1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LLVM module linker.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Linker/Linker.h"
15 #include "llvm-c/Linker.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DiagnosticInfo.h"
24 #include "llvm/IR/DiagnosticPrinter.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/IR/TypeFinder.h"
28 #include "llvm/Support/CommandLine.h"
29 #include "llvm/Support/Debug.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Transforms/Utils/Cloning.h"
37 //===----------------------------------------------------------------------===//
38 // TypeMap implementation.
39 //===----------------------------------------------------------------------===//
42 class TypeMapTy : public ValueMapTypeRemapper {
43 /// This is a mapping from a source type to a destination type to use.
44 DenseMap<Type*, Type*> MappedTypes;
46 /// When checking to see if two subgraphs are isomorphic, we speculatively
47 /// add types to MappedTypes, but keep track of them here in case we need to
49 SmallVector<Type*, 16> SpeculativeTypes;
51 SmallVector<StructType*, 16> SpeculativeDstOpaqueTypes;
53 /// This is a list of non-opaque structs in the source module that are mapped
54 /// to an opaque struct in the destination module.
55 SmallVector<StructType*, 16> SrcDefinitionsToResolve;
57 /// This is the set of opaque types in the destination modules who are
58 /// getting a body from the source module.
59 SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
62 TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
63 : DstStructTypesSet(DstStructTypesSet) {}
65 Linker::IdentifiedStructTypeSet &DstStructTypesSet;
66 /// Indicate that the specified type in the destination module is conceptually
67 /// equivalent to the specified type in the source module.
68 void addTypeMapping(Type *DstTy, Type *SrcTy);
70 /// Produce a body for an opaque type in the dest module from a type
71 /// definition in the source module.
72 void linkDefinedTypeBodies();
74 /// Return the mapped type to use for the specified input type from the
76 Type *get(Type *SrcTy);
77 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
79 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
81 FunctionType *get(FunctionType *T) {
82 return cast<FunctionType>(get((Type *)T));
85 /// Dump out the type map for debugging purposes.
87 for (auto &Pair : MappedTypes) {
88 dbgs() << "TypeMap: ";
89 Pair.first->print(dbgs());
91 Pair.second->print(dbgs());
97 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
99 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
103 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
104 assert(SpeculativeTypes.empty());
105 assert(SpeculativeDstOpaqueTypes.empty());
107 // Check to see if these types are recursively isomorphic and establish a
108 // mapping between them if so.
109 if (!areTypesIsomorphic(DstTy, SrcTy)) {
110 // Oops, they aren't isomorphic. Just discard this request by rolling out
111 // any speculative mappings we've established.
112 for (Type *Ty : SpeculativeTypes)
113 MappedTypes.erase(Ty);
115 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
116 SpeculativeDstOpaqueTypes.size());
117 for (StructType *Ty : SpeculativeDstOpaqueTypes)
118 DstResolvedOpaqueTypes.erase(Ty);
120 for (Type *Ty : SpeculativeTypes)
121 if (auto *STy = dyn_cast<StructType>(Ty))
125 SpeculativeTypes.clear();
126 SpeculativeDstOpaqueTypes.clear();
129 /// Recursively walk this pair of types, returning true if they are isomorphic,
130 /// false if they are not.
131 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
132 // Two types with differing kinds are clearly not isomorphic.
133 if (DstTy->getTypeID() != SrcTy->getTypeID())
136 // If we have an entry in the MappedTypes table, then we have our answer.
137 Type *&Entry = MappedTypes[SrcTy];
139 return Entry == DstTy;
141 // Two identical types are clearly isomorphic. Remember this
142 // non-speculatively.
143 if (DstTy == SrcTy) {
148 // Okay, we have two types with identical kinds that we haven't seen before.
150 // If this is an opaque struct type, special case it.
151 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
152 // Mapping an opaque type to any struct, just keep the dest struct.
153 if (SSTy->isOpaque()) {
155 SpeculativeTypes.push_back(SrcTy);
159 // Mapping a non-opaque source type to an opaque dest. If this is the first
160 // type that we're mapping onto this destination type then we succeed. Keep
161 // the dest, but fill it in later. If this is the second (different) type
162 // that we're trying to map onto the same opaque type then we fail.
163 if (cast<StructType>(DstTy)->isOpaque()) {
164 // We can only map one source type onto the opaque destination type.
165 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
167 SrcDefinitionsToResolve.push_back(SSTy);
168 SpeculativeTypes.push_back(SrcTy);
169 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
175 // If the number of subtypes disagree between the two types, then we fail.
176 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
179 // Fail if any of the extra properties (e.g. array size) of the type disagree.
180 if (isa<IntegerType>(DstTy))
181 return false; // bitwidth disagrees.
182 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
183 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
186 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
187 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
189 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
190 StructType *SSTy = cast<StructType>(SrcTy);
191 if (DSTy->isLiteral() != SSTy->isLiteral() ||
192 DSTy->isPacked() != SSTy->isPacked())
194 } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
195 if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
197 } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
198 if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
202 // Otherwise, we speculate that these two types will line up and recursively
203 // check the subelements.
205 SpeculativeTypes.push_back(SrcTy);
207 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
208 if (!areTypesIsomorphic(DstTy->getContainedType(I),
209 SrcTy->getContainedType(I)))
212 // If everything seems to have lined up, then everything is great.
216 void TypeMapTy::linkDefinedTypeBodies() {
217 SmallVector<Type*, 16> Elements;
218 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
219 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
220 assert(DstSTy->isOpaque());
222 // Map the body of the source type over to a new body for the dest type.
223 Elements.resize(SrcSTy->getNumElements());
224 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
225 Elements[I] = get(SrcSTy->getElementType(I));
227 DstSTy->setBody(Elements, SrcSTy->isPacked());
229 SrcDefinitionsToResolve.clear();
230 DstResolvedOpaqueTypes.clear();
233 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
234 ArrayRef<Type *> ETypes) {
235 DTy->setBody(ETypes, STy->isPacked());
238 if (STy->hasName()) {
239 SmallString<16> TmpName = STy->getName();
241 DTy->setName(TmpName);
244 DstStructTypesSet.addNonOpaque(DTy);
247 Type *TypeMapTy::get(Type *Ty) {
248 SmallPtrSet<StructType *, 8> Visited;
249 return get(Ty, Visited);
252 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
253 // If we already have an entry for this type, return it.
254 Type **Entry = &MappedTypes[Ty];
258 // These are types that LLVM itself will unique.
259 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
263 for (auto &Pair : MappedTypes) {
264 assert(!(Pair.first != Ty && Pair.second == Ty) &&
265 "mapping to a source type");
270 if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
271 StructType *DTy = StructType::create(Ty->getContext());
275 // If this is not a recursive type, then just map all of the elements and
276 // then rebuild the type from inside out.
277 SmallVector<Type *, 4> ElementTypes;
279 // If there are no element types to map, then the type is itself. This is
280 // true for the anonymous {} struct, things like 'float', integers, etc.
281 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
284 // Remap all of the elements, keeping track of whether any of them change.
285 bool AnyChange = false;
286 ElementTypes.resize(Ty->getNumContainedTypes());
287 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
288 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
289 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
292 // If we found our type while recursively processing stuff, just use it.
293 Entry = &MappedTypes[Ty];
295 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
296 if (DTy->isOpaque()) {
297 auto *STy = cast<StructType>(Ty);
298 finishType(DTy, STy, ElementTypes);
304 // If all of the element types mapped directly over and the type is not
305 // a nomed struct, then the type is usable as-is.
306 if (!AnyChange && IsUniqued)
309 // Otherwise, rebuild a modified type.
310 switch (Ty->getTypeID()) {
312 llvm_unreachable("unknown derived type to remap");
313 case Type::ArrayTyID:
314 return *Entry = ArrayType::get(ElementTypes[0],
315 cast<ArrayType>(Ty)->getNumElements());
316 case Type::VectorTyID:
317 return *Entry = VectorType::get(ElementTypes[0],
318 cast<VectorType>(Ty)->getNumElements());
319 case Type::PointerTyID:
320 return *Entry = PointerType::get(ElementTypes[0],
321 cast<PointerType>(Ty)->getAddressSpace());
322 case Type::FunctionTyID:
323 return *Entry = FunctionType::get(ElementTypes[0],
324 makeArrayRef(ElementTypes).slice(1),
325 cast<FunctionType>(Ty)->isVarArg());
326 case Type::StructTyID: {
327 auto *STy = cast<StructType>(Ty);
328 bool IsPacked = STy->isPacked();
330 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
332 // If the type is opaque, we can just use it directly.
333 if (STy->isOpaque()) {
334 DstStructTypesSet.addOpaque(STy);
338 if (StructType *OldT =
339 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
341 return *Entry = OldT;
345 DstStructTypesSet.addNonOpaque(STy);
349 StructType *DTy = StructType::create(Ty->getContext());
350 finishType(DTy, STy, ElementTypes);
356 //===----------------------------------------------------------------------===//
357 // ModuleLinker implementation.
358 //===----------------------------------------------------------------------===//
363 /// Creates prototypes for functions that are lazily linked on the fly. This
364 /// speeds up linking for modules with many/ lazily linked functions of which
366 class ValueMaterializerTy : public ValueMaterializer {
369 std::vector<GlobalValue *> &LazilyLinkGlobalValues;
372 ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
373 std::vector<GlobalValue *> &LazilyLinkGlobalValues)
374 : ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
375 LazilyLinkGlobalValues(LazilyLinkGlobalValues) {}
377 Value *materializeValueFor(Value *V) override;
380 class LinkDiagnosticInfo : public DiagnosticInfo {
384 LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
385 void print(DiagnosticPrinter &DP) const override;
387 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
389 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
390 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
392 /// This is an implementation class for the LinkModules function, which is the
393 /// entrypoint for this file.
398 ValueMaterializerTy ValMaterializer;
400 /// Mapping of values from what they used to be in Src, to what they are now
401 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
402 /// due to the use of Value handles which the Linker doesn't actually need,
403 /// but this allows us to reuse the ValueMapper code.
404 ValueToValueMapTy ValueMap;
406 struct AppendingVarInfo {
407 GlobalVariable *NewGV; // New aggregate global in dest module.
408 const Constant *DstInit; // Old initializer from dest module.
409 const Constant *SrcInit; // Old initializer from src module.
412 std::vector<AppendingVarInfo> AppendingVars;
414 // Set of items not to link in from source.
415 SmallPtrSet<const Value *, 16> DoNotLinkFromSource;
417 // Vector of GlobalValues to lazily link in.
418 std::vector<GlobalValue *> LazilyLinkGlobalValues;
420 /// Functions that have replaced other functions.
421 SmallPtrSet<const Function *, 16> OverridingFunctions;
423 Linker::DiagnosticHandlerFunction DiagnosticHandler;
426 ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
427 Linker::DiagnosticHandlerFunction DiagnosticHandler)
428 : DstM(dstM), SrcM(srcM), TypeMap(Set),
429 ValMaterializer(TypeMap, DstM, LazilyLinkGlobalValues),
430 DiagnosticHandler(DiagnosticHandler) {}
435 bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
436 const GlobalValue &Src);
438 /// Helper method for setting a message and returning an error code.
439 bool emitError(const Twine &Message) {
440 DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
444 void emitWarning(const Twine &Message) {
445 DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
448 bool getComdatLeader(Module *M, StringRef ComdatName,
449 const GlobalVariable *&GVar);
450 bool computeResultingSelectionKind(StringRef ComdatName,
451 Comdat::SelectionKind Src,
452 Comdat::SelectionKind Dst,
453 Comdat::SelectionKind &Result,
455 std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
457 bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
460 /// Given a global in the source module, return the global in the
461 /// destination module that is being linked to, if any.
462 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
463 // If the source has no name it can't link. If it has local linkage,
464 // there is no name match-up going on.
465 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
468 // Otherwise see if we have a match in the destination module's symtab.
469 GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
473 // If we found a global with the same name in the dest module, but it has
474 // internal linkage, we are really not doing any linkage here.
475 if (DGV->hasLocalLinkage())
478 // Otherwise, we do in fact link to the destination global.
482 void computeTypeMapping();
484 void upgradeMismatchedGlobalArray(StringRef Name);
485 void upgradeMismatchedGlobals();
487 bool linkAppendingVarProto(GlobalVariable *DstGV,
488 const GlobalVariable *SrcGV);
490 bool linkGlobalValueProto(GlobalValue *GV);
491 bool linkModuleFlagsMetadata();
493 void linkAppendingVarInit(const AppendingVarInfo &AVI);
495 void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
496 bool linkFunctionBody(Function &Dst, Function &Src);
497 void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
498 bool linkGlobalValueBody(GlobalValue &Src);
500 void linkNamedMDNodes();
501 void stripReplacedSubprograms();
505 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
506 /// table. This is good for all clients except for us. Go through the trouble
507 /// to force this back.
508 static void forceRenaming(GlobalValue *GV, StringRef Name) {
509 // If the global doesn't force its name or if it already has the right name,
510 // there is nothing for us to do.
511 if (GV->hasLocalLinkage() || GV->getName() == Name)
514 Module *M = GV->getParent();
516 // If there is a conflict, rename the conflict.
517 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
518 GV->takeName(ConflictGV);
519 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
520 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
522 GV->setName(Name); // Force the name back
526 /// copy additional attributes (those not needed to construct a GlobalValue)
527 /// from the SrcGV to the DestGV.
528 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
529 DestGV->copyAttributesFrom(SrcGV);
530 forceRenaming(DestGV, SrcGV->getName());
533 static bool isLessConstraining(GlobalValue::VisibilityTypes a,
534 GlobalValue::VisibilityTypes b) {
535 if (a == GlobalValue::HiddenVisibility)
537 if (b == GlobalValue::HiddenVisibility)
539 if (a == GlobalValue::ProtectedVisibility)
541 if (b == GlobalValue::ProtectedVisibility)
546 /// Loop through the global variables in the src module and merge them into the
548 static GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap, Module &DstM,
549 const GlobalVariable *SGVar) {
550 // No linking to be performed or linking from the source: simply create an
551 // identical version of the symbol over in the dest module... the
552 // initializer will be filled in later by LinkGlobalInits.
553 GlobalVariable *NewDGV = new GlobalVariable(
554 DstM, TypeMap.get(SGVar->getType()->getElementType()),
555 SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr,
556 SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
557 SGVar->getType()->getAddressSpace());
562 /// Link the function in the source module into the destination module if
563 /// needed, setting up mapping information.
564 static Function *copyFunctionProto(TypeMapTy &TypeMap, Module &DstM,
565 const Function *SF) {
566 // If there is no linkage to be performed or we are linking from the source,
568 return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(),
569 SF->getName(), &DstM);
572 /// Set up prototypes for any aliases that come over from the source module.
573 static GlobalAlias *copyGlobalAliasProto(TypeMapTy &TypeMap, Module &DstM,
574 const GlobalAlias *SGA) {
575 // If there is no linkage to be performed or we're linking from the source,
577 auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
578 return GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
579 SGA->getLinkage(), SGA->getName(), &DstM);
582 static GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, Module &DstM,
583 const GlobalValue *SGV) {
585 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV))
586 NewGV = copyGlobalVariableProto(TypeMap, DstM, SGVar);
587 else if (auto *SF = dyn_cast<Function>(SGV))
588 NewGV = copyFunctionProto(TypeMap, DstM, SF);
590 NewGV = copyGlobalAliasProto(TypeMap, DstM, cast<GlobalAlias>(SGV));
591 copyGVAttributes(NewGV, SGV);
595 Value *ValueMaterializerTy::materializeValueFor(Value *V) {
596 auto *SGV = dyn_cast<GlobalValue>(V);
600 GlobalValue *DGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
602 if (Comdat *SC = SGV->getComdat()) {
603 if (auto *DGO = dyn_cast<GlobalObject>(DGV)) {
604 Comdat *DC = DstM->getOrInsertComdat(SC->getName());
609 LazilyLinkGlobalValues.push_back(SGV);
613 bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
614 const GlobalVariable *&GVar) {
615 const GlobalValue *GVal = M->getNamedValue(ComdatName);
616 if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
617 GVal = GA->getBaseObject();
619 // We cannot resolve the size of the aliasee yet.
620 return emitError("Linking COMDATs named '" + ComdatName +
621 "': COMDAT key involves incomputable alias size.");
624 GVar = dyn_cast_or_null<GlobalVariable>(GVal);
627 "Linking COMDATs named '" + ComdatName +
628 "': GlobalVariable required for data dependent selection!");
633 bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
634 Comdat::SelectionKind Src,
635 Comdat::SelectionKind Dst,
636 Comdat::SelectionKind &Result,
638 // The ability to mix Comdat::SelectionKind::Any with
639 // Comdat::SelectionKind::Largest is a behavior that comes from COFF.
640 bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
641 Dst == Comdat::SelectionKind::Largest;
642 bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
643 Src == Comdat::SelectionKind::Largest;
644 if (DstAnyOrLargest && SrcAnyOrLargest) {
645 if (Dst == Comdat::SelectionKind::Largest ||
646 Src == Comdat::SelectionKind::Largest)
647 Result = Comdat::SelectionKind::Largest;
649 Result = Comdat::SelectionKind::Any;
650 } else if (Src == Dst) {
653 return emitError("Linking COMDATs named '" + ComdatName +
654 "': invalid selection kinds!");
658 case Comdat::SelectionKind::Any:
662 case Comdat::SelectionKind::NoDuplicates:
663 return emitError("Linking COMDATs named '" + ComdatName +
664 "': noduplicates has been violated!");
665 case Comdat::SelectionKind::ExactMatch:
666 case Comdat::SelectionKind::Largest:
667 case Comdat::SelectionKind::SameSize: {
668 const GlobalVariable *DstGV;
669 const GlobalVariable *SrcGV;
670 if (getComdatLeader(DstM, ComdatName, DstGV) ||
671 getComdatLeader(SrcM, ComdatName, SrcGV))
674 const DataLayout *DstDL = DstM->getDataLayout();
675 const DataLayout *SrcDL = SrcM->getDataLayout();
676 if (!DstDL || !SrcDL) {
678 "Linking COMDATs named '" + ComdatName +
679 "': can't do size dependent selection without DataLayout!");
682 DstDL->getTypeAllocSize(DstGV->getType()->getPointerElementType());
684 SrcDL->getTypeAllocSize(SrcGV->getType()->getPointerElementType());
685 if (Result == Comdat::SelectionKind::ExactMatch) {
686 if (SrcGV->getInitializer() != DstGV->getInitializer())
687 return emitError("Linking COMDATs named '" + ComdatName +
688 "': ExactMatch violated!");
690 } else if (Result == Comdat::SelectionKind::Largest) {
691 LinkFromSrc = SrcSize > DstSize;
692 } else if (Result == Comdat::SelectionKind::SameSize) {
693 if (SrcSize != DstSize)
694 return emitError("Linking COMDATs named '" + ComdatName +
695 "': SameSize violated!");
698 llvm_unreachable("unknown selection kind");
707 bool ModuleLinker::getComdatResult(const Comdat *SrcC,
708 Comdat::SelectionKind &Result,
710 Comdat::SelectionKind SSK = SrcC->getSelectionKind();
711 StringRef ComdatName = SrcC->getName();
712 Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
713 Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
715 if (DstCI == ComdatSymTab.end()) {
716 // Use the comdat if it is only available in one of the modules.
722 const Comdat *DstC = &DstCI->second;
723 Comdat::SelectionKind DSK = DstC->getSelectionKind();
724 return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
728 bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
729 const GlobalValue &Dest,
730 const GlobalValue &Src) {
731 // We always have to add Src if it has appending linkage.
732 if (Src.hasAppendingLinkage()) {
737 bool SrcIsDeclaration = Src.isDeclarationForLinker();
738 bool DestIsDeclaration = Dest.isDeclarationForLinker();
740 if (SrcIsDeclaration) {
741 // If Src is external or if both Src & Dest are external.. Just link the
742 // external globals, we aren't adding anything.
743 if (Src.hasDLLImportStorageClass()) {
744 // If one of GVs is marked as DLLImport, result should be dllimport'ed.
745 LinkFromSrc = DestIsDeclaration;
748 // If the Dest is weak, use the source linkage.
749 LinkFromSrc = Dest.hasExternalWeakLinkage();
753 if (DestIsDeclaration) {
754 // If Dest is external but Src is not:
759 if (Src.hasCommonLinkage()) {
760 if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
765 if (!Dest.hasCommonLinkage()) {
770 // FIXME: Make datalayout mandatory and just use getDataLayout().
771 DataLayout DL(Dest.getParent());
773 uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
774 uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
775 LinkFromSrc = SrcSize > DestSize;
779 if (Src.isWeakForLinker()) {
780 assert(!Dest.hasExternalWeakLinkage());
781 assert(!Dest.hasAvailableExternallyLinkage());
783 if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
792 if (Dest.isWeakForLinker()) {
793 assert(Src.hasExternalLinkage());
798 assert(!Src.hasExternalWeakLinkage());
799 assert(!Dest.hasExternalWeakLinkage());
800 assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
801 "Unexpected linkage type!");
802 return emitError("Linking globals named '" + Src.getName() +
803 "': symbol multiply defined!");
806 /// Loop over all of the linked values to compute type mappings. For example,
807 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
808 /// types 'Foo' but one got renamed when the module was loaded into the same
810 void ModuleLinker::computeTypeMapping() {
811 for (GlobalValue &SGV : SrcM->globals()) {
812 GlobalValue *DGV = getLinkedToGlobal(&SGV);
816 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
817 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
821 // Unify the element type of appending arrays.
822 ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
823 ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
824 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
827 for (GlobalValue &SGV : *SrcM) {
828 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
829 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
832 for (GlobalValue &SGV : SrcM->aliases()) {
833 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
834 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
837 // Incorporate types by name, scanning all the types in the source module.
838 // At this point, the destination module may have a type "%foo = { i32 }" for
839 // example. When the source module got loaded into the same LLVMContext, if
840 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
841 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
842 for (StructType *ST : Types) {
846 // Check to see if there is a dot in the name followed by a digit.
847 size_t DotPos = ST->getName().rfind('.');
848 if (DotPos == 0 || DotPos == StringRef::npos ||
849 ST->getName().back() == '.' ||
850 !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
853 // Check to see if the destination module has a struct with the prefix name.
854 StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos));
858 // Don't use it if this actually came from the source module. They're in
859 // the same LLVMContext after all. Also don't use it unless the type is
860 // actually used in the destination module. This can happen in situations
865 // %Z = type { %A } %B = type { %C.1 }
866 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
867 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
868 // %C = type { i8* } %B.3 = type { %C.1 }
870 // When we link Module B with Module A, the '%B' in Module B is
871 // used. However, that would then use '%C.1'. But when we process '%C.1',
872 // we prefer to take the '%C' version. So we are then left with both
873 // '%C.1' and '%C' being used for the same types. This leads to some
874 // variables using one type and some using the other.
875 if (TypeMap.DstStructTypesSet.hasType(DST))
876 TypeMap.addTypeMapping(DST, ST);
879 // Now that we have discovered all of the type equivalences, get a body for
880 // any 'opaque' types in the dest module that are now resolved.
881 TypeMap.linkDefinedTypeBodies();
884 static void upgradeGlobalArray(GlobalVariable *GV) {
885 ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
886 StructType *OldTy = cast<StructType>(ATy->getElementType());
887 assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
889 // Get the upgraded 3 element type.
890 PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
891 Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
893 StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
895 // Build new constants with a null third field filled in.
896 Constant *OldInitC = GV->getInitializer();
897 ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
898 if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
899 // Invalid initializer; give up.
901 std::vector<Constant *> Initializers;
902 if (OldInit && OldInit->getNumOperands()) {
903 Value *Null = Constant::getNullValue(VoidPtrTy);
904 for (Use &U : OldInit->operands()) {
905 ConstantStruct *Init = cast<ConstantStruct>(U.get());
906 Initializers.push_back(ConstantStruct::get(
907 NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
910 assert(Initializers.size() == ATy->getNumElements() &&
911 "Failed to copy all array elements");
913 // Replace the old GV with a new one.
914 ATy = ArrayType::get(NewTy, Initializers.size());
915 Constant *NewInit = ConstantArray::get(ATy, Initializers);
916 GlobalVariable *NewGV = new GlobalVariable(
917 *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
918 GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
919 GV->isExternallyInitialized());
920 NewGV->copyAttributesFrom(GV);
922 assert(GV->use_empty() && "program cannot use initializer list");
923 GV->eraseFromParent();
926 void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
927 // Look for the global arrays.
928 auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM->getNamedValue(Name));
931 auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM->getNamedValue(Name));
935 // Check if the types already match.
936 auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
938 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
942 // Grab the element types. We can only upgrade an array of a two-field
943 // struct. Only bother if the other one has three-fields.
944 auto *DstEltTy = cast<StructType>(DstTy->getElementType());
945 auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
946 if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
947 upgradeGlobalArray(DstGV);
950 if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
951 upgradeGlobalArray(SrcGV);
953 // We can't upgrade any other differences.
956 void ModuleLinker::upgradeMismatchedGlobals() {
957 upgradeMismatchedGlobalArray("llvm.global_ctors");
958 upgradeMismatchedGlobalArray("llvm.global_dtors");
961 /// If there were any appending global variables, link them together now.
962 /// Return true on error.
963 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
964 const GlobalVariable *SrcGV) {
966 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
967 return emitError("Linking globals named '" + SrcGV->getName() +
968 "': can only link appending global with another appending global!");
970 ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
972 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
973 Type *EltTy = DstTy->getElementType();
975 // Check to see that they two arrays agree on type.
976 if (EltTy != SrcTy->getElementType())
977 return emitError("Appending variables with different element types!");
978 if (DstGV->isConstant() != SrcGV->isConstant())
979 return emitError("Appending variables linked with different const'ness!");
981 if (DstGV->getAlignment() != SrcGV->getAlignment())
983 "Appending variables with different alignment need to be linked!");
985 if (DstGV->getVisibility() != SrcGV->getVisibility())
987 "Appending variables with different visibility need to be linked!");
989 if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
991 "Appending variables with different unnamed_addr need to be linked!");
993 if (StringRef(DstGV->getSection()) != SrcGV->getSection())
995 "Appending variables with different section name need to be linked!");
997 uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
998 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
1000 // Create the new global variable.
1001 GlobalVariable *NG =
1002 new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
1003 DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
1004 DstGV->getThreadLocalMode(),
1005 DstGV->getType()->getAddressSpace());
1007 // Propagate alignment, visibility and section info.
1008 copyGVAttributes(NG, DstGV);
1010 AppendingVarInfo AVI;
1012 AVI.DstInit = DstGV->getInitializer();
1013 AVI.SrcInit = SrcGV->getInitializer();
1014 AppendingVars.push_back(AVI);
1016 // Replace any uses of the two global variables with uses of the new
1018 ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
1020 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
1021 DstGV->eraseFromParent();
1023 // Track the source variable so we don't try to link it.
1024 DoNotLinkFromSource.insert(SrcGV);
1029 bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
1030 GlobalValue *DGV = getLinkedToGlobal(SGV);
1032 // Handle the ultra special appending linkage case first.
1033 if (DGV && DGV->hasAppendingLinkage())
1034 return linkAppendingVarProto(cast<GlobalVariable>(DGV),
1035 cast<GlobalVariable>(SGV));
1037 bool LinkFromSrc = true;
1038 Comdat *C = nullptr;
1039 GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
1040 bool HasUnnamedAddr = SGV->hasUnnamedAddr();
1042 if (const Comdat *SC = SGV->getComdat()) {
1043 Comdat::SelectionKind SK;
1044 std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
1045 C = DstM->getOrInsertComdat(SC->getName());
1046 C->setSelectionKind(SK);
1048 if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
1053 // Track the source global so that we don't attempt to copy it over when
1054 // processing global initializers.
1055 DoNotLinkFromSource.insert(SGV);
1058 // Make sure to remember this mapping.
1060 ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
1064 Visibility = isLessConstraining(Visibility, DGV->getVisibility())
1065 ? DGV->getVisibility()
1067 HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
1070 if (!LinkFromSrc && !DGV)
1077 // If the GV is to be lazily linked, don't create it just yet.
1078 // The ValueMaterializerTy will deal with creating it if it's used.
1079 if (!DGV && (SGV->hasLocalLinkage() || SGV->hasLinkOnceLinkage() ||
1080 SGV->hasAvailableExternallyLinkage())) {
1081 DoNotLinkFromSource.insert(SGV);
1085 NewGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
1087 if (DGV && isa<Function>(DGV))
1088 if (auto *NewF = dyn_cast<Function>(NewGV))
1089 OverridingFunctions.insert(NewF);
1092 NewGV->setUnnamedAddr(HasUnnamedAddr);
1093 NewGV->setVisibility(Visibility);
1095 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
1097 NewGO->setComdat(C);
1099 if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
1100 NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
1103 if (auto *NewGVar = dyn_cast<GlobalVariable>(NewGV)) {
1104 auto *DGVar = dyn_cast_or_null<GlobalVariable>(DGV);
1105 auto *SGVar = dyn_cast<GlobalVariable>(SGV);
1106 if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() &&
1107 (!DGVar->isConstant() || !SGVar->isConstant()))
1108 NewGVar->setConstant(false);
1111 // Make sure to remember this mapping.
1114 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
1115 DGV->eraseFromParent();
1117 ValueMap[SGV] = NewGV;
1123 static void getArrayElements(const Constant *C,
1124 SmallVectorImpl<Constant *> &Dest) {
1125 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
1127 for (unsigned i = 0; i != NumElements; ++i)
1128 Dest.push_back(C->getAggregateElement(i));
1131 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
1132 // Merge the initializer.
1133 SmallVector<Constant *, 16> DstElements;
1134 getArrayElements(AVI.DstInit, DstElements);
1136 SmallVector<Constant *, 16> SrcElements;
1137 getArrayElements(AVI.SrcInit, SrcElements);
1139 ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
1141 StringRef Name = AVI.NewGV->getName();
1142 bool IsNewStructor =
1143 (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
1144 cast<StructType>(NewType->getElementType())->getNumElements() == 3;
1146 for (auto *V : SrcElements) {
1147 if (IsNewStructor) {
1148 Constant *Key = V->getAggregateElement(2);
1149 if (DoNotLinkFromSource.count(Key))
1152 DstElements.push_back(
1153 MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer));
1155 if (IsNewStructor) {
1156 NewType = ArrayType::get(NewType->getElementType(), DstElements.size());
1157 AVI.NewGV->mutateType(PointerType::get(NewType, 0));
1160 AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements));
1163 /// Update the initializers in the Dest module now that all globals that may be
1164 /// referenced are in Dest.
1165 void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
1166 // Figure out what the initializer looks like in the dest module.
1167 Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, RF_None, &TypeMap,
1171 /// Copy the source function over into the dest function and fix up references
1172 /// to values. At this point we know that Dest is an external function, and
1173 /// that Src is not.
1174 bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) {
1175 assert(Dst.isDeclaration() && !Src.isDeclaration());
1177 // Materialize if needed.
1178 if (std::error_code EC = Src.materialize())
1179 return emitError(EC.message());
1181 // Link in the prefix data.
1182 if (Src.hasPrefixData())
1183 Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, RF_None, &TypeMap,
1186 // Link in the prologue data.
1187 if (Src.hasPrologueData())
1188 Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap, RF_None,
1189 &TypeMap, &ValMaterializer));
1191 // Go through and convert function arguments over, remembering the mapping.
1192 Function::arg_iterator DI = Dst.arg_begin();
1193 for (Argument &Arg : Src.args()) {
1194 DI->setName(Arg.getName()); // Copy the name over.
1196 // Add a mapping to our mapping.
1197 ValueMap[&Arg] = DI;
1201 // Splice the body of the source function into the dest function.
1202 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
1204 // At this point, all of the instructions and values of the function are now
1205 // copied over. The only problem is that they are still referencing values in
1206 // the Source function as operands. Loop through all of the operands of the
1207 // functions and patch them up to point to the local versions.
1208 for (BasicBlock &BB : Dst)
1209 for (Instruction &I : BB)
1210 RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries, &TypeMap,
1213 // There is no need to map the arguments anymore.
1214 for (Argument &Arg : Src.args())
1215 ValueMap.erase(&Arg);
1217 Src.Dematerialize();
1221 void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
1222 Constant *Aliasee = Src.getAliasee();
1224 MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
1225 Dst.setAliasee(Val);
1228 bool ModuleLinker::linkGlobalValueBody(GlobalValue &Src) {
1229 Value *Dst = ValueMap[&Src];
1231 if (auto *F = dyn_cast<Function>(&Src))
1232 return linkFunctionBody(cast<Function>(*Dst), *F);
1233 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1234 linkGlobalInit(cast<GlobalVariable>(*Dst), *GVar);
1237 linkAliasBody(cast<GlobalAlias>(*Dst), cast<GlobalAlias>(Src));
1241 /// Insert all of the named MDNodes in Src into the Dest module.
1242 void ModuleLinker::linkNamedMDNodes() {
1243 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1244 for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
1245 E = SrcM->named_metadata_end(); I != E; ++I) {
1246 // Don't link module flags here. Do them separately.
1247 if (&*I == SrcModFlags) continue;
1248 NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
1249 // Add Src elements into Dest node.
1250 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1251 DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
1252 RF_None, &TypeMap, &ValMaterializer));
1256 /// Drop DISubprograms that have been superseded.
1258 /// FIXME: this creates an asymmetric result: we strip losing subprograms from
1259 /// DstM, but leave losing subprograms in SrcM. Instead we should also strip
1260 /// losers from SrcM, but this requires extra plumbing in MapValue.
1261 void ModuleLinker::stripReplacedSubprograms() {
1262 // Avoid quadratic runtime by returning early when there's nothing to do.
1263 if (OverridingFunctions.empty())
1266 // Move the functions now, so the set gets cleared even on early returns.
1267 auto Functions = std::move(OverridingFunctions);
1268 OverridingFunctions.clear();
1270 // Drop subprograms whose functions have been overridden by the new compile
1272 NamedMDNode *CompileUnits = DstM->getNamedMetadata("llvm.dbg.cu");
1275 for (unsigned I = 0, E = CompileUnits->getNumOperands(); I != E; ++I) {
1276 DICompileUnit CU(CompileUnits->getOperand(I));
1277 assert(CU && "Expected valid compile unit");
1279 DITypedArray<DISubprogram> SPs(CU.getSubprograms());
1280 assert(SPs && "Expected valid subprogram array");
1282 SmallVector<Metadata *, 16> NewSPs;
1283 NewSPs.reserve(SPs.getNumElements());
1284 for (unsigned S = 0, SE = SPs.getNumElements(); S != SE; ++S) {
1285 DISubprogram SP = SPs.getElement(S);
1286 if (SP && SP.getFunction() && Functions.count(SP.getFunction()))
1289 NewSPs.push_back(SP);
1292 // Redirect operand to the overriding subprogram.
1293 if (NewSPs.size() != SPs.getNumElements())
1294 CU.replaceSubprograms(DIArray(MDNode::get(DstM->getContext(), NewSPs)));
1298 /// Merge the linker flags in Src into the Dest module.
1299 bool ModuleLinker::linkModuleFlagsMetadata() {
1300 // If the source module has no module flags, we are done.
1301 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1302 if (!SrcModFlags) return false;
1304 // If the destination module doesn't have module flags yet, then just copy
1305 // over the source module's flags.
1306 NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1307 if (DstModFlags->getNumOperands() == 0) {
1308 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1309 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1314 // First build a map of the existing module flags and requirements.
1315 DenseMap<MDString*, MDNode*> Flags;
1316 SmallSetVector<MDNode*, 16> Requirements;
1317 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1318 MDNode *Op = DstModFlags->getOperand(I);
1319 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
1320 MDString *ID = cast<MDString>(Op->getOperand(1));
1322 if (Behavior->getZExtValue() == Module::Require) {
1323 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1329 // Merge in the flags from the source module, and also collect its set of
1331 bool HasErr = false;
1332 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1333 MDNode *SrcOp = SrcModFlags->getOperand(I);
1334 ConstantInt *SrcBehavior =
1335 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1336 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1337 MDNode *DstOp = Flags.lookup(ID);
1338 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1340 // If this is a requirement, add it and continue.
1341 if (SrcBehaviorValue == Module::Require) {
1342 // If the destination module does not already have this requirement, add
1344 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1345 DstModFlags->addOperand(SrcOp);
1350 // If there is no existing flag with this ID, just add it.
1353 DstModFlags->addOperand(SrcOp);
1357 // Otherwise, perform a merge.
1358 ConstantInt *DstBehavior =
1359 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1360 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1362 // If either flag has override behavior, handle it first.
1363 if (DstBehaviorValue == Module::Override) {
1364 // Diagnose inconsistent flags which both have override behavior.
1365 if (SrcBehaviorValue == Module::Override &&
1366 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1367 HasErr |= emitError("linking module flags '" + ID->getString() +
1368 "': IDs have conflicting override values");
1371 } else if (SrcBehaviorValue == Module::Override) {
1372 // Update the destination flag to that of the source.
1373 DstOp->replaceOperandWith(0, ConstantAsMetadata::get(SrcBehavior));
1374 DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
1378 // Diagnose inconsistent merge behavior types.
1379 if (SrcBehaviorValue != DstBehaviorValue) {
1380 HasErr |= emitError("linking module flags '" + ID->getString() +
1381 "': IDs have conflicting behaviors");
1385 // Perform the merge for standard behavior types.
1386 switch (SrcBehaviorValue) {
1387 case Module::Require:
1388 case Module::Override: llvm_unreachable("not possible");
1389 case Module::Error: {
1390 // Emit an error if the values differ.
1391 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1392 HasErr |= emitError("linking module flags '" + ID->getString() +
1393 "': IDs have conflicting values");
1397 case Module::Warning: {
1398 // Emit a warning if the values differ.
1399 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1400 emitWarning("linking module flags '" + ID->getString() +
1401 "': IDs have conflicting values");
1405 case Module::Append: {
1406 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1407 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1408 SmallVector<Metadata *, 8> MDs;
1409 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
1410 for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1411 MDs.push_back(DstValue->getOperand(i));
1412 for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1413 MDs.push_back(SrcValue->getOperand(i));
1414 DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(), MDs));
1417 case Module::AppendUnique: {
1418 SmallSetVector<Metadata *, 16> Elts;
1419 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1420 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1421 for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1422 Elts.insert(DstValue->getOperand(i));
1423 for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1424 Elts.insert(SrcValue->getOperand(i));
1425 DstOp->replaceOperandWith(
1426 2, MDNode::get(DstM->getContext(),
1427 makeArrayRef(Elts.begin(), Elts.end())));
1433 // Check all of the requirements.
1434 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1435 MDNode *Requirement = Requirements[I];
1436 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1437 Metadata *ReqValue = Requirement->getOperand(1);
1439 MDNode *Op = Flags[Flag];
1440 if (!Op || Op->getOperand(2) != ReqValue) {
1441 HasErr |= emitError("linking module flags '" + Flag->getString() +
1442 "': does not have the required value");
1450 bool ModuleLinker::run() {
1451 assert(DstM && "Null destination module");
1452 assert(SrcM && "Null source module");
1454 // Inherit the target data from the source module if the destination module
1455 // doesn't have one already.
1456 if (!DstM->getDataLayout() && SrcM->getDataLayout())
1457 DstM->setDataLayout(SrcM->getDataLayout());
1459 // Copy the target triple from the source to dest if the dest's is empty.
1460 if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1461 DstM->setTargetTriple(SrcM->getTargetTriple());
1463 if (SrcM->getDataLayout() && DstM->getDataLayout() &&
1464 *SrcM->getDataLayout() != *DstM->getDataLayout()) {
1465 emitWarning("Linking two modules of different data layouts: '" +
1466 SrcM->getModuleIdentifier() + "' is '" +
1467 SrcM->getDataLayoutStr() + "' whereas '" +
1468 DstM->getModuleIdentifier() + "' is '" +
1469 DstM->getDataLayoutStr() + "'\n");
1471 if (!SrcM->getTargetTriple().empty() &&
1472 DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1473 emitWarning("Linking two modules of different target triples: " +
1474 SrcM->getModuleIdentifier() + "' is '" +
1475 SrcM->getTargetTriple() + "' whereas '" +
1476 DstM->getModuleIdentifier() + "' is '" +
1477 DstM->getTargetTriple() + "'\n");
1480 // Append the module inline asm string.
1481 if (!SrcM->getModuleInlineAsm().empty()) {
1482 if (DstM->getModuleInlineAsm().empty())
1483 DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1485 DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1486 SrcM->getModuleInlineAsm());
1489 // Loop over all of the linked values to compute type mappings.
1490 computeTypeMapping();
1492 ComdatsChosen.clear();
1493 for (const auto &SMEC : SrcM->getComdatSymbolTable()) {
1494 const Comdat &C = SMEC.getValue();
1495 if (ComdatsChosen.count(&C))
1497 Comdat::SelectionKind SK;
1499 if (getComdatResult(&C, SK, LinkFromSrc))
1501 ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
1504 // Upgrade mismatched global arrays.
1505 upgradeMismatchedGlobals();
1507 // Insert all of the globals in src into the DstM module... without linking
1508 // initializers (which could refer to functions not yet mapped over).
1509 for (Module::global_iterator I = SrcM->global_begin(),
1510 E = SrcM->global_end(); I != E; ++I)
1511 if (linkGlobalValueProto(I))
1514 // Link the functions together between the two modules, without doing function
1515 // bodies... this just adds external function prototypes to the DstM
1516 // function... We do this so that when we begin processing function bodies,
1517 // all of the global values that may be referenced are available in our
1519 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1520 if (linkGlobalValueProto(I))
1523 // If there were any aliases, link them now.
1524 for (Module::alias_iterator I = SrcM->alias_begin(),
1525 E = SrcM->alias_end(); I != E; ++I)
1526 if (linkGlobalValueProto(I))
1529 for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1530 linkAppendingVarInit(AppendingVars[i]);
1532 for (const auto &Entry : DstM->getComdatSymbolTable()) {
1533 const Comdat &C = Entry.getValue();
1534 if (C.getSelectionKind() == Comdat::Any)
1536 const GlobalValue *GV = SrcM->getNamedValue(C.getName());
1538 MapValue(GV, ValueMap, RF_None, &TypeMap, &ValMaterializer);
1541 // Link in the function bodies that are defined in the source module into
1543 for (Function &SF : *SrcM) {
1544 // Skip if no body (function is external).
1545 if (SF.isDeclaration())
1548 // Skip if not linking from source.
1549 if (DoNotLinkFromSource.count(&SF))
1552 if (linkGlobalValueBody(SF))
1556 // Resolve all uses of aliases with aliasees.
1557 for (GlobalAlias &Src : SrcM->aliases()) {
1558 if (DoNotLinkFromSource.count(&Src))
1560 linkGlobalValueBody(Src);
1563 // Strip replaced subprograms before linking together compile units.
1564 stripReplacedSubprograms();
1566 // Remap all of the named MDNodes in Src into the DstM module. We do this
1567 // after linking GlobalValues so that MDNodes that reference GlobalValues
1568 // are properly remapped.
1571 // Merge the module flags into the DstM module.
1572 if (linkModuleFlagsMetadata())
1575 // Update the initializers in the DstM module now that all globals that may
1576 // be referenced are in DstM.
1577 for (GlobalVariable &Src : SrcM->globals()) {
1578 // Only process initialized GV's or ones not already in dest.
1579 if (!Src.hasInitializer() || DoNotLinkFromSource.count(&Src))
1581 linkGlobalValueBody(Src);
1584 // Process vector of lazily linked in functions.
1585 while (!LazilyLinkGlobalValues.empty()) {
1586 GlobalValue *SGV = LazilyLinkGlobalValues.back();
1587 LazilyLinkGlobalValues.pop_back();
1589 assert(!SGV->isDeclaration() && "users should not pass down decls");
1590 if (linkGlobalValueBody(*SGV))
1597 Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1598 : ETypes(E), IsPacked(P) {}
1600 Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1601 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1603 bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1604 if (IsPacked != That.IsPacked)
1606 if (ETypes != That.ETypes)
1611 bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1612 return !this->operator==(That);
1615 StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
1616 return DenseMapInfo<StructType *>::getEmptyKey();
1619 StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
1620 return DenseMapInfo<StructType *>::getTombstoneKey();
1623 unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1624 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1628 unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1629 return getHashValue(KeyTy(ST));
1632 bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1633 const StructType *RHS) {
1634 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1636 return LHS == KeyTy(RHS);
1639 bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
1640 const StructType *RHS) {
1641 if (RHS == getEmptyKey())
1642 return LHS == getEmptyKey();
1644 if (RHS == getTombstoneKey())
1645 return LHS == getTombstoneKey();
1647 return KeyTy(LHS) == KeyTy(RHS);
1650 void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1651 assert(!Ty->isOpaque());
1652 NonOpaqueStructTypes.insert(Ty);
1655 void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1656 assert(Ty->isOpaque());
1657 OpaqueStructTypes.insert(Ty);
1661 Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1663 Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1664 auto I = NonOpaqueStructTypes.find_as(Key);
1665 if (I == NonOpaqueStructTypes.end())
1670 bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1672 return OpaqueStructTypes.count(Ty);
1673 auto I = NonOpaqueStructTypes.find(Ty);
1674 if (I == NonOpaqueStructTypes.end())
1679 void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
1680 this->Composite = M;
1681 this->DiagnosticHandler = DiagnosticHandler;
1683 TypeFinder StructTypes;
1684 StructTypes.run(*M, true);
1685 for (StructType *Ty : StructTypes) {
1687 IdentifiedStructTypes.addOpaque(Ty);
1689 IdentifiedStructTypes.addNonOpaque(Ty);
1693 Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
1694 init(M, DiagnosticHandler);
1697 Linker::Linker(Module *M) {
1698 init(M, [this](const DiagnosticInfo &DI) {
1699 Composite->getContext().diagnose(DI);
1706 void Linker::deleteModule() {
1708 Composite = nullptr;
1711 bool Linker::linkInModule(Module *Src) {
1712 ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
1714 return TheLinker.run();
1717 //===----------------------------------------------------------------------===//
1718 // LinkModules entrypoint.
1719 //===----------------------------------------------------------------------===//
1721 /// This function links two modules together, with the resulting Dest module
1722 /// modified to be the composite of the two input modules. If an error occurs,
1723 /// true is returned and ErrorMsg (if not null) is set to indicate the problem.
1724 /// Upon failure, the Dest module could be in a modified state, and shouldn't be
1725 /// relied on to be consistent.
1726 bool Linker::LinkModules(Module *Dest, Module *Src,
1727 DiagnosticHandlerFunction DiagnosticHandler) {
1728 Linker L(Dest, DiagnosticHandler);
1729 return L.linkInModule(Src);
1732 bool Linker::LinkModules(Module *Dest, Module *Src) {
1734 return L.linkInModule(Src);
1737 //===----------------------------------------------------------------------===//
1739 //===----------------------------------------------------------------------===//
1741 LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1742 LLVMLinkerMode Mode, char **OutMessages) {
1743 Module *D = unwrap(Dest);
1744 std::string Message;
1745 raw_string_ostream Stream(Message);
1746 DiagnosticPrinterRawOStream DP(Stream);
1748 LLVMBool Result = Linker::LinkModules(
1749 D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
1751 if (OutMessages && Result)
1752 *OutMessages = strdup(Message.c_str());