1 //===-- ARMConstantIslandPass.cpp - ARM constant islands --------*- C++ -*-===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file contains a pass that splits the constant pool up into 'islands'
11 // which are scattered through-out the function. This is required due to the
12 // limited pc-relative displacements that ARM has.
14 //===----------------------------------------------------------------------===//
16 #define DEBUG_TYPE "arm-cp-islands"
18 #include "ARMAddressingModes.h"
19 #include "ARMMachineFunctionInfo.h"
20 #include "ARMInstrInfo.h"
21 #include "llvm/CodeGen/MachineConstantPool.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/Target/TargetData.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Support/Compiler.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/STLExtras.h"
33 #include "llvm/ADT/Statistic.h"
36 STATISTIC(NumCPEs, "Number of constpool entries");
37 STATISTIC(NumSplit, "Number of uncond branches inserted");
38 STATISTIC(NumCBrFixed, "Number of cond branches fixed");
39 STATISTIC(NumUBrFixed, "Number of uncond branches fixed");
40 STATISTIC(NumTBs, "Number of table branches generated");
41 STATISTIC(NumT2CPShrunk, "Number of Thumb2 constantpool instructions shrunk");
42 STATISTIC(NumT2BrShrunk, "Number of Thumb2 immediate branches shrunk");
45 /// ARMConstantIslands - Due to limited PC-relative displacements, ARM
46 /// requires constant pool entries to be scattered among the instructions
47 /// inside a function. To do this, it completely ignores the normal LLVM
48 /// constant pool; instead, it places constants wherever it feels like with
49 /// special instructions.
51 /// The terminology used in this pass includes:
52 /// Islands - Clumps of constants placed in the function.
53 /// Water - Potential places where an island could be formed.
54 /// CPE - A constant pool entry that has been placed somewhere, which
55 /// tracks a list of users.
56 class VISIBILITY_HIDDEN ARMConstantIslands : public MachineFunctionPass {
57 /// BBSizes - The size of each MachineBasicBlock in bytes of code, indexed
58 /// by MBB Number. The two-byte pads required for Thumb alignment are
59 /// counted as part of the following block (i.e., the offset and size for
60 /// a padded block will both be ==2 mod 4).
61 std::vector<unsigned> BBSizes;
63 /// BBOffsets - the offset of each MBB in bytes, starting from 0.
64 /// The two-byte pads required for Thumb alignment are counted as part of
65 /// the following block.
66 std::vector<unsigned> BBOffsets;
68 /// WaterList - A sorted list of basic blocks where islands could be placed
69 /// (i.e. blocks that don't fall through to the following block, due
70 /// to a return, unreachable, or unconditional branch).
71 std::vector<MachineBasicBlock*> WaterList;
73 typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
75 /// CPUser - One user of a constant pool, keeping the machine instruction
76 /// pointer, the constant pool being referenced, and the max displacement
77 /// allowed from the instruction to the CP.
84 CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned maxdisp,
86 : MI(mi), CPEMI(cpemi), MaxDisp(maxdisp), NegOk(neg), IsSoImm(soimm) {}
89 /// CPUsers - Keep track of all of the machine instructions that use various
90 /// constant pools and their max displacement.
91 std::vector<CPUser> CPUsers;
93 /// CPEntry - One per constant pool entry, keeping the machine instruction
94 /// pointer, the constpool index, and the number of CPUser's which
95 /// reference this entry.
100 CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
101 : CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
104 /// CPEntries - Keep track of all of the constant pool entry machine
105 /// instructions. For each original constpool index (i.e. those that
106 /// existed upon entry to this pass), it keeps a vector of entries.
107 /// Original elements are cloned as we go along; the clones are
108 /// put in the vector of the original element, but have distinct CPIs.
109 std::vector<std::vector<CPEntry> > CPEntries;
111 /// ImmBranch - One per immediate branch, keeping the machine instruction
112 /// pointer, conditional or unconditional, the max displacement,
113 /// and (if isCond is true) the corresponding unconditional branch
117 unsigned MaxDisp : 31;
120 ImmBranch(MachineInstr *mi, unsigned maxdisp, bool cond, int ubr)
121 : MI(mi), MaxDisp(maxdisp), isCond(cond), UncondBr(ubr) {}
124 /// ImmBranches - Keep track of all the immediate branch instructions.
126 std::vector<ImmBranch> ImmBranches;
128 /// PushPopMIs - Keep track of all the Thumb push / pop instructions.
130 SmallVector<MachineInstr*, 4> PushPopMIs;
132 /// T2JumpTables - Keep track of all the Thumb2 jumptable instructions.
133 SmallVector<MachineInstr*, 4> T2JumpTables;
135 /// HasFarJump - True if any far jump instruction has been emitted during
136 /// the branch fix up pass.
139 const TargetInstrInfo *TII;
140 const ARMSubtarget *STI;
141 ARMFunctionInfo *AFI;
147 ARMConstantIslands() : MachineFunctionPass(&ID) {}
149 virtual bool runOnMachineFunction(MachineFunction &MF);
151 virtual const char *getPassName() const {
152 return "ARM constant island placement and branch shortening pass";
156 void DoInitialPlacement(MachineFunction &MF,
157 std::vector<MachineInstr*> &CPEMIs);
158 CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
159 void InitialFunctionScan(MachineFunction &MF,
160 const std::vector<MachineInstr*> &CPEMIs);
161 MachineBasicBlock *SplitBlockBeforeInstr(MachineInstr *MI);
162 void UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB);
163 void AdjustBBOffsetsAfter(MachineBasicBlock *BB, int delta);
164 bool DecrementOldEntry(unsigned CPI, MachineInstr* CPEMI);
165 int LookForExistingCPEntry(CPUser& U, unsigned UserOffset);
166 bool LookForWater(CPUser&U, unsigned UserOffset,
167 MachineBasicBlock *&NewMBB);
168 MachineBasicBlock *AcceptWater(water_iterator IP);
169 void CreateNewWater(unsigned CPUserIndex, unsigned UserOffset,
170 MachineBasicBlock** NewMBB);
171 bool HandleConstantPoolUser(MachineFunction &MF, unsigned CPUserIndex);
172 void RemoveDeadCPEMI(MachineInstr *CPEMI);
173 bool RemoveUnusedCPEntries();
174 bool CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
175 MachineInstr *CPEMI, unsigned Disp, bool NegOk,
176 bool DoDump = false);
177 bool WaterIsInRange(unsigned UserOffset, MachineBasicBlock *Water,
179 bool OffsetIsInRange(unsigned UserOffset, unsigned TrialOffset,
180 unsigned Disp, bool NegativeOK, bool IsSoImm = false);
181 bool BBIsInRange(MachineInstr *MI, MachineBasicBlock *BB, unsigned Disp);
182 bool FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br);
183 bool FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br);
184 bool FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br);
185 bool UndoLRSpillRestore();
186 bool OptimizeThumb2Instructions(MachineFunction &MF);
187 bool OptimizeThumb2Branches(MachineFunction &MF);
188 bool OptimizeThumb2JumpTables(MachineFunction &MF);
190 unsigned GetOffsetOf(MachineInstr *MI) const;
192 void verify(MachineFunction &MF);
194 char ARMConstantIslands::ID = 0;
197 /// verify - check BBOffsets, BBSizes, alignment of islands
198 void ARMConstantIslands::verify(MachineFunction &MF) {
199 assert(BBOffsets.size() == BBSizes.size());
200 for (unsigned i = 1, e = BBOffsets.size(); i != e; ++i)
201 assert(BBOffsets[i-1]+BBSizes[i-1] == BBOffsets[i]);
205 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
207 MachineBasicBlock *MBB = MBBI;
209 MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
210 unsigned MBBId = MBB->getNumber();
211 assert((BBOffsets[MBBId]%4 == 0 && BBSizes[MBBId]%4 == 0) ||
212 (BBOffsets[MBBId]%4 != 0 && BBSizes[MBBId]%4 != 0));
218 /// print block size and offset information - debugging
219 void ARMConstantIslands::dumpBBs() {
220 for (unsigned J = 0, E = BBOffsets.size(); J !=E; ++J) {
221 DEBUG(errs() << "block " << J << " offset " << BBOffsets[J]
222 << " size " << BBSizes[J] << "\n");
226 /// createARMConstantIslandPass - returns an instance of the constpool
228 FunctionPass *llvm::createARMConstantIslandPass() {
229 return new ARMConstantIslands();
232 bool ARMConstantIslands::runOnMachineFunction(MachineFunction &MF) {
233 MachineConstantPool &MCP = *MF.getConstantPool();
235 TII = MF.getTarget().getInstrInfo();
236 AFI = MF.getInfo<ARMFunctionInfo>();
237 STI = &MF.getTarget().getSubtarget<ARMSubtarget>();
239 isThumb = AFI->isThumbFunction();
240 isThumb1 = AFI->isThumb1OnlyFunction();
241 isThumb2 = AFI->isThumb2Function();
245 // Renumber all of the machine basic blocks in the function, guaranteeing that
246 // the numbers agree with the position of the block in the function.
249 // Thumb1 functions containing constant pools get 4-byte alignment.
250 // This is so we can keep exact track of where the alignment padding goes.
252 // Set default. Thumb1 function is 2-byte aligned, ARM and Thumb2 are 4-byte
254 AFI->setAlign(isThumb1 ? 1U : 2U);
256 // Perform the initial placement of the constant pool entries. To start with,
257 // we put them all at the end of the function.
258 std::vector<MachineInstr*> CPEMIs;
259 if (!MCP.isEmpty()) {
260 DoInitialPlacement(MF, CPEMIs);
265 /// The next UID to take is the first unused one.
266 AFI->initConstPoolEntryUId(CPEMIs.size());
268 // Do the initial scan of the function, building up information about the
269 // sizes of each block, the location of all the water, and finding all of the
270 // constant pool users.
271 InitialFunctionScan(MF, CPEMIs);
274 /// Remove dead constant pool entries.
275 RemoveUnusedCPEntries();
277 // Iteratively place constant pool entries and fix up branches until there
279 bool MadeChange = false;
280 unsigned NoCPIters = 0, NoBRIters = 0;
282 bool CPChange = false;
283 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
284 CPChange |= HandleConstantPoolUser(MF, i);
285 if (CPChange && ++NoCPIters > 30)
286 llvm_unreachable("Constant Island pass failed to converge!");
289 bool BRChange = false;
290 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
291 BRChange |= FixUpImmediateBr(MF, ImmBranches[i]);
292 if (BRChange && ++NoBRIters > 30)
293 llvm_unreachable("Branch Fix Up pass failed to converge!");
296 if (!CPChange && !BRChange)
301 // Shrink 32-bit Thumb2 branch, load, and store instructions.
303 MadeChange |= OptimizeThumb2Instructions(MF);
305 // After a while, this might be made debug-only, but it is not expensive.
308 // If LR has been forced spilled and no far jumps (i.e. BL) has been issued.
309 // Undo the spill / restore of LR if possible.
310 if (isThumb && !HasFarJump && AFI->isLRSpilledForFarJump())
311 MadeChange |= UndoLRSpillRestore();
320 T2JumpTables.clear();
325 /// DoInitialPlacement - Perform the initial placement of the constant pool
326 /// entries. To start with, we put them all at the end of the function.
327 void ARMConstantIslands::DoInitialPlacement(MachineFunction &MF,
328 std::vector<MachineInstr*> &CPEMIs) {
329 // Create the basic block to hold the CPE's.
330 MachineBasicBlock *BB = MF.CreateMachineBasicBlock();
333 // Add all of the constants from the constant pool to the end block, use an
334 // identity mapping of CPI's to CPE's.
335 const std::vector<MachineConstantPoolEntry> &CPs =
336 MF.getConstantPool()->getConstants();
338 const TargetData &TD = *MF.getTarget().getTargetData();
339 for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
340 unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
341 // Verify that all constant pool entries are a multiple of 4 bytes. If not,
342 // we would have to pad them out or something so that instructions stay
344 assert((Size & 3) == 0 && "CP Entry not multiple of 4 bytes!");
345 MachineInstr *CPEMI =
346 BuildMI(BB, DebugLoc::getUnknownLoc(), TII->get(ARM::CONSTPOOL_ENTRY))
347 .addImm(i).addConstantPoolIndex(i).addImm(Size);
348 CPEMIs.push_back(CPEMI);
350 // Add a new CPEntry, but no corresponding CPUser yet.
351 std::vector<CPEntry> CPEs;
352 CPEs.push_back(CPEntry(CPEMI, i));
353 CPEntries.push_back(CPEs);
355 DEBUG(errs() << "Moved CPI#" << i << " to end of function as #" << i
360 /// BBHasFallthrough - Return true if the specified basic block can fallthrough
361 /// into the block immediately after it.
362 static bool BBHasFallthrough(MachineBasicBlock *MBB) {
363 // Get the next machine basic block in the function.
364 MachineFunction::iterator MBBI = MBB;
365 if (next(MBBI) == MBB->getParent()->end()) // Can't fall off end of function.
368 MachineBasicBlock *NextBB = next(MBBI);
369 for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
370 E = MBB->succ_end(); I != E; ++I)
377 /// findConstPoolEntry - Given the constpool index and CONSTPOOL_ENTRY MI,
378 /// look up the corresponding CPEntry.
379 ARMConstantIslands::CPEntry
380 *ARMConstantIslands::findConstPoolEntry(unsigned CPI,
381 const MachineInstr *CPEMI) {
382 std::vector<CPEntry> &CPEs = CPEntries[CPI];
383 // Number of entries per constpool index should be small, just do a
385 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
386 if (CPEs[i].CPEMI == CPEMI)
392 /// InitialFunctionScan - Do the initial scan of the function, building up
393 /// information about the sizes of each block, the location of all the water,
394 /// and finding all of the constant pool users.
395 void ARMConstantIslands::InitialFunctionScan(MachineFunction &MF,
396 const std::vector<MachineInstr*> &CPEMIs) {
398 for (MachineFunction::iterator MBBI = MF.begin(), E = MF.end();
400 MachineBasicBlock &MBB = *MBBI;
402 // If this block doesn't fall through into the next MBB, then this is
403 // 'water' that a constant pool island could be placed.
404 if (!BBHasFallthrough(&MBB))
405 WaterList.push_back(&MBB);
407 unsigned MBBSize = 0;
408 for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
410 // Add instruction size to MBBSize.
411 MBBSize += TII->GetInstSizeInBytes(I);
413 int Opc = I->getOpcode();
414 if (I->getDesc().isBranch()) {
421 continue; // Ignore other JT branches
423 // A Thumb1 table jump may involve padding; for the offsets to
424 // be right, functions containing these must be 4-byte aligned.
426 if ((Offset+MBBSize)%4 != 0)
427 // FIXME: Add a pseudo ALIGN instruction instead.
428 MBBSize += 2; // padding
429 continue; // Does not get an entry in ImmBranches
431 T2JumpTables.push_back(I);
432 continue; // Does not get an entry in ImmBranches
463 // Record this immediate branch.
464 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
465 ImmBranches.push_back(ImmBranch(I, MaxOffs, isCond, UOpc));
468 if (Opc == ARM::tPUSH || Opc == ARM::tPOP_RET)
469 PushPopMIs.push_back(I);
471 if (Opc == ARM::CONSTPOOL_ENTRY)
474 // Scan the instructions for constant pool operands.
475 for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
476 if (I->getOperand(op).isCPI()) {
477 // We found one. The addressing mode tells us the max displacement
478 // from the PC that this instruction permits.
480 // Basic size info comes from the TSFlags field.
484 bool IsSoImm = false;
488 llvm_unreachable("Unknown addressing mode for CP reference!");
491 // Taking the address of a CP entry.
493 // This takes a SoImm, which is 8 bit immediate rotated. We'll
494 // pretend the maximum offset is 255 * 4. Since each instruction
495 // 4 byte wide, this is always correct. We'llc heck for other
496 // displacements that fits in a SoImm as well.
502 case ARM::t2LEApcrel:
514 Bits = 12; // +-offset_12
521 Scale = 4; // +(offset_8*4)
527 Scale = 4; // +-(offset_8*4)
532 // Remember that this is a user of a CP entry.
533 unsigned CPI = I->getOperand(op).getIndex();
534 MachineInstr *CPEMI = CPEMIs[CPI];
535 unsigned MaxOffs = ((1 << Bits)-1) * Scale;
536 CPUsers.push_back(CPUser(I, CPEMI, MaxOffs, NegOk, IsSoImm));
538 // Increment corresponding CPEntry reference count.
539 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
540 assert(CPE && "Cannot find a corresponding CPEntry!");
543 // Instructions can only use one CP entry, don't bother scanning the
544 // rest of the operands.
549 // In thumb mode, if this block is a constpool island, we may need padding
550 // so it's aligned on 4 byte boundary.
553 MBB.begin()->getOpcode() == ARM::CONSTPOOL_ENTRY &&
557 BBSizes.push_back(MBBSize);
558 BBOffsets.push_back(Offset);
563 /// GetOffsetOf - Return the current offset of the specified machine instruction
564 /// from the start of the function. This offset changes as stuff is moved
565 /// around inside the function.
566 unsigned ARMConstantIslands::GetOffsetOf(MachineInstr *MI) const {
567 MachineBasicBlock *MBB = MI->getParent();
569 // The offset is composed of two things: the sum of the sizes of all MBB's
570 // before this instruction's block, and the offset from the start of the block
572 unsigned Offset = BBOffsets[MBB->getNumber()];
574 // If we're looking for a CONSTPOOL_ENTRY in Thumb, see if this block has
575 // alignment padding, and compensate if so.
577 MI->getOpcode() == ARM::CONSTPOOL_ENTRY &&
581 // Sum instructions before MI in MBB.
582 for (MachineBasicBlock::iterator I = MBB->begin(); ; ++I) {
583 assert(I != MBB->end() && "Didn't find MI in its own basic block?");
584 if (&*I == MI) return Offset;
585 Offset += TII->GetInstSizeInBytes(I);
589 /// CompareMBBNumbers - Little predicate function to sort the WaterList by MBB
591 static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
592 const MachineBasicBlock *RHS) {
593 return LHS->getNumber() < RHS->getNumber();
596 /// UpdateForInsertedWaterBlock - When a block is newly inserted into the
597 /// machine function, it upsets all of the block numbers. Renumber the blocks
598 /// and update the arrays that parallel this numbering.
599 void ARMConstantIslands::UpdateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
600 // Renumber the MBB's to keep them consequtive.
601 NewBB->getParent()->RenumberBlocks(NewBB);
603 // Insert a size into BBSizes to align it properly with the (newly
604 // renumbered) block numbers.
605 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
607 // Likewise for BBOffsets.
608 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
610 // Next, update WaterList. Specifically, we need to add NewMBB as having
611 // available water after it.
613 std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
615 WaterList.insert(IP, NewBB);
619 /// Split the basic block containing MI into two blocks, which are joined by
620 /// an unconditional branch. Update datastructures and renumber blocks to
621 /// account for this change and returns the newly created block.
622 MachineBasicBlock *ARMConstantIslands::SplitBlockBeforeInstr(MachineInstr *MI) {
623 MachineBasicBlock *OrigBB = MI->getParent();
624 MachineFunction &MF = *OrigBB->getParent();
626 // Create a new MBB for the code after the OrigBB.
627 MachineBasicBlock *NewBB =
628 MF.CreateMachineBasicBlock(OrigBB->getBasicBlock());
629 MachineFunction::iterator MBBI = OrigBB; ++MBBI;
630 MF.insert(MBBI, NewBB);
632 // Splice the instructions starting with MI over to NewBB.
633 NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
635 // Add an unconditional branch from OrigBB to NewBB.
636 // Note the new unconditional branch is not being recorded.
637 // There doesn't seem to be meaningful DebugInfo available; this doesn't
638 // correspond to anything in the source.
639 unsigned Opc = isThumb ? (isThumb2 ? ARM::t2B : ARM::tB) : ARM::B;
640 BuildMI(OrigBB, DebugLoc::getUnknownLoc(), TII->get(Opc)).addMBB(NewBB);
643 // Update the CFG. All succs of OrigBB are now succs of NewBB.
644 while (!OrigBB->succ_empty()) {
645 MachineBasicBlock *Succ = *OrigBB->succ_begin();
646 OrigBB->removeSuccessor(Succ);
647 NewBB->addSuccessor(Succ);
649 // This pass should be run after register allocation, so there should be no
650 // PHI nodes to update.
651 assert((Succ->empty() || Succ->begin()->getOpcode() != TargetInstrInfo::PHI)
652 && "PHI nodes should be eliminated by now!");
655 // OrigBB branches to NewBB.
656 OrigBB->addSuccessor(NewBB);
658 // Update internal data structures to account for the newly inserted MBB.
659 // This is almost the same as UpdateForInsertedWaterBlock, except that
660 // the Water goes after OrigBB, not NewBB.
661 MF.RenumberBlocks(NewBB);
663 // Insert a size into BBSizes to align it properly with the (newly
664 // renumbered) block numbers.
665 BBSizes.insert(BBSizes.begin()+NewBB->getNumber(), 0);
667 // Likewise for BBOffsets.
668 BBOffsets.insert(BBOffsets.begin()+NewBB->getNumber(), 0);
670 // Next, update WaterList. Specifically, we need to add OrigMBB as having
671 // available water after it (but not if it's already there, which happens
672 // when splitting before a conditional branch that is followed by an
673 // unconditional branch - in that case we want to insert NewBB).
675 std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
677 MachineBasicBlock* WaterBB = *IP;
678 if (WaterBB == OrigBB)
679 WaterList.insert(next(IP), NewBB);
681 WaterList.insert(IP, OrigBB);
683 // Figure out how large the first NewMBB is. (It cannot
684 // contain a constpool_entry or tablejump.)
685 unsigned NewBBSize = 0;
686 for (MachineBasicBlock::iterator I = NewBB->begin(), E = NewBB->end();
688 NewBBSize += TII->GetInstSizeInBytes(I);
690 unsigned OrigBBI = OrigBB->getNumber();
691 unsigned NewBBI = NewBB->getNumber();
692 // Set the size of NewBB in BBSizes.
693 BBSizes[NewBBI] = NewBBSize;
695 // We removed instructions from UserMBB, subtract that off from its size.
696 // Add 2 or 4 to the block to count the unconditional branch we added to it.
697 int delta = isThumb1 ? 2 : 4;
698 BBSizes[OrigBBI] -= NewBBSize - delta;
700 // ...and adjust BBOffsets for NewBB accordingly.
701 BBOffsets[NewBBI] = BBOffsets[OrigBBI] + BBSizes[OrigBBI];
703 // All BBOffsets following these blocks must be modified.
704 AdjustBBOffsetsAfter(NewBB, delta);
709 /// OffsetIsInRange - Checks whether UserOffset (the location of a constant pool
710 /// reference) is within MaxDisp of TrialOffset (a proposed location of a
711 /// constant pool entry).
712 bool ARMConstantIslands::OffsetIsInRange(unsigned UserOffset,
713 unsigned TrialOffset, unsigned MaxDisp,
714 bool NegativeOK, bool IsSoImm) {
715 // On Thumb offsets==2 mod 4 are rounded down by the hardware for
716 // purposes of the displacement computation; compensate for that here.
717 // Effectively, the valid range of displacements is 2 bytes smaller for such
719 unsigned TotalAdj = 0;
720 if (isThumb && UserOffset%4 !=0) {
724 // CPEs will be rounded up to a multiple of 4.
725 if (isThumb && TrialOffset%4 != 0) {
730 // In Thumb2 mode, later branch adjustments can shift instructions up and
731 // cause alignment change. In the worst case scenario this can cause the
732 // user's effective address to be subtracted by 2 and the CPE's address to
734 if (isThumb2 && TotalAdj != 4)
735 MaxDisp -= (4 - TotalAdj);
737 if (UserOffset <= TrialOffset) {
738 // User before the Trial.
739 if (TrialOffset - UserOffset <= MaxDisp)
741 // FIXME: Make use full range of soimm values.
742 } else if (NegativeOK) {
743 if (UserOffset - TrialOffset <= MaxDisp)
745 // FIXME: Make use full range of soimm values.
750 /// WaterIsInRange - Returns true if a CPE placed after the specified
751 /// Water (a basic block) will be in range for the specific MI.
753 bool ARMConstantIslands::WaterIsInRange(unsigned UserOffset,
754 MachineBasicBlock* Water, CPUser &U) {
755 unsigned MaxDisp = U.MaxDisp;
756 unsigned CPEOffset = BBOffsets[Water->getNumber()] +
757 BBSizes[Water->getNumber()];
759 // If the CPE is to be inserted before the instruction, that will raise
760 // the offset of the instruction. (Currently applies only to ARM, so
761 // no alignment compensation attempted here.)
762 if (CPEOffset < UserOffset)
763 UserOffset += U.CPEMI->getOperand(2).getImm();
765 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, U.NegOk, U.IsSoImm);
768 /// CPEIsInRange - Returns true if the distance between specific MI and
769 /// specific ConstPool entry instruction can fit in MI's displacement field.
770 bool ARMConstantIslands::CPEIsInRange(MachineInstr *MI, unsigned UserOffset,
771 MachineInstr *CPEMI, unsigned MaxDisp,
772 bool NegOk, bool DoDump) {
773 unsigned CPEOffset = GetOffsetOf(CPEMI);
774 assert(CPEOffset%4 == 0 && "Misaligned CPE");
777 DEBUG(errs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
778 << " max delta=" << MaxDisp
779 << " insn address=" << UserOffset
780 << " CPE address=" << CPEOffset
781 << " offset=" << int(CPEOffset-UserOffset) << "\t" << *MI);
784 return OffsetIsInRange(UserOffset, CPEOffset, MaxDisp, NegOk);
788 /// BBIsJumpedOver - Return true of the specified basic block's only predecessor
789 /// unconditionally branches to its only successor.
790 static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
791 if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
794 MachineBasicBlock *Succ = *MBB->succ_begin();
795 MachineBasicBlock *Pred = *MBB->pred_begin();
796 MachineInstr *PredMI = &Pred->back();
797 if (PredMI->getOpcode() == ARM::B || PredMI->getOpcode() == ARM::tB
798 || PredMI->getOpcode() == ARM::t2B)
799 return PredMI->getOperand(0).getMBB() == Succ;
804 void ARMConstantIslands::AdjustBBOffsetsAfter(MachineBasicBlock *BB,
806 MachineFunction::iterator MBBI = BB; MBBI = next(MBBI);
807 for(unsigned i = BB->getNumber()+1, e = BB->getParent()->getNumBlockIDs();
809 BBOffsets[i] += delta;
810 // If some existing blocks have padding, adjust the padding as needed, a
811 // bit tricky. delta can be negative so don't use % on that.
814 MachineBasicBlock *MBB = MBBI;
816 // Constant pool entries require padding.
817 if (MBB->begin()->getOpcode() == ARM::CONSTPOOL_ENTRY) {
818 unsigned OldOffset = BBOffsets[i] - delta;
819 if ((OldOffset%4) == 0 && (BBOffsets[i]%4) != 0) {
823 } else if ((OldOffset%4) != 0 && (BBOffsets[i]%4) == 0) {
824 // remove existing padding
829 // Thumb1 jump tables require padding. They should be at the end;
830 // following unconditional branches are removed by AnalyzeBranch.
831 MachineInstr *ThumbJTMI = prior(MBB->end());
832 if (ThumbJTMI->getOpcode() == ARM::tBR_JTr) {
833 unsigned NewMIOffset = GetOffsetOf(ThumbJTMI);
834 unsigned OldMIOffset = NewMIOffset - delta;
835 if ((OldMIOffset%4) == 0 && (NewMIOffset%4) != 0) {
836 // remove existing padding
839 } else if ((OldMIOffset%4) != 0 && (NewMIOffset%4) == 0) {
852 /// DecrementOldEntry - find the constant pool entry with index CPI
853 /// and instruction CPEMI, and decrement its refcount. If the refcount
854 /// becomes 0 remove the entry and instruction. Returns true if we removed
855 /// the entry, false if we didn't.
857 bool ARMConstantIslands::DecrementOldEntry(unsigned CPI, MachineInstr *CPEMI) {
858 // Find the old entry. Eliminate it if it is no longer used.
859 CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
860 assert(CPE && "Unexpected!");
861 if (--CPE->RefCount == 0) {
862 RemoveDeadCPEMI(CPEMI);
870 /// LookForCPEntryInRange - see if the currently referenced CPE is in range;
871 /// if not, see if an in-range clone of the CPE is in range, and if so,
872 /// change the data structures so the user references the clone. Returns:
873 /// 0 = no existing entry found
874 /// 1 = entry found, and there were no code insertions or deletions
875 /// 2 = entry found, and there were code insertions or deletions
876 int ARMConstantIslands::LookForExistingCPEntry(CPUser& U, unsigned UserOffset)
878 MachineInstr *UserMI = U.MI;
879 MachineInstr *CPEMI = U.CPEMI;
881 // Check to see if the CPE is already in-range.
882 if (CPEIsInRange(UserMI, UserOffset, CPEMI, U.MaxDisp, U.NegOk, true)) {
883 DEBUG(errs() << "In range\n");
887 // No. Look for previously created clones of the CPE that are in range.
888 unsigned CPI = CPEMI->getOperand(1).getIndex();
889 std::vector<CPEntry> &CPEs = CPEntries[CPI];
890 for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
891 // We already tried this one
892 if (CPEs[i].CPEMI == CPEMI)
894 // Removing CPEs can leave empty entries, skip
895 if (CPEs[i].CPEMI == NULL)
897 if (CPEIsInRange(UserMI, UserOffset, CPEs[i].CPEMI, U.MaxDisp, U.NegOk)) {
898 DEBUG(errs() << "Replacing CPE#" << CPI << " with CPE#"
899 << CPEs[i].CPI << "\n");
900 // Point the CPUser node to the replacement
901 U.CPEMI = CPEs[i].CPEMI;
902 // Change the CPI in the instruction operand to refer to the clone.
903 for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
904 if (UserMI->getOperand(j).isCPI()) {
905 UserMI->getOperand(j).setIndex(CPEs[i].CPI);
908 // Adjust the refcount of the clone...
910 // ...and the original. If we didn't remove the old entry, none of the
911 // addresses changed, so we don't need another pass.
912 return DecrementOldEntry(CPI, CPEMI) ? 2 : 1;
918 /// getUnconditionalBrDisp - Returns the maximum displacement that can fit in
919 /// the specific unconditional branch instruction.
920 static inline unsigned getUnconditionalBrDisp(int Opc) {
923 return ((1<<10)-1)*2;
925 return ((1<<23)-1)*2;
930 return ((1<<23)-1)*4;
933 /// AcceptWater - Small amount of common code factored out of the following.
935 MachineBasicBlock *ARMConstantIslands::AcceptWater(water_iterator IP) {
936 DEBUG(errs() << "found water in range\n");
937 // Remove the original WaterList entry; we want subsequent
938 // insertions in this vicinity to go after the one we're
939 // about to insert. This considerably reduces the number
940 // of times we have to move the same CPE more than once.
942 // CPE goes before following block (NewMBB).
943 return next(MachineFunction::iterator(*IP));
946 /// LookForWater - look for an existing entry in the WaterList in which
947 /// we can place the CPE referenced from U so it's within range of U's MI.
948 /// Returns true if found, false if not. If it returns true, NewMBB
949 /// is set to the WaterList entry.
950 /// For ARM, we prefer the water that's farthest away. For Thumb, prefer
951 /// water that will not introduce padding to water that will; within each
952 /// group, prefer the water that's farthest away.
953 bool ARMConstantIslands::LookForWater(CPUser &U, unsigned UserOffset,
954 MachineBasicBlock *&NewMBB) {
955 water_iterator IPThatWouldPad;
956 MachineBasicBlock* WaterBBThatWouldPad = NULL;
957 if (WaterList.empty())
960 for (water_iterator IP = prior(WaterList.end()),
961 B = WaterList.begin();; --IP) {
962 MachineBasicBlock* WaterBB = *IP;
963 if (WaterIsInRange(UserOffset, WaterBB, U)) {
964 unsigned WBBId = WaterBB->getNumber();
966 (BBOffsets[WBBId] + BBSizes[WBBId])%4 != 0) {
967 // This is valid Water, but would introduce padding. Remember
968 // it in case we don't find any Water that doesn't do this.
969 if (!WaterBBThatWouldPad) {
970 WaterBBThatWouldPad = WaterBB;
974 NewMBB = AcceptWater(IP);
981 if (isThumb && WaterBBThatWouldPad) {
982 NewMBB = AcceptWater(IPThatWouldPad);
988 /// CreateNewWater - No existing WaterList entry will work for
989 /// CPUsers[CPUserIndex], so create a place to put the CPE. The end of the
990 /// block is used if in range, and the conditional branch munged so control
991 /// flow is correct. Otherwise the block is split to create a hole with an
992 /// unconditional branch around it. In either case *NewMBB is set to a
993 /// block following which the new island can be inserted (the WaterList
994 /// is not adjusted).
996 void ARMConstantIslands::CreateNewWater(unsigned CPUserIndex,
997 unsigned UserOffset, MachineBasicBlock** NewMBB) {
998 CPUser &U = CPUsers[CPUserIndex];
999 MachineInstr *UserMI = U.MI;
1000 MachineInstr *CPEMI = U.CPEMI;
1001 MachineBasicBlock *UserMBB = UserMI->getParent();
1002 unsigned OffsetOfNextBlock = BBOffsets[UserMBB->getNumber()] +
1003 BBSizes[UserMBB->getNumber()];
1004 assert(OffsetOfNextBlock== BBOffsets[UserMBB->getNumber()+1]);
1006 // If the use is at the end of the block, or the end of the block
1007 // is within range, make new water there. (The addition below is
1008 // for the unconditional branch we will be adding: 4 bytes on ARM + Thumb2,
1009 // 2 on Thumb1. Possible Thumb1 alignment padding is allowed for
1010 // inside OffsetIsInRange.
1011 // If the block ends in an unconditional branch already, it is water,
1012 // and is known to be out of range, so we'll always be adding a branch.)
1013 if (&UserMBB->back() == UserMI ||
1014 OffsetIsInRange(UserOffset, OffsetOfNextBlock + (isThumb1 ? 2: 4),
1015 U.MaxDisp, U.NegOk, U.IsSoImm)) {
1016 DEBUG(errs() << "Split at end of block\n");
1017 if (&UserMBB->back() == UserMI)
1018 assert(BBHasFallthrough(UserMBB) && "Expected a fallthrough BB!");
1019 *NewMBB = next(MachineFunction::iterator(UserMBB));
1020 // Add an unconditional branch from UserMBB to fallthrough block.
1021 // Record it for branch lengthening; this new branch will not get out of
1022 // range, but if the preceding conditional branch is out of range, the
1023 // targets will be exchanged, and the altered branch may be out of
1024 // range, so the machinery has to know about it.
1025 int UncondBr = isThumb ? ((isThumb2) ? ARM::t2B : ARM::tB) : ARM::B;
1026 BuildMI(UserMBB, DebugLoc::getUnknownLoc(),
1027 TII->get(UncondBr)).addMBB(*NewMBB);
1028 unsigned MaxDisp = getUnconditionalBrDisp(UncondBr);
1029 ImmBranches.push_back(ImmBranch(&UserMBB->back(),
1030 MaxDisp, false, UncondBr));
1031 int delta = isThumb1 ? 2 : 4;
1032 BBSizes[UserMBB->getNumber()] += delta;
1033 AdjustBBOffsetsAfter(UserMBB, delta);
1035 // What a big block. Find a place within the block to split it.
1036 // This is a little tricky on Thumb1 since instructions are 2 bytes
1037 // and constant pool entries are 4 bytes: if instruction I references
1038 // island CPE, and instruction I+1 references CPE', it will
1039 // not work well to put CPE as far forward as possible, since then
1040 // CPE' cannot immediately follow it (that location is 2 bytes
1041 // farther away from I+1 than CPE was from I) and we'd need to create
1042 // a new island. So, we make a first guess, then walk through the
1043 // instructions between the one currently being looked at and the
1044 // possible insertion point, and make sure any other instructions
1045 // that reference CPEs will be able to use the same island area;
1046 // if not, we back up the insertion point.
1048 // The 4 in the following is for the unconditional branch we'll be
1049 // inserting (allows for long branch on Thumb1). Alignment of the
1050 // island is handled inside OffsetIsInRange.
1051 unsigned BaseInsertOffset = UserOffset + U.MaxDisp -4;
1052 // This could point off the end of the block if we've already got
1053 // constant pool entries following this block; only the last one is
1054 // in the water list. Back past any possible branches (allow for a
1055 // conditional and a maximally long unconditional).
1056 if (BaseInsertOffset >= BBOffsets[UserMBB->getNumber()+1])
1057 BaseInsertOffset = BBOffsets[UserMBB->getNumber()+1] -
1059 unsigned EndInsertOffset = BaseInsertOffset +
1060 CPEMI->getOperand(2).getImm();
1061 MachineBasicBlock::iterator MI = UserMI;
1063 unsigned CPUIndex = CPUserIndex+1;
1064 for (unsigned Offset = UserOffset+TII->GetInstSizeInBytes(UserMI);
1065 Offset < BaseInsertOffset;
1066 Offset += TII->GetInstSizeInBytes(MI),
1068 if (CPUIndex < CPUsers.size() && CPUsers[CPUIndex].MI == MI) {
1069 CPUser &U = CPUsers[CPUIndex];
1070 if (!OffsetIsInRange(Offset, EndInsertOffset,
1071 U.MaxDisp, U.NegOk, U.IsSoImm)) {
1072 BaseInsertOffset -= (isThumb1 ? 2 : 4);
1073 EndInsertOffset -= (isThumb1 ? 2 : 4);
1075 // This is overly conservative, as we don't account for CPEMIs
1076 // being reused within the block, but it doesn't matter much.
1077 EndInsertOffset += CPUsers[CPUIndex].CPEMI->getOperand(2).getImm();
1081 DEBUG(errs() << "Split in middle of big block\n");
1082 *NewMBB = SplitBlockBeforeInstr(prior(MI));
1086 /// HandleConstantPoolUser - Analyze the specified user, checking to see if it
1087 /// is out-of-range. If so, pick up the constant pool value and move it some
1088 /// place in-range. Return true if we changed any addresses (thus must run
1089 /// another pass of branch lengthening), false otherwise.
1090 bool ARMConstantIslands::HandleConstantPoolUser(MachineFunction &MF,
1091 unsigned CPUserIndex) {
1092 CPUser &U = CPUsers[CPUserIndex];
1093 MachineInstr *UserMI = U.MI;
1094 MachineInstr *CPEMI = U.CPEMI;
1095 unsigned CPI = CPEMI->getOperand(1).getIndex();
1096 unsigned Size = CPEMI->getOperand(2).getImm();
1097 MachineBasicBlock *NewMBB;
1098 // Compute this only once, it's expensive. The 4 or 8 is the value the
1099 // hardware keeps in the PC.
1100 unsigned UserOffset = GetOffsetOf(UserMI) + (isThumb ? 4 : 8);
1102 // See if the current entry is within range, or there is a clone of it
1104 int result = LookForExistingCPEntry(U, UserOffset);
1105 if (result==1) return false;
1106 else if (result==2) return true;
1108 // No existing clone of this CPE is within range.
1109 // We will be generating a new clone. Get a UID for it.
1110 unsigned ID = AFI->createConstPoolEntryUId();
1112 // Look for water where we can place this CPE. We look for the farthest one
1113 // away that will work. Forward references only for now (although later
1114 // we might find some that are backwards).
1116 if (!LookForWater(U, UserOffset, NewMBB)) {
1118 DEBUG(errs() << "No water found\n");
1119 CreateNewWater(CPUserIndex, UserOffset, &NewMBB);
1122 // Okay, we know we can put an island before NewMBB now, do it!
1123 MachineBasicBlock *NewIsland = MF.CreateMachineBasicBlock();
1124 MF.insert(NewMBB, NewIsland);
1126 // Update internal data structures to account for the newly inserted MBB.
1127 UpdateForInsertedWaterBlock(NewIsland);
1129 // Decrement the old entry, and remove it if refcount becomes 0.
1130 DecrementOldEntry(CPI, CPEMI);
1132 // Now that we have an island to add the CPE to, clone the original CPE and
1133 // add it to the island.
1134 U.CPEMI = BuildMI(NewIsland, DebugLoc::getUnknownLoc(),
1135 TII->get(ARM::CONSTPOOL_ENTRY))
1136 .addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
1137 CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
1140 BBOffsets[NewIsland->getNumber()] = BBOffsets[NewMBB->getNumber()];
1141 // Compensate for .align 2 in thumb mode.
1142 if (isThumb && BBOffsets[NewIsland->getNumber()]%4 != 0)
1144 // Increase the size of the island block to account for the new entry.
1145 BBSizes[NewIsland->getNumber()] += Size;
1146 AdjustBBOffsetsAfter(NewIsland, Size);
1148 // Finally, change the CPI in the instruction operand to be ID.
1149 for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
1150 if (UserMI->getOperand(i).isCPI()) {
1151 UserMI->getOperand(i).setIndex(ID);
1155 DEBUG(errs() << " Moved CPE to #" << ID << " CPI=" << CPI
1156 << '\t' << *UserMI);
1161 /// RemoveDeadCPEMI - Remove a dead constant pool entry instruction. Update
1162 /// sizes and offsets of impacted basic blocks.
1163 void ARMConstantIslands::RemoveDeadCPEMI(MachineInstr *CPEMI) {
1164 MachineBasicBlock *CPEBB = CPEMI->getParent();
1165 unsigned Size = CPEMI->getOperand(2).getImm();
1166 CPEMI->eraseFromParent();
1167 BBSizes[CPEBB->getNumber()] -= Size;
1168 // All succeeding offsets have the current size value added in, fix this.
1169 if (CPEBB->empty()) {
1170 // In thumb1 mode, the size of island may be padded by two to compensate for
1171 // the alignment requirement. Then it will now be 2 when the block is
1172 // empty, so fix this.
1173 // All succeeding offsets have the current size value added in, fix this.
1174 if (BBSizes[CPEBB->getNumber()] != 0) {
1175 Size += BBSizes[CPEBB->getNumber()];
1176 BBSizes[CPEBB->getNumber()] = 0;
1179 AdjustBBOffsetsAfter(CPEBB, -Size);
1180 // An island has only one predecessor BB and one successor BB. Check if
1181 // this BB's predecessor jumps directly to this BB's successor. This
1182 // shouldn't happen currently.
1183 assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
1184 // FIXME: remove the empty blocks after all the work is done?
1187 /// RemoveUnusedCPEntries - Remove constant pool entries whose refcounts
1189 bool ARMConstantIslands::RemoveUnusedCPEntries() {
1190 unsigned MadeChange = false;
1191 for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
1192 std::vector<CPEntry> &CPEs = CPEntries[i];
1193 for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
1194 if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
1195 RemoveDeadCPEMI(CPEs[j].CPEMI);
1196 CPEs[j].CPEMI = NULL;
1204 /// BBIsInRange - Returns true if the distance between specific MI and
1205 /// specific BB can fit in MI's displacement field.
1206 bool ARMConstantIslands::BBIsInRange(MachineInstr *MI,MachineBasicBlock *DestBB,
1208 unsigned PCAdj = isThumb ? 4 : 8;
1209 unsigned BrOffset = GetOffsetOf(MI) + PCAdj;
1210 unsigned DestOffset = BBOffsets[DestBB->getNumber()];
1212 DEBUG(errs() << "Branch of destination BB#" << DestBB->getNumber()
1213 << " from BB#" << MI->getParent()->getNumber()
1214 << " max delta=" << MaxDisp
1215 << " from " << GetOffsetOf(MI) << " to " << DestOffset
1216 << " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
1218 if (BrOffset <= DestOffset) {
1219 // Branch before the Dest.
1220 if (DestOffset-BrOffset <= MaxDisp)
1223 if (BrOffset-DestOffset <= MaxDisp)
1229 /// FixUpImmediateBr - Fix up an immediate branch whose destination is too far
1230 /// away to fit in its displacement field.
1231 bool ARMConstantIslands::FixUpImmediateBr(MachineFunction &MF, ImmBranch &Br) {
1232 MachineInstr *MI = Br.MI;
1233 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1235 // Check to see if the DestBB is already in-range.
1236 if (BBIsInRange(MI, DestBB, Br.MaxDisp))
1240 return FixUpUnconditionalBr(MF, Br);
1241 return FixUpConditionalBr(MF, Br);
1244 /// FixUpUnconditionalBr - Fix up an unconditional branch whose destination is
1245 /// too far away to fit in its displacement field. If the LR register has been
1246 /// spilled in the epilogue, then we can use BL to implement a far jump.
1247 /// Otherwise, add an intermediate branch instruction to a branch.
1249 ARMConstantIslands::FixUpUnconditionalBr(MachineFunction &MF, ImmBranch &Br) {
1250 MachineInstr *MI = Br.MI;
1251 MachineBasicBlock *MBB = MI->getParent();
1253 llvm_unreachable("FixUpUnconditionalBr is Thumb1 only!");
1255 // Use BL to implement far jump.
1256 Br.MaxDisp = (1 << 21) * 2;
1257 MI->setDesc(TII->get(ARM::tBfar));
1258 BBSizes[MBB->getNumber()] += 2;
1259 AdjustBBOffsetsAfter(MBB, 2);
1263 DEBUG(errs() << " Changed B to long jump " << *MI);
1268 /// FixUpConditionalBr - Fix up a conditional branch whose destination is too
1269 /// far away to fit in its displacement field. It is converted to an inverse
1270 /// conditional branch + an unconditional branch to the destination.
1272 ARMConstantIslands::FixUpConditionalBr(MachineFunction &MF, ImmBranch &Br) {
1273 MachineInstr *MI = Br.MI;
1274 MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
1276 // Add an unconditional branch to the destination and invert the branch
1277 // condition to jump over it:
1283 ARMCC::CondCodes CC = (ARMCC::CondCodes)MI->getOperand(1).getImm();
1284 CC = ARMCC::getOppositeCondition(CC);
1285 unsigned CCReg = MI->getOperand(2).getReg();
1287 // If the branch is at the end of its MBB and that has a fall-through block,
1288 // direct the updated conditional branch to the fall-through block. Otherwise,
1289 // split the MBB before the next instruction.
1290 MachineBasicBlock *MBB = MI->getParent();
1291 MachineInstr *BMI = &MBB->back();
1292 bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
1296 if (next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
1297 BMI->getOpcode() == Br.UncondBr) {
1298 // Last MI in the BB is an unconditional branch. Can we simply invert the
1299 // condition and swap destinations:
1305 MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
1306 if (BBIsInRange(MI, NewDest, Br.MaxDisp)) {
1307 DEBUG(errs() << " Invert Bcc condition and swap its destination with "
1309 BMI->getOperand(0).setMBB(DestBB);
1310 MI->getOperand(0).setMBB(NewDest);
1311 MI->getOperand(1).setImm(CC);
1318 SplitBlockBeforeInstr(MI);
1319 // No need for the branch to the next block. We're adding an unconditional
1320 // branch to the destination.
1321 int delta = TII->GetInstSizeInBytes(&MBB->back());
1322 BBSizes[MBB->getNumber()] -= delta;
1323 MachineBasicBlock* SplitBB = next(MachineFunction::iterator(MBB));
1324 AdjustBBOffsetsAfter(SplitBB, -delta);
1325 MBB->back().eraseFromParent();
1326 // BBOffsets[SplitBB] is wrong temporarily, fixed below
1328 MachineBasicBlock *NextBB = next(MachineFunction::iterator(MBB));
1330 DEBUG(errs() << " Insert B to BB#" << DestBB->getNumber()
1331 << " also invert condition and change dest. to BB#"
1332 << NextBB->getNumber() << "\n");
1334 // Insert a new conditional branch and a new unconditional branch.
1335 // Also update the ImmBranch as well as adding a new entry for the new branch.
1336 BuildMI(MBB, DebugLoc::getUnknownLoc(),
1337 TII->get(MI->getOpcode()))
1338 .addMBB(NextBB).addImm(CC).addReg(CCReg);
1339 Br.MI = &MBB->back();
1340 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1341 BuildMI(MBB, DebugLoc::getUnknownLoc(), TII->get(Br.UncondBr)).addMBB(DestBB);
1342 BBSizes[MBB->getNumber()] += TII->GetInstSizeInBytes(&MBB->back());
1343 unsigned MaxDisp = getUnconditionalBrDisp(Br.UncondBr);
1344 ImmBranches.push_back(ImmBranch(&MBB->back(), MaxDisp, false, Br.UncondBr));
1346 // Remove the old conditional branch. It may or may not still be in MBB.
1347 BBSizes[MI->getParent()->getNumber()] -= TII->GetInstSizeInBytes(MI);
1348 MI->eraseFromParent();
1350 // The net size change is an addition of one unconditional branch.
1351 int delta = TII->GetInstSizeInBytes(&MBB->back());
1352 AdjustBBOffsetsAfter(MBB, delta);
1356 /// UndoLRSpillRestore - Remove Thumb push / pop instructions that only spills
1357 /// LR / restores LR to pc. FIXME: This is done here because it's only possible
1358 /// to do this if tBfar is not used.
1359 bool ARMConstantIslands::UndoLRSpillRestore() {
1360 bool MadeChange = false;
1361 for (unsigned i = 0, e = PushPopMIs.size(); i != e; ++i) {
1362 MachineInstr *MI = PushPopMIs[i];
1363 // First two operands are predicates, the third is a zero since there
1365 if (MI->getOpcode() == ARM::tPOP_RET &&
1366 MI->getOperand(3).getReg() == ARM::PC &&
1367 MI->getNumExplicitOperands() == 4) {
1368 BuildMI(MI->getParent(), MI->getDebugLoc(), TII->get(ARM::tBX_RET));
1369 MI->eraseFromParent();
1376 bool ARMConstantIslands::OptimizeThumb2Instructions(MachineFunction &MF) {
1377 bool MadeChange = false;
1379 // Shrink ADR and LDR from constantpool.
1380 for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
1381 CPUser &U = CPUsers[i];
1382 unsigned Opcode = U.MI->getOpcode();
1383 unsigned NewOpc = 0;
1388 case ARM::t2LEApcrel:
1389 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1390 NewOpc = ARM::tLEApcrel;
1396 if (isARMLowRegister(U.MI->getOperand(0).getReg())) {
1397 NewOpc = ARM::tLDRpci;
1407 unsigned UserOffset = GetOffsetOf(U.MI) + 4;
1408 unsigned MaxOffs = ((1 << Bits) - 1) * Scale;
1409 // FIXME: Check if offset is multiple of scale if scale is not 4.
1410 if (CPEIsInRange(U.MI, UserOffset, U.CPEMI, MaxOffs, false, true)) {
1411 U.MI->setDesc(TII->get(NewOpc));
1412 MachineBasicBlock *MBB = U.MI->getParent();
1413 BBSizes[MBB->getNumber()] -= 2;
1414 AdjustBBOffsetsAfter(MBB, -2);
1420 MadeChange |= OptimizeThumb2Branches(MF);
1421 MadeChange |= OptimizeThumb2JumpTables(MF);
1425 bool ARMConstantIslands::OptimizeThumb2Branches(MachineFunction &MF) {
1426 bool MadeChange = false;
1428 for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i) {
1429 ImmBranch &Br = ImmBranches[i];
1430 unsigned Opcode = Br.MI->getOpcode();
1431 unsigned NewOpc = 0;
1450 unsigned MaxOffs = ((1 << (Bits-1))-1) * Scale;
1451 MachineBasicBlock *DestBB = Br.MI->getOperand(0).getMBB();
1452 if (BBIsInRange(Br.MI, DestBB, MaxOffs)) {
1453 Br.MI->setDesc(TII->get(NewOpc));
1454 MachineBasicBlock *MBB = Br.MI->getParent();
1455 BBSizes[MBB->getNumber()] -= 2;
1456 AdjustBBOffsetsAfter(MBB, -2);
1466 /// OptimizeThumb2JumpTables - Use tbb / tbh instructions to generate smaller
1467 /// jumptables when it's possible.
1468 bool ARMConstantIslands::OptimizeThumb2JumpTables(MachineFunction &MF) {
1469 bool MadeChange = false;
1471 // FIXME: After the tables are shrunk, can we get rid some of the
1472 // constantpool tables?
1473 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
1474 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1475 for (unsigned i = 0, e = T2JumpTables.size(); i != e; ++i) {
1476 MachineInstr *MI = T2JumpTables[i];
1477 const TargetInstrDesc &TID = MI->getDesc();
1478 unsigned NumOps = TID.getNumOperands();
1479 unsigned JTOpIdx = NumOps - (TID.isPredicable() ? 3 : 2);
1480 MachineOperand JTOP = MI->getOperand(JTOpIdx);
1481 unsigned JTI = JTOP.getIndex();
1482 assert(JTI < JT.size());
1485 bool HalfWordOk = true;
1486 unsigned JTOffset = GetOffsetOf(MI) + 4;
1487 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1488 for (unsigned j = 0, ee = JTBBs.size(); j != ee; ++j) {
1489 MachineBasicBlock *MBB = JTBBs[j];
1490 unsigned DstOffset = BBOffsets[MBB->getNumber()];
1491 // Negative offset is not ok. FIXME: We should change BB layout to make
1492 // sure all the branches are forward.
1493 if (ByteOk && (DstOffset - JTOffset) > ((1<<8)-1)*2)
1495 unsigned TBHLimit = ((1<<16)-1)*2;
1496 if (HalfWordOk && (DstOffset - JTOffset) > TBHLimit)
1498 if (!ByteOk && !HalfWordOk)
1502 if (ByteOk || HalfWordOk) {
1503 MachineBasicBlock *MBB = MI->getParent();
1504 unsigned BaseReg = MI->getOperand(0).getReg();
1505 bool BaseRegKill = MI->getOperand(0).isKill();
1508 unsigned IdxReg = MI->getOperand(1).getReg();
1509 bool IdxRegKill = MI->getOperand(1).isKill();
1510 MachineBasicBlock::iterator PrevI = MI;
1511 if (PrevI == MBB->begin())
1514 MachineInstr *AddrMI = --PrevI;
1516 // Examine the instruction that calculate the jumptable entry address.
1517 // If it's not the one just before the t2BR_JT, we won't delete it, then
1518 // it's not worth doing the optimization.
1519 for (unsigned k = 0, eee = AddrMI->getNumOperands(); k != eee; ++k) {
1520 const MachineOperand &MO = AddrMI->getOperand(k);
1521 if (!MO.isReg() || !MO.getReg())
1523 if (MO.isDef() && MO.getReg() != BaseReg) {
1527 if (MO.isUse() && !MO.isKill() && MO.getReg() != IdxReg) {
1535 // The previous instruction should be a tLEApcrel or t2LEApcrelJT, we want
1536 // to delete it as well.
1537 MachineInstr *LeaMI = --PrevI;
1538 if ((LeaMI->getOpcode() != ARM::tLEApcrelJT &&
1539 LeaMI->getOpcode() != ARM::t2LEApcrelJT) ||
1540 LeaMI->getOperand(0).getReg() != BaseReg)
1546 unsigned Opc = ByteOk ? ARM::t2TBB : ARM::t2TBH;
1547 MachineInstr *NewJTMI = BuildMI(MBB, MI->getDebugLoc(), TII->get(Opc))
1548 .addReg(IdxReg, getKillRegState(IdxRegKill))
1549 .addJumpTableIndex(JTI, JTOP.getTargetFlags())
1550 .addImm(MI->getOperand(JTOpIdx+1).getImm());
1551 // FIXME: Insert an "ALIGN" instruction to ensure the next instruction
1552 // is 2-byte aligned. For now, asm printer will fix it up.
1553 unsigned NewSize = TII->GetInstSizeInBytes(NewJTMI);
1554 unsigned OrigSize = TII->GetInstSizeInBytes(AddrMI);
1555 OrigSize += TII->GetInstSizeInBytes(LeaMI);
1556 OrigSize += TII->GetInstSizeInBytes(MI);
1558 AddrMI->eraseFromParent();
1559 LeaMI->eraseFromParent();
1560 MI->eraseFromParent();
1562 int delta = OrigSize - NewSize;
1563 BBSizes[MBB->getNumber()] -= delta;
1564 AdjustBBOffsetsAfter(MBB, -delta);