V2) \
407 do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
408 #define Assert3(C, M, V1, V2, V3) \
409 do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
410 #define Assert4(C, M, V1, V2, V3, V4) \
411 do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
413 void Verifier::visit(Instruction &I) {
414 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
415 Assert1(I.getOperand(i) != 0, "Operand is null", &I);
416 InstVisitor<Verifier>::visit(I);
420 void Verifier::visitGlobalValue(GlobalValue &GV) {
421 Assert1(!GV.isDeclaration() ||
422 GV.isMaterializable() ||
423 GV.hasExternalLinkage() ||
424 GV.hasDLLImportLinkage() ||
425 GV.hasExternalWeakLinkage() ||
426 (isa<GlobalAlias>(GV) &&
427 (GV.hasLocalLinkage() || GV.hasWeakLinkage())),
428 "Global is external, but doesn't have external or dllimport or weak linkage!",
431 Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
432 "Global is marked as dllimport, but not external", &GV);
434 Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
435 "Only global variables can have appending linkage!", &GV);
437 if (GV.hasAppendingLinkage()) {
438 GlobalVariable *GVar = dyn_cast<GlobalVariable>(&GV);
439 Assert1(GVar && GVar->getType()->getElementType()->isArrayTy(),
440 "Only global arrays can have appending linkage!", GVar);
444 void Verifier::visitGlobalVariable(GlobalVariable &GV) {
445 if (GV.hasInitializer()) {
446 Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
447 "Global variable initializer type does not match global "
448 "variable type!", &GV);
450 // If the global has common linkage, it must have a zero initializer and
451 // cannot be constant.
452 if (GV.hasCommonLinkage()) {
453 Assert1(GV.getInitializer()->isNullValue(),
454 "'common' global must have a zero initializer!", &GV);
455 Assert1(!GV.isConstant(), "'common' global may not be marked constant!",
459 Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
460 GV.hasExternalWeakLinkage(),
461 "invalid linkage type for global declaration", &GV);
464 if (GV.hasName() && (GV.getName() == "llvm.global_ctors" ||
465 GV.getName() == "llvm.global_dtors")) {
466 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
467 "invalid linkage for intrinsic global variable", &GV);
468 // Don't worry about emitting an error for it not being an array,
469 // visitGlobalValue will complain on appending non-array.
470 if (ArrayType *ATy = dyn_cast<ArrayType>(GV.getType())) {
471 StructType *STy = dyn_cast<StructType>(ATy->getElementType());
472 PointerType *FuncPtrTy =
473 FunctionType::get(Type::getVoidTy(*Context), false)->getPointerTo();
474 Assert1(STy && STy->getNumElements() == 2 &&
475 STy->getTypeAtIndex(0u)->isIntegerTy(32) &&
476 STy->getTypeAtIndex(1) == FuncPtrTy,
477 "wrong type for intrinsic global variable", &GV);
481 if (GV.hasName() && (GV.getName() == "llvm.used" ||
482 GV.getName() == "llvm.compiler.used")) {
483 Assert1(!GV.hasInitializer() || GV.hasAppendingLinkage(),
484 "invalid linkage for intrinsic global variable", &GV);
485 Type *GVType = GV.getType()->getElementType();
486 if (ArrayType *ATy = dyn_cast<ArrayType>(GVType)) {
487 PointerType *PTy = dyn_cast<PointerType>(ATy->getElementType());
488 Assert1(PTy, "wrong type for intrinsic global variable", &GV);
489 if (GV.hasInitializer()) {
490 Constant *Init = GV.getInitializer();
491 ConstantArray *InitArray = dyn_cast<ConstantArray>(Init);
492 Assert1(InitArray, "wrong initalizer for intrinsic global variable",
494 for (unsigned i = 0, e = InitArray->getNumOperands(); i != e; ++i) {
495 Value *V = Init->getOperand(i)->stripPointerCastsNoFollowAliases();
497 isa<GlobalVariable>(V) || isa<Function>(V) || isa<GlobalAlias>(V),
498 "invalid llvm.used member", V);
499 Assert1(V->hasName(), "members of llvm.used must be named", V);
505 if (!GV.hasInitializer()) {
506 visitGlobalValue(GV);
510 // Walk any aggregate initializers looking for bitcasts between address spaces
511 SmallPtrSet<const Value *, 4> Visited;
512 SmallVector<const Value *, 4> WorkStack;
513 WorkStack.push_back(cast<Value>(GV.getInitializer()));
515 while (!WorkStack.empty()) {
516 const Value *V = WorkStack.pop_back_val();
517 if (!Visited.insert(V))
520 if (const User *U = dyn_cast<User>(V)) {
521 for (unsigned I = 0, N = U->getNumOperands(); I != N; ++I)
522 WorkStack.push_back(U->getOperand(I));
525 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
526 VerifyConstantExprBitcastType(CE);
532 visitGlobalValue(GV);
535 void Verifier::visitGlobalAlias(GlobalAlias &GA) {
536 Assert1(!GA.getName().empty(),
537 "Alias name cannot be empty!", &GA);
538 Assert1(GlobalAlias::isValidLinkage(GA.getLinkage()),
539 "Alias should have external or external weak linkage!", &GA);
540 Assert1(GA.getAliasee(),
541 "Aliasee cannot be NULL!", &GA);
542 Assert1(GA.getType() == GA.getAliasee()->getType(),
543 "Alias and aliasee types should match!", &GA);
544 Assert1(!GA.hasUnnamedAddr(), "Alias cannot have unnamed_addr!", &GA);
546 Constant *Aliasee = GA.getAliasee();
548 if (!isa<GlobalValue>(Aliasee)) {
549 ConstantExpr *CE = dyn_cast<ConstantExpr>(Aliasee);
551 (CE->getOpcode() == Instruction::BitCast ||
552 CE->getOpcode() == Instruction::AddrSpaceCast ||
553 CE->getOpcode() == Instruction::GetElementPtr) &&
554 isa<GlobalValue>(CE->getOperand(0)),
555 "Aliasee should be either GlobalValue, bitcast or "
556 "addrspacecast of GlobalValue",
559 if (CE->getOpcode() == Instruction::BitCast) {
560 unsigned SrcAS = CE->getOperand(0)->getType()->getPointerAddressSpace();
561 unsigned DstAS = CE->getType()->getPointerAddressSpace();
563 Assert1(SrcAS == DstAS,
564 "Alias bitcasts cannot be between different address spaces",
569 const GlobalValue* Resolved = GA.resolveAliasedGlobal(/*stopOnWeak*/ false);
571 "Aliasing chain should end with function or global variable", &GA);
573 visitGlobalValue(GA);
576 void Verifier::visitNamedMDNode(NamedMDNode &NMD) {
577 for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i) {
578 MDNode *MD = NMD.getOperand(i);
582 Assert1(!MD->isFunctionLocal(),
583 "Named metadata operand cannot be function local!", MD);
588 void Verifier::visitMDNode(MDNode &MD, Function *F) {
589 // Only visit each node once. Metadata can be mutually recursive, so this
590 // avoids infinite recursion here, as well as being an optimization.
591 if (!MDNodes.insert(&MD))
594 for (unsigned i = 0, e = MD.getNumOperands(); i != e; ++i) {
595 Value *Op = MD.getOperand(i);
598 if (isa<Constant>(Op) || isa<MDString>(Op))
600 if (MDNode *N = dyn_cast<MDNode>(Op)) {
601 Assert2(MD.isFunctionLocal() || !N->isFunctionLocal(),
602 "Global metadata operand cannot be function local!", &MD, N);
606 Assert2(MD.isFunctionLocal(), "Invalid operand for global metadata!", &MD, Op);
608 // If this was an instruction, bb, or argument, verify that it is in the
609 // function that we expect.
610 Function *ActualF = 0;
611 if (Instruction *I = dyn_cast<Instruction>(Op))
612 ActualF = I->getParent()->getParent();
613 else if (BasicBlock *BB = dyn_cast<BasicBlock>(Op))
614 ActualF = BB->getParent();
615 else if (Argument *A = dyn_cast<Argument>(Op))
616 ActualF = A->getParent();
617 assert(ActualF && "Unimplemented function local metadata case!");
619 Assert2(ActualF == F, "function-local metadata used in wrong function",
624 void Verifier::visitModuleIdents(Module &M) {
625 const NamedMDNode *Idents = M.getNamedMetadata("llvm.ident");
629 // llvm.ident takes a list of metadata entry. Each entry has only one string.
630 // Scan each llvm.ident entry and make sure that this requirement is met.
631 for (unsigned i = 0, e = Idents->getNumOperands(); i != e; ++i) {
632 const MDNode *N = Idents->getOperand(i);
633 Assert1(N->getNumOperands() == 1,
634 "incorrect number of operands in llvm.ident metadata", N);
635 Assert1(isa<MDString>(N->getOperand(0)),
636 ("invalid value for llvm.ident metadata entry operand"
637 "(the operand should be a string)"),
642 void Verifier::visitModuleFlags(Module &M) {
643 const NamedMDNode *Flags = M.getModuleFlagsMetadata();
646 // Scan each flag, and track the flags and requirements.
647 DenseMap<MDString*, MDNode*> SeenIDs;
648 SmallVector<MDNode*, 16> Requirements;
649 for (unsigned I = 0, E = Flags->getNumOperands(); I != E; ++I) {
650 visitModuleFlag(Flags->getOperand(I), SeenIDs, Requirements);
653 // Validate that the requirements in the module are valid.
654 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
655 MDNode *Requirement = Requirements[I];
656 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
657 Value *ReqValue = Requirement->getOperand(1);
659 MDNode *Op = SeenIDs.lookup(Flag);
661 CheckFailed("invalid requirement on flag, flag is not present in module",
666 if (Op->getOperand(2) != ReqValue) {
667 CheckFailed(("invalid requirement on flag, "
668 "flag does not have the required value"),
675 void Verifier::visitModuleFlag(MDNode *Op, DenseMap<MDString*, MDNode*>&SeenIDs,
676 SmallVectorImpl<MDNode*> &Requirements) {
677 // Each module flag should have three arguments, the merge behavior (a
678 // constant int), the flag ID (an MDString), and the value.
679 Assert1(Op->getNumOperands() == 3,
680 "incorrect number of operands in module flag", Op);
681 ConstantInt *Behavior = dyn_cast<ConstantInt>(Op->getOperand(0));
682 MDString *ID = dyn_cast<MDString>(Op->getOperand(1));
684 "invalid behavior operand in module flag (expected constant integer)",
686 unsigned BehaviorValue = Behavior->getZExtValue();
688 "invalid ID operand in module flag (expected metadata string)",
691 // Sanity check the values for behaviors with additional requirements.
692 switch (BehaviorValue) {
695 "invalid behavior operand in module flag (unexpected constant)",
700 case Module::Warning:
701 case Module::Override:
702 // These behavior types accept any value.
705 case Module::Require: {
706 // The value should itself be an MDNode with two operands, a flag ID (an
707 // MDString), and a value.
708 MDNode *Value = dyn_cast<MDNode>(Op->getOperand(2));
709 Assert1(Value && Value->getNumOperands() == 2,
710 "invalid value for 'require' module flag (expected metadata pair)",
712 Assert1(isa<MDString>(Value->getOperand(0)),
713 ("invalid value for 'require' module flag "
714 "(first value operand should be a string)"),
715 Value->getOperand(0));
717 // Append it to the list of requirements, to check once all module flags are
719 Requirements.push_back(Value);
724 case Module::AppendUnique: {
725 // These behavior types require the operand be an MDNode.
726 Assert1(isa<MDNode>(Op->getOperand(2)),
727 "invalid value for 'append'-type module flag "
728 "(expected a metadata node)", Op->getOperand(2));
733 // Unless this is a "requires" flag, check the ID is unique.
734 if (BehaviorValue != Module::Require) {
735 bool Inserted = SeenIDs.insert(std::make_pair(ID, Op)).second;
737 "module flag identifiers must be unique (or of 'require' type)",
742 void Verifier::VerifyAttributeTypes(AttributeSet Attrs, unsigned Idx,
743 bool isFunction, const Value *V) {
745 for (unsigned I = 0, E = Attrs.getNumSlots(); I != E; ++I)
746 if (Attrs.getSlotIndex(I) == Idx) {
751 assert(Slot != ~0U && "Attribute set inconsistency!");
753 for (AttributeSet::iterator I = Attrs.begin(Slot), E = Attrs.end(Slot);
755 if (I->isStringAttribute())
758 if (I->getKindAsEnum() == Attribute::NoReturn ||
759 I->getKindAsEnum() == Attribute::NoUnwind ||
760 I->getKindAsEnum() == Attribute::NoInline ||
761 I->getKindAsEnum() == Attribute::AlwaysInline ||
762 I->getKindAsEnum() == Attribute::OptimizeForSize ||
763 I->getKindAsEnum() == Attribute::StackProtect ||
764 I->getKindAsEnum() == Attribute::StackProtectReq ||
765 I->getKindAsEnum() == Attribute::StackProtectStrong ||
766 I->getKindAsEnum() == Attribute::NoRedZone ||
767 I->getKindAsEnum() == Attribute::NoImplicitFloat ||
768 I->getKindAsEnum() == Attribute::Naked ||
769 I->getKindAsEnum() == Attribute::InlineHint ||
770 I->getKindAsEnum() == Attribute::StackAlignment ||
771 I->getKindAsEnum() == Attribute::UWTable ||
772 I->getKindAsEnum() == Attribute::NonLazyBind ||
773 I->getKindAsEnum() == Attribute::ReturnsTwice ||
774 I->getKindAsEnum() == Attribute::SanitizeAddress ||
775 I->getKindAsEnum() == Attribute::SanitizeThread ||
776 I->getKindAsEnum() == Attribute::SanitizeMemory ||
777 I->getKindAsEnum() == Attribute::MinSize ||
778 I->getKindAsEnum() == Attribute::NoDuplicate ||
779 I->getKindAsEnum() == Attribute::Builtin ||
780 I->getKindAsEnum() == Attribute::NoBuiltin ||
781 I->getKindAsEnum() == Attribute::Cold ||
782 I->getKindAsEnum() == Attribute::OptimizeNone) {
784 CheckFailed("Attribute '" + I->getAsString() +
785 "' only applies to functions!", V);
788 } else if (I->getKindAsEnum() == Attribute::ReadOnly ||
789 I->getKindAsEnum() == Attribute::ReadNone) {
791 CheckFailed("Attribute '" + I->getAsString() +
792 "' does not apply to function returns");
795 } else if (isFunction) {
796 CheckFailed("Attribute '" + I->getAsString() +
797 "' does not apply to functions!", V);
803 // VerifyParameterAttrs - Check the given attributes for an argument or return
804 // value of the specified type. The value V is printed in error messages.
805 void Verifier::VerifyParameterAttrs(AttributeSet Attrs, unsigned Idx, Type *Ty,
806 bool isReturnValue, const Value *V) {
807 if (!Attrs.hasAttributes(Idx))
810 VerifyAttributeTypes(Attrs, Idx, false, V);
813 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
814 !Attrs.hasAttribute(Idx, Attribute::Nest) &&
815 !Attrs.hasAttribute(Idx, Attribute::StructRet) &&
816 !Attrs.hasAttribute(Idx, Attribute::NoCapture) &&
817 !Attrs.hasAttribute(Idx, Attribute::Returned) &&
818 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
819 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', and "
820 "'returned' do not apply to return values!", V);
822 // Check for mutually incompatible attributes. Only inreg is compatible with
824 unsigned AttrCount = 0;
825 AttrCount += Attrs.hasAttribute(Idx, Attribute::ByVal);
826 AttrCount += Attrs.hasAttribute(Idx, Attribute::InAlloca);
827 AttrCount += Attrs.hasAttribute(Idx, Attribute::StructRet) ||
828 Attrs.hasAttribute(Idx, Attribute::InReg);
829 AttrCount += Attrs.hasAttribute(Idx, Attribute::Nest);
830 Assert1(AttrCount <= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
831 "and 'sret' are incompatible!", V);
833 Assert1(!(Attrs.hasAttribute(Idx, Attribute::InAlloca) &&
834 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
835 "'inalloca and readonly' are incompatible!", V);
837 Assert1(!(Attrs.hasAttribute(Idx, Attribute::StructRet) &&
838 Attrs.hasAttribute(Idx, Attribute::Returned)), "Attributes "
839 "'sret and returned' are incompatible!", V);
841 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ZExt) &&
842 Attrs.hasAttribute(Idx, Attribute::SExt)), "Attributes "
843 "'zeroext and signext' are incompatible!", V);
845 Assert1(!(Attrs.hasAttribute(Idx, Attribute::ReadNone) &&
846 Attrs.hasAttribute(Idx, Attribute::ReadOnly)), "Attributes "
847 "'readnone and readonly' are incompatible!", V);
849 Assert1(!(Attrs.hasAttribute(Idx, Attribute::NoInline) &&
850 Attrs.hasAttribute(Idx, Attribute::AlwaysInline)), "Attributes "
851 "'noinline and alwaysinline' are incompatible!", V);
853 Assert1(!AttrBuilder(Attrs, Idx).
854 hasAttributes(AttributeFuncs::typeIncompatible(Ty, Idx), Idx),
855 "Wrong types for attribute: " +
856 AttributeFuncs::typeIncompatible(Ty, Idx).getAsString(Idx), V);
858 if (PointerType *PTy = dyn_cast<PointerType>(Ty)) {
859 if (!PTy->getElementType()->isSized()) {
860 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal) &&
861 !Attrs.hasAttribute(Idx, Attribute::InAlloca),
862 "Attributes 'byval' and 'inalloca' do not support unsized types!",
866 Assert1(!Attrs.hasAttribute(Idx, Attribute::ByVal),
867 "Attribute 'byval' only applies to parameters with pointer type!",
872 // VerifyFunctionAttrs - Check parameter attributes against a function type.
873 // The value V is printed in error messages.
874 void Verifier::VerifyFunctionAttrs(FunctionType *FT, AttributeSet Attrs,
879 bool SawNest = false;
880 bool SawReturned = false;
882 for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
883 unsigned Idx = Attrs.getSlotIndex(i);
887 Ty = FT->getReturnType();
888 else if (Idx-1 < FT->getNumParams())
889 Ty = FT->getParamType(Idx-1);
891 break; // VarArgs attributes, verified elsewhere.
893 VerifyParameterAttrs(Attrs, Idx, Ty, Idx == 0, V);
898 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
899 Assert1(!SawNest, "More than one parameter has attribute nest!", V);
903 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
904 Assert1(!SawReturned, "More than one parameter has attribute returned!",
906 Assert1(Ty->canLosslesslyBitCastTo(FT->getReturnType()), "Incompatible "
907 "argument and return types for 'returned' attribute", V);
911 if (Attrs.hasAttribute(Idx, Attribute::StructRet))
912 Assert1(Idx == 1, "Attribute sret is not on first parameter!", V);
915 if (!Attrs.hasAttributes(AttributeSet::FunctionIndex))
918 VerifyAttributeTypes(Attrs, AttributeSet::FunctionIndex, true, V);
920 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
921 Attribute::ReadNone) &&
922 Attrs.hasAttribute(AttributeSet::FunctionIndex,
923 Attribute::ReadOnly)),
924 "Attributes 'readnone and readonly' are incompatible!", V);
926 Assert1(!(Attrs.hasAttribute(AttributeSet::FunctionIndex,
927 Attribute::NoInline) &&
928 Attrs.hasAttribute(AttributeSet::FunctionIndex,
929 Attribute::AlwaysInline)),
930 "Attributes 'noinline and alwaysinline' are incompatible!", V);
932 if (Attrs.hasAttribute(AttributeSet::FunctionIndex,
933 Attribute::OptimizeNone)) {
934 Assert1(Attrs.hasAttribute(AttributeSet::FunctionIndex,
935 Attribute::NoInline),
936 "Attribute 'optnone' requires 'noinline'!", V);
938 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
939 Attribute::OptimizeForSize),
940 "Attributes 'optsize and optnone' are incompatible!", V);
942 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
944 "Attributes 'minsize and optnone' are incompatible!", V);
948 void Verifier::VerifyBitcastType(const Value *V, Type *DestTy, Type *SrcTy) {
949 // Get the size of the types in bits, we'll need this later
950 unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
951 unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
953 // BitCast implies a no-op cast of type only. No bits change.
954 // However, you can't cast pointers to anything but pointers.
955 Assert1(SrcTy->isPointerTy() == DestTy->isPointerTy(),
956 "Bitcast requires both operands to be pointer or neither", V);
957 Assert1(SrcBitSize == DestBitSize,
958 "Bitcast requires types of same width", V);
960 // Disallow aggregates.
961 Assert1(!SrcTy->isAggregateType(),
962 "Bitcast operand must not be aggregate", V);
963 Assert1(!DestTy->isAggregateType(),
964 "Bitcast type must not be aggregate", V);
966 // Without datalayout, assume all address spaces are the same size.
967 // Don't check if both types are not pointers.
968 // Skip casts between scalars and vectors.
970 !SrcTy->isPtrOrPtrVectorTy() ||
971 !DestTy->isPtrOrPtrVectorTy() ||
972 SrcTy->isVectorTy() != DestTy->isVectorTy()) {
976 unsigned SrcAS = SrcTy->getPointerAddressSpace();
977 unsigned DstAS = DestTy->getPointerAddressSpace();
979 Assert1(SrcAS == DstAS,
980 "Bitcasts between pointers of different address spaces is not legal."
981 "Use AddrSpaceCast instead.", V);
984 void Verifier::VerifyConstantExprBitcastType(const ConstantExpr *CE) {
985 if (CE->getOpcode() == Instruction::BitCast) {
986 Type *SrcTy = CE->getOperand(0)->getType();
987 Type *DstTy = CE->getType();
988 VerifyBitcastType(CE, DstTy, SrcTy);
992 bool Verifier::VerifyAttributeCount(AttributeSet Attrs, unsigned Params) {
993 if (Attrs.getNumSlots() == 0)
996 unsigned LastSlot = Attrs.getNumSlots() - 1;
997 unsigned LastIndex = Attrs.getSlotIndex(LastSlot);
998 if (LastIndex <= Params
999 || (LastIndex == AttributeSet::FunctionIndex
1000 && (LastSlot == 0 || Attrs.getSlotIndex(LastSlot - 1) <= Params)))
1006 // visitFunction - Verify that a function is ok.
1008 void Verifier::visitFunction(Function &F) {
1009 // Check function arguments.
1010 FunctionType *FT = F.getFunctionType();
1011 unsigned NumArgs = F.arg_size();
1013 Assert1(Context == &F.getContext(),
1014 "Function context does not match Module context!", &F);
1016 Assert1(!F.hasCommonLinkage(), "Functions may not have common linkage", &F);
1017 Assert2(FT->getNumParams() == NumArgs,
1018 "# formal arguments must match # of arguments for function type!",
1020 Assert1(F.getReturnType()->isFirstClassType() ||
1021 F.getReturnType()->isVoidTy() ||
1022 F.getReturnType()->isStructTy(),
1023 "Functions cannot return aggregate values!", &F);
1025 Assert1(!F.hasStructRetAttr() || F.getReturnType()->isVoidTy(),
1026 "Invalid struct return type!", &F);
1028 AttributeSet Attrs = F.getAttributes();
1030 Assert1(VerifyAttributeCount(Attrs, FT->getNumParams()),
1031 "Attribute after last parameter!", &F);
1033 // Check function attributes.
1034 VerifyFunctionAttrs(FT, Attrs, &F);
1036 // On function declarations/definitions, we do not support the builtin
1037 // attribute. We do not check this in VerifyFunctionAttrs since that is
1038 // checking for Attributes that can/can not ever be on functions.
1039 Assert1(!Attrs.hasAttribute(AttributeSet::FunctionIndex,
1040 Attribute::Builtin),
1041 "Attribute 'builtin' can only be applied to a callsite.", &F);
1043 // Check that this function meets the restrictions on this calling convention.
1044 switch (F.getCallingConv()) {
1047 case CallingConv::C:
1049 case CallingConv::Fast:
1050 case CallingConv::Cold:
1051 case CallingConv::X86_FastCall:
1052 case CallingConv::X86_ThisCall:
1053 case CallingConv::Intel_OCL_BI:
1054 case CallingConv::PTX_Kernel:
1055 case CallingConv::PTX_Device:
1056 Assert1(!F.isVarArg(),
1057 "Varargs functions must have C calling conventions!", &F);
1061 bool isLLVMdotName = F.getName().size() >= 5 &&
1062 F.getName().substr(0, 5) == "llvm.";
1064 // Check that the argument values match the function type for this function...
1066 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
1068 Assert2(I->getType() == FT->getParamType(i),
1069 "Argument value does not match function argument type!",
1070 I, FT->getParamType(i));
1071 Assert1(I->getType()->isFirstClassType(),
1072 "Function arguments must have first-class types!", I);
1074 Assert2(!I->getType()->isMetadataTy(),
1075 "Function takes metadata but isn't an intrinsic", I, &F);
1078 if (F.isMaterializable()) {
1079 // Function has a body somewhere we can't see.
1080 } else if (F.isDeclaration()) {
1081 Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
1082 F.hasExternalWeakLinkage(),
1083 "invalid linkage type for function declaration", &F);
1085 // Verify that this function (which has a body) is not named "llvm.*". It
1086 // is not legal to define intrinsics.
1087 Assert1(!isLLVMdotName, "llvm intrinsics cannot be defined!", &F);
1089 // Check the entry node
1090 BasicBlock *Entry = &F.getEntryBlock();
1091 Assert1(pred_begin(Entry) == pred_end(Entry),
1092 "Entry block to function must not have predecessors!", Entry);
1094 // The address of the entry block cannot be taken, unless it is dead.
1095 if (Entry->hasAddressTaken()) {
1096 Assert1(!BlockAddress::get(Entry)->isConstantUsed(),
1097 "blockaddress may not be used with the entry block!", Entry);
1101 // If this function is actually an intrinsic, verify that it is only used in
1102 // direct call/invokes, never having its "address taken".
1103 if (F.getIntrinsicID()) {
1105 if (F.hasAddressTaken(&U))
1106 Assert1(0, "Invalid user of intrinsic instruction!", U);
1110 // verifyBasicBlock - Verify that a basic block is well formed...
1112 void Verifier::visitBasicBlock(BasicBlock &BB) {
1113 InstsInThisBlock.clear();
1115 // Ensure that basic blocks have terminators!
1116 Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
1118 // Check constraints that this basic block imposes on all of the PHI nodes in
1120 if (isa<PHINode>(BB.front())) {
1121 SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
1122 SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
1123 std::sort(Preds.begin(), Preds.end());
1125 for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
1126 // Ensure that PHI nodes have at least one entry!
1127 Assert1(PN->getNumIncomingValues() != 0,
1128 "PHI nodes must have at least one entry. If the block is dead, "
1129 "the PHI should be removed!", PN);
1130 Assert1(PN->getNumIncomingValues() == Preds.size(),
1131 "PHINode should have one entry for each predecessor of its "
1132 "parent basic block!", PN);
1134 // Get and sort all incoming values in the PHI node...
1136 Values.reserve(PN->getNumIncomingValues());
1137 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1138 Values.push_back(std::make_pair(PN->getIncomingBlock(i),
1139 PN->getIncomingValue(i)));
1140 std::sort(Values.begin(), Values.end());
1142 for (unsigned i = 0, e = Values.size(); i != e; ++i) {
1143 // Check to make sure that if there is more than one entry for a
1144 // particular basic block in this PHI node, that the incoming values are
1147 Assert4(i == 0 || Values[i].first != Values[i-1].first ||
1148 Values[i].second == Values[i-1].second,
1149 "PHI node has multiple entries for the same basic block with "
1150 "different incoming values!", PN, Values[i].first,
1151 Values[i].second, Values[i-1].second);
1153 // Check to make sure that the predecessors and PHI node entries are
1155 Assert3(Values[i].first == Preds[i],
1156 "PHI node entries do not match predecessors!", PN,
1157 Values[i].first, Preds[i]);
1163 void Verifier::visitTerminatorInst(TerminatorInst &I) {
1164 // Ensure that terminators only exist at the end of the basic block.
1165 Assert1(&I == I.getParent()->getTerminator(),
1166 "Terminator found in the middle of a basic block!", I.getParent());
1167 visitInstruction(I);
1170 void Verifier::visitBranchInst(BranchInst &BI) {
1171 if (BI.isConditional()) {
1172 Assert2(BI.getCondition()->getType()->isIntegerTy(1),
1173 "Branch condition is not 'i1' type!", &BI, BI.getCondition());
1175 visitTerminatorInst(BI);
1178 void Verifier::visitReturnInst(ReturnInst &RI) {
1179 Function *F = RI.getParent()->getParent();
1180 unsigned N = RI.getNumOperands();
1181 if (F->getReturnType()->isVoidTy())
1183 "Found return instr that returns non-void in Function of void "
1184 "return type!", &RI, F->getReturnType());
1186 Assert2(N == 1 && F->getReturnType() == RI.getOperand(0)->getType(),
1187 "Function return type does not match operand "
1188 "type of return inst!", &RI, F->getReturnType());
1190 // Check to make sure that the return value has necessary properties for
1192 visitTerminatorInst(RI);
1195 void Verifier::visitSwitchInst(SwitchInst &SI) {
1196 // Check to make sure that all of the constants in the switch instruction
1197 // have the same type as the switched-on value.
1198 Type *SwitchTy = SI.getCondition()->getType();
1199 SmallPtrSet<ConstantInt*, 32> Constants;
1200 for (SwitchInst::CaseIt i = SI.case_begin(), e = SI.case_end(); i != e; ++i) {
1201 Assert1(i.getCaseValue()->getType() == SwitchTy,
1202 "Switch constants must all be same type as switch value!", &SI);
1203 Assert2(Constants.insert(i.getCaseValue()),
1204 "Duplicate integer as switch case", &SI, i.getCaseValue());
1207 visitTerminatorInst(SI);
1210 void Verifier::visitIndirectBrInst(IndirectBrInst &BI) {
1211 Assert1(BI.getAddress()->getType()->isPointerTy(),
1212 "Indirectbr operand must have pointer type!", &BI);
1213 for (unsigned i = 0, e = BI.getNumDestinations(); i != e; ++i)
1214 Assert1(BI.getDestination(i)->getType()->isLabelTy(),
1215 "Indirectbr destinations must all have pointer type!", &BI);
1217 visitTerminatorInst(BI);
1220 void Verifier::visitSelectInst(SelectInst &SI) {
1221 Assert1(!SelectInst::areInvalidOperands(SI.getOperand(0), SI.getOperand(1),
1223 "Invalid operands for select instruction!", &SI);
1225 Assert1(SI.getTrueValue()->getType() == SI.getType(),
1226 "Select values must have same type as select instruction!", &SI);
1227 visitInstruction(SI);
1230 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
1231 /// a pass, if any exist, it's an error.
1233 void Verifier::visitUserOp1(Instruction &I) {
1234 Assert1(0, "User-defined operators should not live outside of a pass!", &I);
1237 void Verifier::visitTruncInst(TruncInst &I) {
1238 // Get the source and destination types
1239 Type *SrcTy = I.getOperand(0)->getType();
1240 Type *DestTy = I.getType();
1242 // Get the size of the types in bits, we'll need this later
1243 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1244 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1246 Assert1(SrcTy->isIntOrIntVectorTy(), "Trunc only operates on integer", &I);
1247 Assert1(DestTy->isIntOrIntVectorTy(), "Trunc only produces integer", &I);
1248 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1249 "trunc source and destination must both be a vector or neither", &I);
1250 Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
1252 visitInstruction(I);
1255 void Verifier::visitZExtInst(ZExtInst &I) {
1256 // Get the source and destination types
1257 Type *SrcTy = I.getOperand(0)->getType();
1258 Type *DestTy = I.getType();
1260 // Get the size of the types in bits, we'll need this later
1261 Assert1(SrcTy->isIntOrIntVectorTy(), "ZExt only operates on integer", &I);
1262 Assert1(DestTy->isIntOrIntVectorTy(), "ZExt only produces an integer", &I);
1263 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1264 "zext source and destination must both be a vector or neither", &I);
1265 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1266 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1268 Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
1270 visitInstruction(I);
1273 void Verifier::visitSExtInst(SExtInst &I) {
1274 // Get the source and destination types
1275 Type *SrcTy = I.getOperand(0)->getType();
1276 Type *DestTy = I.getType();
1278 // Get the size of the types in bits, we'll need this later
1279 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1280 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1282 Assert1(SrcTy->isIntOrIntVectorTy(), "SExt only operates on integer", &I);
1283 Assert1(DestTy->isIntOrIntVectorTy(), "SExt only produces an integer", &I);
1284 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1285 "sext source and destination must both be a vector or neither", &I);
1286 Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
1288 visitInstruction(I);
1291 void Verifier::visitFPTruncInst(FPTruncInst &I) {
1292 // Get the source and destination types
1293 Type *SrcTy = I.getOperand(0)->getType();
1294 Type *DestTy = I.getType();
1295 // Get the size of the types in bits, we'll need this later
1296 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1297 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1299 Assert1(SrcTy->isFPOrFPVectorTy(),"FPTrunc only operates on FP", &I);
1300 Assert1(DestTy->isFPOrFPVectorTy(),"FPTrunc only produces an FP", &I);
1301 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1302 "fptrunc source and destination must both be a vector or neither",&I);
1303 Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
1305 visitInstruction(I);
1308 void Verifier::visitFPExtInst(FPExtInst &I) {
1309 // Get the source and destination types
1310 Type *SrcTy = I.getOperand(0)->getType();
1311 Type *DestTy = I.getType();
1313 // Get the size of the types in bits, we'll need this later
1314 unsigned SrcBitSize = SrcTy->getScalarSizeInBits();
1315 unsigned DestBitSize = DestTy->getScalarSizeInBits();
1317 Assert1(SrcTy->isFPOrFPVectorTy(),"FPExt only operates on FP", &I);
1318 Assert1(DestTy->isFPOrFPVectorTy(),"FPExt only produces an FP", &I);
1319 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1320 "fpext source and destination must both be a vector or neither", &I);
1321 Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
1323 visitInstruction(I);
1326 void Verifier::visitUIToFPInst(UIToFPInst &I) {
1327 // Get the source and destination types
1328 Type *SrcTy = I.getOperand(0)->getType();
1329 Type *DestTy = I.getType();
1331 bool SrcVec = SrcTy->isVectorTy();
1332 bool DstVec = DestTy->isVectorTy();
1334 Assert1(SrcVec == DstVec,
1335 "UIToFP source and dest must both be vector or scalar", &I);
1336 Assert1(SrcTy->isIntOrIntVectorTy(),
1337 "UIToFP source must be integer or integer vector", &I);
1338 Assert1(DestTy->isFPOrFPVectorTy(),
1339 "UIToFP result must be FP or FP vector", &I);
1341 if (SrcVec && DstVec)
1342 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1343 cast<VectorType>(DestTy)->getNumElements(),
1344 "UIToFP source and dest vector length mismatch", &I);
1346 visitInstruction(I);
1349 void Verifier::visitSIToFPInst(SIToFPInst &I) {
1350 // Get the source and destination types
1351 Type *SrcTy = I.getOperand(0)->getType();
1352 Type *DestTy = I.getType();
1354 bool SrcVec = SrcTy->isVectorTy();
1355 bool DstVec = DestTy->isVectorTy();
1357 Assert1(SrcVec == DstVec,
1358 "SIToFP source and dest must both be vector or scalar", &I);
1359 Assert1(SrcTy->isIntOrIntVectorTy(),
1360 "SIToFP source must be integer or integer vector", &I);
1361 Assert1(DestTy->isFPOrFPVectorTy(),
1362 "SIToFP result must be FP or FP vector", &I);
1364 if (SrcVec && DstVec)
1365 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1366 cast<VectorType>(DestTy)->getNumElements(),
1367 "SIToFP source and dest vector length mismatch", &I);
1369 visitInstruction(I);
1372 void Verifier::visitFPToUIInst(FPToUIInst &I) {
1373 // Get the source and destination types
1374 Type *SrcTy = I.getOperand(0)->getType();
1375 Type *DestTy = I.getType();
1377 bool SrcVec = SrcTy->isVectorTy();
1378 bool DstVec = DestTy->isVectorTy();
1380 Assert1(SrcVec == DstVec,
1381 "FPToUI source and dest must both be vector or scalar", &I);
1382 Assert1(SrcTy->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
1384 Assert1(DestTy->isIntOrIntVectorTy(),
1385 "FPToUI result must be integer or integer vector", &I);
1387 if (SrcVec && DstVec)
1388 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1389 cast<VectorType>(DestTy)->getNumElements(),
1390 "FPToUI source and dest vector length mismatch", &I);
1392 visitInstruction(I);
1395 void Verifier::visitFPToSIInst(FPToSIInst &I) {
1396 // Get the source and destination types
1397 Type *SrcTy = I.getOperand(0)->getType();
1398 Type *DestTy = I.getType();
1400 bool SrcVec = SrcTy->isVectorTy();
1401 bool DstVec = DestTy->isVectorTy();
1403 Assert1(SrcVec == DstVec,
1404 "FPToSI source and dest must both be vector or scalar", &I);
1405 Assert1(SrcTy->isFPOrFPVectorTy(),
1406 "FPToSI source must be FP or FP vector", &I);
1407 Assert1(DestTy->isIntOrIntVectorTy(),
1408 "FPToSI result must be integer or integer vector", &I);
1410 if (SrcVec && DstVec)
1411 Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
1412 cast<VectorType>(DestTy)->getNumElements(),
1413 "FPToSI source and dest vector length mismatch", &I);
1415 visitInstruction(I);
1418 void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
1419 // Get the source and destination types
1420 Type *SrcTy = I.getOperand(0)->getType();
1421 Type *DestTy = I.getType();
1423 Assert1(SrcTy->getScalarType()->isPointerTy(),
1424 "PtrToInt source must be pointer", &I);
1425 Assert1(DestTy->getScalarType()->isIntegerTy(),
1426 "PtrToInt result must be integral", &I);
1427 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1428 "PtrToInt type mismatch", &I);
1430 if (SrcTy->isVectorTy()) {
1431 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1432 VectorType *VDest = dyn_cast<VectorType>(DestTy);
1433 Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1434 "PtrToInt Vector width mismatch", &I);
1437 visitInstruction(I);
1440 void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
1441 // Get the source and destination types
1442 Type *SrcTy = I.getOperand(0)->getType();
1443 Type *DestTy = I.getType();
1445 Assert1(SrcTy->getScalarType()->isIntegerTy(),
1446 "IntToPtr source must be an integral", &I);
1447 Assert1(DestTy->getScalarType()->isPointerTy(),
1448 "IntToPtr result must be a pointer",&I);
1449 Assert1(SrcTy->isVectorTy() == DestTy->isVectorTy(),
1450 "IntToPtr type mismatch", &I);
1451 if (SrcTy->isVectorTy()) {
1452 VectorType *VSrc = dyn_cast<VectorType>(SrcTy);
1453 VectorType *VDest = dyn_cast<VectorType>(DestTy);
1454 Assert1(VSrc->getNumElements() == VDest->getNumElements(),
1455 "IntToPtr Vector width mismatch", &I);
1457 visitInstruction(I);
1460 void Verifier::visitBitCastInst(BitCastInst &I) {
1461 Type *SrcTy = I.getOperand(0)->getType();
1462 Type *DestTy = I.getType();
1463 VerifyBitcastType(&I, DestTy, SrcTy);
1464 visitInstruction(I);
1467 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst &I) {
1468 Type *SrcTy = I.getOperand(0)->getType();
1469 Type *DestTy = I.getType();
1471 Assert1(SrcTy->isPtrOrPtrVectorTy(),
1472 "AddrSpaceCast source must be a pointer", &I);
1473 Assert1(DestTy->isPtrOrPtrVectorTy(),
1474 "AddrSpaceCast result must be a pointer", &I);
1475 Assert1(SrcTy->getPointerAddressSpace() != DestTy->getPointerAddressSpace(),
1476 "AddrSpaceCast must be between different address spaces", &I);
1477 if (SrcTy->isVectorTy())
1478 Assert1(SrcTy->getVectorNumElements() == DestTy->getVectorNumElements(),
1479 "AddrSpaceCast vector pointer number of elements mismatch", &I);
1480 visitInstruction(I);
1483 /// visitPHINode - Ensure that a PHI node is well formed.
1485 void Verifier::visitPHINode(PHINode &PN) {
1486 // Ensure that the PHI nodes are all grouped together at the top of the block.
1487 // This can be tested by checking whether the instruction before this is
1488 // either nonexistent (because this is begin()) or is a PHI node. If not,
1489 // then there is some other instruction before a PHI.
1490 Assert2(&PN == &PN.getParent()->front() ||
1491 isa<PHINode>(--BasicBlock::iterator(&PN)),
1492 "PHI nodes not grouped at top of basic block!",
1493 &PN, PN.getParent());
1495 // Check that all of the values of the PHI node have the same type as the
1496 // result, and that the incoming blocks are really basic blocks.
1497 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1498 Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
1499 "PHI node operands are not the same type as the result!", &PN);
1502 // All other PHI node constraints are checked in the visitBasicBlock method.
1504 visitInstruction(PN);
1507 void Verifier::VerifyCallSite(CallSite CS) {
1508 Instruction *I = CS.getInstruction();
1510 Assert1(CS.getCalledValue()->getType()->isPointerTy(),
1511 "Called function must be a pointer!", I);
1512 PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
1514 Assert1(FPTy->getElementType()->isFunctionTy(),
1515 "Called function is not pointer to function type!", I);
1516 FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
1518 // Verify that the correct number of arguments are being passed
1519 if (FTy->isVarArg())
1520 Assert1(CS.arg_size() >= FTy->getNumParams(),
1521 "Called function requires more parameters than were provided!",I);
1523 Assert1(CS.arg_size() == FTy->getNumParams(),
1524 "Incorrect number of arguments passed to called function!", I);
1526 // Verify that all arguments to the call match the function type.
1527 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
1528 Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
1529 "Call parameter type does not match function signature!",
1530 CS.getArgument(i), FTy->getParamType(i), I);
1532 AttributeSet Attrs = CS.getAttributes();
1534 Assert1(VerifyAttributeCount(Attrs, CS.arg_size()),
1535 "Attribute after last parameter!", I);
1537 // Verify call attributes.
1538 VerifyFunctionAttrs(FTy, Attrs, I);
1540 // Verify that values used for inalloca parameters are in fact allocas.
1541 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i) {
1542 if (!Attrs.hasAttribute(1 + i, Attribute::InAlloca))
1544 Value *Arg = CS.getArgument(i);
1545 Assert2(isa<AllocaInst>(Arg), "Inalloca argument is not an alloca!", I,
1549 if (FTy->isVarArg()) {
1550 // FIXME? is 'nest' even legal here?
1551 bool SawNest = false;
1552 bool SawReturned = false;
1554 for (unsigned Idx = 1; Idx < 1 + FTy->getNumParams(); ++Idx) {
1555 if (Attrs.hasAttribute(Idx, Attribute::Nest))
1557 if (Attrs.hasAttribute(Idx, Attribute::Returned))
1561 // Check attributes on the varargs part.
1562 for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
1563 Type *Ty = CS.getArgument(Idx-1)->getType();
1564 VerifyParameterAttrs(Attrs, Idx, Ty, false, I);
1566 if (Attrs.hasAttribute(Idx, Attribute::Nest)) {
1567 Assert1(!SawNest, "More than one parameter has attribute nest!", I);
1571 if (Attrs.hasAttribute(Idx, Attribute::Returned)) {
1572 Assert1(!SawReturned, "More than one parameter has attribute returned!",
1574 Assert1(Ty->canLosslesslyBitCastTo(FTy->getReturnType()),
1575 "Incompatible argument and return types for 'returned' "
1580 Assert1(!Attrs.hasAttribute(Idx, Attribute::StructRet),
1581 "Attribute 'sret' cannot be used for vararg call arguments!", I);
1585 // Verify that there's no metadata unless it's a direct call to an intrinsic.
1586 if (CS.getCalledFunction() == 0 ||
1587 !CS.getCalledFunction()->getName().startswith("llvm.")) {
1588 for (FunctionType::param_iterator PI = FTy->param_begin(),
1589 PE = FTy->param_end(); PI != PE; ++PI)
1590 Assert1(!(*PI)->isMetadataTy(),
1591 "Function has metadata parameter but isn't an intrinsic", I);
1594 visitInstruction(*I);
1597 void Verifier::visitCallInst(CallInst &CI) {
1598 VerifyCallSite(&CI);
1600 if (Function *F = CI.getCalledFunction())
1601 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
1602 visitIntrinsicFunctionCall(ID, CI);
1605 void Verifier::visitInvokeInst(InvokeInst &II) {
1606 VerifyCallSite(&II);
1608 // Verify that there is a landingpad instruction as the first non-PHI
1609 // instruction of the 'unwind' destination.
1610 Assert1(II.getUnwindDest()->isLandingPad(),
1611 "The unwind destination does not have a landingpad instruction!",&II);
1613 visitTerminatorInst(II);
1616 /// visitBinaryOperator - Check that both arguments to the binary operator are
1617 /// of the same type!
1619 void Verifier::visitBinaryOperator(BinaryOperator &B) {
1620 Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
1621 "Both operands to a binary operator are not of the same type!", &B);
1623 switch (B.getOpcode()) {
1624 // Check that integer arithmetic operators are only used with
1625 // integral operands.
1626 case Instruction::Add:
1627 case Instruction::Sub:
1628 case Instruction::Mul:
1629 case Instruction::SDiv:
1630 case Instruction::UDiv:
1631 case Instruction::SRem:
1632 case Instruction::URem:
1633 Assert1(B.getType()->isIntOrIntVectorTy(),
1634 "Integer arithmetic operators only work with integral types!", &B);
1635 Assert1(B.getType() == B.getOperand(0)->getType(),
1636 "Integer arithmetic operators must have same type "
1637 "for operands and result!", &B);
1639 // Check that floating-point arithmetic operators are only used with
1640 // floating-point operands.
1641 case Instruction::FAdd:
1642 case Instruction::FSub:
1643 case Instruction::FMul:
1644 case Instruction::FDiv:
1645 case Instruction::FRem:
1646 Assert1(B.getType()->isFPOrFPVectorTy(),
1647 "Floating-point arithmetic operators only work with "
1648 "floating-point types!", &B);
1649 Assert1(B.getType() == B.getOperand(0)->getType(),
1650 "Floating-point arithmetic operators must have same type "
1651 "for operands and result!", &B);
1653 // Check that logical operators are only used with integral operands.
1654 case Instruction::And:
1655 case Instruction::Or:
1656 case Instruction::Xor:
1657 Assert1(B.getType()->isIntOrIntVectorTy(),
1658 "Logical operators only work with integral types!", &B);
1659 Assert1(B.getType() == B.getOperand(0)->getType(),
1660 "Logical operators must have same type for operands and result!",
1663 case Instruction::Shl:
1664 case Instruction::LShr:
1665 case Instruction::AShr:
1666 Assert1(B.getType()->isIntOrIntVectorTy(),
1667 "Shifts only work with integral types!", &B);
1668 Assert1(B.getType() == B.getOperand(0)->getType(),
1669 "Shift return type must be same as operands!", &B);
1672 llvm_unreachable("Unknown BinaryOperator opcode!");
1675 visitInstruction(B);
1678 void Verifier::visitICmpInst(ICmpInst &IC) {
1679 // Check that the operands are the same type
1680 Type *Op0Ty = IC.getOperand(0)->getType();
1681 Type *Op1Ty = IC.getOperand(1)->getType();
1682 Assert1(Op0Ty == Op1Ty,
1683 "Both operands to ICmp instruction are not of the same type!", &IC);
1684 // Check that the operands are the right type
1685 Assert1(Op0Ty->isIntOrIntVectorTy() || Op0Ty->getScalarType()->isPointerTy(),
1686 "Invalid operand types for ICmp instruction", &IC);
1687 // Check that the predicate is valid.
1688 Assert1(IC.getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
1689 IC.getPredicate() <= CmpInst::LAST_ICMP_PREDICATE,
1690 "Invalid predicate in ICmp instruction!", &IC);
1692 visitInstruction(IC);
1695 void Verifier::visitFCmpInst(FCmpInst &FC) {
1696 // Check that the operands are the same type
1697 Type *Op0Ty = FC.getOperand(0)->getType();
1698 Type *Op1Ty = FC.getOperand(1)->getType();
1699 Assert1(Op0Ty == Op1Ty,
1700 "Both operands to FCmp instruction are not of the same type!", &FC);
1701 // Check that the operands are the right type
1702 Assert1(Op0Ty->isFPOrFPVectorTy(),
1703 "Invalid operand types for FCmp instruction", &FC);
1704 // Check that the predicate is valid.
1705 Assert1(FC.getPredicate() >= CmpInst::FIRST_FCMP_PREDICATE &&
1706 FC.getPredicate() <= CmpInst::LAST_FCMP_PREDICATE,
1707 "Invalid predicate in FCmp instruction!", &FC);
1709 visitInstruction(FC);
1712 void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
1713 Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
1715 "Invalid extractelement operands!", &EI);
1716 visitInstruction(EI);
1719 void Verifier::visitInsertElementInst(InsertElementInst &IE) {
1720 Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
1723 "Invalid insertelement operands!", &IE);
1724 visitInstruction(IE);
1727 void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
1728 Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
1730 "Invalid shufflevector operands!", &SV);
1731 visitInstruction(SV);
1734 void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
1735 Type *TargetTy = GEP.getPointerOperandType()->getScalarType();
1737 Assert1(isa<PointerType>(TargetTy),
1738 "GEP base pointer is not a vector or a vector of pointers", &GEP);
1739 Assert1(cast<PointerType>(TargetTy)->getElementType()->isSized(),
1740 "GEP into unsized type!", &GEP);
1741 Assert1(GEP.getPointerOperandType()->isVectorTy() ==
1742 GEP.getType()->isVectorTy(), "Vector GEP must return a vector value",
1745 SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
1747 GetElementPtrInst::getIndexedType(GEP.getPointerOperandType(), Idxs);
1748 Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
1750 Assert2(GEP.getType()->getScalarType()->isPointerTy() &&
1751 cast<PointerType>(GEP.getType()->getScalarType())->getElementType()
1752 == ElTy, "GEP is not of right type for indices!", &GEP, ElTy);
1754 if (GEP.getPointerOperandType()->isVectorTy()) {
1755 // Additional checks for vector GEPs.
1756 unsigned GepWidth = GEP.getPointerOperandType()->getVectorNumElements();
1757 Assert1(GepWidth == GEP.getType()->getVectorNumElements(),
1758 "Vector GEP result width doesn't match operand's", &GEP);
1759 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) {
1760 Type *IndexTy = Idxs[i]->getType();
1761 Assert1(IndexTy->isVectorTy(),
1762 "Vector GEP must have vector indices!", &GEP);
1763 unsigned IndexWidth = IndexTy->getVectorNumElements();
1764 Assert1(IndexWidth == GepWidth, "Invalid GEP index vector width", &GEP);
1767 visitInstruction(GEP);
1770 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
1771 return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
1774 void Verifier::visitLoadInst(LoadInst &LI) {
1775 PointerType *PTy = dyn_cast<PointerType>(LI.getOperand(0)->getType());
1776 Assert1(PTy, "Load operand must be a pointer.", &LI);
1777 Type *ElTy = PTy->getElementType();
1778 Assert2(ElTy == LI.getType(),
1779 "Load result type does not match pointer operand type!", &LI, ElTy);
1780 if (LI.isAtomic()) {
1781 Assert1(LI.getOrdering() != Release && LI.getOrdering() != AcquireRelease,
1782 "Load cannot have Release ordering", &LI);
1783 Assert1(LI.getAlignment() != 0,
1784 "Atomic load must specify explicit alignment", &LI);
1785 if (!ElTy->isPointerTy()) {
1786 Assert2(ElTy->isIntegerTy(),
1787 "atomic store operand must have integer type!",
1789 unsigned Size = ElTy->getPrimitiveSizeInBits();
1790 Assert2(Size >= 8 && !(Size & (Size - 1)),
1791 "atomic store operand must be power-of-two byte-sized integer",
1795 Assert1(LI.getSynchScope() == CrossThread,
1796 "Non-atomic load cannot have SynchronizationScope specified", &LI);
1799 if (MDNode *Range = LI.getMetadata(LLVMContext::MD_range)) {
1800 unsigned NumOperands = Range->getNumOperands();
1801 Assert1(NumOperands % 2 == 0, "Unfinished range!", Range);
1802 unsigned NumRanges = NumOperands / 2;
1803 Assert1(NumRanges >= 1, "It should have at least one range!", Range);
1805 ConstantRange LastRange(1); // Dummy initial value
1806 for (unsigned i = 0; i < NumRanges; ++i) {
1807 ConstantInt *Low = dyn_cast<ConstantInt>(Range->getOperand(2*i));
1808 Assert1(Low, "The lower limit must be an integer!", Low);
1809 ConstantInt *High = dyn_cast<ConstantInt>(Range->getOperand(2*i + 1));
1810 Assert1(High, "The upper limit must be an integer!", High);
1811 Assert1(High->getType() == Low->getType() &&
1812 High->getType() == ElTy, "Range types must match load type!",
1815 APInt HighV = High->getValue();
1816 APInt LowV = Low->getValue();
1817 ConstantRange CurRange(LowV, HighV);
1818 Assert1(!CurRange.isEmptySet() && !CurRange.isFullSet(),
1819 "Range must not be empty!", Range);
1821 Assert1(CurRange.intersectWith(LastRange).isEmptySet(),
1822 "Intervals are overlapping", Range);
1823 Assert1(LowV.sgt(LastRange.getLower()), "Intervals are not in order",
1825 Assert1(!isContiguous(CurRange, LastRange), "Intervals are contiguous",
1828 LastRange = ConstantRange(LowV, HighV);
1830 if (NumRanges > 2) {
1832 dyn_cast<ConstantInt>(Range->getOperand(0))->getValue();
1834 dyn_cast<ConstantInt>(Range->getOperand(1))->getValue();
1835 ConstantRange FirstRange(FirstLow, FirstHigh);
1836 Assert1(FirstRange.intersectWith(LastRange).isEmptySet(),
1837 "Intervals are overlapping", Range);
1838 Assert1(!isContiguous(FirstRange, LastRange), "Intervals are contiguous",
1845 visitInstruction(LI);
1848 void Verifier::visitStoreInst(StoreInst &SI) {
1849 PointerType *PTy = dyn_cast<PointerType>(SI.getOperand(1)->getType());
1850 Assert1(PTy, "Store operand must be a pointer.", &SI);
1851 Type *ElTy = PTy->getElementType();
1852 Assert2(ElTy == SI.getOperand(0)->getType(),
1853 "Stored value type does not match pointer operand type!",
1855 if (SI.isAtomic()) {
1856 Assert1(SI.getOrdering() != Acquire && SI.getOrdering() != AcquireRelease,
1857 "Store cannot have Acquire ordering", &SI);
1858 Assert1(SI.getAlignment() != 0,
1859 "Atomic store must specify explicit alignment", &SI);
1860 if (!ElTy->isPointerTy()) {
1861 Assert2(ElTy->isIntegerTy(),
1862 "atomic store operand must have integer type!",
1864 unsigned Size = ElTy->getPrimitiveSizeInBits();
1865 Assert2(Size >= 8 && !(Size & (Size - 1)),
1866 "atomic store operand must be power-of-two byte-sized integer",
1870 Assert1(SI.getSynchScope() == CrossThread,
1871 "Non-atomic store cannot have SynchronizationScope specified", &SI);
1873 visitInstruction(SI);
1876 void Verifier::visitAllocaInst(AllocaInst &AI) {
1877 SmallPtrSet<const Type*, 4> Visited;
1878 PointerType *PTy = AI.getType();
1879 Assert1(PTy->getAddressSpace() == 0,
1880 "Allocation instruction pointer not in the generic address space!",
1882 Assert1(PTy->getElementType()->isSized(&Visited), "Cannot allocate unsized type",
1884 Assert1(AI.getArraySize()->getType()->isIntegerTy(),
1885 "Alloca array size must have integer type", &AI);
1887 // Verify that an alloca instruction is not used with inalloca more than once.
1888 unsigned InAllocaUses = 0;
1889 for (User::use_iterator UI = AI.use_begin(), UE = AI.use_end(); UI != UE;
1894 unsigned ArgNo = CS.getArgumentNo(UI);
1895 if (CS.isInAllocaArgument(ArgNo)) {
1897 Assert1(InAllocaUses <= 1,
1898 "Allocas can be used at most once with inalloca!", &AI);
1902 visitInstruction(AI);
1905 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst &CXI) {
1906 Assert1(CXI.getOrdering() != NotAtomic,
1907 "cmpxchg instructions must be atomic.", &CXI);
1908 Assert1(CXI.getOrdering() != Unordered,
1909 "cmpxchg instructions cannot be unordered.", &CXI);
1910 PointerType *PTy = dyn_cast<PointerType>(CXI.getOperand(0)->getType());
1911 Assert1(PTy, "First cmpxchg operand must be a pointer.", &CXI);
1912 Type *ElTy = PTy->getElementType();
1913 Assert2(ElTy->isIntegerTy(),
1914 "cmpxchg operand must have integer type!",
1916 unsigned Size = ElTy->getPrimitiveSizeInBits();
1917 Assert2(Size >= 8 && !(Size & (Size - 1)),
1918 "cmpxchg operand must be power-of-two byte-sized integer",
1920 Assert2(ElTy == CXI.getOperand(1)->getType(),
1921 "Expected value type does not match pointer operand type!",
1923 Assert2(ElTy == CXI.getOperand(2)->getType(),
1924 "Stored value type does not match pointer operand type!",
1926 visitInstruction(CXI);
1929 void Verifier::visitAtomicRMWInst(AtomicRMWInst &RMWI) {
1930 Assert1(RMWI.getOrdering() != NotAtomic,
1931 "atomicrmw instructions must be atomic.", &RMWI);
1932 Assert1(RMWI.getOrdering() != Unordered,
1933 "atomicrmw instructions cannot be unordered.", &RMWI);
1934 PointerType *PTy = dyn_cast<PointerType>(RMWI.getOperand(0)->getType());
1935 Assert1(PTy, "First atomicrmw operand must be a pointer.", &RMWI);
1936 Type *ElTy = PTy->getElementType();
1937 Assert2(ElTy->isIntegerTy(),
1938 "atomicrmw operand must have integer type!",
1940 unsigned Size = ElTy->getPrimitiveSizeInBits();
1941 Assert2(Size >= 8 && !(Size & (Size - 1)),
1942 "atomicrmw operand must be power-of-two byte-sized integer",
1944 Assert2(ElTy == RMWI.getOperand(1)->getType(),
1945 "Argument value type does not match pointer operand type!",
1947 Assert1(AtomicRMWInst::FIRST_BINOP <= RMWI.getOperation() &&
1948 RMWI.getOperation() <= AtomicRMWInst::LAST_BINOP,
1949 "Invalid binary operation!", &RMWI);
1950 visitInstruction(RMWI);
1953 void Verifier::visitFenceInst(FenceInst &FI) {
1954 const AtomicOrdering Ordering = FI.getOrdering();
1955 Assert1(Ordering == Acquire || Ordering == Release ||
1956 Ordering == AcquireRelease || Ordering == SequentiallyConsistent,
1957 "fence instructions may only have "
1958 "acquire, release, acq_rel, or seq_cst ordering.", &FI);
1959 visitInstruction(FI);
1962 void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
1963 Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
1964 EVI.getIndices()) ==
1966 "Invalid ExtractValueInst operands!", &EVI);
1968 visitInstruction(EVI);
1971 void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
1972 Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
1973 IVI.getIndices()) ==
1974 IVI.getOperand(1)->getType(),
1975 "Invalid InsertValueInst operands!", &IVI);
1977 visitInstruction(IVI);
1980 void Verifier::visitLandingPadInst(LandingPadInst &LPI) {
1981 BasicBlock *BB = LPI.getParent();
1983 // The landingpad instruction is ill-formed if it doesn't have any clauses and
1985 Assert1(LPI.getNumClauses() > 0 || LPI.isCleanup(),
1986 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI);
1988 // The landingpad instruction defines its parent as a landing pad block. The
1989 // landing pad block may be branched to only by the unwind edge of an invoke.
1990 for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) {
1991 const InvokeInst *II = dyn_cast<InvokeInst>((*I)->getTerminator());
1992 Assert1(II && II->getUnwindDest() == BB && II->getNormalDest() != BB,
1993 "Block containing LandingPadInst must be jumped to "
1994 "only by the unwind edge of an invoke.", &LPI);
1997 // The landingpad instruction must be the first non-PHI instruction in the
1999 Assert1(LPI.getParent()->getLandingPadInst() == &LPI,
2000 "LandingPadInst not the first non-PHI instruction in the block.",
2003 // The personality functions for all landingpad instructions within the same
2004 // function should match.
2006 Assert1(LPI.getPersonalityFn() == PersonalityFn,
2007 "Personality function doesn't match others in function", &LPI);
2008 PersonalityFn = LPI.getPersonalityFn();
2010 // All operands must be constants.
2011 Assert1(isa<Constant>(PersonalityFn), "Personality function is not constant!",
2013 for (unsigned i = 0, e = LPI.getNumClauses(); i < e; ++i) {
2014 Value *Clause = LPI.getClause(i);
2015 Assert1(isa<Constant>(Clause), "Clause is not constant!", &LPI);
2016 if (LPI.isCatch(i)) {
2017 Assert1(isa<PointerType>(Clause->getType()),
2018 "Catch operand does not have pointer type!", &LPI);
2020 Assert1(LPI.isFilter(i), "Clause is neither catch nor filter!", &LPI);
2021 Assert1(isa<ConstantArray>(Clause) || isa<ConstantAggregateZero>(Clause),
2022 "Filter operand is not an array of constants!", &LPI);
2026 visitInstruction(LPI);
2029 void Verifier::verifyDominatesUse(Instruction &I, unsigned i) {
2030 Instruction *Op = cast<Instruction>(I.getOperand(i));
2031 // If the we have an invalid invoke, don't try to compute the dominance.
2032 // We already reject it in the invoke specific checks and the dominance
2033 // computation doesn't handle multiple edges.
2034 if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
2035 if (II->getNormalDest() == II->getUnwindDest())
2039 const Use &U = I.getOperandUse(i);
2040 Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, U),
2041 "Instruction does not dominate all uses!", Op, &I);
2044 /// verifyInstruction - Verify that an instruction is well formed.
2046 void Verifier::visitInstruction(Instruction &I) {
2047 BasicBlock *BB = I.getParent();
2048 Assert1(BB, "Instruction not embedded in basic block!", &I);
2050 if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
2051 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
2053 Assert1(*UI != (User*)&I || !DT->isReachableFromEntry(BB),
2054 "Only PHI nodes may reference their own value!", &I);
2057 // Check that void typed values don't have names
2058 Assert1(!I.getType()->isVoidTy() || !I.hasName(),
2059 "Instruction has a name, but provides a void value!", &I);
2061 // Check that the return value of the instruction is either void or a legal
2063 Assert1(I.getType()->isVoidTy() ||
2064 I.getType()->isFirstClassType(),
2065 "Instruction returns a non-scalar type!", &I);
2067 // Check that the instruction doesn't produce metadata. Calls are already
2068 // checked against the callee type.
2069 Assert1(!I.getType()->isMetadataTy() ||
2070 isa<CallInst>(I) || isa<InvokeInst>(I),
2071 "Invalid use of metadata!", &I);
2073 // Check that all uses of the instruction, if they are instructions
2074 // themselves, actually have parent basic blocks. If the use is not an
2075 // instruction, it is an error!
2076 for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
2078 if (Instruction *Used = dyn_cast<Instruction>(*UI))
2079 Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
2080 " embedded in a basic block!", &I, Used);
2082 CheckFailed("Use of instruction is not an instruction!", *UI);
2087 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2088 Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
2090 // Check to make sure that only first-class-values are operands to
2092 if (!I.getOperand(i)->getType()->isFirstClassType()) {
2093 Assert1(0, "Instruction operands must be first-class values!", &I);
2096 if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
2097 // Check to make sure that the "address of" an intrinsic function is never
2099 Assert1(!F->isIntrinsic() || i == (isa<CallInst>(I) ? e-1 : 0),
2100 "Cannot take the address of an intrinsic!", &I);
2101 Assert1(!F->isIntrinsic() || isa<CallInst>(I) ||
2102 F->getIntrinsicID() == Intrinsic::donothing,
2103 "Cannot invoke an intrinsinc other than donothing", &I);
2104 Assert1(F->getParent() == Mod, "Referencing function in another module!",
2106 } else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
2107 Assert1(OpBB->getParent() == BB->getParent(),
2108 "Referring to a basic block in another function!", &I);
2109 } else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
2110 Assert1(OpArg->getParent() == BB->getParent(),
2111 "Referring to an argument in another function!", &I);
2112 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
2113 Assert1(GV->getParent() == Mod, "Referencing global in another module!",
2115 } else if (isa<Instruction>(I.getOperand(i))) {
2116 verifyDominatesUse(I, i);
2117 } else if (isa<InlineAsm>(I.getOperand(i))) {
2118 Assert1((i + 1 == e && isa<CallInst>(I)) ||
2119 (i + 3 == e && isa<InvokeInst>(I)),
2120 "Cannot take the address of an inline asm!", &I);
2121 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(I.getOperand(i))) {
2122 if (CE->getType()->isPtrOrPtrVectorTy()) {
2123 // If we have a ConstantExpr pointer, we need to see if it came from an
2124 // illegal bitcast (inttoptr <constant int> )
2125 SmallVector<const ConstantExpr *, 4> Stack;
2126 SmallPtrSet<const ConstantExpr *, 4> Visited;
2127 Stack.push_back(CE);
2129 while (!Stack.empty()) {
2130 const ConstantExpr *V = Stack.pop_back_val();
2131 if (!Visited.insert(V))
2134 VerifyConstantExprBitcastType(V);
2136 for (unsigned I = 0, N = V->getNumOperands(); I != N; ++I) {
2137 if (ConstantExpr *Op = dyn_cast<ConstantExpr>(V->getOperand(I)))
2138 Stack.push_back(Op);
2145 if (MDNode *MD = I.getMetadata(LLVMContext::MD_fpmath)) {
2146 Assert1(I.getType()->isFPOrFPVectorTy(),
2147 "fpmath requires a floating point result!", &I);
2148 Assert1(MD->getNumOperands() == 1, "fpmath takes one operand!", &I);
2149 Value *Op0 = MD->getOperand(0);
2150 if (ConstantFP *CFP0 = dyn_cast_or_null<ConstantFP>(Op0)) {
2151 APFloat Accuracy = CFP0->getValueAPF();
2152 Assert1(Accuracy.isFiniteNonZero() && !Accuracy.isNegative(),
2153 "fpmath accuracy not a positive number!", &I);
2155 Assert1(false, "invalid fpmath accuracy!", &I);
2159 MDNode *MD = I.getMetadata(LLVMContext::MD_range);
2160 Assert1(!MD || isa<LoadInst>(I), "Ranges are only for loads!", &I);
2162 if (!DisableDebugInfoVerifier) {
2163 MD = I.getMetadata(LLVMContext::MD_dbg);
2164 Finder.processLocation(*Mod, DILocation(MD));
2167 InstsInThisBlock.insert(&I);
2170 /// VerifyIntrinsicType - Verify that the specified type (which comes from an
2171 /// intrinsic argument or return value) matches the type constraints specified
2172 /// by the .td file (e.g. an "any integer" argument really is an integer).
2174 /// This return true on error but does not print a message.
2175 bool Verifier::VerifyIntrinsicType(Type *Ty,
2176 ArrayRef<Intrinsic::IITDescriptor> &Infos,
2177 SmallVectorImpl<Type*> &ArgTys) {
2178 using namespace Intrinsic;
2180 // If we ran out of descriptors, there are too many arguments.
2181 if (Infos.empty()) return true;
2182 IITDescriptor D = Infos.front();
2183 Infos = Infos.slice(1);
2186 case IITDescriptor::Void: return !Ty->isVoidTy();
2187 case IITDescriptor::VarArg: return true;
2188 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
2189 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
2190 case IITDescriptor::Half: return !Ty->isHalfTy();
2191 case IITDescriptor::Float: return !Ty->isFloatTy();
2192 case IITDescriptor::Double: return !Ty->isDoubleTy();
2193 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
2194 case IITDescriptor::Vector: {
2195 VectorType *VT = dyn_cast<VectorType>(Ty);
2196 return VT == 0 || VT->getNumElements() != D.Vector_Width ||
2197 VerifyIntrinsicType(VT->getElementType(), Infos, ArgTys);
2199 case IITDescriptor::Pointer: {
2200 PointerType *PT = dyn_cast<PointerType>(Ty);
2201 return PT == 0 || PT->getAddressSpace() != D.Pointer_AddressSpace ||
2202 VerifyIntrinsicType(PT->getElementType(), Infos, ArgTys);
2205 case IITDescriptor::Struct: {
2206 StructType *ST = dyn_cast<StructType>(Ty);
2207 if (ST == 0 || ST->getNumElements() != D.Struct_NumElements)
2210 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
2211 if (VerifyIntrinsicType(ST->getElementType(i), Infos, ArgTys))
2216 case IITDescriptor::Argument:
2217 // Two cases here - If this is the second occurrence of an argument, verify
2218 // that the later instance matches the previous instance.
2219 if (D.getArgumentNumber() < ArgTys.size())
2220 return Ty != ArgTys[D.getArgumentNumber()];
2222 // Otherwise, if this is the first instance of an argument, record it and
2223 // verify the "Any" kind.
2224 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
2225 ArgTys.push_back(Ty);
2227 switch (D.getArgumentKind()) {
2228 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
2229 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
2230 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
2231 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
2233 llvm_unreachable("all argument kinds not covered");
2235 case IITDescriptor::ExtendVecArgument:
2236 // This may only be used when referring to a previous vector argument.
2237 return D.getArgumentNumber() >= ArgTys.size() ||
2238 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
2239 VectorType::getExtendedElementVectorType(
2240 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
2242 case IITDescriptor::TruncVecArgument:
2243 // This may only be used when referring to a previous vector argument.
2244 return D.getArgumentNumber() >= ArgTys.size() ||
2245 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
2246 VectorType::getTruncatedElementVectorType(
2247 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
2249 llvm_unreachable("unhandled");
2252 /// \brief Verify if the intrinsic has variable arguments.
2253 /// This method is intended to be called after all the fixed arguments have been
2256 /// This method returns true on error and does not print an error message.
2258 Verifier::VerifyIntrinsicIsVarArg(bool isVarArg,
2259 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
2260 using namespace Intrinsic;
2262 // If there are no descriptors left, then it can't be a vararg.
2264 return isVarArg ? true : false;
2266 // There should be only one descriptor remaining at this point.
2267 if (Infos.size() != 1)
2270 // Check and verify the descriptor.
2271 IITDescriptor D = Infos.front();
2272 Infos = Infos.slice(1);
2273 if (D.Kind == IITDescriptor::VarArg)
2274 return isVarArg ? false : true;
2279 /// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
2281 void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
2282 Function *IF = CI.getCalledFunction();
2283 Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
2286 // Verify that the intrinsic prototype lines up with what the .td files
2288 FunctionType *IFTy = IF->getFunctionType();
2289 bool IsVarArg = IFTy->isVarArg();
2291 SmallVector<Intrinsic::IITDescriptor, 8> Table;
2292 getIntrinsicInfoTableEntries(ID, Table);
2293 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
2295 SmallVector<Type *, 4> ArgTys;
2296 Assert1(!VerifyIntrinsicType(IFTy->getReturnType(), TableRef, ArgTys),
2297 "Intrinsic has incorrect return type!", IF);
2298 for (unsigned i = 0, e = IFTy->getNumParams(); i != e; ++i)
2299 Assert1(!VerifyIntrinsicType(IFTy->getParamType(i), TableRef, ArgTys),
2300 "Intrinsic has incorrect argument type!", IF);
2302 // Verify if the intrinsic call matches the vararg property.
2304 Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2305 "Intrinsic was not defined with variable arguments!", IF);
2307 Assert1(!VerifyIntrinsicIsVarArg(IsVarArg, TableRef),
2308 "Callsite was not defined with variable arguments!", IF);
2310 // All descriptors should be absorbed by now.
2311 Assert1(TableRef.empty(), "Intrinsic has too few arguments!", IF);
2313 // Now that we have the intrinsic ID and the actual argument types (and we
2314 // know they are legal for the intrinsic!) get the intrinsic name through the
2315 // usual means. This allows us to verify the mangling of argument types into
2317 Assert1(Intrinsic::getName(ID, ArgTys) == IF->getName(),
2318 "Intrinsic name not mangled correctly for type arguments!", IF);
2320 // If the intrinsic takes MDNode arguments, verify that they are either global
2321 // or are local to *this* function.
2322 for (unsigned i = 0, e = CI.getNumArgOperands(); i != e; ++i)
2323 if (MDNode *MD = dyn_cast<MDNode>(CI.getArgOperand(i)))
2324 visitMDNode(*MD, CI.getParent()->getParent());
2329 case Intrinsic::ctlz: // llvm.ctlz
2330 case Intrinsic::cttz: // llvm.cttz
2331 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2332 "is_zero_undef argument of bit counting intrinsics must be a "
2333 "constant int", &CI);
2335 case Intrinsic::dbg_declare: { // llvm.dbg.declare
2336 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
2337 "invalid llvm.dbg.declare intrinsic call 1", &CI);
2338 MDNode *MD = cast<MDNode>(CI.getArgOperand(0));
2339 Assert1(MD->getNumOperands() == 1,
2340 "invalid llvm.dbg.declare intrinsic call 2", &CI);
2341 if (!DisableDebugInfoVerifier)
2342 Finder.processDeclare(*Mod, cast<DbgDeclareInst>(&CI));
2344 case Intrinsic::dbg_value: { //llvm.dbg.value
2345 if (!DisableDebugInfoVerifier) {
2346 Assert1(CI.getArgOperand(0) && isa<MDNode>(CI.getArgOperand(0)),
2347 "invalid llvm.dbg.value intrinsic call 1", &CI);
2348 Finder.processValue(*Mod, cast<DbgValueInst>(&CI));
2352 case Intrinsic::memcpy:
2353 case Intrinsic::memmove:
2354 case Intrinsic::memset:
2355 Assert1(isa<ConstantInt>(CI.getArgOperand(3)),
2356 "alignment argument of memory intrinsics must be a constant int",
2358 Assert1(isa<ConstantInt>(CI.getArgOperand(4)),
2359 "isvolatile argument of memory intrinsics must be a constant int",
2362 case Intrinsic::gcroot:
2363 case Intrinsic::gcwrite:
2364 case Intrinsic::gcread:
2365 if (ID == Intrinsic::gcroot) {
2367 dyn_cast<AllocaInst>(CI.getArgOperand(0)->stripPointerCasts());
2368 Assert1(AI, "llvm.gcroot parameter #1 must be an alloca.", &CI);
2369 Assert1(isa<Constant>(CI.getArgOperand(1)),
2370 "llvm.gcroot parameter #2 must be a constant.", &CI);
2371 if (!AI->getType()->getElementType()->isPointerTy()) {
2372 Assert1(!isa<ConstantPointerNull>(CI.getArgOperand(1)),
2373 "llvm.gcroot parameter #1 must either be a pointer alloca, "
2374 "or argument #2 must be a non-null constant.", &CI);
2378 Assert1(CI.getParent()->getParent()->hasGC(),
2379 "Enclosing function does not use GC.", &CI);
2381 case Intrinsic::init_trampoline:
2382 Assert1(isa<Function>(CI.getArgOperand(1)->stripPointerCasts()),
2383 "llvm.init_trampoline parameter #2 must resolve to a function.",
2386 case Intrinsic::prefetch:
2387 Assert1(isa<ConstantInt>(CI.getArgOperand(1)) &&
2388 isa<ConstantInt>(CI.getArgOperand(2)) &&
2389 cast<ConstantInt>(CI.getArgOperand(1))->getZExtValue() < 2 &&
2390 cast<ConstantInt>(CI.getArgOperand(2))->getZExtValue() < 4,
2391 "invalid arguments to llvm.prefetch",
2394 case Intrinsic::stackprotector:
2395 Assert1(isa<AllocaInst>(CI.getArgOperand(1)->stripPointerCasts()),
2396 "llvm.stackprotector parameter #2 must resolve to an alloca.",
2399 case Intrinsic::lifetime_start:
2400 case Intrinsic::lifetime_end:
2401 case Intrinsic::invariant_start:
2402 Assert1(isa<ConstantInt>(CI.getArgOperand(0)),
2403 "size argument of memory use markers must be a constant integer",
2406 case Intrinsic::invariant_end:
2407 Assert1(isa<ConstantInt>(CI.getArgOperand(1)),
2408 "llvm.invariant.end parameter #2 must be a constant integer", &CI);
2413 void Verifier::verifyDebugInfo() {
2414 // Verify Debug Info.
2415 if (!DisableDebugInfoVerifier) {
2416 for (DebugInfoFinder::iterator I = Finder.compile_unit_begin(),
2417 E = Finder.compile_unit_end(); I != E; ++I)
2418 Assert1(DICompileUnit(*I).Verify(), "DICompileUnit does not Verify!", *I);
2419 for (DebugInfoFinder::iterator I = Finder.subprogram_begin(),
2420 E = Finder.subprogram_end(); I != E; ++I)
2421 Assert1(DISubprogram(*I).Verify(), "DISubprogram does not Verify!", *I);
2422 for (DebugInfoFinder::iterator I = Finder.global_variable_begin(),
2423 E = Finder.global_variable_end(); I != E; ++I)
2424 Assert1(DIGlobalVariable(*I).Verify(),
2425 "DIGlobalVariable does not Verify!", *I);
2426 for (DebugInfoFinder::iterator I = Finder.type_begin(),
2427 E = Finder.type_end(); I != E; ++I)
2428 Assert1(DIType(*I).Verify(), "DIType does not Verify!", *I);
2429 for (DebugInfoFinder::iterator I = Finder.scope_begin(),
2430 E = Finder.scope_end(); I != E; ++I)
2431 Assert1(DIScope(*I).Verify(), "DIScope does not Verify!", *I);
2435 //===----------------------------------------------------------------------===//
2436 // Implement the public interfaces to this file...
2437 //===----------------------------------------------------------------------===//
2439 FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
2440 return new Verifier(action);
2444 /// verifyFunction - Check a function for errors, printing messages on stderr.
2445 /// Return true if the function is corrupt.
2447 bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
2448 Function &F = const_cast<Function&>(f);
2449 assert(!F.isDeclaration() && "Cannot verify external functions");
2451 FunctionPassManager FPM(F.getParent());
2452 Verifier *V = new Verifier(action);
2454 FPM.doInitialization();
2459 /// verifyModule - Check a module for errors, printing messages on stderr.
2460 /// Return true if the module is corrupt.
2462 bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
2463 std::string *ErrorInfo) {
2465 Verifier *V = new Verifier(action);
2467 PM.run(const_cast<Module&>(M));
2469 if (ErrorInfo && V->Broken)
2470 *ErrorInfo = V->MessagesStr.str();