2 * This code is derived from (original license follows):
4 * This is an OpenSSL-compatible implementation of the RSA Data Security, Inc.
5 * MD5 Message-Digest Algorithm (RFC 1321).
8 * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5
11 * Alexander Peslyak, better known as Solar Designer <solar at openwall.com>
13 * This software was written by Alexander Peslyak in 2001. No copyright is
14 * claimed, and the software is hereby placed in the public domain.
15 * In case this attempt to disclaim copyright and place the software in the
16 * public domain is deemed null and void, then the software is
17 * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the
18 * general public under the following terms:
20 * Redistribution and use in source and binary forms, with or without
21 * modification, are permitted.
23 * There's ABSOLUTELY NO WARRANTY, express or implied.
25 * (This is a heavily cut-down "BSD license".)
27 * This differs from Colin Plumb's older public domain implementation in that
28 * no exactly 32-bit integer data type is required (any 32-bit or wider
29 * unsigned integer data type will do), there's no compile-time endianness
30 * configuration, and the function prototypes match OpenSSL's. No code from
31 * Colin Plumb's implementation has been reused; this comment merely compares
32 * the properties of the two independent implementations.
34 * The primary goals of this implementation are portability and ease of use.
35 * It is meant to be fast, but not as fast as possible. Some known
36 * optimizations are not included to reduce source code size and avoid
37 * compile-time configuration.
40 #include "llvm/ADT/ArrayRef.h"
41 #include "llvm/Support/Format.h"
42 #include "llvm/Support/MD5.h"
43 #include "llvm/Support/raw_ostream.h"
46 // The basic MD5 functions.
48 // F and G are optimized compared to their RFC 1321 definitions for
49 // architectures that lack an AND-NOT instruction, just like in Colin Plumb's
51 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
52 #define G(x, y, z) ((y) ^ ((z) & ((x) ^ (y))))
53 #define H(x, y, z) ((x) ^ (y) ^ (z))
54 #define I(x, y, z) ((y) ^ ((x) | ~(z)))
56 // The MD5 transformation for all four rounds.
57 #define STEP(f, a, b, c, d, x, t, s) \
58 (a) += f((b), (c), (d)) + (x) + (t); \
59 (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \
62 // SET reads 4 input bytes in little-endian byte order and stores them
63 // in a properly aligned word in host byte order.
66 (MD5_u32plus) ptr[(n) * 4] | ((MD5_u32plus) ptr[(n) * 4 + 1] << 8) | \
67 ((MD5_u32plus) ptr[(n) * 4 + 2] << 16) | \
68 ((MD5_u32plus) ptr[(n) * 4 + 3] << 24))
69 #define GET(n) (block[(n)])
73 /// \brief This processes one or more 64-byte data blocks, but does NOT update
74 ///the bit counters. There are no alignment requirements.
75 const uint8_t *MD5::body(ArrayRef<uint8_t> Data) {
77 MD5_u32plus a, b, c, d;
78 MD5_u32plus saved_a, saved_b, saved_c, saved_d;
79 unsigned long Size = Data.size();
95 STEP(F, a, b, c, d, SET(0), 0xd76aa478, 7)
96 STEP(F, d, a, b, c, SET(1), 0xe8c7b756, 12)
97 STEP(F, c, d, a, b, SET(2), 0x242070db, 17)
98 STEP(F, b, c, d, a, SET(3), 0xc1bdceee, 22)
99 STEP(F, a, b, c, d, SET(4), 0xf57c0faf, 7)
100 STEP(F, d, a, b, c, SET(5), 0x4787c62a, 12)
101 STEP(F, c, d, a, b, SET(6), 0xa8304613, 17)
102 STEP(F, b, c, d, a, SET(7), 0xfd469501, 22)
103 STEP(F, a, b, c, d, SET(8), 0x698098d8, 7)
104 STEP(F, d, a, b, c, SET(9), 0x8b44f7af, 12)
105 STEP(F, c, d, a, b, SET(10), 0xffff5bb1, 17)
106 STEP(F, b, c, d, a, SET(11), 0x895cd7be, 22)
107 STEP(F, a, b, c, d, SET(12), 0x6b901122, 7)
108 STEP(F, d, a, b, c, SET(13), 0xfd987193, 12)
109 STEP(F, c, d, a, b, SET(14), 0xa679438e, 17)
110 STEP(F, b, c, d, a, SET(15), 0x49b40821, 22)
113 STEP(G, a, b, c, d, GET(1), 0xf61e2562, 5)
114 STEP(G, d, a, b, c, GET(6), 0xc040b340, 9)
115 STEP(G, c, d, a, b, GET(11), 0x265e5a51, 14)
116 STEP(G, b, c, d, a, GET(0), 0xe9b6c7aa, 20)
117 STEP(G, a, b, c, d, GET(5), 0xd62f105d, 5)
118 STEP(G, d, a, b, c, GET(10), 0x02441453, 9)
119 STEP(G, c, d, a, b, GET(15), 0xd8a1e681, 14)
120 STEP(G, b, c, d, a, GET(4), 0xe7d3fbc8, 20)
121 STEP(G, a, b, c, d, GET(9), 0x21e1cde6, 5)
122 STEP(G, d, a, b, c, GET(14), 0xc33707d6, 9)
123 STEP(G, c, d, a, b, GET(3), 0xf4d50d87, 14)
124 STEP(G, b, c, d, a, GET(8), 0x455a14ed, 20)
125 STEP(G, a, b, c, d, GET(13), 0xa9e3e905, 5)
126 STEP(G, d, a, b, c, GET(2), 0xfcefa3f8, 9)
127 STEP(G, c, d, a, b, GET(7), 0x676f02d9, 14)
128 STEP(G, b, c, d, a, GET(12), 0x8d2a4c8a, 20)
131 STEP(H, a, b, c, d, GET(5), 0xfffa3942, 4)
132 STEP(H, d, a, b, c, GET(8), 0x8771f681, 11)
133 STEP(H, c, d, a, b, GET(11), 0x6d9d6122, 16)
134 STEP(H, b, c, d, a, GET(14), 0xfde5380c, 23)
135 STEP(H, a, b, c, d, GET(1), 0xa4beea44, 4)
136 STEP(H, d, a, b, c, GET(4), 0x4bdecfa9, 11)
137 STEP(H, c, d, a, b, GET(7), 0xf6bb4b60, 16)
138 STEP(H, b, c, d, a, GET(10), 0xbebfbc70, 23)
139 STEP(H, a, b, c, d, GET(13), 0x289b7ec6, 4)
140 STEP(H, d, a, b, c, GET(0), 0xeaa127fa, 11)
141 STEP(H, c, d, a, b, GET(3), 0xd4ef3085, 16)
142 STEP(H, b, c, d, a, GET(6), 0x04881d05, 23)
143 STEP(H, a, b, c, d, GET(9), 0xd9d4d039, 4)
144 STEP(H, d, a, b, c, GET(12), 0xe6db99e5, 11)
145 STEP(H, c, d, a, b, GET(15), 0x1fa27cf8, 16)
146 STEP(H, b, c, d, a, GET(2), 0xc4ac5665, 23)
149 STEP(I, a, b, c, d, GET(0), 0xf4292244, 6)
150 STEP(I, d, a, b, c, GET(7), 0x432aff97, 10)
151 STEP(I, c, d, a, b, GET(14), 0xab9423a7, 15)
152 STEP(I, b, c, d, a, GET(5), 0xfc93a039, 21)
153 STEP(I, a, b, c, d, GET(12), 0x655b59c3, 6)
154 STEP(I, d, a, b, c, GET(3), 0x8f0ccc92, 10)
155 STEP(I, c, d, a, b, GET(10), 0xffeff47d, 15)
156 STEP(I, b, c, d, a, GET(1), 0x85845dd1, 21)
157 STEP(I, a, b, c, d, GET(8), 0x6fa87e4f, 6)
158 STEP(I, d, a, b, c, GET(15), 0xfe2ce6e0, 10)
159 STEP(I, c, d, a, b, GET(6), 0xa3014314, 15)
160 STEP(I, b, c, d, a, GET(13), 0x4e0811a1, 21)
161 STEP(I, a, b, c, d, GET(4), 0xf7537e82, 6)
162 STEP(I, d, a, b, c, GET(11), 0xbd3af235, 10)
163 STEP(I, c, d, a, b, GET(2), 0x2ad7d2bb, 15)
164 STEP(I, b, c, d, a, GET(9), 0xeb86d391, 21)
172 } while (Size -= 64);
183 : a(0x67452301), b(0xefcdab89), c(0x98badcfe), d(0x10325476), hi(0), lo(0) {
186 /// Incrementally add the bytes in \p Data to the hash.
187 void MD5::update(ArrayRef<uint8_t> Data) {
188 MD5_u32plus saved_lo;
189 unsigned long used, free;
190 const uint8_t *Ptr = Data.data();
191 unsigned long Size = Data.size();
194 if ((lo = (saved_lo + Size) & 0x1fffffff) < saved_lo)
198 used = saved_lo & 0x3f;
204 memcpy(&buffer[used], Ptr, Size);
208 memcpy(&buffer[used], Ptr, free);
211 body(makeArrayRef(buffer, 64));
215 Ptr = body(makeArrayRef(Ptr, Size & ~(unsigned long) 0x3f));
219 memcpy(buffer, Ptr, Size);
222 /// Add the bytes in the StringRef \p Str to the hash.
223 // Note that this isn't a string and so this won't include any trailing NULL
225 void MD5::update(StringRef Str) {
226 ArrayRef<uint8_t> SVal((const uint8_t *)Str.data(), Str.size());
230 /// \brief Finish the hash and place the resulting hash into \p result.
231 /// \param result is assumed to be a minimum of 16-bytes in size.
232 void MD5::final(MD5Result &Result) {
233 unsigned long used, free;
237 buffer[used++] = 0x80;
242 memset(&buffer[used], 0, free);
243 body(makeArrayRef(buffer, 64));
248 memset(&buffer[used], 0, free - 8);
252 buffer[57] = lo >> 8;
253 buffer[58] = lo >> 16;
254 buffer[59] = lo >> 24;
256 buffer[61] = hi >> 8;
257 buffer[62] = hi >> 16;
258 buffer[63] = hi >> 24;
260 body(makeArrayRef(buffer, 64));
272 Result[10] = c >> 16;
273 Result[11] = c >> 24;
276 Result[14] = d >> 16;
277 Result[15] = d >> 24;
280 void MD5::stringifyResult(MD5Result &Result, SmallString<32> &Str) {
281 raw_svector_ostream Res(Str);
282 for (int i = 0; i < 16; ++i)
283 Res << format("%.2x", Result[i]);