1 //===- ARMBaseInstrInfo.cpp - ARM Instruction Information -------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains the Base ARM implementation of the TargetInstrInfo class.
12 //===----------------------------------------------------------------------===//
14 #include "ARMBaseInstrInfo.h"
16 #include "ARMAddressingModes.h"
17 #include "ARMConstantPoolValue.h"
18 #include "ARMMachineFunctionInfo.h"
19 #include "ARMRegisterInfo.h"
20 #include "ARMGenInstrInfo.inc"
21 #include "llvm/Constants.h"
22 #include "llvm/Function.h"
23 #include "llvm/GlobalValue.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/LiveVariables.h"
26 #include "llvm/CodeGen/MachineConstantPool.h"
27 #include "llvm/CodeGen/MachineFrameInfo.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineJumpTableInfo.h"
30 #include "llvm/CodeGen/MachineMemOperand.h"
31 #include "llvm/CodeGen/MachineRegisterInfo.h"
32 #include "llvm/CodeGen/PseudoSourceValue.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/Support/CommandLine.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
40 EnableARM3Addr("enable-arm-3-addr-conv", cl::Hidden,
41 cl::desc("Enable ARM 2-addr to 3-addr conv"));
44 OldARMIfCvt("old-arm-ifcvt", cl::Hidden,
45 cl::desc("Use old-style ARM if-conversion heuristics"));
47 ARMBaseInstrInfo::ARMBaseInstrInfo(const ARMSubtarget& STI)
48 : TargetInstrInfoImpl(ARMInsts, array_lengthof(ARMInsts)),
53 ARMBaseInstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
54 MachineBasicBlock::iterator &MBBI,
55 LiveVariables *LV) const {
56 // FIXME: Thumb2 support.
61 MachineInstr *MI = MBBI;
62 MachineFunction &MF = *MI->getParent()->getParent();
63 uint64_t TSFlags = MI->getDesc().TSFlags;
65 switch ((TSFlags & ARMII::IndexModeMask) >> ARMII::IndexModeShift) {
67 case ARMII::IndexModePre:
70 case ARMII::IndexModePost:
74 // Try splitting an indexed load/store to an un-indexed one plus an add/sub
76 unsigned MemOpc = getUnindexedOpcode(MI->getOpcode());
80 MachineInstr *UpdateMI = NULL;
81 MachineInstr *MemMI = NULL;
82 unsigned AddrMode = (TSFlags & ARMII::AddrModeMask);
83 const TargetInstrDesc &TID = MI->getDesc();
84 unsigned NumOps = TID.getNumOperands();
85 bool isLoad = !TID.mayStore();
86 const MachineOperand &WB = isLoad ? MI->getOperand(1) : MI->getOperand(0);
87 const MachineOperand &Base = MI->getOperand(2);
88 const MachineOperand &Offset = MI->getOperand(NumOps-3);
89 unsigned WBReg = WB.getReg();
90 unsigned BaseReg = Base.getReg();
91 unsigned OffReg = Offset.getReg();
92 unsigned OffImm = MI->getOperand(NumOps-2).getImm();
93 ARMCC::CondCodes Pred = (ARMCC::CondCodes)MI->getOperand(NumOps-1).getImm();
96 assert(false && "Unknown indexed op!");
98 case ARMII::AddrMode2: {
99 bool isSub = ARM_AM::getAM2Op(OffImm) == ARM_AM::sub;
100 unsigned Amt = ARM_AM::getAM2Offset(OffImm);
102 if (ARM_AM::getSOImmVal(Amt) == -1)
103 // Can't encode it in a so_imm operand. This transformation will
104 // add more than 1 instruction. Abandon!
106 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
107 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
108 .addReg(BaseReg).addImm(Amt)
109 .addImm(Pred).addReg(0).addReg(0);
110 } else if (Amt != 0) {
111 ARM_AM::ShiftOpc ShOpc = ARM_AM::getAM2ShiftOpc(OffImm);
112 unsigned SOOpc = ARM_AM::getSORegOpc(ShOpc, Amt);
113 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
114 get(isSub ? ARM::SUBrs : ARM::ADDrs), WBReg)
115 .addReg(BaseReg).addReg(OffReg).addReg(0).addImm(SOOpc)
116 .addImm(Pred).addReg(0).addReg(0);
118 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
119 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
120 .addReg(BaseReg).addReg(OffReg)
121 .addImm(Pred).addReg(0).addReg(0);
124 case ARMII::AddrMode3 : {
125 bool isSub = ARM_AM::getAM3Op(OffImm) == ARM_AM::sub;
126 unsigned Amt = ARM_AM::getAM3Offset(OffImm);
128 // Immediate is 8-bits. It's guaranteed to fit in a so_imm operand.
129 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
130 get(isSub ? ARM::SUBri : ARM::ADDri), WBReg)
131 .addReg(BaseReg).addImm(Amt)
132 .addImm(Pred).addReg(0).addReg(0);
134 UpdateMI = BuildMI(MF, MI->getDebugLoc(),
135 get(isSub ? ARM::SUBrr : ARM::ADDrr), WBReg)
136 .addReg(BaseReg).addReg(OffReg)
137 .addImm(Pred).addReg(0).addReg(0);
142 std::vector<MachineInstr*> NewMIs;
145 MemMI = BuildMI(MF, MI->getDebugLoc(),
146 get(MemOpc), MI->getOperand(0).getReg())
147 .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
149 MemMI = BuildMI(MF, MI->getDebugLoc(),
150 get(MemOpc)).addReg(MI->getOperand(1).getReg())
151 .addReg(WBReg).addReg(0).addImm(0).addImm(Pred);
152 NewMIs.push_back(MemMI);
153 NewMIs.push_back(UpdateMI);
156 MemMI = BuildMI(MF, MI->getDebugLoc(),
157 get(MemOpc), MI->getOperand(0).getReg())
158 .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
160 MemMI = BuildMI(MF, MI->getDebugLoc(),
161 get(MemOpc)).addReg(MI->getOperand(1).getReg())
162 .addReg(BaseReg).addReg(0).addImm(0).addImm(Pred);
164 UpdateMI->getOperand(0).setIsDead();
165 NewMIs.push_back(UpdateMI);
166 NewMIs.push_back(MemMI);
169 // Transfer LiveVariables states, kill / dead info.
171 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
172 MachineOperand &MO = MI->getOperand(i);
173 if (MO.isReg() && MO.getReg() &&
174 TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
175 unsigned Reg = MO.getReg();
177 LiveVariables::VarInfo &VI = LV->getVarInfo(Reg);
179 MachineInstr *NewMI = (Reg == WBReg) ? UpdateMI : MemMI;
181 LV->addVirtualRegisterDead(Reg, NewMI);
183 if (MO.isUse() && MO.isKill()) {
184 for (unsigned j = 0; j < 2; ++j) {
185 // Look at the two new MI's in reverse order.
186 MachineInstr *NewMI = NewMIs[j];
187 if (!NewMI->readsRegister(Reg))
189 LV->addVirtualRegisterKilled(Reg, NewMI);
190 if (VI.removeKill(MI))
191 VI.Kills.push_back(NewMI);
199 MFI->insert(MBBI, NewMIs[1]);
200 MFI->insert(MBBI, NewMIs[0]);
205 ARMBaseInstrInfo::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
206 MachineBasicBlock::iterator MI,
207 const std::vector<CalleeSavedInfo> &CSI,
208 const TargetRegisterInfo *TRI) const {
213 if (MI != MBB.end()) DL = MI->getDebugLoc();
215 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
216 unsigned Reg = CSI[i].getReg();
219 // Add the callee-saved register as live-in unless it's LR and
220 // @llvm.returnaddress is called. If LR is returned for @llvm.returnaddress
221 // then it's already added to the function and entry block live-in sets.
222 if (Reg == ARM::LR) {
223 MachineFunction &MF = *MBB.getParent();
224 if (MF.getFrameInfo()->isReturnAddressTaken() &&
225 MF.getRegInfo().isLiveIn(Reg))
232 // Insert the spill to the stack frame. The register is killed at the spill
234 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
235 storeRegToStackSlot(MBB, MI, Reg, isKill,
236 CSI[i].getFrameIdx(), RC, TRI);
243 ARMBaseInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,MachineBasicBlock *&TBB,
244 MachineBasicBlock *&FBB,
245 SmallVectorImpl<MachineOperand> &Cond,
246 bool AllowModify) const {
247 // If the block has no terminators, it just falls into the block after it.
248 MachineBasicBlock::iterator I = MBB.end();
249 if (I == MBB.begin())
252 while (I->isDebugValue()) {
253 if (I == MBB.begin())
257 if (!isUnpredicatedTerminator(I))
260 // Get the last instruction in the block.
261 MachineInstr *LastInst = I;
263 // If there is only one terminator instruction, process it.
264 unsigned LastOpc = LastInst->getOpcode();
265 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
266 if (isUncondBranchOpcode(LastOpc)) {
267 TBB = LastInst->getOperand(0).getMBB();
270 if (isCondBranchOpcode(LastOpc)) {
271 // Block ends with fall-through condbranch.
272 TBB = LastInst->getOperand(0).getMBB();
273 Cond.push_back(LastInst->getOperand(1));
274 Cond.push_back(LastInst->getOperand(2));
277 return true; // Can't handle indirect branch.
280 // Get the instruction before it if it is a terminator.
281 MachineInstr *SecondLastInst = I;
282 unsigned SecondLastOpc = SecondLastInst->getOpcode();
284 // If AllowModify is true and the block ends with two or more unconditional
285 // branches, delete all but the first unconditional branch.
286 if (AllowModify && isUncondBranchOpcode(LastOpc)) {
287 while (isUncondBranchOpcode(SecondLastOpc)) {
288 LastInst->eraseFromParent();
289 LastInst = SecondLastInst;
290 LastOpc = LastInst->getOpcode();
291 if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
292 // Return now the only terminator is an unconditional branch.
293 TBB = LastInst->getOperand(0).getMBB();
297 SecondLastOpc = SecondLastInst->getOpcode();
302 // If there are three terminators, we don't know what sort of block this is.
303 if (SecondLastInst && I != MBB.begin() && isUnpredicatedTerminator(--I))
306 // If the block ends with a B and a Bcc, handle it.
307 if (isCondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
308 TBB = SecondLastInst->getOperand(0).getMBB();
309 Cond.push_back(SecondLastInst->getOperand(1));
310 Cond.push_back(SecondLastInst->getOperand(2));
311 FBB = LastInst->getOperand(0).getMBB();
315 // If the block ends with two unconditional branches, handle it. The second
316 // one is not executed, so remove it.
317 if (isUncondBranchOpcode(SecondLastOpc) && isUncondBranchOpcode(LastOpc)) {
318 TBB = SecondLastInst->getOperand(0).getMBB();
321 I->eraseFromParent();
325 // ...likewise if it ends with a branch table followed by an unconditional
326 // branch. The branch folder can create these, and we must get rid of them for
327 // correctness of Thumb constant islands.
328 if ((isJumpTableBranchOpcode(SecondLastOpc) ||
329 isIndirectBranchOpcode(SecondLastOpc)) &&
330 isUncondBranchOpcode(LastOpc)) {
333 I->eraseFromParent();
337 // Otherwise, can't handle this.
342 unsigned ARMBaseInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
343 MachineBasicBlock::iterator I = MBB.end();
344 if (I == MBB.begin()) return 0;
346 while (I->isDebugValue()) {
347 if (I == MBB.begin())
351 if (!isUncondBranchOpcode(I->getOpcode()) &&
352 !isCondBranchOpcode(I->getOpcode()))
355 // Remove the branch.
356 I->eraseFromParent();
360 if (I == MBB.begin()) return 1;
362 if (!isCondBranchOpcode(I->getOpcode()))
365 // Remove the branch.
366 I->eraseFromParent();
371 ARMBaseInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
372 MachineBasicBlock *FBB,
373 const SmallVectorImpl<MachineOperand> &Cond,
375 ARMFunctionInfo *AFI = MBB.getParent()->getInfo<ARMFunctionInfo>();
376 int BOpc = !AFI->isThumbFunction()
377 ? ARM::B : (AFI->isThumb2Function() ? ARM::t2B : ARM::tB);
378 int BccOpc = !AFI->isThumbFunction()
379 ? ARM::Bcc : (AFI->isThumb2Function() ? ARM::t2Bcc : ARM::tBcc);
381 // Shouldn't be a fall through.
382 assert(TBB && "InsertBranch must not be told to insert a fallthrough");
383 assert((Cond.size() == 2 || Cond.size() == 0) &&
384 "ARM branch conditions have two components!");
387 if (Cond.empty()) // Unconditional branch?
388 BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
390 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
391 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
395 // Two-way conditional branch.
396 BuildMI(&MBB, DL, get(BccOpc)).addMBB(TBB)
397 .addImm(Cond[0].getImm()).addReg(Cond[1].getReg());
398 BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
402 bool ARMBaseInstrInfo::
403 ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
404 ARMCC::CondCodes CC = (ARMCC::CondCodes)(int)Cond[0].getImm();
405 Cond[0].setImm(ARMCC::getOppositeCondition(CC));
409 bool ARMBaseInstrInfo::
410 PredicateInstruction(MachineInstr *MI,
411 const SmallVectorImpl<MachineOperand> &Pred) const {
412 unsigned Opc = MI->getOpcode();
413 if (isUncondBranchOpcode(Opc)) {
414 MI->setDesc(get(getMatchingCondBranchOpcode(Opc)));
415 MI->addOperand(MachineOperand::CreateImm(Pred[0].getImm()));
416 MI->addOperand(MachineOperand::CreateReg(Pred[1].getReg(), false));
420 int PIdx = MI->findFirstPredOperandIdx();
422 MachineOperand &PMO = MI->getOperand(PIdx);
423 PMO.setImm(Pred[0].getImm());
424 MI->getOperand(PIdx+1).setReg(Pred[1].getReg());
430 bool ARMBaseInstrInfo::
431 SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
432 const SmallVectorImpl<MachineOperand> &Pred2) const {
433 if (Pred1.size() > 2 || Pred2.size() > 2)
436 ARMCC::CondCodes CC1 = (ARMCC::CondCodes)Pred1[0].getImm();
437 ARMCC::CondCodes CC2 = (ARMCC::CondCodes)Pred2[0].getImm();
447 return CC2 == ARMCC::HI;
449 return CC2 == ARMCC::LO || CC2 == ARMCC::EQ;
451 return CC2 == ARMCC::GT;
453 return CC2 == ARMCC::LT;
457 bool ARMBaseInstrInfo::DefinesPredicate(MachineInstr *MI,
458 std::vector<MachineOperand> &Pred) const {
459 // FIXME: This confuses implicit_def with optional CPSR def.
460 const TargetInstrDesc &TID = MI->getDesc();
461 if (!TID.getImplicitDefs() && !TID.hasOptionalDef())
465 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
466 const MachineOperand &MO = MI->getOperand(i);
467 if (MO.isReg() && MO.getReg() == ARM::CPSR) {
476 /// isPredicable - Return true if the specified instruction can be predicated.
477 /// By default, this returns true for every instruction with a
478 /// PredicateOperand.
479 bool ARMBaseInstrInfo::isPredicable(MachineInstr *MI) const {
480 const TargetInstrDesc &TID = MI->getDesc();
481 if (!TID.isPredicable())
484 if ((TID.TSFlags & ARMII::DomainMask) == ARMII::DomainNEON) {
485 ARMFunctionInfo *AFI =
486 MI->getParent()->getParent()->getInfo<ARMFunctionInfo>();
487 return AFI->isThumb2Function();
492 /// FIXME: Works around a gcc miscompilation with -fstrict-aliasing.
494 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
496 static unsigned getNumJTEntries(const std::vector<MachineJumpTableEntry> &JT,
498 assert(JTI < JT.size());
499 return JT[JTI].MBBs.size();
502 /// GetInstSize - Return the size of the specified MachineInstr.
504 unsigned ARMBaseInstrInfo::GetInstSizeInBytes(const MachineInstr *MI) const {
505 const MachineBasicBlock &MBB = *MI->getParent();
506 const MachineFunction *MF = MBB.getParent();
507 const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
509 // Basic size info comes from the TSFlags field.
510 const TargetInstrDesc &TID = MI->getDesc();
511 uint64_t TSFlags = TID.TSFlags;
513 unsigned Opc = MI->getOpcode();
514 switch ((TSFlags & ARMII::SizeMask) >> ARMII::SizeShift) {
516 // If this machine instr is an inline asm, measure it.
517 if (MI->getOpcode() == ARM::INLINEASM)
518 return getInlineAsmLength(MI->getOperand(0).getSymbolName(), *MAI);
523 llvm_unreachable("Unknown or unset size field for instr!");
524 case TargetOpcode::IMPLICIT_DEF:
525 case TargetOpcode::KILL:
526 case TargetOpcode::PROLOG_LABEL:
527 case TargetOpcode::EH_LABEL:
528 case TargetOpcode::DBG_VALUE:
533 case ARMII::Size8Bytes: return 8; // ARM instruction x 2.
534 case ARMII::Size4Bytes: return 4; // ARM / Thumb2 instruction.
535 case ARMII::Size2Bytes: return 2; // Thumb1 instruction.
536 case ARMII::SizeSpecial: {
538 case ARM::CONSTPOOL_ENTRY:
539 // If this machine instr is a constant pool entry, its size is recorded as
541 return MI->getOperand(2).getImm();
542 case ARM::Int_eh_sjlj_longjmp:
544 case ARM::tInt_eh_sjlj_longjmp:
546 case ARM::Int_eh_sjlj_setjmp:
547 case ARM::Int_eh_sjlj_setjmp_nofp:
549 case ARM::tInt_eh_sjlj_setjmp:
550 case ARM::t2Int_eh_sjlj_setjmp:
551 case ARM::t2Int_eh_sjlj_setjmp_nofp:
560 // These are jumptable branches, i.e. a branch followed by an inlined
561 // jumptable. The size is 4 + 4 * number of entries. For TBB, each
562 // entry is one byte; TBH two byte each.
563 unsigned EntrySize = (Opc == ARM::t2TBB)
564 ? 1 : ((Opc == ARM::t2TBH) ? 2 : 4);
565 unsigned NumOps = TID.getNumOperands();
566 MachineOperand JTOP =
567 MI->getOperand(NumOps - (TID.isPredicable() ? 3 : 2));
568 unsigned JTI = JTOP.getIndex();
569 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
571 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
572 assert(JTI < JT.size());
573 // Thumb instructions are 2 byte aligned, but JT entries are 4 byte
574 // 4 aligned. The assembler / linker may add 2 byte padding just before
575 // the JT entries. The size does not include this padding; the
576 // constant islands pass does separate bookkeeping for it.
577 // FIXME: If we know the size of the function is less than (1 << 16) *2
578 // bytes, we can use 16-bit entries instead. Then there won't be an
580 unsigned InstSize = (Opc == ARM::tBR_JTr || Opc == ARM::t2BR_JT) ? 2 : 4;
581 unsigned NumEntries = getNumJTEntries(JT, JTI);
582 if (Opc == ARM::t2TBB && (NumEntries & 1))
583 // Make sure the instruction that follows TBB is 2-byte aligned.
584 // FIXME: Constant island pass should insert an "ALIGN" instruction
587 return NumEntries * EntrySize + InstSize;
590 // Otherwise, pseudo-instruction sizes are zero.
595 return 0; // Not reached
598 void ARMBaseInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
599 MachineBasicBlock::iterator I, DebugLoc DL,
600 unsigned DestReg, unsigned SrcReg,
601 bool KillSrc) const {
602 bool GPRDest = ARM::GPRRegClass.contains(DestReg);
603 bool GPRSrc = ARM::GPRRegClass.contains(SrcReg);
605 if (GPRDest && GPRSrc) {
606 AddDefaultCC(AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::MOVr), DestReg)
607 .addReg(SrcReg, getKillRegState(KillSrc))));
611 bool SPRDest = ARM::SPRRegClass.contains(DestReg);
612 bool SPRSrc = ARM::SPRRegClass.contains(SrcReg);
615 if (SPRDest && SPRSrc)
617 else if (GPRDest && SPRSrc)
619 else if (SPRDest && GPRSrc)
621 else if (ARM::DPRRegClass.contains(DestReg, SrcReg))
623 else if (ARM::QPRRegClass.contains(DestReg, SrcReg))
625 else if (ARM::QQPRRegClass.contains(DestReg, SrcReg))
627 else if (ARM::QQQQPRRegClass.contains(DestReg, SrcReg))
630 llvm_unreachable("Impossible reg-to-reg copy");
632 MachineInstrBuilder MIB = BuildMI(MBB, I, DL, get(Opc), DestReg);
633 MIB.addReg(SrcReg, getKillRegState(KillSrc));
634 if (Opc != ARM::VMOVQQ && Opc != ARM::VMOVQQQQ)
639 MachineInstrBuilder &AddDReg(MachineInstrBuilder &MIB,
640 unsigned Reg, unsigned SubIdx, unsigned State,
641 const TargetRegisterInfo *TRI) {
643 return MIB.addReg(Reg, State);
645 if (TargetRegisterInfo::isPhysicalRegister(Reg))
646 return MIB.addReg(TRI->getSubReg(Reg, SubIdx), State);
647 return MIB.addReg(Reg, State, SubIdx);
650 void ARMBaseInstrInfo::
651 storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
652 unsigned SrcReg, bool isKill, int FI,
653 const TargetRegisterClass *RC,
654 const TargetRegisterInfo *TRI) const {
656 if (I != MBB.end()) DL = I->getDebugLoc();
657 MachineFunction &MF = *MBB.getParent();
658 MachineFrameInfo &MFI = *MF.getFrameInfo();
659 unsigned Align = MFI.getObjectAlignment(FI);
661 MachineMemOperand *MMO =
662 MF.getMachineMemOperand(MachinePointerInfo(
663 PseudoSourceValue::getFixedStack(FI)),
664 MachineMemOperand::MOStore,
665 MFI.getObjectSize(FI),
668 // tGPR is used sometimes in ARM instructions that need to avoid using
669 // certain registers. Just treat it as GPR here. Likewise, rGPR.
670 if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass
671 || RC == ARM::rGPRRegisterClass)
672 RC = ARM::GPRRegisterClass;
674 switch (RC->getID()) {
675 case ARM::GPRRegClassID:
676 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::STR))
677 .addReg(SrcReg, getKillRegState(isKill))
678 .addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO));
680 case ARM::SPRRegClassID:
681 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRS))
682 .addReg(SrcReg, getKillRegState(isKill))
683 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
685 case ARM::DPRRegClassID:
686 case ARM::DPR_VFP2RegClassID:
687 case ARM::DPR_8RegClassID:
688 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTRD))
689 .addReg(SrcReg, getKillRegState(isKill))
690 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
692 case ARM::QPRRegClassID:
693 case ARM::QPR_VFP2RegClassID:
694 case ARM::QPR_8RegClassID:
695 if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
696 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1q64Pseudo))
697 .addFrameIndex(FI).addImm(16)
698 .addReg(SrcReg, getKillRegState(isKill))
699 .addMemOperand(MMO));
701 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMQ))
702 .addReg(SrcReg, getKillRegState(isKill))
704 .addImm(ARM_AM::getAM4ModeImm(ARM_AM::ia))
705 .addMemOperand(MMO));
708 case ARM::QQPRRegClassID:
709 case ARM::QQPR_VFP2RegClassID:
710 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
711 // FIXME: It's possible to only store part of the QQ register if the
712 // spilled def has a sub-register index.
713 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VST1d64QPseudo))
714 .addFrameIndex(FI).addImm(16)
715 .addReg(SrcReg, getKillRegState(isKill))
716 .addMemOperand(MMO));
718 MachineInstrBuilder MIB =
719 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMD))
721 .addImm(ARM_AM::getAM4ModeImm(ARM_AM::ia)))
723 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
724 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
725 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
726 AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
729 case ARM::QQQQPRRegClassID: {
730 MachineInstrBuilder MIB =
731 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VSTMD))
733 .addImm(ARM_AM::getAM4ModeImm(ARM_AM::ia)))
735 MIB = AddDReg(MIB, SrcReg, ARM::dsub_0, getKillRegState(isKill), TRI);
736 MIB = AddDReg(MIB, SrcReg, ARM::dsub_1, 0, TRI);
737 MIB = AddDReg(MIB, SrcReg, ARM::dsub_2, 0, TRI);
738 MIB = AddDReg(MIB, SrcReg, ARM::dsub_3, 0, TRI);
739 MIB = AddDReg(MIB, SrcReg, ARM::dsub_4, 0, TRI);
740 MIB = AddDReg(MIB, SrcReg, ARM::dsub_5, 0, TRI);
741 MIB = AddDReg(MIB, SrcReg, ARM::dsub_6, 0, TRI);
742 AddDReg(MIB, SrcReg, ARM::dsub_7, 0, TRI);
746 llvm_unreachable("Unknown regclass!");
751 ARMBaseInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
752 int &FrameIndex) const {
753 switch (MI->getOpcode()) {
756 case ARM::t2STRs: // FIXME: don't use t2STRs to access frame.
757 if (MI->getOperand(1).isFI() &&
758 MI->getOperand(2).isReg() &&
759 MI->getOperand(3).isImm() &&
760 MI->getOperand(2).getReg() == 0 &&
761 MI->getOperand(3).getImm() == 0) {
762 FrameIndex = MI->getOperand(1).getIndex();
763 return MI->getOperand(0).getReg();
770 if (MI->getOperand(1).isFI() &&
771 MI->getOperand(2).isImm() &&
772 MI->getOperand(2).getImm() == 0) {
773 FrameIndex = MI->getOperand(1).getIndex();
774 return MI->getOperand(0).getReg();
777 case ARM::VST1q64Pseudo:
778 if (MI->getOperand(0).isFI() &&
779 MI->getOperand(2).getSubReg() == 0) {
780 FrameIndex = MI->getOperand(0).getIndex();
781 return MI->getOperand(2).getReg();
785 if (MI->getOperand(1).isFI() &&
786 MI->getOperand(2).isImm() &&
787 MI->getOperand(2).getImm() == ARM_AM::getAM4ModeImm(ARM_AM::ia) &&
788 MI->getOperand(0).getSubReg() == 0) {
789 FrameIndex = MI->getOperand(1).getIndex();
790 return MI->getOperand(0).getReg();
798 void ARMBaseInstrInfo::
799 loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
800 unsigned DestReg, int FI,
801 const TargetRegisterClass *RC,
802 const TargetRegisterInfo *TRI) const {
804 if (I != MBB.end()) DL = I->getDebugLoc();
805 MachineFunction &MF = *MBB.getParent();
806 MachineFrameInfo &MFI = *MF.getFrameInfo();
807 unsigned Align = MFI.getObjectAlignment(FI);
808 MachineMemOperand *MMO =
809 MF.getMachineMemOperand(
810 MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
811 MachineMemOperand::MOLoad,
812 MFI.getObjectSize(FI),
815 // tGPR is used sometimes in ARM instructions that need to avoid using
816 // certain registers. Just treat it as GPR here.
817 if (RC == ARM::tGPRRegisterClass || RC == ARM::tcGPRRegisterClass
818 || RC == ARM::rGPRRegisterClass)
819 RC = ARM::GPRRegisterClass;
821 switch (RC->getID()) {
822 case ARM::GPRRegClassID:
823 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::LDR), DestReg)
824 .addFrameIndex(FI).addReg(0).addImm(0).addMemOperand(MMO));
826 case ARM::SPRRegClassID:
827 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRS), DestReg)
828 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
830 case ARM::DPRRegClassID:
831 case ARM::DPR_VFP2RegClassID:
832 case ARM::DPR_8RegClassID:
833 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDRD), DestReg)
834 .addFrameIndex(FI).addImm(0).addMemOperand(MMO));
836 case ARM::QPRRegClassID:
837 case ARM::QPR_VFP2RegClassID:
838 case ARM::QPR_8RegClassID:
839 if (Align >= 16 && getRegisterInfo().needsStackRealignment(MF)) {
840 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1q64Pseudo), DestReg)
841 .addFrameIndex(FI).addImm(16)
842 .addMemOperand(MMO));
844 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMQ), DestReg)
846 .addImm(ARM_AM::getAM4ModeImm(ARM_AM::ia))
847 .addMemOperand(MMO));
850 case ARM::QQPRRegClassID:
851 case ARM::QQPR_VFP2RegClassID:
852 if (Align >= 16 && getRegisterInfo().canRealignStack(MF)) {
853 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLD1d64QPseudo), DestReg)
854 .addFrameIndex(FI).addImm(16)
855 .addMemOperand(MMO));
857 MachineInstrBuilder MIB =
858 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMD))
860 .addImm(ARM_AM::getAM4ModeImm(ARM_AM::ia)))
862 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
863 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
864 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
865 AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
868 case ARM::QQQQPRRegClassID: {
869 MachineInstrBuilder MIB =
870 AddDefaultPred(BuildMI(MBB, I, DL, get(ARM::VLDMD))
872 .addImm(ARM_AM::getAM4ModeImm(ARM_AM::ia)))
874 MIB = AddDReg(MIB, DestReg, ARM::dsub_0, RegState::Define, TRI);
875 MIB = AddDReg(MIB, DestReg, ARM::dsub_1, RegState::Define, TRI);
876 MIB = AddDReg(MIB, DestReg, ARM::dsub_2, RegState::Define, TRI);
877 MIB = AddDReg(MIB, DestReg, ARM::dsub_3, RegState::Define, TRI);
878 MIB = AddDReg(MIB, DestReg, ARM::dsub_4, RegState::Define, TRI);
879 MIB = AddDReg(MIB, DestReg, ARM::dsub_5, RegState::Define, TRI);
880 MIB = AddDReg(MIB, DestReg, ARM::dsub_6, RegState::Define, TRI);
881 AddDReg(MIB, DestReg, ARM::dsub_7, RegState::Define, TRI);
885 llvm_unreachable("Unknown regclass!");
890 ARMBaseInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
891 int &FrameIndex) const {
892 switch (MI->getOpcode()) {
895 case ARM::t2LDRs: // FIXME: don't use t2LDRs to access frame.
896 if (MI->getOperand(1).isFI() &&
897 MI->getOperand(2).isReg() &&
898 MI->getOperand(3).isImm() &&
899 MI->getOperand(2).getReg() == 0 &&
900 MI->getOperand(3).getImm() == 0) {
901 FrameIndex = MI->getOperand(1).getIndex();
902 return MI->getOperand(0).getReg();
909 if (MI->getOperand(1).isFI() &&
910 MI->getOperand(2).isImm() &&
911 MI->getOperand(2).getImm() == 0) {
912 FrameIndex = MI->getOperand(1).getIndex();
913 return MI->getOperand(0).getReg();
916 case ARM::VLD1q64Pseudo:
917 if (MI->getOperand(1).isFI() &&
918 MI->getOperand(0).getSubReg() == 0) {
919 FrameIndex = MI->getOperand(1).getIndex();
920 return MI->getOperand(0).getReg();
924 if (MI->getOperand(1).isFI() &&
925 MI->getOperand(2).isImm() &&
926 MI->getOperand(2).getImm() == ARM_AM::getAM4ModeImm(ARM_AM::ia) &&
927 MI->getOperand(0).getSubReg() == 0) {
928 FrameIndex = MI->getOperand(1).getIndex();
929 return MI->getOperand(0).getReg();
938 ARMBaseInstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
939 int FrameIx, uint64_t Offset,
942 MachineInstrBuilder MIB = BuildMI(MF, DL, get(ARM::DBG_VALUE))
943 .addFrameIndex(FrameIx).addImm(0).addImm(Offset).addMetadata(MDPtr);
947 /// Create a copy of a const pool value. Update CPI to the new index and return
949 static unsigned duplicateCPV(MachineFunction &MF, unsigned &CPI) {
950 MachineConstantPool *MCP = MF.getConstantPool();
951 ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
953 const MachineConstantPoolEntry &MCPE = MCP->getConstants()[CPI];
954 assert(MCPE.isMachineConstantPoolEntry() &&
955 "Expecting a machine constantpool entry!");
956 ARMConstantPoolValue *ACPV =
957 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
959 unsigned PCLabelId = AFI->createConstPoolEntryUId();
960 ARMConstantPoolValue *NewCPV = 0;
961 // FIXME: The below assumes PIC relocation model and that the function
962 // is Thumb mode (t1 or t2). PCAdjustment would be 8 for ARM mode PIC, and
963 // zero for non-PIC in ARM or Thumb. The callers are all of thumb LDR
964 // instructions, so that's probably OK, but is PIC always correct when
966 if (ACPV->isGlobalValue())
967 NewCPV = new ARMConstantPoolValue(ACPV->getGV(), PCLabelId,
969 else if (ACPV->isExtSymbol())
970 NewCPV = new ARMConstantPoolValue(MF.getFunction()->getContext(),
971 ACPV->getSymbol(), PCLabelId, 4);
972 else if (ACPV->isBlockAddress())
973 NewCPV = new ARMConstantPoolValue(ACPV->getBlockAddress(), PCLabelId,
974 ARMCP::CPBlockAddress, 4);
975 else if (ACPV->isLSDA())
976 NewCPV = new ARMConstantPoolValue(MF.getFunction(), PCLabelId,
979 llvm_unreachable("Unexpected ARM constantpool value type!!");
980 CPI = MCP->getConstantPoolIndex(NewCPV, MCPE.getAlignment());
984 void ARMBaseInstrInfo::
985 reMaterialize(MachineBasicBlock &MBB,
986 MachineBasicBlock::iterator I,
987 unsigned DestReg, unsigned SubIdx,
988 const MachineInstr *Orig,
989 const TargetRegisterInfo &TRI) const {
990 unsigned Opcode = Orig->getOpcode();
993 MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
994 MI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
998 case ARM::tLDRpci_pic:
999 case ARM::t2LDRpci_pic: {
1000 MachineFunction &MF = *MBB.getParent();
1001 unsigned CPI = Orig->getOperand(1).getIndex();
1002 unsigned PCLabelId = duplicateCPV(MF, CPI);
1003 MachineInstrBuilder MIB = BuildMI(MBB, I, Orig->getDebugLoc(), get(Opcode),
1005 .addConstantPoolIndex(CPI).addImm(PCLabelId);
1006 (*MIB).setMemRefs(Orig->memoperands_begin(), Orig->memoperands_end());
1013 ARMBaseInstrInfo::duplicate(MachineInstr *Orig, MachineFunction &MF) const {
1014 MachineInstr *MI = TargetInstrInfoImpl::duplicate(Orig, MF);
1015 switch(Orig->getOpcode()) {
1016 case ARM::tLDRpci_pic:
1017 case ARM::t2LDRpci_pic: {
1018 unsigned CPI = Orig->getOperand(1).getIndex();
1019 unsigned PCLabelId = duplicateCPV(MF, CPI);
1020 Orig->getOperand(1).setIndex(CPI);
1021 Orig->getOperand(2).setImm(PCLabelId);
1028 bool ARMBaseInstrInfo::produceSameValue(const MachineInstr *MI0,
1029 const MachineInstr *MI1) const {
1030 int Opcode = MI0->getOpcode();
1031 if (Opcode == ARM::t2LDRpci ||
1032 Opcode == ARM::t2LDRpci_pic ||
1033 Opcode == ARM::tLDRpci ||
1034 Opcode == ARM::tLDRpci_pic) {
1035 if (MI1->getOpcode() != Opcode)
1037 if (MI0->getNumOperands() != MI1->getNumOperands())
1040 const MachineOperand &MO0 = MI0->getOperand(1);
1041 const MachineOperand &MO1 = MI1->getOperand(1);
1042 if (MO0.getOffset() != MO1.getOffset())
1045 const MachineFunction *MF = MI0->getParent()->getParent();
1046 const MachineConstantPool *MCP = MF->getConstantPool();
1047 int CPI0 = MO0.getIndex();
1048 int CPI1 = MO1.getIndex();
1049 const MachineConstantPoolEntry &MCPE0 = MCP->getConstants()[CPI0];
1050 const MachineConstantPoolEntry &MCPE1 = MCP->getConstants()[CPI1];
1051 ARMConstantPoolValue *ACPV0 =
1052 static_cast<ARMConstantPoolValue*>(MCPE0.Val.MachineCPVal);
1053 ARMConstantPoolValue *ACPV1 =
1054 static_cast<ARMConstantPoolValue*>(MCPE1.Val.MachineCPVal);
1055 return ACPV0->hasSameValue(ACPV1);
1058 return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
1061 /// areLoadsFromSameBasePtr - This is used by the pre-regalloc scheduler to
1062 /// determine if two loads are loading from the same base address. It should
1063 /// only return true if the base pointers are the same and the only differences
1064 /// between the two addresses is the offset. It also returns the offsets by
1066 bool ARMBaseInstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
1068 int64_t &Offset2) const {
1069 // Don't worry about Thumb: just ARM and Thumb2.
1070 if (Subtarget.isThumb1Only()) return false;
1072 if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
1075 switch (Load1->getMachineOpcode()) {
1088 case ARM::t2LDRSHi8:
1090 case ARM::t2LDRSHi12:
1094 switch (Load2->getMachineOpcode()) {
1107 case ARM::t2LDRSHi8:
1109 case ARM::t2LDRSHi12:
1113 // Check if base addresses and chain operands match.
1114 if (Load1->getOperand(0) != Load2->getOperand(0) ||
1115 Load1->getOperand(4) != Load2->getOperand(4))
1118 // Index should be Reg0.
1119 if (Load1->getOperand(3) != Load2->getOperand(3))
1122 // Determine the offsets.
1123 if (isa<ConstantSDNode>(Load1->getOperand(1)) &&
1124 isa<ConstantSDNode>(Load2->getOperand(1))) {
1125 Offset1 = cast<ConstantSDNode>(Load1->getOperand(1))->getSExtValue();
1126 Offset2 = cast<ConstantSDNode>(Load2->getOperand(1))->getSExtValue();
1133 /// shouldScheduleLoadsNear - This is a used by the pre-regalloc scheduler to
1134 /// determine (in conjuction with areLoadsFromSameBasePtr) if two loads should
1135 /// be scheduled togther. On some targets if two loads are loading from
1136 /// addresses in the same cache line, it's better if they are scheduled
1137 /// together. This function takes two integers that represent the load offsets
1138 /// from the common base address. It returns true if it decides it's desirable
1139 /// to schedule the two loads together. "NumLoads" is the number of loads that
1140 /// have already been scheduled after Load1.
1141 bool ARMBaseInstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
1142 int64_t Offset1, int64_t Offset2,
1143 unsigned NumLoads) const {
1144 // Don't worry about Thumb: just ARM and Thumb2.
1145 if (Subtarget.isThumb1Only()) return false;
1147 assert(Offset2 > Offset1);
1149 if ((Offset2 - Offset1) / 8 > 64)
1152 if (Load1->getMachineOpcode() != Load2->getMachineOpcode())
1153 return false; // FIXME: overly conservative?
1155 // Four loads in a row should be sufficient.
1162 bool ARMBaseInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
1163 const MachineBasicBlock *MBB,
1164 const MachineFunction &MF) const {
1165 // Debug info is never a scheduling boundary. It's necessary to be explicit
1166 // due to the special treatment of IT instructions below, otherwise a
1167 // dbg_value followed by an IT will result in the IT instruction being
1168 // considered a scheduling hazard, which is wrong. It should be the actual
1169 // instruction preceding the dbg_value instruction(s), just like it is
1170 // when debug info is not present.
1171 if (MI->isDebugValue())
1174 // Terminators and labels can't be scheduled around.
1175 if (MI->getDesc().isTerminator() || MI->isLabel())
1178 // Treat the start of the IT block as a scheduling boundary, but schedule
1179 // t2IT along with all instructions following it.
1180 // FIXME: This is a big hammer. But the alternative is to add all potential
1181 // true and anti dependencies to IT block instructions as implicit operands
1182 // to the t2IT instruction. The added compile time and complexity does not
1184 MachineBasicBlock::const_iterator I = MI;
1185 // Make sure to skip any dbg_value instructions
1186 while (++I != MBB->end() && I->isDebugValue())
1188 if (I != MBB->end() && I->getOpcode() == ARM::t2IT)
1191 // Don't attempt to schedule around any instruction that defines
1192 // a stack-oriented pointer, as it's unlikely to be profitable. This
1193 // saves compile time, because it doesn't require every single
1194 // stack slot reference to depend on the instruction that does the
1196 if (MI->definesRegister(ARM::SP))
1202 bool ARMBaseInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
1205 float Confidence) const {
1209 // Use old-style heuristics
1211 if (Subtarget.getCPUString() == "generic")
1212 // Generic (and overly aggressive) if-conversion limits for testing.
1213 return NumInstrs <= 10;
1214 if (Subtarget.hasV7Ops())
1215 return NumInstrs <= 3;
1216 return NumInstrs <= 2;
1219 // Attempt to estimate the relative costs of predication versus branching.
1220 float UnpredCost = Probability * NumInstrs;
1221 UnpredCost += 1.0; // The branch itself
1222 UnpredCost += (1.0 - Confidence) * Subtarget.getMispredictionPenalty();
1224 float PredCost = NumInstrs;
1226 return PredCost < UnpredCost;
1230 bool ARMBaseInstrInfo::
1231 isProfitableToIfCvt(MachineBasicBlock &TMBB, unsigned NumT,
1232 MachineBasicBlock &FMBB, unsigned NumF,
1233 float Probability, float Confidence) const {
1234 // Use old-style if-conversion heuristics
1236 return NumT && NumF && NumT <= 2 && NumF <= 2;
1242 // Attempt to estimate the relative costs of predication versus branching.
1243 float UnpredCost = Probability * NumT + (1.0 - Probability) * NumF;
1244 UnpredCost += 1.0; // The branch itself
1245 UnpredCost += (1.0 - Confidence) * Subtarget.getMispredictionPenalty();
1247 float PredCost = NumT + NumF;
1249 return PredCost < UnpredCost;
1252 /// getInstrPredicate - If instruction is predicated, returns its predicate
1253 /// condition, otherwise returns AL. It also returns the condition code
1254 /// register by reference.
1256 llvm::getInstrPredicate(const MachineInstr *MI, unsigned &PredReg) {
1257 int PIdx = MI->findFirstPredOperandIdx();
1263 PredReg = MI->getOperand(PIdx+1).getReg();
1264 return (ARMCC::CondCodes)MI->getOperand(PIdx).getImm();
1268 int llvm::getMatchingCondBranchOpcode(int Opc) {
1271 else if (Opc == ARM::tB)
1273 else if (Opc == ARM::t2B)
1276 llvm_unreachable("Unknown unconditional branch opcode!");
1281 void llvm::emitARMRegPlusImmediate(MachineBasicBlock &MBB,
1282 MachineBasicBlock::iterator &MBBI, DebugLoc dl,
1283 unsigned DestReg, unsigned BaseReg, int NumBytes,
1284 ARMCC::CondCodes Pred, unsigned PredReg,
1285 const ARMBaseInstrInfo &TII) {
1286 bool isSub = NumBytes < 0;
1287 if (isSub) NumBytes = -NumBytes;
1290 unsigned RotAmt = ARM_AM::getSOImmValRotate(NumBytes);
1291 unsigned ThisVal = NumBytes & ARM_AM::rotr32(0xFF, RotAmt);
1292 assert(ThisVal && "Didn't extract field correctly");
1294 // We will handle these bits from offset, clear them.
1295 NumBytes &= ~ThisVal;
1297 assert(ARM_AM::getSOImmVal(ThisVal) != -1 && "Bit extraction didn't work?");
1299 // Build the new ADD / SUB.
1300 unsigned Opc = isSub ? ARM::SUBri : ARM::ADDri;
1301 BuildMI(MBB, MBBI, dl, TII.get(Opc), DestReg)
1302 .addReg(BaseReg, RegState::Kill).addImm(ThisVal)
1303 .addImm((unsigned)Pred).addReg(PredReg).addReg(0);
1308 bool llvm::rewriteARMFrameIndex(MachineInstr &MI, unsigned FrameRegIdx,
1309 unsigned FrameReg, int &Offset,
1310 const ARMBaseInstrInfo &TII) {
1311 unsigned Opcode = MI.getOpcode();
1312 const TargetInstrDesc &Desc = MI.getDesc();
1313 unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
1316 // Memory operands in inline assembly always use AddrMode2.
1317 if (Opcode == ARM::INLINEASM)
1318 AddrMode = ARMII::AddrMode2;
1320 if (Opcode == ARM::ADDri) {
1321 Offset += MI.getOperand(FrameRegIdx+1).getImm();
1323 // Turn it into a move.
1324 MI.setDesc(TII.get(ARM::MOVr));
1325 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1326 MI.RemoveOperand(FrameRegIdx+1);
1329 } else if (Offset < 0) {
1332 MI.setDesc(TII.get(ARM::SUBri));
1335 // Common case: small offset, fits into instruction.
1336 if (ARM_AM::getSOImmVal(Offset) != -1) {
1337 // Replace the FrameIndex with sp / fp
1338 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1339 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(Offset);
1344 // Otherwise, pull as much of the immedidate into this ADDri/SUBri
1346 unsigned RotAmt = ARM_AM::getSOImmValRotate(Offset);
1347 unsigned ThisImmVal = Offset & ARM_AM::rotr32(0xFF, RotAmt);
1349 // We will handle these bits from offset, clear them.
1350 Offset &= ~ThisImmVal;
1352 // Get the properly encoded SOImmVal field.
1353 assert(ARM_AM::getSOImmVal(ThisImmVal) != -1 &&
1354 "Bit extraction didn't work?");
1355 MI.getOperand(FrameRegIdx+1).ChangeToImmediate(ThisImmVal);
1357 unsigned ImmIdx = 0;
1359 unsigned NumBits = 0;
1362 case ARMII::AddrMode2: {
1363 ImmIdx = FrameRegIdx+2;
1364 InstrOffs = ARM_AM::getAM2Offset(MI.getOperand(ImmIdx).getImm());
1365 if (ARM_AM::getAM2Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1370 case ARMII::AddrMode3: {
1371 ImmIdx = FrameRegIdx+2;
1372 InstrOffs = ARM_AM::getAM3Offset(MI.getOperand(ImmIdx).getImm());
1373 if (ARM_AM::getAM3Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1378 case ARMII::AddrMode4:
1379 case ARMII::AddrMode6:
1380 // Can't fold any offset even if it's zero.
1382 case ARMII::AddrMode5: {
1383 ImmIdx = FrameRegIdx+1;
1384 InstrOffs = ARM_AM::getAM5Offset(MI.getOperand(ImmIdx).getImm());
1385 if (ARM_AM::getAM5Op(MI.getOperand(ImmIdx).getImm()) == ARM_AM::sub)
1392 llvm_unreachable("Unsupported addressing mode!");
1396 Offset += InstrOffs * Scale;
1397 assert((Offset & (Scale-1)) == 0 && "Can't encode this offset!");
1403 // Attempt to fold address comp. if opcode has offset bits
1405 // Common case: small offset, fits into instruction.
1406 MachineOperand &ImmOp = MI.getOperand(ImmIdx);
1407 int ImmedOffset = Offset / Scale;
1408 unsigned Mask = (1 << NumBits) - 1;
1409 if ((unsigned)Offset <= Mask * Scale) {
1410 // Replace the FrameIndex with sp
1411 MI.getOperand(FrameRegIdx).ChangeToRegister(FrameReg, false);
1413 ImmedOffset |= 1 << NumBits;
1414 ImmOp.ChangeToImmediate(ImmedOffset);
1419 // Otherwise, it didn't fit. Pull in what we can to simplify the immed.
1420 ImmedOffset = ImmedOffset & Mask;
1422 ImmedOffset |= 1 << NumBits;
1423 ImmOp.ChangeToImmediate(ImmedOffset);
1424 Offset &= ~(Mask*Scale);
1428 Offset = (isSub) ? -Offset : Offset;
1432 bool ARMBaseInstrInfo::
1433 AnalyzeCompare(const MachineInstr *MI, unsigned &SrcReg, int &CmpMask,
1434 int &CmpValue) const {
1435 switch (MI->getOpcode()) {
1441 SrcReg = MI->getOperand(0).getReg();
1443 CmpValue = MI->getOperand(1).getImm();
1447 SrcReg = MI->getOperand(0).getReg();
1448 CmpMask = MI->getOperand(1).getImm();
1456 /// isSuitableForMask - Identify a suitable 'and' instruction that
1457 /// operates on the given source register and applies the same mask
1458 /// as a 'tst' instruction. Provide a limited look-through for copies.
1459 /// When successful, MI will hold the found instruction.
1460 static bool isSuitableForMask(MachineInstr *&MI, unsigned SrcReg,
1461 int CmpMask, bool CommonUse) {
1462 switch (MI->getOpcode()) {
1465 if (CmpMask != MI->getOperand(2).getImm())
1467 if (SrcReg == MI->getOperand(CommonUse ? 1 : 0).getReg())
1471 // Walk down one instruction which is potentially an 'and'.
1472 const MachineInstr &Copy = *MI;
1473 MachineBasicBlock::iterator AND(
1474 llvm::next(MachineBasicBlock::iterator(MI)));
1475 if (AND == MI->getParent()->end()) return false;
1477 return isSuitableForMask(MI, Copy.getOperand(0).getReg(),
1485 /// OptimizeCompareInstr - Convert the instruction supplying the argument to the
1486 /// comparison into one that sets the zero bit in the flags register. Update the
1487 /// iterator *only* if a transformation took place.
1488 bool ARMBaseInstrInfo::
1489 OptimizeCompareInstr(MachineInstr *CmpInstr, unsigned SrcReg, int CmpMask,
1490 int CmpValue, MachineBasicBlock::iterator &MII) const {
1494 MachineRegisterInfo &MRI = CmpInstr->getParent()->getParent()->getRegInfo();
1495 MachineRegisterInfo::def_iterator DI = MRI.def_begin(SrcReg);
1496 if (llvm::next(DI) != MRI.def_end())
1497 // Only support one definition.
1500 MachineInstr *MI = &*DI;
1502 // Masked compares sometimes use the same register as the corresponding 'and'.
1503 if (CmpMask != ~0) {
1504 if (!isSuitableForMask(MI, SrcReg, CmpMask, false)) {
1506 for (MachineRegisterInfo::use_iterator UI = MRI.use_begin(SrcReg),
1507 UE = MRI.use_end(); UI != UE; ++UI) {
1508 if (UI->getParent() != CmpInstr->getParent()) continue;
1509 MachineInstr *PotentialAND = &*UI;
1510 if (!isSuitableForMask(PotentialAND, SrcReg, CmpMask, true))
1515 if (!MI) return false;
1519 // Conservatively refuse to convert an instruction which isn't in the same BB
1520 // as the comparison.
1521 if (MI->getParent() != CmpInstr->getParent())
1524 // Check that CPSR isn't set between the comparison instruction and the one we
1526 MachineBasicBlock::const_iterator I = CmpInstr, E = MI,
1527 B = MI->getParent()->begin();
1529 for (; I != E; --I) {
1530 const MachineInstr &Instr = *I;
1532 for (unsigned IO = 0, EO = Instr.getNumOperands(); IO != EO; ++IO) {
1533 const MachineOperand &MO = Instr.getOperand(IO);
1534 if (!MO.isReg() || !MO.isDef()) continue;
1536 // This instruction modifies CPSR before the one we want to change. We
1537 // can't do this transformation.
1538 if (MO.getReg() == ARM::CPSR)
1543 // The 'and' is below the comparison instruction.
1547 // Set the "zero" bit in CPSR.
1548 switch (MI->getOpcode()) {
1556 MI->RemoveOperand(5);
1557 MachineInstrBuilder(MI)
1558 .addReg(ARM::CPSR, RegState::Define | RegState::Implicit);
1559 MII = llvm::next(MachineBasicBlock::iterator(CmpInstr));
1560 CmpInstr->eraseFromParent();
1568 ARMBaseInstrInfo::getNumMicroOps(const MachineInstr *MI,
1569 const InstrItineraryData *ItinData) const {
1570 if (!ItinData || ItinData->isEmpty())
1573 const TargetInstrDesc &Desc = MI->getDesc();
1574 unsigned Class = Desc.getSchedClass();
1575 unsigned UOps = ItinData->Itineraries[Class].NumMicroOps;
1579 unsigned Opc = MI->getOpcode();
1582 llvm_unreachable("Unexpected multi-uops instruction!");
1588 // The number of uOps for load / store multiple are determined by the number
1590 // On Cortex-A8, each pair of register loads / stores can be scheduled on the
1591 // same cycle. The scheduling for the first load / store must be done
1592 // separately by assuming the the address is not 64-bit aligned.
1593 // On Cortex-A9, the formula is simply (#reg / 2) + (#reg % 2). If the address
1594 // is not 64-bit aligned, then AGU would take an extra cycle.
1595 // For VFP / NEON load / store multiple, the formula is
1596 // (#reg / 2) + (#reg % 2) + 1.
1599 case ARM::VLDMD_UPD:
1600 case ARM::VLDMS_UPD:
1603 case ARM::VSTMD_UPD:
1604 case ARM::VSTMS_UPD: {
1605 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands();
1606 return (NumRegs / 2) + (NumRegs % 2) + 1;
1619 case ARM::t2LDM_RET:
1621 case ARM::t2LDM_UPD:
1623 case ARM::t2STM_UPD: {
1624 unsigned NumRegs = MI->getNumOperands() - Desc.getNumOperands() + 1;
1625 if (Subtarget.isCortexA8()) {
1626 // 4 registers would be issued: 1, 2, 1.
1627 // 5 registers would be issued: 1, 2, 2.
1628 return 1 + (NumRegs / 2);
1629 } else if (Subtarget.isCortexA9()) {
1630 UOps = (NumRegs / 2);
1631 // If there are odd number of registers or if it's not 64-bit aligned,
1632 // then it takes an extra AGU (Address Generation Unit) cycle.
1633 if ((NumRegs % 2) ||
1634 !MI->hasOneMemOperand() ||
1635 (*MI->memoperands_begin())->getAlignment() < 8)
1639 // Assume the worst.