1 //===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function. This is required due to the
12 // limited pc-relative displacements that ARM has.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "arm-cp-islands"
18 #include "ARMAddressingModes.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMInstrInfo.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/Statistic.h"
36 STATISTIC(NumCPEs, "Number of constpool entries");
37 STATISTIC(NumSplit, "Number of uncond branches inserted");
38 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
39 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
40 STATISTIC(NumTBs, "Number of table branches generated");
41 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
42 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
45 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
46 /// requires constant pool entries to be scattered among the instructions
47 /// inside a function. To do this, it completely ignores the normal LLVM
48 /// constant pool; instead, it places constants wherever it feels like with
49 /// special instructions.
51 /// The terminology used in this pass includes:
52 /// Islands - Clumps of constants placed in the function.
53 /// Water - Potential places where an island could be formed.
54 /// CPE - A constant pool entry that has been placed somewhere, which
55 /// tracks a list of users.
56 class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass {
57 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
58 /// by MBB Number. The two-byte pads required for Thumb alignment are
59 /// counted as part of the following block (i.e., the offset and size for
60 /// a padded block will both be ==2 mod 4).
61 std::vector<unsigned> BBSizes;
63 /// BBOffsets - the offset of each MBB in bytes, starting from 0.
64 /// The two-byte pads required for Thumb alignment are counted as part of
65 /// the following block.
66 std::vector<unsigned> BBOffsets;
68 /// WaterList - A sorted list of basic blocks where islands could be placed
69 /// (i.e. blocks that don't fall through to the following block, due
70 /// to a return, unreachable, or unconditional branch).
71 std::vector<MachineBasicBlock*> WaterList;
73 /// CPUser - One user of a constant pool, keeping the machine instruction
74 /// pointer, the constant pool being referenced, and the max displacement
75 /// allowed from the instruction to the CP.
82 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
84 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {}
87 /// CPUsers - Keep track of all of the machine instructions that use various
88 /// constant pools and their max displacement.
89 std::vector<CPUser> CPUsers;
91 /// CPEntry - One per constant pool entry, keeping the machine instruction
92 /// pointer, the constpool index, and the number of CPUser's which
93 /// reference this entry.
98 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
99 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
102 /// CPEntries - Keep track of all of the constant pool entry machine
103 /// instructions. For each original constpool index (i.e. those that
104 /// existed upon entry to this pass), it keeps a vector of entries.
105 /// Original elements are cloned as we go along; the clones are
106 /// put in the vector of the original element, but have distinct CPIs.
107 std::vector<std::vector<CPEntry> > CPEntries;
109 /// ImmBranch - One per immediate branch, keeping the machine instruction
110 /// pointer, conditional or unconditional, the max displacement,
111 /// and (if isCond is true) the corresponding unconditional branch
115 unsigned MaxDisp : 31;
118 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
119 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
122 /// ImmBranches - Keep track of all the immediate branch instructions.
124 std::vector<ImmBranch> ImmBranches;
126 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
128 SmallVector<MachineInstr*, 4> PushPopMIs;
130 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
131 SmallVector<MachineInstr*, 4> T2JumpTables;
133 /// HasFarJump - True if any far jump instruction has been emitted during
134 /// the branch fix up pass.
137 const TargetInstrInfo *TII;
138 const ARMSubtarget *STI;
139 ARMFunctionInfo *AFI;
145 ARMConstantIslands() : MachineFunctionPass(&ID) {}
147 virtual bool runOnMachineFunction(MachineFunction &MF);
149 virtual const char *getPassName() const {
150 return "ARM constant island placement and branch shortening pass";
154 void DoInitialPlacement(MachineFunction &MF,
155 std::vector<MachineInstr*> &CPEMIs);
156 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
157 void InitialFunctionScan(MachineFunction &MF,
158 const std::vector<MachineInstr*> &CPEMIs);
159 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
160 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
161 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
162 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
163 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
164 bool LookForWater(CPUser&U, unsigned UserOffset,
165 MachineBasicBlock** NewMBB);
166 MachineBasicBlock* AcceptWater(MachineBasicBlock *WaterBB,
167 std::vector<MachineBasicBlock*>::iterator IP);
168 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
169 MachineBasicBlock** NewMBB);
170 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
171 void RemoveDeadCPEMI(MachineInstr *CPEMI);
172 bool RemoveUnusedCPEntries();
173 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
174 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
175 bool DoDump = false);
176 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
178 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
179 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
180 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
181 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
182 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
183 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
184 bool UndoLRSpillRestore();
185 bool OptimizeThumb2Instructions(MachineFunction &MF);
186 bool OptimizeThumb2Branches(MachineFunction &MF);
187 bool OptimizeThumb2JumpTables(MachineFunction &MF);
189 unsigned GetOffsetOf(MachineInstr *MI) const;
191 void verify(MachineFunction &MF);
193 char ARMConstantIslands::ID = 0;
196 /// verify - check BBOffsets, BBSizes, alignment of islands
197 void ARMConstantIslands::verify(MachineFunction &MF) {
198 assert(BBOffsets.size() == BBSizes.size());
199 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
200 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
204 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
206 MachineBasicBlock *MBB = MBBI;
208 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
209 unsigned MBBId = MBB->getNumber();
210 assert((BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
211 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
217 /// print block size and offset information - debugging
218 void ARMConstantIslands::dumpBBs() {
219 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
220 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
221 << " size " << BBSizes[J] << "\n");
225 /// createARMConstantIslandPass - returns an instance of the constpool
227 FunctionPass *llvm::createARMConstantIslandPass() {
228 return new ARMConstantIslands();
231 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
232 MachineConstantPool &MCP = *MF.getConstantPool();
234 TII = MF.getTarget().getInstrInfo();
235 AFI = MF.getInfo<ARMFunctionInfo>();
236 STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
238 isThumb = AFI->isThumbFunction();
239 isThumb1 = AFI->isThumb1OnlyFunction();
240 isThumb2 = AFI->isThumb2Function();
244 // Renumber all of the machine basic blocks in the function, guaranteeing that
245 // the numbers agree with the position of the block in the function.
248 // Thumb1 functions containing constant pools get 4-byte alignment.
249 // This is so we can keep exact track of where the alignment padding goes.
251 // Set default. Thumb1 function is 2-byte aligned, ARM and Thumb2 are 4-byte
253 AFI->setAlign(isThumb1 ? 1U : 2U);
255 // Perform the initial placement of the constant pool entries. To start with,
256 // we put them all at the end of the function.
257 std::vector<MachineInstr*> CPEMIs;
258 if (!MCP.isEmpty()) {
259 DoInitialPlacement(MF, CPEMIs);
264 /// The next UID to take is the first unused one.
265 AFI->initConstPoolEntryUId(CPEMIs.size());
267 // Do the initial scan of the function, building up information about the
268 // sizes of each block, the location of all the water, and finding all of the
269 // constant pool users.
270 InitialFunctionScan(MF, CPEMIs);
273 /// Remove dead constant pool entries.
274 RemoveUnusedCPEntries();
276 // Iteratively place constant pool entries and fix up branches until there
278 bool MadeChange = false;
279 unsigned NoCPIters = 0, NoBRIters = 0;
281 bool CPChange = false;
282 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
283 CPChange |= HandleConstantPoolUser(MF, i);
284 if (CPChange && ++NoCPIters > 30)
285 llvm_unreachable("Constant Island pass failed to converge!");
288 bool BRChange = false;
289 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
290 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
291 if (BRChange && ++NoBRIters > 30)
292 llvm_unreachable("Branch Fix Up pass failed to converge!");
295 if (!CPChange && !BRChange)
300 // Shrink 32-bit Thumb2 branch, load, and store instructions.
302 MadeChange |= OptimizeThumb2Instructions(MF);
304 // After a while, this might be made debug-only, but it is not expensive.
307 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued.
308 // Undo the spill / restore of LR if possible.
309 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
310 MadeChange |= UndoLRSpillRestore();
319 T2JumpTables.clear();
324 /// DoInitialPlacement - Perform the initial placement of the constant pool
325 /// entries. To start with, we put them all at the end of the function.
326 void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
327 std::vector<MachineInstr*> &CPEMIs) {
328 // Create the basic block to hold the CPE's.
329 MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
332 // Add all of the constants from the constant pool to the end block, use an
333 // identity mapping of CPI's to CPE's.
334 const std::vector<MachineConstantPoolEntry> &CPs =
335 MF.getConstantPool()->getConstants();
337 const TargetData &TD = *MF.getTarget().getTargetData();
338 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
339 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
340 // Verify that all constant pool entries are a multiple of 4 bytes. If not,
341 // we would have to pad them out or something so that instructions stay
343 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
344 MachineInstr *CPEMI =
345 BuildMI(BB, DebugLoc::getUnknownLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
346 .addImm(i).addConstantPoolIndex(i).addImm(Size);
347 CPEMIs.push_back(CPEMI);
349 // Add a new CPEntry, but no corresponding CPUser yet.
350 std::vector<CPEntry> CPEs;
351 CPEs.push_back(CPEntry(CPEMI, i));
352 CPEntries.push_back(CPEs);
354 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
359 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
360 /// into the block immediately after it.
361 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
362 // Get the next machine basic block in the function.
363 MachineFunction::iterator MBBI = MBB;
364 if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function.
367 MachineBasicBlock *NextBB = next(MBBI);
368 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
369 E = MBB->succ_end(); I != E; ++I)
376 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
377 /// look up the corresponding CPEntry.
378 ARMConstantIslands::CPEntry
379 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
380 const MachineInstr *CPEMI) {
381 std::vector<CPEntry> &CPEs = CPEntries[CPI];
382 // Number of entries per constpool index should be small, just do a
384 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
385 if (CPEs[i].CPEMI == CPEMI)
391 /// InitialFunctionScan - Do the initial scan of the function, building up
392 /// information about the sizes of each block, the location of all the water,
393 /// and finding all of the constant pool users.
394 void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
395 const std::vector<MachineInstr*> &CPEMIs) {
397 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
399 MachineBasicBlock &MBB = *MBBI;
401 // If this block doesn't fall through into the next MBB, then this is
402 // 'water' that a constant pool island could be placed.
403 if (!BBHasFallthrough(&MBB))
404 WaterList.push_back(&MBB);
406 unsigned MBBSize = 0;
407 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
409 // Add instruction size to MBBSize.
410 MBBSize += TII->GetInstSizeInBytes(I);
412 int Opc = I->getOpcode();
413 if (I->getDesc().isBranch()) {
420 continue; // Ignore other JT branches
422 // A Thumb1 table jump may involve padding; for the offsets to
423 // be right, functions containing these must be 4-byte aligned.
425 if ((Offset+MBBSize)%4 != 0)
426 // FIXME: Add a pseudo ALIGN instruction instead.
427 MBBSize += 2; // padding
428 continue; // Does not get an entry in ImmBranches
430 T2JumpTables.push_back(I);
431 continue; // Does not get an entry in ImmBranches
462 // Record this immediate branch.
463 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
464 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
467 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
468 PushPopMIs.push_back(I);
470 if (Opc == ARM::CONSTPOOL_ENTRY)
473 // Scan the instructions for constant pool operands.
474 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
475 if (I->getOperand(op).isCPI()) {
476 // We found one. The addressing mode tells us the max displacement
477 // from the PC that this instruction permits.
479 // Basic size info comes from the TSFlags field.
483 bool IsSoImm = false;
487 llvm_unreachable("Unknown addressing mode for CP reference!");
490 // Taking the address of a CP entry.
492 // This takes a SoImm, which is 8 bit immediate rotated. We'll
493 // pretend the maximum offset is 255 * 4. Since each instruction
494 // 4 byte wide, this is always correct. We'llc heck for other
495 // displacements that fits in a SoImm as well.
501 case ARM::t2LEApcrel:
513 Bits = 12; // +-offset_12
520 Scale = 4; // +(offset_8*4)
526 Scale = 4; // +-(offset_8*4)
531 // Remember that this is a user of a CP entry.
532 unsigned CPI = I->getOperand(op).getIndex();
533 MachineInstr *CPEMI = CPEMIs[CPI];
534 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
535 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
537 // Increment corresponding CPEntry reference count.
538 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
539 assert(CPE && "Cannot find a corresponding CPEntry!");
542 // Instructions can only use one CP entry, don't bother scanning the
543 // rest of the operands.
548 // In thumb mode, if this block is a constpool island, we may need padding
549 // so it's aligned on 4 byte boundary.
552 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
556 BBSizes.push_back(MBBSize);
557 BBOffsets.push_back(Offset);
562 /// GetOffsetOf - Return the current offset of the specified machine instruction
563 /// from the start of the function. This offset changes as stuff is moved
564 /// around inside the function.
565 unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
566 MachineBasicBlock *MBB = MI->getParent();
568 // The offset is composed of two things: the sum of the sizes of all MBB's
569 // before this instruction's block, and the offset from the start of the block
571 unsigned Offset = BBOffsets[MBB->getNumber()];
573 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
574 // alignment padding, and compensate if so.
576 MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
580 // Sum instructions before MI in MBB.
581 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
582 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
583 if (&*I == MI) return Offset;
584 Offset += TII->GetInstSizeInBytes(I);
588 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
590 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
591 const MachineBasicBlock *RHS) {
592 return LHS->getNumber() < RHS->getNumber();
595 /// UpdateForInsertedWaterBlock - When a block is newly inserted into the
596 /// machine function, it upsets all of the block numbers. Renumber the blocks
597 /// and update the arrays that parallel this numbering.
598 void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
599 // Renumber the MBB's to keep them consequtive.
600 NewBB->getParent()->RenumberBlocks(NewBB);
602 // Insert a size into BBSizes to align it properly with the (newly
603 // renumbered) block numbers.
604 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
606 // Likewise for BBOffsets.
607 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
609 // Next, update WaterList. Specifically, we need to add NewMBB as having
610 // available water after it.
611 std::vector<MachineBasicBlock*>::iterator IP =
612 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
614 WaterList.insert(IP, NewBB);
618 /// Split the basic block containing MI into two blocks, which are joined by
619 /// an unconditional branch. Update datastructures and renumber blocks to
620 /// account for this change and returns the newly created block.
621 MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
622 MachineBasicBlock *OrigBB = MI->getParent();
623 MachineFunction &MF = *OrigBB->getParent();
625 // Create a new MBB for the code after the OrigBB.
626 MachineBasicBlock *NewBB =
627 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
628 MachineFunction::iterator MBBI = OrigBB; ++MBBI;
629 MF.insert(MBBI, NewBB);
631 // Splice the instructions starting with MI over to NewBB.
632 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
634 // Add an unconditional branch from OrigBB to NewBB.
635 // Note the new unconditional branch is not being recorded.
636 // There doesn't seem to be meaningful DebugInfo available; this doesn't
637 // correspond to anything in the source.
638 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
639 BuildMI(OrigBB, DebugLoc::getUnknownLoc(), TII->get(Opc)).addMBB(NewBB);
642 // Update the CFG. All succs of OrigBB are now succs of NewBB.
643 while (!OrigBB->succ_empty()) {
644 MachineBasicBlock *Succ = *OrigBB->succ_begin();
645 OrigBB->removeSuccessor(Succ);
646 NewBB->addSuccessor(Succ);
648 // This pass should be run after register allocation, so there should be no
649 // PHI nodes to update.
650 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
651 && "PHI nodes should be eliminated by now!");
654 // OrigBB branches to NewBB.
655 OrigBB->addSuccessor(NewBB);
657 // Update internal data structures to account for the newly inserted MBB.
658 // This is almost the same as UpdateForInsertedWaterBlock, except that
659 // the Water goes after OrigBB, not NewBB.
660 MF.RenumberBlocks(NewBB);
662 // Insert a size into BBSizes to align it properly with the (newly
663 // renumbered) block numbers.
664 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
666 // Likewise for BBOffsets.
667 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
669 // Next, update WaterList. Specifically, we need to add OrigMBB as having
670 // available water after it (but not if it's already there, which happens
671 // when splitting before a conditional branch that is followed by an
672 // unconditional branch - in that case we want to insert NewBB).
673 std::vector<MachineBasicBlock*>::iterator IP =
674 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
676 MachineBasicBlock* WaterBB = *IP;
677 if (WaterBB == OrigBB)
678 WaterList.insert(next(IP), NewBB);
680 WaterList.insert(IP, OrigBB);
682 // Figure out how large the first NewMBB is. (It cannot
683 // contain a constpool_entry or tablejump.)
684 unsigned NewBBSize = 0;
685 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
687 NewBBSize += TII->GetInstSizeInBytes(I);
689 unsigned OrigBBI = OrigBB->getNumber();
690 unsigned NewBBI = NewBB->getNumber();
691 // Set the size of NewBB in BBSizes.
692 BBSizes[NewBBI] = NewBBSize;
694 // We removed instructions from UserMBB, subtract that off from its size.
695 // Add 2 or 4 to the block to count the unconditional branch we added to it.
696 int delta = isThumb1 ? 2 : 4;
697 BBSizes[OrigBBI] -= NewBBSize - delta;
699 // ...and adjust BBOffsets for NewBB accordingly.
700 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
702 // All BBOffsets following these blocks must be modified.
703 AdjustBBOffsetsAfter(NewBB, delta);
708 /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
709 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
710 /// constant pool entry).
711 bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
712 unsigned TrialOffset, unsigned MaxDisp,
713 bool NegativeOK, bool IsSoImm) {
714 // On Thumb offsets==2 mod 4 are rounded down by the hardware for
715 // purposes of the displacement computation; compensate for that here.
716 // Effectively, the valid range of displacements is 2 bytes smaller for such
718 unsigned TotalAdj = 0;
719 if (isThumb && UserOffset%4 !=0) {
723 // CPEs will be rounded up to a multiple of 4.
724 if (isThumb && TrialOffset%4 != 0) {
729 // In Thumb2 mode, later branch adjustments can shift instructions up and
730 // cause alignment change. In the worst case scenario this can cause the
731 // user's effective address to be subtracted by 2 and the CPE's address to
733 if (isThumb2 && TotalAdj != 4)
734 MaxDisp -= (4 - TotalAdj);
736 if (UserOffset <= TrialOffset) {
737 // User before the Trial.
738 if (TrialOffset - UserOffset <= MaxDisp)
740 // FIXME: Make use full range of soimm values.
741 } else if (NegativeOK) {
742 if (UserOffset - TrialOffset <= MaxDisp)
744 // FIXME: Make use full range of soimm values.
749 /// WaterIsInRange - Returns true if a CPE placed after the specified
750 /// Water (a basic block) will be in range for the specific MI.
752 bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
753 MachineBasicBlock* Water, CPUser &U) {
754 unsigned MaxDisp = U.MaxDisp;
755 unsigned CPEOffset = BBOffsets[Water->getNumber()] +
756 BBSizes[Water->getNumber()];
758 // If the CPE is to be inserted before the instruction, that will raise
759 // the offset of the instruction. (Currently applies only to ARM, so
760 // no alignment compensation attempted here.)
761 if (CPEOffset < UserOffset)
762 UserOffset += U.CPEMI->getOperand(2).getImm();
764 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
767 /// CPEIsInRange - Returns true if the distance between specific MI and
768 /// specific ConstPool entry instruction can fit in MI's displacement field.
769 bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
770 MachineInstr *CPEMI, unsigned MaxDisp,
771 bool NegOk, bool DoDump) {
772 unsigned CPEOffset = GetOffsetOf(CPEMI);
773 assert(CPEOffset%4 == 0 && "Misaligned CPE");
776 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
777 << " max delta=" << MaxDisp
778 << " insn address=" << UserOffset
779 << " CPE address=" << CPEOffset
780 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
783 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
787 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
788 /// unconditionally branches to its only successor.
789 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
790 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
793 MachineBasicBlock *Succ = *MBB->succ_begin();
794 MachineBasicBlock *Pred = *MBB->pred_begin();
795 MachineInstr *PredMI = &Pred->back();
796 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
797 || PredMI->getOpcode() == ARM::t2B)
798 return PredMI->getOperand(0).getMBB() == Succ;
803 void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
805 MachineFunction::iterator MBBI = BB; MBBI = next(MBBI);
806 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
808 BBOffsets[i] += delta;
809 // If some existing blocks have padding, adjust the padding as needed, a
810 // bit tricky. delta can be negative so don't use % on that.
813 MachineBasicBlock *MBB = MBBI;
815 // Constant pool entries require padding.
816 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
817 unsigned OldOffset = BBOffsets[i] - delta;
818 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
822 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
823 // remove existing padding
828 // Thumb1 jump tables require padding. They should be at the end;
829 // following unconditional branches are removed by AnalyzeBranch.
830 MachineInstr *ThumbJTMI = prior(MBB->end());
831 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
832 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
833 unsigned OldMIOffset = NewMIOffset - delta;
834 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
835 // remove existing padding
838 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
851 /// DecrementOldEntry - find the constant pool entry with index CPI
852 /// and instruction CPEMI, and decrement its refcount. If the refcount
853 /// becomes 0 remove the entry and instruction. Returns true if we removed
854 /// the entry, false if we didn't.
856 bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
857 // Find the old entry. Eliminate it if it is no longer used.
858 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
859 assert(CPE && "Unexpected!");
860 if (--CPE->RefCount == 0) {
861 RemoveDeadCPEMI(CPEMI);
869 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
870 /// if not, see if an in-range clone of the CPE is in range, and if so,
871 /// change the data structures so the user references the clone. Returns:
872 /// 0 = no existing entry found
873 /// 1 = entry found, and there were no code insertions or deletions
874 /// 2 = entry found, and there were code insertions or deletions
875 int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
877 MachineInstr *UserMI = U.MI;
878 MachineInstr *CPEMI = U.CPEMI;
880 // Check to see if the CPE is already in-range.
881 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
882 DEBUG(errs() << "In range\n");
886 // No. Look for previously created clones of the CPE that are in range.
887 unsigned CPI = CPEMI->getOperand(1).getIndex();
888 std::vector<CPEntry> &CPEs = CPEntries[CPI];
889 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
890 // We already tried this one
891 if (CPEs[i].CPEMI == CPEMI)
893 // Removing CPEs can leave empty entries, skip
894 if (CPEs[i].CPEMI == NULL)
896 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
897 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
898 << CPEs[i].CPI << "\n");
899 // Point the CPUser node to the replacement
900 U.CPEMI = CPEs[i].CPEMI;
901 // Change the CPI in the instruction operand to refer to the clone.
902 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
903 if (UserMI->getOperand(j).isCPI()) {
904 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
907 // Adjust the refcount of the clone...
909 // ...and the original. If we didn't remove the old entry, none of the
910 // addresses changed, so we don't need another pass.
911 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
917 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
918 /// the specific unconditional branch instruction.
919 static inline unsigned getUnconditionalBrDisp(int Opc) {
922 return ((1<<10)-1)*2;
924 return ((1<<23)-1)*2;
929 return ((1<<23)-1)*4;
932 /// AcceptWater - Small amount of common code factored out of the following.
934 MachineBasicBlock* ARMConstantIslands::AcceptWater(MachineBasicBlock *WaterBB,
935 std::vector<MachineBasicBlock*>::iterator IP) {
936 DEBUG(errs() << "found water in range\n");
937 // Remove the original WaterList entry; we want subsequent
938 // insertions in this vicinity to go after the one we're
939 // about to insert. This considerably reduces the number
940 // of times we have to move the same CPE more than once.
942 // CPE goes before following block (NewMBB).
943 return next(MachineFunction::iterator(WaterBB));
946 /// LookForWater - look for an existing entry in the WaterList in which
947 /// we can place the CPE referenced from U so it's within range of U's MI.
948 /// Returns true if found, false if not. If it returns true, *NewMBB
949 /// is set to the WaterList entry.
950 /// For ARM, we prefer the water that's farthest away. For Thumb, prefer
951 /// water that will not introduce padding to water that will; within each
952 /// group, prefer the water that's farthest away.
953 bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
954 MachineBasicBlock** NewMBB) {
955 std::vector<MachineBasicBlock*>::iterator IPThatWouldPad;
956 MachineBasicBlock* WaterBBThatWouldPad = NULL;
957 if (!WaterList.empty()) {
958 for (std::vector<MachineBasicBlock*>::iterator IP = prior(WaterList.end()),
959 B = WaterList.begin();; --IP) {
960 MachineBasicBlock* WaterBB = *IP;
961 if (WaterIsInRange(UserOffset, WaterBB, U)) {
962 unsigned WBBId = WaterBB->getNumber();
964 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
965 // This is valid Water, but would introduce padding. Remember
966 // it in case we don't find any Water that doesn't do this.
967 if (!WaterBBThatWouldPad) {
968 WaterBBThatWouldPad = WaterBB;
972 *NewMBB = AcceptWater(WaterBB, IP);
980 if (isThumb && WaterBBThatWouldPad) {
981 *NewMBB = AcceptWater(WaterBBThatWouldPad, IPThatWouldPad);
987 /// CreateNewWater - No existing WaterList entry will work for
988 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
989 /// block is used if in range, and the conditional branch munged so control
990 /// flow is correct. Otherwise the block is split to create a hole with an
991 /// unconditional branch around it. In either case *NewMBB is set to a
992 /// block following which the new island can be inserted (the WaterList
993 /// is not adjusted).
995 void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
996 unsigned UserOffset, MachineBasicBlock** NewMBB) {
997 CPUser &U = CPUsers[CPUserIndex];
998 MachineInstr *UserMI = U.MI;
999 MachineInstr *CPEMI = U.CPEMI;
1000 MachineBasicBlock *UserMBB = UserMI->getParent();
1001 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
1002 BBSizes[UserMBB->getNumber()];
1003 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
1005 // If the use is at the end of the block, or the end of the block
1006 // is within range, make new water there. (The addition below is
1007 // for the unconditional branch we will be adding: 4 bytes on ARM + Thumb2,
1008 // 2 on Thumb1. Possible Thumb1 alignment padding is allowed for
1009 // inside OffsetIsInRange.
1010 // If the block ends in an unconditional branch already, it is water,
1011 // and is known to be out of range, so we'll always be adding a branch.)
1012 if (&UserMBB->back() == UserMI ||
1013 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
1014 U.MaxDisp, U.NegOk, U.IsSoImm)) {
1015 DEBUG(errs() << "Split at end of block\n");
1016 if (&UserMBB->back() == UserMI)
1017 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
1018 *NewMBB = next(MachineFunction::iterator(UserMBB));
1019 // Add an unconditional branch from UserMBB to fallthrough block.
1020 // Record it for branch lengthening; this new branch will not get out of
1021 // range, but if the preceding conditional branch is out of range, the
1022 // targets will be exchanged, and the altered branch may be out of
1023 // range, so the machinery has to know about it.
1024 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1025 BuildMI(UserMBB, DebugLoc::getUnknownLoc(),
1026 TII->get(UncondBr)).addMBB(*NewMBB);
1027 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1028 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1029 MaxDisp, false, UncondBr));
1030 int delta = isThumb1 ? 2 : 4;
1031 BBSizes[UserMBB->getNumber()] += delta;
1032 AdjustBBOffsetsAfter(UserMBB, delta);
1034 // What a big block. Find a place within the block to split it.
1035 // This is a little tricky on Thumb1 since instructions are 2 bytes
1036 // and constant pool entries are 4 bytes: if instruction I references
1037 // island CPE, and instruction I+1 references CPE', it will
1038 // not work well to put CPE as far forward as possible, since then
1039 // CPE' cannot immediately follow it (that location is 2 bytes
1040 // farther away from I+1 than CPE was from I) and we'd need to create
1041 // a new island. So, we make a first guess, then walk through the
1042 // instructions between the one currently being looked at and the
1043 // possible insertion point, and make sure any other instructions
1044 // that reference CPEs will be able to use the same island area;
1045 // if not, we back up the insertion point.
1047 // The 4 in the following is for the unconditional branch we'll be
1048 // inserting (allows for long branch on Thumb1). Alignment of the
1049 // island is handled inside OffsetIsInRange.
1050 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
1051 // This could point off the end of the block if we've already got
1052 // constant pool entries following this block; only the last one is
1053 // in the water list. Back past any possible branches (allow for a
1054 // conditional and a maximally long unconditional).
1055 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
1056 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
1058 unsigned EndInsertOffset = BaseInsertOffset +
1059 CPEMI->getOperand(2).getImm();
1060 MachineBasicBlock::iterator MI = UserMI;
1062 unsigned CPUIndex = CPUserIndex+1;
1063 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1064 Offset < BaseInsertOffset;
1065 Offset += TII->GetInstSizeInBytes(MI),
1067 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) {
1068 CPUser &U = CPUsers[CPUIndex];
1069 if (!OffsetIsInRange(Offset, EndInsertOffset,
1070 U.MaxDisp, U.NegOk, U.IsSoImm)) {
1071 BaseInsertOffset -= (isThumb1 ? 2 : 4);
1072 EndInsertOffset -= (isThumb1 ? 2 : 4);
1074 // This is overly conservative, as we don't account for CPEMIs
1075 // being reused within the block, but it doesn't matter much.
1076 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
1080 DEBUG(errs() << "Split in middle of big block\n");
1081 *NewMBB = SplitBlockBeforeInstr(prior(MI));
1085 /// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1086 /// is out-of-range. If so, pick up the constant pool value and move it some
1087 /// place in-range. Return true if we changed any addresses (thus must run
1088 /// another pass of branch lengthening), false otherwise.
1089 bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
1090 unsigned CPUserIndex) {
1091 CPUser &U = CPUsers[CPUserIndex];
1092 MachineInstr *UserMI = U.MI;
1093 MachineInstr *CPEMI = U.CPEMI;
1094 unsigned CPI = CPEMI->getOperand(1).getIndex();
1095 unsigned Size = CPEMI->getOperand(2).getImm();
1096 MachineBasicBlock *NewMBB;
1097 // Compute this only once, it's expensive. The 4 or 8 is the value the
1098 // hardware keeps in the PC.
1099 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
1101 // See if the current entry is within range, or there is a clone of it
1103 int result = LookForExistingCPEntry(U, UserOffset);
1104 if (result==1) return false;
1105 else if (result==2) return true;
1107 // No existing clone of this CPE is within range.
1108 // We will be generating a new clone. Get a UID for it.
1109 unsigned ID = AFI->createConstPoolEntryUId();
1111 // Look for water where we can place this CPE. We look for the farthest one
1112 // away that will work. Forward references only for now (although later
1113 // we might find some that are backwards).
1115 if (!LookForWater(U, UserOffset, &NewMBB)) {
1117 DEBUG(errs() << "No water found\n");
1118 CreateNewWater(CPUserIndex, UserOffset, &NewMBB);
1121 // Okay, we know we can put an island before NewMBB now, do it!
1122 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
1123 MF.insert(NewMBB, NewIsland);
1125 // Update internal data structures to account for the newly inserted MBB.
1126 UpdateForInsertedWaterBlock(NewIsland);
1128 // Decrement the old entry, and remove it if refcount becomes 0.
1129 DecrementOldEntry(CPI, CPEMI);
1131 // Now that we have an island to add the CPE to, clone the original CPE and
1132 // add it to the island.
1133 U.CPEMI = BuildMI(NewIsland, DebugLoc::getUnknownLoc(),
1134 TII->get(ARM::CONSTPOOL_ENTRY))
1135 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1136 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1139 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
1140 // Compensate for .align 2 in thumb mode.
1141 if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0)
1143 // Increase the size of the island block to account for the new entry.
1144 BBSizes[NewIsland->getNumber()] += Size;
1145 AdjustBBOffsetsAfter(NewIsland, Size);
1147 // Finally, change the CPI in the instruction operand to be ID.
1148 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1149 if (UserMI->getOperand(i).isCPI()) {
1150 UserMI->getOperand(i).setIndex(ID);
1154 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI
1155 << '\t' << *UserMI);
1160 /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1161 /// sizes and offsets of impacted basic blocks.
1162 void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
1163 MachineBasicBlock *CPEBB = CPEMI->getParent();
1164 unsigned Size = CPEMI->getOperand(2).getImm();
1165 CPEMI->eraseFromParent();
1166 BBSizes[CPEBB->getNumber()] -= Size;
1167 // All succeeding offsets have the current size value added in, fix this.
1168 if (CPEBB->empty()) {
1169 // In thumb1 mode, the size of island may be padded by two to compensate for
1170 // the alignment requirement. Then it will now be 2 when the block is
1171 // empty, so fix this.
1172 // All succeeding offsets have the current size value added in, fix this.
1173 if (BBSizes[CPEBB->getNumber()] != 0) {
1174 Size += BBSizes[CPEBB->getNumber()];
1175 BBSizes[CPEBB->getNumber()] = 0;
1178 AdjustBBOffsetsAfter(CPEBB, -Size);
1179 // An island has only one predecessor BB and one successor BB. Check if
1180 // this BB's predecessor jumps directly to this BB's successor. This
1181 // shouldn't happen currently.
1182 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1183 // FIXME: remove the empty blocks after all the work is done?
1186 /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1188 bool ARMConstantIslands::RemoveUnusedCPEntries() {
1189 unsigned MadeChange = false;
1190 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1191 std::vector<CPEntry> &CPEs = CPEntries[i];
1192 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1193 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1194 RemoveDeadCPEMI(CPEs[j].CPEMI);
1195 CPEs[j].CPEMI = NULL;
1203 /// BBIsInRange - Returns true if the distance between specific MI and
1204 /// specific BB can fit in MI's displacement field.
1205 bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1207 unsigned PCAdj = isThumb ? 4 : 8;
1208 unsigned BrOffset = GetOffsetOf(MI) + PCAdj;
1209 unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1211 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
1212 << " from BB#" << MI->getParent()->getNumber()
1213 << " max delta=" << MaxDisp
1214 << " from " << GetOffsetOf(MI) << " to " << DestOffset
1215 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1217 if (BrOffset <= DestOffset) {
1218 // Branch before the Dest.
1219 if (DestOffset-BrOffset <= MaxDisp)
1222 if (BrOffset-DestOffset <= MaxDisp)
1228 /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1229 /// away to fit in its displacement field.
1230 bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
1231 MachineInstr *MI = Br.MI;
1232 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1234 // Check to see if the DestBB is already in-range.
1235 if (BBIsInRange(MI, DestBB, Br.MaxDisp))
1239 return FixUpUnconditionalBr(MF, Br);
1240 return FixUpConditionalBr(MF, Br);
1243 /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1244 /// too far away to fit in its displacement field. If the LR register has been
1245 /// spilled in the epilogue, then we can use BL to implement a far jump.
1246 /// Otherwise, add an intermediate branch instruction to a branch.
1248 ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
1249 MachineInstr *MI = Br.MI;
1250 MachineBasicBlock *MBB = MI->getParent();
1252 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1254 // Use BL to implement far jump.
1255 Br.MaxDisp = (1 << 21) * 2;
1256 MI->setDesc(TII->get(ARM::tBfar));
1257 BBSizes[MBB->getNumber()] += 2;
1258 AdjustBBOffsetsAfter(MBB, 2);
1262 DEBUG(errs() << " Changed B to long jump " << *MI);
1267 /// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1268 /// far away to fit in its displacement field. It is converted to an inverse
1269 /// conditional branch + an unconditional branch to the destination.
1271 ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
1272 MachineInstr *MI = Br.MI;
1273 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1275 // Add an unconditional branch to the destination and invert the branch
1276 // condition to jump over it:
1282 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1283 CC = ARMCC::getOppositeCondition(CC);
1284 unsigned CCReg = MI->getOperand(2).getReg();
1286 // If the branch is at the end of its MBB and that has a fall-through block,
1287 // direct the updated conditional branch to the fall-through block. Otherwise,
1288 // split the MBB before the next instruction.
1289 MachineBasicBlock *MBB = MI->getParent();
1290 MachineInstr *BMI = &MBB->back();
1291 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1295 if (next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1296 BMI->getOpcode() == Br.UncondBr) {
1297 // Last MI in the BB is an unconditional branch. Can we simply invert the
1298 // condition and swap destinations:
1304 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1305 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
1306 DEBUG(errs() << " Invert Bcc condition and swap its destination with "
1308 BMI->getOperand(0).setMBB(DestBB);
1309 MI->getOperand(0).setMBB(NewDest);
1310 MI->getOperand(1).setImm(CC);
1317 SplitBlockBeforeInstr(MI);
1318 // No need for the branch to the next block. We're adding an unconditional
1319 // branch to the destination.
1320 int delta = TII->GetInstSizeInBytes(&MBB->back());
1321 BBSizes[MBB->getNumber()] -= delta;
1322 MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB));
1323 AdjustBBOffsetsAfter(SplitBB, -delta);
1324 MBB->back().eraseFromParent();
1325 // BBOffsets[SplitBB] is wrong temporarily, fixed below
1327 MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
1329 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber()
1330 << " also invert condition and change dest. to BB#"
1331 << NextBB->getNumber() << "\n");
1333 // Insert a new conditional branch and a new unconditional branch.
1334 // Also update the ImmBranch as well as adding a new entry for the new branch.
1335 BuildMI(MBB, DebugLoc::getUnknownLoc(),
1336 TII->get(MI->getOpcode()))
1337 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1338 Br.MI = &MBB->back();
1339 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1340 BuildMI(MBB, DebugLoc::getUnknownLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1341 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1342 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1343 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1345 // Remove the old conditional branch. It may or may not still be in MBB.
1346 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
1347 MI->eraseFromParent();
1349 // The net size change is an addition of one unconditional branch.
1350 int delta = TII->GetInstSizeInBytes(&MBB->back());
1351 AdjustBBOffsetsAfter(MBB, delta);
1355 /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1356 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1357 /// to do this if tBfar is not used.
1358 bool ARMConstantIslands::UndoLRSpillRestore() {
1359 bool MadeChange = false;
1360 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1361 MachineInstr *MI = PushPopMIs[i];
1362 // First two operands are predicates, the third is a zero since there
1364 if (MI->getOpcode() == ARM::tPOP_RET &&
1365 MI->getOperand(3).getReg() == ARM::PC &&
1366 MI->getNumExplicitOperands() == 4) {
1367 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET));
1368 MI->eraseFromParent();
1375 bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
1376 bool MadeChange = false;
1378 // Shrink ADR and LDR from constantpool.
1379 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1380 CPUser &U = CPUsers[i];
1381 unsigned Opcode = U.MI->getOpcode();
1382 unsigned NewOpc = 0;
1387 case ARM::t2LEApcrel:
1388 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1389 NewOpc = ARM::tLEApcrel;
1395 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1396 NewOpc = ARM::tLDRpci;
1406 unsigned UserOffset = GetOffsetOf(U.MI) + 4;
1407 unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1408 // FIXME: Check if offset is multiple of scale if scale is not 4.
1409 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1410 U.MI->setDesc(TII->get(NewOpc));
1411 MachineBasicBlock *MBB = U.MI->getParent();
1412 BBSizes[MBB->getNumber()] -= 2;
1413 AdjustBBOffsetsAfter(MBB, -2);
1419 MadeChange |= OptimizeThumb2Branches(MF);
1420 MadeChange |= OptimizeThumb2JumpTables(MF);
1424 bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
1425 bool MadeChange = false;
1427 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1428 ImmBranch &Br = ImmBranches[i];
1429 unsigned Opcode = Br.MI->getOpcode();
1430 unsigned NewOpc = 0;
1449 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1450 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1451 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
1452 Br.MI->setDesc(TII->get(NewOpc));
1453 MachineBasicBlock *MBB = Br.MI->getParent();
1454 BBSizes[MBB->getNumber()] -= 2;
1455 AdjustBBOffsetsAfter(MBB, -2);
1465 /// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1466 /// jumptables when it's possible.
1467 bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
1468 bool MadeChange = false;
1470 // FIXME: After the tables are shrunk, can we get rid some of the
1471 // constantpool tables?
1472 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1473 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1474 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1475 MachineInstr *MI = T2JumpTables[i];
1476 const TargetInstrDesc &TID = MI->getDesc();
1477 unsigned NumOps = TID.getNumOperands();
1478 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
1479 MachineOperand JTOP = MI->getOperand(JTOpIdx);
1480 unsigned JTI = JTOP.getIndex();
1481 assert(JTI < JT.size());
1484 bool HalfWordOk = true;
1485 unsigned JTOffset = GetOffsetOf(MI) + 4;
1486 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1487 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1488 MachineBasicBlock *MBB = JTBBs[j];
1489 unsigned DstOffset = BBOffsets[MBB->getNumber()];
1490 // Negative offset is not ok. FIXME: We should change BB layout to make
1491 // sure all the branches are forward.
1492 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1494 unsigned TBHLimit = ((1<<16)-1)*2;
1495 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1497 if (!ByteOk && !HalfWordOk)
1501 if (ByteOk || HalfWordOk) {
1502 MachineBasicBlock *MBB = MI->getParent();
1503 unsigned BaseReg = MI->getOperand(0).getReg();
1504 bool BaseRegKill = MI->getOperand(0).isKill();
1507 unsigned IdxReg = MI->getOperand(1).getReg();
1508 bool IdxRegKill = MI->getOperand(1).isKill();
1509 MachineBasicBlock::iterator PrevI = MI;
1510 if (PrevI == MBB->begin())
1513 MachineInstr *AddrMI = --PrevI;
1515 // Examine the instruction that calculate the jumptable entry address.
1516 // If it's not the one just before the t2BR_JT, we won't delete it, then
1517 // it's not worth doing the optimization.
1518 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1519 const MachineOperand &MO = AddrMI->getOperand(k);
1520 if (!MO.isReg() || !MO.getReg())
1522 if (MO.isDef() && MO.getReg() != BaseReg) {
1526 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1534 // The previous instruction should be a tLEApcrel or t2LEApcrelJT, we want
1535 // to delete it as well.
1536 MachineInstr *LeaMI = --PrevI;
1537 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1538 LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1539 LeaMI->getOperand(0).getReg() != BaseReg)
1545 unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH;
1546 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
1547 .addReg(IdxReg, getKillRegState(IdxRegKill))
1548 .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1549 .addImm(MI->getOperand(JTOpIdx+1).getImm());
1550 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1551 // is 2-byte aligned. For now, asm printer will fix it up.
1552 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1553 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1554 OrigSize += TII->GetInstSizeInBytes(LeaMI);
1555 OrigSize += TII->GetInstSizeInBytes(MI);
1557 AddrMI->eraseFromParent();
1558 LeaMI->eraseFromParent();
1559 MI->eraseFromParent();
1561 int delta = OrigSize - NewSize;
1562 BBSizes[MBB->getNumber()] -= delta;
1563 AdjustBBOffsetsAfter(MBB, -delta);