1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the LLVM module linker.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Linker/Linker.h"
15 #include "llvm-c/Linker.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DiagnosticInfo.h"
23 #include "llvm/IR/DiagnosticPrinter.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/TypeFinder.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Transforms/Utils/Cloning.h"
36 //===----------------------------------------------------------------------===//
37 // TypeMap implementation.
38 //===----------------------------------------------------------------------===//
41 class TypeMapTy : public ValueMapTypeRemapper {
42 /// This is a mapping from a source type to a destination type to use.
43 DenseMap<Type*, Type*> MappedTypes;
45 /// When checking to see if two subgraphs are isomorphic, we speculatively
46 /// add types to MappedTypes, but keep track of them here in case we need to
48 SmallVector<Type*, 16> SpeculativeTypes;
50 SmallVector<StructType*, 16> SpeculativeDstOpaqueTypes;
52 /// This is a list of non-opaque structs in the source module that are mapped
53 /// to an opaque struct in the destination module.
54 SmallVector<StructType*, 16> SrcDefinitionsToResolve;
56 /// This is the set of opaque types in the destination modules who are
57 /// getting a body from the source module.
58 SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
61 TypeMapTy(Linker::IdentifiedStructTypeSet &DstStructTypesSet)
62 : DstStructTypesSet(DstStructTypesSet) {}
64 Linker::IdentifiedStructTypeSet &DstStructTypesSet;
65 /// Indicate that the specified type in the destination module is conceptually
66 /// equivalent to the specified type in the source module.
67 void addTypeMapping(Type *DstTy, Type *SrcTy);
69 /// Produce a body for an opaque type in the dest module from a type
70 /// definition in the source module.
71 void linkDefinedTypeBodies();
73 /// Return the mapped type to use for the specified input type from the
75 Type *get(Type *SrcTy);
76 Type *get(Type *SrcTy, SmallPtrSet<StructType *, 8> &Visited);
78 void finishType(StructType *DTy, StructType *STy, ArrayRef<Type *> ETypes);
80 FunctionType *get(FunctionType *T) {
81 return cast<FunctionType>(get((Type *)T));
84 /// Dump out the type map for debugging purposes.
86 for (auto &Pair : MappedTypes) {
87 dbgs() << "TypeMap: ";
88 Pair.first->print(dbgs());
90 Pair.second->print(dbgs());
96 Type *remapType(Type *SrcTy) override { return get(SrcTy); }
98 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
102 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
103 assert(SpeculativeTypes.empty());
104 assert(SpeculativeDstOpaqueTypes.empty());
106 // Check to see if these types are recursively isomorphic and establish a
107 // mapping between them if so.
108 if (!areTypesIsomorphic(DstTy, SrcTy)) {
109 // Oops, they aren't isomorphic. Just discard this request by rolling out
110 // any speculative mappings we've established.
111 for (Type *Ty : SpeculativeTypes)
112 MappedTypes.erase(Ty);
114 SrcDefinitionsToResolve.resize(SrcDefinitionsToResolve.size() -
115 SpeculativeDstOpaqueTypes.size());
116 for (StructType *Ty : SpeculativeDstOpaqueTypes)
117 DstResolvedOpaqueTypes.erase(Ty);
119 for (Type *Ty : SpeculativeTypes)
120 if (auto *STy = dyn_cast<StructType>(Ty))
124 SpeculativeTypes.clear();
125 SpeculativeDstOpaqueTypes.clear();
128 /// Recursively walk this pair of types, returning true if they are isomorphic,
129 /// false if they are not.
130 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
131 // Two types with differing kinds are clearly not isomorphic.
132 if (DstTy->getTypeID() != SrcTy->getTypeID())
135 // If we have an entry in the MappedTypes table, then we have our answer.
136 Type *&Entry = MappedTypes[SrcTy];
138 return Entry == DstTy;
140 // Two identical types are clearly isomorphic. Remember this
141 // non-speculatively.
142 if (DstTy == SrcTy) {
147 // Okay, we have two types with identical kinds that we haven't seen before.
149 // If this is an opaque struct type, special case it.
150 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
151 // Mapping an opaque type to any struct, just keep the dest struct.
152 if (SSTy->isOpaque()) {
154 SpeculativeTypes.push_back(SrcTy);
158 // Mapping a non-opaque source type to an opaque dest. If this is the first
159 // type that we're mapping onto this destination type then we succeed. Keep
160 // the dest, but fill it in later. If this is the second (different) type
161 // that we're trying to map onto the same opaque type then we fail.
162 if (cast<StructType>(DstTy)->isOpaque()) {
163 // We can only map one source type onto the opaque destination type.
164 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)).second)
166 SrcDefinitionsToResolve.push_back(SSTy);
167 SpeculativeTypes.push_back(SrcTy);
168 SpeculativeDstOpaqueTypes.push_back(cast<StructType>(DstTy));
174 // If the number of subtypes disagree between the two types, then we fail.
175 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
178 // Fail if any of the extra properties (e.g. array size) of the type disagree.
179 if (isa<IntegerType>(DstTy))
180 return false; // bitwidth disagrees.
181 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
182 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
185 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
186 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
188 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
189 StructType *SSTy = cast<StructType>(SrcTy);
190 if (DSTy->isLiteral() != SSTy->isLiteral() ||
191 DSTy->isPacked() != SSTy->isPacked())
193 } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
194 if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
196 } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
197 if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
201 // Otherwise, we speculate that these two types will line up and recursively
202 // check the subelements.
204 SpeculativeTypes.push_back(SrcTy);
206 for (unsigned I = 0, E = SrcTy->getNumContainedTypes(); I != E; ++I)
207 if (!areTypesIsomorphic(DstTy->getContainedType(I),
208 SrcTy->getContainedType(I)))
211 // If everything seems to have lined up, then everything is great.
215 void TypeMapTy::linkDefinedTypeBodies() {
216 SmallVector<Type*, 16> Elements;
217 for (StructType *SrcSTy : SrcDefinitionsToResolve) {
218 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
219 assert(DstSTy->isOpaque());
221 // Map the body of the source type over to a new body for the dest type.
222 Elements.resize(SrcSTy->getNumElements());
223 for (unsigned I = 0, E = Elements.size(); I != E; ++I)
224 Elements[I] = get(SrcSTy->getElementType(I));
226 DstSTy->setBody(Elements, SrcSTy->isPacked());
228 SrcDefinitionsToResolve.clear();
229 DstResolvedOpaqueTypes.clear();
232 void TypeMapTy::finishType(StructType *DTy, StructType *STy,
233 ArrayRef<Type *> ETypes) {
234 DTy->setBody(ETypes, STy->isPacked());
237 if (STy->hasName()) {
238 SmallString<16> TmpName = STy->getName();
240 DTy->setName(TmpName);
243 DstStructTypesSet.addNonOpaque(DTy);
246 Type *TypeMapTy::get(Type *Ty) {
247 SmallPtrSet<StructType *, 8> Visited;
248 return get(Ty, Visited);
251 Type *TypeMapTy::get(Type *Ty, SmallPtrSet<StructType *, 8> &Visited) {
252 // If we already have an entry for this type, return it.
253 Type **Entry = &MappedTypes[Ty];
257 // These are types that LLVM itself will unique.
258 bool IsUniqued = !isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral();
262 for (auto &Pair : MappedTypes) {
263 assert(!(Pair.first != Ty && Pair.second == Ty) &&
264 "mapping to a source type");
269 if (!IsUniqued && !Visited.insert(cast<StructType>(Ty)).second) {
270 StructType *DTy = StructType::create(Ty->getContext());
274 // If this is not a recursive type, then just map all of the elements and
275 // then rebuild the type from inside out.
276 SmallVector<Type *, 4> ElementTypes;
278 // If there are no element types to map, then the type is itself. This is
279 // true for the anonymous {} struct, things like 'float', integers, etc.
280 if (Ty->getNumContainedTypes() == 0 && IsUniqued)
283 // Remap all of the elements, keeping track of whether any of them change.
284 bool AnyChange = false;
285 ElementTypes.resize(Ty->getNumContainedTypes());
286 for (unsigned I = 0, E = Ty->getNumContainedTypes(); I != E; ++I) {
287 ElementTypes[I] = get(Ty->getContainedType(I), Visited);
288 AnyChange |= ElementTypes[I] != Ty->getContainedType(I);
291 // If we found our type while recursively processing stuff, just use it.
292 Entry = &MappedTypes[Ty];
294 if (auto *DTy = dyn_cast<StructType>(*Entry)) {
295 if (DTy->isOpaque()) {
296 auto *STy = cast<StructType>(Ty);
297 finishType(DTy, STy, ElementTypes);
303 // If all of the element types mapped directly over and the type is not
304 // a nomed struct, then the type is usable as-is.
305 if (!AnyChange && IsUniqued)
308 // Otherwise, rebuild a modified type.
309 switch (Ty->getTypeID()) {
311 llvm_unreachable("unknown derived type to remap");
312 case Type::ArrayTyID:
313 return *Entry = ArrayType::get(ElementTypes[0],
314 cast<ArrayType>(Ty)->getNumElements());
315 case Type::VectorTyID:
316 return *Entry = VectorType::get(ElementTypes[0],
317 cast<VectorType>(Ty)->getNumElements());
318 case Type::PointerTyID:
319 return *Entry = PointerType::get(ElementTypes[0],
320 cast<PointerType>(Ty)->getAddressSpace());
321 case Type::FunctionTyID:
322 return *Entry = FunctionType::get(ElementTypes[0],
323 makeArrayRef(ElementTypes).slice(1),
324 cast<FunctionType>(Ty)->isVarArg());
325 case Type::StructTyID: {
326 auto *STy = cast<StructType>(Ty);
327 bool IsPacked = STy->isPacked();
329 return *Entry = StructType::get(Ty->getContext(), ElementTypes, IsPacked);
331 // If the type is opaque, we can just use it directly.
332 if (STy->isOpaque()) {
333 DstStructTypesSet.addOpaque(STy);
337 if (StructType *OldT =
338 DstStructTypesSet.findNonOpaque(ElementTypes, IsPacked)) {
340 return *Entry = OldT;
344 DstStructTypesSet.addNonOpaque(STy);
348 StructType *DTy = StructType::create(Ty->getContext());
349 finishType(DTy, STy, ElementTypes);
355 //===----------------------------------------------------------------------===//
356 // ModuleLinker implementation.
357 //===----------------------------------------------------------------------===//
362 /// Creates prototypes for functions that are lazily linked on the fly. This
363 /// speeds up linking for modules with many/ lazily linked functions of which
365 class ValueMaterializerTy : public ValueMaterializer {
368 std::vector<GlobalValue *> &LazilyLinkGlobalValues;
371 ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
372 std::vector<GlobalValue *> &LazilyLinkGlobalValues)
373 : ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
374 LazilyLinkGlobalValues(LazilyLinkGlobalValues) {}
376 Value *materializeValueFor(Value *V) override;
379 class LinkDiagnosticInfo : public DiagnosticInfo {
383 LinkDiagnosticInfo(DiagnosticSeverity Severity, const Twine &Msg);
384 void print(DiagnosticPrinter &DP) const override;
386 LinkDiagnosticInfo::LinkDiagnosticInfo(DiagnosticSeverity Severity,
388 : DiagnosticInfo(DK_Linker, Severity), Msg(Msg) {}
389 void LinkDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
391 /// This is an implementation class for the LinkModules function, which is the
392 /// entrypoint for this file.
397 ValueMaterializerTy ValMaterializer;
399 /// Mapping of values from what they used to be in Src, to what they are now
400 /// in DstM. ValueToValueMapTy is a ValueMap, which involves some overhead
401 /// due to the use of Value handles which the Linker doesn't actually need,
402 /// but this allows us to reuse the ValueMapper code.
403 ValueToValueMapTy ValueMap;
405 struct AppendingVarInfo {
406 GlobalVariable *NewGV; // New aggregate global in dest module.
407 const Constant *DstInit; // Old initializer from dest module.
408 const Constant *SrcInit; // Old initializer from src module.
411 std::vector<AppendingVarInfo> AppendingVars;
413 // Set of items not to link in from source.
414 SmallPtrSet<const Value *, 16> DoNotLinkFromSource;
416 // Vector of GlobalValues to lazily link in.
417 std::vector<GlobalValue *> LazilyLinkGlobalValues;
419 Linker::DiagnosticHandlerFunction DiagnosticHandler;
422 ModuleLinker(Module *dstM, Linker::IdentifiedStructTypeSet &Set, Module *srcM,
423 Linker::DiagnosticHandlerFunction DiagnosticHandler)
424 : DstM(dstM), SrcM(srcM), TypeMap(Set),
425 ValMaterializer(TypeMap, DstM, LazilyLinkGlobalValues),
426 DiagnosticHandler(DiagnosticHandler) {}
431 bool shouldLinkFromSource(bool &LinkFromSrc, const GlobalValue &Dest,
432 const GlobalValue &Src);
434 /// Helper method for setting a message and returning an error code.
435 bool emitError(const Twine &Message) {
436 DiagnosticHandler(LinkDiagnosticInfo(DS_Error, Message));
440 void emitWarning(const Twine &Message) {
441 DiagnosticHandler(LinkDiagnosticInfo(DS_Warning, Message));
444 bool getComdatLeader(Module *M, StringRef ComdatName,
445 const GlobalVariable *&GVar);
446 bool computeResultingSelectionKind(StringRef ComdatName,
447 Comdat::SelectionKind Src,
448 Comdat::SelectionKind Dst,
449 Comdat::SelectionKind &Result,
451 std::map<const Comdat *, std::pair<Comdat::SelectionKind, bool>>
453 bool getComdatResult(const Comdat *SrcC, Comdat::SelectionKind &SK,
456 /// Given a global in the source module, return the global in the
457 /// destination module that is being linked to, if any.
458 GlobalValue *getLinkedToGlobal(const GlobalValue *SrcGV) {
459 // If the source has no name it can't link. If it has local linkage,
460 // there is no name match-up going on.
461 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
464 // Otherwise see if we have a match in the destination module's symtab.
465 GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
469 // If we found a global with the same name in the dest module, but it has
470 // internal linkage, we are really not doing any linkage here.
471 if (DGV->hasLocalLinkage())
474 // Otherwise, we do in fact link to the destination global.
478 void computeTypeMapping();
480 void upgradeMismatchedGlobalArray(StringRef Name);
481 void upgradeMismatchedGlobals();
483 bool linkAppendingVarProto(GlobalVariable *DstGV,
484 const GlobalVariable *SrcGV);
486 bool linkGlobalValueProto(GlobalValue *GV);
487 bool linkModuleFlagsMetadata();
489 void linkAppendingVarInit(const AppendingVarInfo &AVI);
491 void linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src);
492 bool linkFunctionBody(Function &Dst, Function &Src);
493 void linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src);
494 bool linkGlobalValueBody(GlobalValue &Src);
496 void linkNamedMDNodes();
500 /// The LLVM SymbolTable class autorenames globals that conflict in the symbol
501 /// table. This is good for all clients except for us. Go through the trouble
502 /// to force this back.
503 static void forceRenaming(GlobalValue *GV, StringRef Name) {
504 // If the global doesn't force its name or if it already has the right name,
505 // there is nothing for us to do.
506 if (GV->hasLocalLinkage() || GV->getName() == Name)
509 Module *M = GV->getParent();
511 // If there is a conflict, rename the conflict.
512 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
513 GV->takeName(ConflictGV);
514 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
515 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
517 GV->setName(Name); // Force the name back
521 /// copy additional attributes (those not needed to construct a GlobalValue)
522 /// from the SrcGV to the DestGV.
523 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
524 DestGV->copyAttributesFrom(SrcGV);
525 forceRenaming(DestGV, SrcGV->getName());
528 static bool isLessConstraining(GlobalValue::VisibilityTypes a,
529 GlobalValue::VisibilityTypes b) {
530 if (a == GlobalValue::HiddenVisibility)
532 if (b == GlobalValue::HiddenVisibility)
534 if (a == GlobalValue::ProtectedVisibility)
536 if (b == GlobalValue::ProtectedVisibility)
541 /// Loop through the global variables in the src module and merge them into the
543 static GlobalVariable *copyGlobalVariableProto(TypeMapTy &TypeMap, Module &DstM,
544 const GlobalVariable *SGVar) {
545 // No linking to be performed or linking from the source: simply create an
546 // identical version of the symbol over in the dest module... the
547 // initializer will be filled in later by LinkGlobalInits.
548 GlobalVariable *NewDGV = new GlobalVariable(
549 DstM, TypeMap.get(SGVar->getType()->getElementType()),
550 SGVar->isConstant(), SGVar->getLinkage(), /*init*/ nullptr,
551 SGVar->getName(), /*insertbefore*/ nullptr, SGVar->getThreadLocalMode(),
552 SGVar->getType()->getAddressSpace());
557 /// Link the function in the source module into the destination module if
558 /// needed, setting up mapping information.
559 static Function *copyFunctionProto(TypeMapTy &TypeMap, Module &DstM,
560 const Function *SF) {
561 // If there is no linkage to be performed or we are linking from the source,
563 return Function::Create(TypeMap.get(SF->getFunctionType()), SF->getLinkage(),
564 SF->getName(), &DstM);
567 /// Set up prototypes for any aliases that come over from the source module.
568 static GlobalAlias *copyGlobalAliasProto(TypeMapTy &TypeMap, Module &DstM,
569 const GlobalAlias *SGA) {
570 // If there is no linkage to be performed or we're linking from the source,
572 auto *PTy = cast<PointerType>(TypeMap.get(SGA->getType()));
573 return GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(),
574 SGA->getLinkage(), SGA->getName(), &DstM);
577 static GlobalValue *copyGlobalValueProto(TypeMapTy &TypeMap, Module &DstM,
578 const GlobalValue *SGV) {
580 if (auto *SGVar = dyn_cast<GlobalVariable>(SGV))
581 NewGV = copyGlobalVariableProto(TypeMap, DstM, SGVar);
582 else if (auto *SF = dyn_cast<Function>(SGV))
583 NewGV = copyFunctionProto(TypeMap, DstM, SF);
585 NewGV = copyGlobalAliasProto(TypeMap, DstM, cast<GlobalAlias>(SGV));
586 copyGVAttributes(NewGV, SGV);
590 Value *ValueMaterializerTy::materializeValueFor(Value *V) {
591 auto *SGV = dyn_cast<GlobalValue>(V);
595 GlobalValue *DGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
597 if (Comdat *SC = SGV->getComdat()) {
598 if (auto *DGO = dyn_cast<GlobalObject>(DGV)) {
599 Comdat *DC = DstM->getOrInsertComdat(SC->getName());
604 LazilyLinkGlobalValues.push_back(SGV);
608 bool ModuleLinker::getComdatLeader(Module *M, StringRef ComdatName,
609 const GlobalVariable *&GVar) {
610 const GlobalValue *GVal = M->getNamedValue(ComdatName);
611 if (const auto *GA = dyn_cast_or_null<GlobalAlias>(GVal)) {
612 GVal = GA->getBaseObject();
614 // We cannot resolve the size of the aliasee yet.
615 return emitError("Linking COMDATs named '" + ComdatName +
616 "': COMDAT key involves incomputable alias size.");
619 GVar = dyn_cast_or_null<GlobalVariable>(GVal);
622 "Linking COMDATs named '" + ComdatName +
623 "': GlobalVariable required for data dependent selection!");
628 bool ModuleLinker::computeResultingSelectionKind(StringRef ComdatName,
629 Comdat::SelectionKind Src,
630 Comdat::SelectionKind Dst,
631 Comdat::SelectionKind &Result,
633 // The ability to mix Comdat::SelectionKind::Any with
634 // Comdat::SelectionKind::Largest is a behavior that comes from COFF.
635 bool DstAnyOrLargest = Dst == Comdat::SelectionKind::Any ||
636 Dst == Comdat::SelectionKind::Largest;
637 bool SrcAnyOrLargest = Src == Comdat::SelectionKind::Any ||
638 Src == Comdat::SelectionKind::Largest;
639 if (DstAnyOrLargest && SrcAnyOrLargest) {
640 if (Dst == Comdat::SelectionKind::Largest ||
641 Src == Comdat::SelectionKind::Largest)
642 Result = Comdat::SelectionKind::Largest;
644 Result = Comdat::SelectionKind::Any;
645 } else if (Src == Dst) {
648 return emitError("Linking COMDATs named '" + ComdatName +
649 "': invalid selection kinds!");
653 case Comdat::SelectionKind::Any:
657 case Comdat::SelectionKind::NoDuplicates:
658 return emitError("Linking COMDATs named '" + ComdatName +
659 "': noduplicates has been violated!");
660 case Comdat::SelectionKind::ExactMatch:
661 case Comdat::SelectionKind::Largest:
662 case Comdat::SelectionKind::SameSize: {
663 const GlobalVariable *DstGV;
664 const GlobalVariable *SrcGV;
665 if (getComdatLeader(DstM, ComdatName, DstGV) ||
666 getComdatLeader(SrcM, ComdatName, SrcGV))
669 const DataLayout *DstDL = DstM->getDataLayout();
670 const DataLayout *SrcDL = SrcM->getDataLayout();
671 if (!DstDL || !SrcDL) {
673 "Linking COMDATs named '" + ComdatName +
674 "': can't do size dependent selection without DataLayout!");
677 DstDL->getTypeAllocSize(DstGV->getType()->getPointerElementType());
679 SrcDL->getTypeAllocSize(SrcGV->getType()->getPointerElementType());
680 if (Result == Comdat::SelectionKind::ExactMatch) {
681 if (SrcGV->getInitializer() != DstGV->getInitializer())
682 return emitError("Linking COMDATs named '" + ComdatName +
683 "': ExactMatch violated!");
685 } else if (Result == Comdat::SelectionKind::Largest) {
686 LinkFromSrc = SrcSize > DstSize;
687 } else if (Result == Comdat::SelectionKind::SameSize) {
688 if (SrcSize != DstSize)
689 return emitError("Linking COMDATs named '" + ComdatName +
690 "': SameSize violated!");
693 llvm_unreachable("unknown selection kind");
702 bool ModuleLinker::getComdatResult(const Comdat *SrcC,
703 Comdat::SelectionKind &Result,
705 Comdat::SelectionKind SSK = SrcC->getSelectionKind();
706 StringRef ComdatName = SrcC->getName();
707 Module::ComdatSymTabType &ComdatSymTab = DstM->getComdatSymbolTable();
708 Module::ComdatSymTabType::iterator DstCI = ComdatSymTab.find(ComdatName);
710 if (DstCI == ComdatSymTab.end()) {
711 // Use the comdat if it is only available in one of the modules.
717 const Comdat *DstC = &DstCI->second;
718 Comdat::SelectionKind DSK = DstC->getSelectionKind();
719 return computeResultingSelectionKind(ComdatName, SSK, DSK, Result,
723 bool ModuleLinker::shouldLinkFromSource(bool &LinkFromSrc,
724 const GlobalValue &Dest,
725 const GlobalValue &Src) {
726 // We always have to add Src if it has appending linkage.
727 if (Src.hasAppendingLinkage()) {
732 bool SrcIsDeclaration = Src.isDeclarationForLinker();
733 bool DestIsDeclaration = Dest.isDeclarationForLinker();
735 if (SrcIsDeclaration) {
736 // If Src is external or if both Src & Dest are external.. Just link the
737 // external globals, we aren't adding anything.
738 if (Src.hasDLLImportStorageClass()) {
739 // If one of GVs is marked as DLLImport, result should be dllimport'ed.
740 LinkFromSrc = DestIsDeclaration;
743 // If the Dest is weak, use the source linkage.
744 LinkFromSrc = Dest.hasExternalWeakLinkage();
748 if (DestIsDeclaration) {
749 // If Dest is external but Src is not:
754 if (Src.hasCommonLinkage()) {
755 if (Dest.hasLinkOnceLinkage() || Dest.hasWeakLinkage()) {
760 if (!Dest.hasCommonLinkage()) {
765 // FIXME: Make datalayout mandatory and just use getDataLayout().
766 DataLayout DL(Dest.getParent());
768 uint64_t DestSize = DL.getTypeAllocSize(Dest.getType()->getElementType());
769 uint64_t SrcSize = DL.getTypeAllocSize(Src.getType()->getElementType());
770 LinkFromSrc = SrcSize > DestSize;
774 if (Src.isWeakForLinker()) {
775 assert(!Dest.hasExternalWeakLinkage());
776 assert(!Dest.hasAvailableExternallyLinkage());
778 if (Dest.hasLinkOnceLinkage() && Src.hasWeakLinkage()) {
787 if (Dest.isWeakForLinker()) {
788 assert(Src.hasExternalLinkage());
793 assert(!Src.hasExternalWeakLinkage());
794 assert(!Dest.hasExternalWeakLinkage());
795 assert(Dest.hasExternalLinkage() && Src.hasExternalLinkage() &&
796 "Unexpected linkage type!");
797 return emitError("Linking globals named '" + Src.getName() +
798 "': symbol multiply defined!");
801 /// Loop over all of the linked values to compute type mappings. For example,
802 /// if we link "extern Foo *x" and "Foo *x = NULL", then we have two struct
803 /// types 'Foo' but one got renamed when the module was loaded into the same
805 void ModuleLinker::computeTypeMapping() {
806 for (GlobalValue &SGV : SrcM->globals()) {
807 GlobalValue *DGV = getLinkedToGlobal(&SGV);
811 if (!DGV->hasAppendingLinkage() || !SGV.hasAppendingLinkage()) {
812 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
816 // Unify the element type of appending arrays.
817 ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
818 ArrayType *SAT = cast<ArrayType>(SGV.getType()->getElementType());
819 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
822 for (GlobalValue &SGV : *SrcM) {
823 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
824 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
827 for (GlobalValue &SGV : SrcM->aliases()) {
828 if (GlobalValue *DGV = getLinkedToGlobal(&SGV))
829 TypeMap.addTypeMapping(DGV->getType(), SGV.getType());
832 // Incorporate types by name, scanning all the types in the source module.
833 // At this point, the destination module may have a type "%foo = { i32 }" for
834 // example. When the source module got loaded into the same LLVMContext, if
835 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
836 std::vector<StructType *> Types = SrcM->getIdentifiedStructTypes();
837 for (StructType *ST : Types) {
841 // Check to see if there is a dot in the name followed by a digit.
842 size_t DotPos = ST->getName().rfind('.');
843 if (DotPos == 0 || DotPos == StringRef::npos ||
844 ST->getName().back() == '.' ||
845 !isdigit(static_cast<unsigned char>(ST->getName()[DotPos + 1])))
848 // Check to see if the destination module has a struct with the prefix name.
849 StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos));
853 // Don't use it if this actually came from the source module. They're in
854 // the same LLVMContext after all. Also don't use it unless the type is
855 // actually used in the destination module. This can happen in situations
860 // %Z = type { %A } %B = type { %C.1 }
861 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
862 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
863 // %C = type { i8* } %B.3 = type { %C.1 }
865 // When we link Module B with Module A, the '%B' in Module B is
866 // used. However, that would then use '%C.1'. But when we process '%C.1',
867 // we prefer to take the '%C' version. So we are then left with both
868 // '%C.1' and '%C' being used for the same types. This leads to some
869 // variables using one type and some using the other.
870 if (TypeMap.DstStructTypesSet.hasType(DST))
871 TypeMap.addTypeMapping(DST, ST);
874 // Now that we have discovered all of the type equivalences, get a body for
875 // any 'opaque' types in the dest module that are now resolved.
876 TypeMap.linkDefinedTypeBodies();
879 static void upgradeGlobalArray(GlobalVariable *GV) {
880 ArrayType *ATy = cast<ArrayType>(GV->getType()->getElementType());
881 StructType *OldTy = cast<StructType>(ATy->getElementType());
882 assert(OldTy->getNumElements() == 2 && "Expected to upgrade from 2 elements");
884 // Get the upgraded 3 element type.
885 PointerType *VoidPtrTy = Type::getInt8Ty(GV->getContext())->getPointerTo();
886 Type *Tys[3] = {OldTy->getElementType(0), OldTy->getElementType(1),
888 StructType *NewTy = StructType::get(GV->getContext(), Tys, false);
890 // Build new constants with a null third field filled in.
891 Constant *OldInitC = GV->getInitializer();
892 ConstantArray *OldInit = dyn_cast<ConstantArray>(OldInitC);
893 if (!OldInit && !isa<ConstantAggregateZero>(OldInitC))
894 // Invalid initializer; give up.
896 std::vector<Constant *> Initializers;
897 if (OldInit && OldInit->getNumOperands()) {
898 Value *Null = Constant::getNullValue(VoidPtrTy);
899 for (Use &U : OldInit->operands()) {
900 ConstantStruct *Init = cast<ConstantStruct>(U.get());
901 Initializers.push_back(ConstantStruct::get(
902 NewTy, Init->getOperand(0), Init->getOperand(1), Null, nullptr));
905 assert(Initializers.size() == ATy->getNumElements() &&
906 "Failed to copy all array elements");
908 // Replace the old GV with a new one.
909 ATy = ArrayType::get(NewTy, Initializers.size());
910 Constant *NewInit = ConstantArray::get(ATy, Initializers);
911 GlobalVariable *NewGV = new GlobalVariable(
912 *GV->getParent(), ATy, GV->isConstant(), GV->getLinkage(), NewInit, "",
913 GV, GV->getThreadLocalMode(), GV->getType()->getAddressSpace(),
914 GV->isExternallyInitialized());
915 NewGV->copyAttributesFrom(GV);
917 assert(GV->use_empty() && "program cannot use initializer list");
918 GV->eraseFromParent();
921 void ModuleLinker::upgradeMismatchedGlobalArray(StringRef Name) {
922 // Look for the global arrays.
923 auto *DstGV = dyn_cast_or_null<GlobalVariable>(DstM->getNamedValue(Name));
926 auto *SrcGV = dyn_cast_or_null<GlobalVariable>(SrcM->getNamedValue(Name));
930 // Check if the types already match.
931 auto *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
933 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
937 // Grab the element types. We can only upgrade an array of a two-field
938 // struct. Only bother if the other one has three-fields.
939 auto *DstEltTy = cast<StructType>(DstTy->getElementType());
940 auto *SrcEltTy = cast<StructType>(SrcTy->getElementType());
941 if (DstEltTy->getNumElements() == 2 && SrcEltTy->getNumElements() == 3) {
942 upgradeGlobalArray(DstGV);
945 if (DstEltTy->getNumElements() == 3 && SrcEltTy->getNumElements() == 2)
946 upgradeGlobalArray(SrcGV);
948 // We can't upgrade any other differences.
951 void ModuleLinker::upgradeMismatchedGlobals() {
952 upgradeMismatchedGlobalArray("llvm.global_ctors");
953 upgradeMismatchedGlobalArray("llvm.global_dtors");
956 /// If there were any appending global variables, link them together now.
957 /// Return true on error.
958 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
959 const GlobalVariable *SrcGV) {
961 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
962 return emitError("Linking globals named '" + SrcGV->getName() +
963 "': can only link appending global with another appending global!");
965 ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
967 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
968 Type *EltTy = DstTy->getElementType();
970 // Check to see that they two arrays agree on type.
971 if (EltTy != SrcTy->getElementType())
972 return emitError("Appending variables with different element types!");
973 if (DstGV->isConstant() != SrcGV->isConstant())
974 return emitError("Appending variables linked with different const'ness!");
976 if (DstGV->getAlignment() != SrcGV->getAlignment())
978 "Appending variables with different alignment need to be linked!");
980 if (DstGV->getVisibility() != SrcGV->getVisibility())
982 "Appending variables with different visibility need to be linked!");
984 if (DstGV->hasUnnamedAddr() != SrcGV->hasUnnamedAddr())
986 "Appending variables with different unnamed_addr need to be linked!");
988 if (StringRef(DstGV->getSection()) != SrcGV->getSection())
990 "Appending variables with different section name need to be linked!");
992 uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
993 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
995 // Create the new global variable.
997 new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
998 DstGV->getLinkage(), /*init*/nullptr, /*name*/"", DstGV,
999 DstGV->getThreadLocalMode(),
1000 DstGV->getType()->getAddressSpace());
1002 // Propagate alignment, visibility and section info.
1003 copyGVAttributes(NG, DstGV);
1005 AppendingVarInfo AVI;
1007 AVI.DstInit = DstGV->getInitializer();
1008 AVI.SrcInit = SrcGV->getInitializer();
1009 AppendingVars.push_back(AVI);
1011 // Replace any uses of the two global variables with uses of the new
1013 ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
1015 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
1016 DstGV->eraseFromParent();
1018 // Track the source variable so we don't try to link it.
1019 DoNotLinkFromSource.insert(SrcGV);
1024 bool ModuleLinker::linkGlobalValueProto(GlobalValue *SGV) {
1025 GlobalValue *DGV = getLinkedToGlobal(SGV);
1027 // Handle the ultra special appending linkage case first.
1028 if (DGV && DGV->hasAppendingLinkage())
1029 return linkAppendingVarProto(cast<GlobalVariable>(DGV),
1030 cast<GlobalVariable>(SGV));
1032 bool LinkFromSrc = true;
1033 Comdat *C = nullptr;
1034 GlobalValue::VisibilityTypes Visibility = SGV->getVisibility();
1035 bool HasUnnamedAddr = SGV->hasUnnamedAddr();
1037 if (const Comdat *SC = SGV->getComdat()) {
1038 Comdat::SelectionKind SK;
1039 std::tie(SK, LinkFromSrc) = ComdatsChosen[SC];
1040 C = DstM->getOrInsertComdat(SC->getName());
1041 C->setSelectionKind(SK);
1043 if (shouldLinkFromSource(LinkFromSrc, *DGV, *SGV))
1048 // Track the source global so that we don't attempt to copy it over when
1049 // processing global initializers.
1050 DoNotLinkFromSource.insert(SGV);
1053 // Make sure to remember this mapping.
1055 ConstantExpr::getBitCast(DGV, TypeMap.get(SGV->getType()));
1059 Visibility = isLessConstraining(Visibility, DGV->getVisibility())
1060 ? DGV->getVisibility()
1062 HasUnnamedAddr = HasUnnamedAddr && DGV->hasUnnamedAddr();
1065 if (!LinkFromSrc && !DGV)
1072 // If the GV is to be lazily linked, don't create it just yet.
1073 // The ValueMaterializerTy will deal with creating it if it's used.
1074 if (!DGV && (SGV->hasLocalLinkage() || SGV->hasLinkOnceLinkage() ||
1075 SGV->hasAvailableExternallyLinkage())) {
1076 DoNotLinkFromSource.insert(SGV);
1080 NewGV = copyGlobalValueProto(TypeMap, *DstM, SGV);
1083 NewGV->setUnnamedAddr(HasUnnamedAddr);
1084 NewGV->setVisibility(Visibility);
1086 if (auto *NewGO = dyn_cast<GlobalObject>(NewGV)) {
1088 NewGO->setComdat(C);
1090 if (DGV && DGV->hasCommonLinkage() && SGV->hasCommonLinkage())
1091 NewGO->setAlignment(std::max(DGV->getAlignment(), SGV->getAlignment()));
1094 if (auto *NewGVar = dyn_cast<GlobalVariable>(NewGV)) {
1095 auto *DGVar = dyn_cast_or_null<GlobalVariable>(DGV);
1096 auto *SGVar = dyn_cast<GlobalVariable>(SGV);
1097 if (DGVar && SGVar && DGVar->isDeclaration() && SGVar->isDeclaration() &&
1098 (!DGVar->isConstant() || !SGVar->isConstant()))
1099 NewGVar->setConstant(false);
1102 // Make sure to remember this mapping.
1105 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewGV, DGV->getType()));
1106 DGV->eraseFromParent();
1108 ValueMap[SGV] = NewGV;
1114 static void getArrayElements(const Constant *C,
1115 SmallVectorImpl<Constant *> &Dest) {
1116 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
1118 for (unsigned i = 0; i != NumElements; ++i)
1119 Dest.push_back(C->getAggregateElement(i));
1122 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
1123 // Merge the initializer.
1124 SmallVector<Constant *, 16> DstElements;
1125 getArrayElements(AVI.DstInit, DstElements);
1127 SmallVector<Constant *, 16> SrcElements;
1128 getArrayElements(AVI.SrcInit, SrcElements);
1130 ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
1132 StringRef Name = AVI.NewGV->getName();
1133 bool IsNewStructor =
1134 (Name == "llvm.global_ctors" || Name == "llvm.global_dtors") &&
1135 cast<StructType>(NewType->getElementType())->getNumElements() == 3;
1137 for (auto *V : SrcElements) {
1138 if (IsNewStructor) {
1139 Constant *Key = V->getAggregateElement(2);
1140 if (DoNotLinkFromSource.count(Key))
1143 DstElements.push_back(
1144 MapValue(V, ValueMap, RF_None, &TypeMap, &ValMaterializer));
1146 if (IsNewStructor) {
1147 NewType = ArrayType::get(NewType->getElementType(), DstElements.size());
1148 AVI.NewGV->mutateType(PointerType::get(NewType, 0));
1151 AVI.NewGV->setInitializer(ConstantArray::get(NewType, DstElements));
1154 /// Update the initializers in the Dest module now that all globals that may be
1155 /// referenced are in Dest.
1156 void ModuleLinker::linkGlobalInit(GlobalVariable &Dst, GlobalVariable &Src) {
1157 // Figure out what the initializer looks like in the dest module.
1158 Dst.setInitializer(MapValue(Src.getInitializer(), ValueMap, RF_None, &TypeMap,
1162 /// Copy the source function over into the dest function and fix up references
1163 /// to values. At this point we know that Dest is an external function, and
1164 /// that Src is not.
1165 bool ModuleLinker::linkFunctionBody(Function &Dst, Function &Src) {
1166 assert(Dst.isDeclaration() && !Src.isDeclaration());
1168 // Materialize if needed.
1169 if (std::error_code EC = Src.materialize())
1170 return emitError(EC.message());
1172 // Link in the prefix data.
1173 if (Src.hasPrefixData())
1174 Dst.setPrefixData(MapValue(Src.getPrefixData(), ValueMap, RF_None, &TypeMap,
1177 // Link in the prologue data.
1178 if (Src.hasPrologueData())
1179 Dst.setPrologueData(MapValue(Src.getPrologueData(), ValueMap, RF_None,
1180 &TypeMap, &ValMaterializer));
1182 // Go through and convert function arguments over, remembering the mapping.
1183 Function::arg_iterator DI = Dst.arg_begin();
1184 for (Argument &Arg : Src.args()) {
1185 DI->setName(Arg.getName()); // Copy the name over.
1187 // Add a mapping to our mapping.
1188 ValueMap[&Arg] = DI;
1192 // Splice the body of the source function into the dest function.
1193 Dst.getBasicBlockList().splice(Dst.end(), Src.getBasicBlockList());
1195 // At this point, all of the instructions and values of the function are now
1196 // copied over. The only problem is that they are still referencing values in
1197 // the Source function as operands. Loop through all of the operands of the
1198 // functions and patch them up to point to the local versions.
1199 for (BasicBlock &BB : Dst)
1200 for (Instruction &I : BB)
1201 RemapInstruction(&I, ValueMap, RF_IgnoreMissingEntries, &TypeMap,
1204 // There is no need to map the arguments anymore.
1205 for (Argument &Arg : Src.args())
1206 ValueMap.erase(&Arg);
1208 Src.Dematerialize();
1212 void ModuleLinker::linkAliasBody(GlobalAlias &Dst, GlobalAlias &Src) {
1213 Constant *Aliasee = Src.getAliasee();
1215 MapValue(Aliasee, ValueMap, RF_None, &TypeMap, &ValMaterializer);
1216 Dst.setAliasee(Val);
1219 bool ModuleLinker::linkGlobalValueBody(GlobalValue &Src) {
1220 Value *Dst = ValueMap[&Src];
1222 if (auto *F = dyn_cast<Function>(&Src))
1223 return linkFunctionBody(cast<Function>(*Dst), *F);
1224 if (auto *GVar = dyn_cast<GlobalVariable>(&Src)) {
1225 linkGlobalInit(cast<GlobalVariable>(*Dst), *GVar);
1228 linkAliasBody(cast<GlobalAlias>(*Dst), cast<GlobalAlias>(Src));
1232 /// Insert all of the named MDNodes in Src into the Dest module.
1233 void ModuleLinker::linkNamedMDNodes() {
1234 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1235 for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
1236 E = SrcM->named_metadata_end(); I != E; ++I) {
1237 // Don't link module flags here. Do them separately.
1238 if (&*I == SrcModFlags) continue;
1239 NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
1240 // Add Src elements into Dest node.
1241 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1242 DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
1243 RF_None, &TypeMap, &ValMaterializer));
1247 /// Merge the linker flags in Src into the Dest module.
1248 bool ModuleLinker::linkModuleFlagsMetadata() {
1249 // If the source module has no module flags, we are done.
1250 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1251 if (!SrcModFlags) return false;
1253 // If the destination module doesn't have module flags yet, then just copy
1254 // over the source module's flags.
1255 NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1256 if (DstModFlags->getNumOperands() == 0) {
1257 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1258 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1263 // First build a map of the existing module flags and requirements.
1264 DenseMap<MDString*, MDNode*> Flags;
1265 SmallSetVector<MDNode*, 16> Requirements;
1266 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1267 MDNode *Op = DstModFlags->getOperand(I);
1268 ConstantInt *Behavior = mdconst::extract<ConstantInt>(Op->getOperand(0));
1269 MDString *ID = cast<MDString>(Op->getOperand(1));
1271 if (Behavior->getZExtValue() == Module::Require) {
1272 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1278 // Merge in the flags from the source module, and also collect its set of
1280 bool HasErr = false;
1281 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1282 MDNode *SrcOp = SrcModFlags->getOperand(I);
1283 ConstantInt *SrcBehavior =
1284 mdconst::extract<ConstantInt>(SrcOp->getOperand(0));
1285 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1286 MDNode *DstOp = Flags.lookup(ID);
1287 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1289 // If this is a requirement, add it and continue.
1290 if (SrcBehaviorValue == Module::Require) {
1291 // If the destination module does not already have this requirement, add
1293 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1294 DstModFlags->addOperand(SrcOp);
1299 // If there is no existing flag with this ID, just add it.
1302 DstModFlags->addOperand(SrcOp);
1306 // Otherwise, perform a merge.
1307 ConstantInt *DstBehavior =
1308 mdconst::extract<ConstantInt>(DstOp->getOperand(0));
1309 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1311 // If either flag has override behavior, handle it first.
1312 if (DstBehaviorValue == Module::Override) {
1313 // Diagnose inconsistent flags which both have override behavior.
1314 if (SrcBehaviorValue == Module::Override &&
1315 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1316 HasErr |= emitError("linking module flags '" + ID->getString() +
1317 "': IDs have conflicting override values");
1320 } else if (SrcBehaviorValue == Module::Override) {
1321 // Update the destination flag to that of the source.
1322 DstOp->replaceOperandWith(0, ConstantAsMetadata::get(SrcBehavior));
1323 DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
1327 // Diagnose inconsistent merge behavior types.
1328 if (SrcBehaviorValue != DstBehaviorValue) {
1329 HasErr |= emitError("linking module flags '" + ID->getString() +
1330 "': IDs have conflicting behaviors");
1334 // Perform the merge for standard behavior types.
1335 switch (SrcBehaviorValue) {
1336 case Module::Require:
1337 case Module::Override: llvm_unreachable("not possible");
1338 case Module::Error: {
1339 // Emit an error if the values differ.
1340 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1341 HasErr |= emitError("linking module flags '" + ID->getString() +
1342 "': IDs have conflicting values");
1346 case Module::Warning: {
1347 // Emit a warning if the values differ.
1348 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1349 emitWarning("linking module flags '" + ID->getString() +
1350 "': IDs have conflicting values");
1354 case Module::Append: {
1355 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1356 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1357 SmallVector<Metadata *, 8> MDs;
1358 MDs.reserve(DstValue->getNumOperands() + SrcValue->getNumOperands());
1359 for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1360 MDs.push_back(DstValue->getOperand(i));
1361 for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1362 MDs.push_back(SrcValue->getOperand(i));
1363 DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(), MDs));
1366 case Module::AppendUnique: {
1367 SmallSetVector<Metadata *, 16> Elts;
1368 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1369 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1370 for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1371 Elts.insert(DstValue->getOperand(i));
1372 for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1373 Elts.insert(SrcValue->getOperand(i));
1374 DstOp->replaceOperandWith(
1375 2, MDNode::get(DstM->getContext(),
1376 makeArrayRef(Elts.begin(), Elts.end())));
1382 // Check all of the requirements.
1383 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1384 MDNode *Requirement = Requirements[I];
1385 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1386 Metadata *ReqValue = Requirement->getOperand(1);
1388 MDNode *Op = Flags[Flag];
1389 if (!Op || Op->getOperand(2) != ReqValue) {
1390 HasErr |= emitError("linking module flags '" + Flag->getString() +
1391 "': does not have the required value");
1399 bool ModuleLinker::run() {
1400 assert(DstM && "Null destination module");
1401 assert(SrcM && "Null source module");
1403 // Inherit the target data from the source module if the destination module
1404 // doesn't have one already.
1405 if (!DstM->getDataLayout() && SrcM->getDataLayout())
1406 DstM->setDataLayout(SrcM->getDataLayout());
1408 // Copy the target triple from the source to dest if the dest's is empty.
1409 if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1410 DstM->setTargetTriple(SrcM->getTargetTriple());
1412 if (SrcM->getDataLayout() && DstM->getDataLayout() &&
1413 *SrcM->getDataLayout() != *DstM->getDataLayout()) {
1414 emitWarning("Linking two modules of different data layouts: '" +
1415 SrcM->getModuleIdentifier() + "' is '" +
1416 SrcM->getDataLayoutStr() + "' whereas '" +
1417 DstM->getModuleIdentifier() + "' is '" +
1418 DstM->getDataLayoutStr() + "'\n");
1420 if (!SrcM->getTargetTriple().empty() &&
1421 DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1422 emitWarning("Linking two modules of different target triples: " +
1423 SrcM->getModuleIdentifier() + "' is '" +
1424 SrcM->getTargetTriple() + "' whereas '" +
1425 DstM->getModuleIdentifier() + "' is '" +
1426 DstM->getTargetTriple() + "'\n");
1429 // Append the module inline asm string.
1430 if (!SrcM->getModuleInlineAsm().empty()) {
1431 if (DstM->getModuleInlineAsm().empty())
1432 DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1434 DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1435 SrcM->getModuleInlineAsm());
1438 // Loop over all of the linked values to compute type mappings.
1439 computeTypeMapping();
1441 ComdatsChosen.clear();
1442 for (const auto &SMEC : SrcM->getComdatSymbolTable()) {
1443 const Comdat &C = SMEC.getValue();
1444 if (ComdatsChosen.count(&C))
1446 Comdat::SelectionKind SK;
1448 if (getComdatResult(&C, SK, LinkFromSrc))
1450 ComdatsChosen[&C] = std::make_pair(SK, LinkFromSrc);
1453 // Upgrade mismatched global arrays.
1454 upgradeMismatchedGlobals();
1456 // Insert all of the globals in src into the DstM module... without linking
1457 // initializers (which could refer to functions not yet mapped over).
1458 for (Module::global_iterator I = SrcM->global_begin(),
1459 E = SrcM->global_end(); I != E; ++I)
1460 if (linkGlobalValueProto(I))
1463 // Link the functions together between the two modules, without doing function
1464 // bodies... this just adds external function prototypes to the DstM
1465 // function... We do this so that when we begin processing function bodies,
1466 // all of the global values that may be referenced are available in our
1468 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1469 if (linkGlobalValueProto(I))
1472 // If there were any aliases, link them now.
1473 for (Module::alias_iterator I = SrcM->alias_begin(),
1474 E = SrcM->alias_end(); I != E; ++I)
1475 if (linkGlobalValueProto(I))
1478 for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1479 linkAppendingVarInit(AppendingVars[i]);
1481 for (const auto &Entry : DstM->getComdatSymbolTable()) {
1482 const Comdat &C = Entry.getValue();
1483 if (C.getSelectionKind() == Comdat::Any)
1485 const GlobalValue *GV = SrcM->getNamedValue(C.getName());
1487 MapValue(GV, ValueMap, RF_None, &TypeMap, &ValMaterializer);
1490 // Link in the function bodies that are defined in the source module into
1492 for (Function &SF : *SrcM) {
1493 // Skip if no body (function is external).
1494 if (SF.isDeclaration())
1497 // Skip if not linking from source.
1498 if (DoNotLinkFromSource.count(&SF))
1501 if (linkGlobalValueBody(SF))
1505 // Resolve all uses of aliases with aliasees.
1506 for (GlobalAlias &Src : SrcM->aliases()) {
1507 if (DoNotLinkFromSource.count(&Src))
1509 linkGlobalValueBody(Src);
1512 // Remap all of the named MDNodes in Src into the DstM module. We do this
1513 // after linking GlobalValues so that MDNodes that reference GlobalValues
1514 // are properly remapped.
1517 // Merge the module flags into the DstM module.
1518 if (linkModuleFlagsMetadata())
1521 // Update the initializers in the DstM module now that all globals that may
1522 // be referenced are in DstM.
1523 for (GlobalVariable &Src : SrcM->globals()) {
1524 // Only process initialized GV's or ones not already in dest.
1525 if (!Src.hasInitializer() || DoNotLinkFromSource.count(&Src))
1527 linkGlobalValueBody(Src);
1530 // Process vector of lazily linked in functions.
1531 while (!LazilyLinkGlobalValues.empty()) {
1532 GlobalValue *SGV = LazilyLinkGlobalValues.back();
1533 LazilyLinkGlobalValues.pop_back();
1535 if (isa<Function>(SGV))
1536 assert(!cast<Function>(SGV)->isDeclaration() &&
1537 "users should not pass down decls");
1539 if (linkGlobalValueBody(*SGV))
1546 Linker::StructTypeKeyInfo::KeyTy::KeyTy(ArrayRef<Type *> E, bool P)
1547 : ETypes(E), IsPacked(P) {}
1549 Linker::StructTypeKeyInfo::KeyTy::KeyTy(const StructType *ST)
1550 : ETypes(ST->elements()), IsPacked(ST->isPacked()) {}
1552 bool Linker::StructTypeKeyInfo::KeyTy::operator==(const KeyTy &That) const {
1553 if (IsPacked != That.IsPacked)
1555 if (ETypes != That.ETypes)
1560 bool Linker::StructTypeKeyInfo::KeyTy::operator!=(const KeyTy &That) const {
1561 return !this->operator==(That);
1564 StructType *Linker::StructTypeKeyInfo::getEmptyKey() {
1565 return DenseMapInfo<StructType *>::getEmptyKey();
1568 StructType *Linker::StructTypeKeyInfo::getTombstoneKey() {
1569 return DenseMapInfo<StructType *>::getTombstoneKey();
1572 unsigned Linker::StructTypeKeyInfo::getHashValue(const KeyTy &Key) {
1573 return hash_combine(hash_combine_range(Key.ETypes.begin(), Key.ETypes.end()),
1577 unsigned Linker::StructTypeKeyInfo::getHashValue(const StructType *ST) {
1578 return getHashValue(KeyTy(ST));
1581 bool Linker::StructTypeKeyInfo::isEqual(const KeyTy &LHS,
1582 const StructType *RHS) {
1583 if (RHS == getEmptyKey() || RHS == getTombstoneKey())
1585 return LHS == KeyTy(RHS);
1588 bool Linker::StructTypeKeyInfo::isEqual(const StructType *LHS,
1589 const StructType *RHS) {
1590 if (RHS == getEmptyKey())
1591 return LHS == getEmptyKey();
1593 if (RHS == getTombstoneKey())
1594 return LHS == getTombstoneKey();
1596 return KeyTy(LHS) == KeyTy(RHS);
1599 void Linker::IdentifiedStructTypeSet::addNonOpaque(StructType *Ty) {
1600 assert(!Ty->isOpaque());
1601 NonOpaqueStructTypes.insert(Ty);
1604 void Linker::IdentifiedStructTypeSet::addOpaque(StructType *Ty) {
1605 assert(Ty->isOpaque());
1606 OpaqueStructTypes.insert(Ty);
1610 Linker::IdentifiedStructTypeSet::findNonOpaque(ArrayRef<Type *> ETypes,
1612 Linker::StructTypeKeyInfo::KeyTy Key(ETypes, IsPacked);
1613 auto I = NonOpaqueStructTypes.find_as(Key);
1614 if (I == NonOpaqueStructTypes.end())
1619 bool Linker::IdentifiedStructTypeSet::hasType(StructType *Ty) {
1621 return OpaqueStructTypes.count(Ty);
1622 auto I = NonOpaqueStructTypes.find(Ty);
1623 if (I == NonOpaqueStructTypes.end())
1628 void Linker::init(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
1629 this->Composite = M;
1630 this->DiagnosticHandler = DiagnosticHandler;
1632 TypeFinder StructTypes;
1633 StructTypes.run(*M, true);
1634 for (StructType *Ty : StructTypes) {
1636 IdentifiedStructTypes.addOpaque(Ty);
1638 IdentifiedStructTypes.addNonOpaque(Ty);
1642 Linker::Linker(Module *M, DiagnosticHandlerFunction DiagnosticHandler) {
1643 init(M, DiagnosticHandler);
1646 Linker::Linker(Module *M) {
1647 init(M, [this](const DiagnosticInfo &DI) {
1648 Composite->getContext().diagnose(DI);
1655 void Linker::deleteModule() {
1657 Composite = nullptr;
1660 bool Linker::linkInModule(Module *Src) {
1661 ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src,
1663 return TheLinker.run();
1666 //===----------------------------------------------------------------------===//
1667 // LinkModules entrypoint.
1668 //===----------------------------------------------------------------------===//
1670 /// This function links two modules together, with the resulting Dest module
1671 /// modified to be the composite of the two input modules. If an error occurs,
1672 /// true is returned and ErrorMsg (if not null) is set to indicate the problem.
1673 /// Upon failure, the Dest module could be in a modified state, and shouldn't be
1674 /// relied on to be consistent.
1675 bool Linker::LinkModules(Module *Dest, Module *Src,
1676 DiagnosticHandlerFunction DiagnosticHandler) {
1677 Linker L(Dest, DiagnosticHandler);
1678 return L.linkInModule(Src);
1681 bool Linker::LinkModules(Module *Dest, Module *Src) {
1683 return L.linkInModule(Src);
1686 //===----------------------------------------------------------------------===//
1688 //===----------------------------------------------------------------------===//
1690 LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1691 LLVMLinkerMode Mode, char **OutMessages) {
1692 Module *D = unwrap(Dest);
1693 std::string Message;
1694 raw_string_ostream Stream(Message);
1695 DiagnosticPrinterRawOStream DP(Stream);
1697 LLVMBool Result = Linker::LinkModules(
1698 D, unwrap(Src), [&](const DiagnosticInfo &DI) { DI.print(DP); });
1700 if (OutMessages && Result)
1701 *OutMessages = strdup(Message.c_str());