Replace assertion failure for badly formatted CPS instrution with error message.
[oota-llvm.git] / lib / Target / ARM / AsmParser / ARMAsmParser.cpp
1 //===-- ARMAsmParser.cpp - Parse ARM assembly to MCInst instructions ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "MCTargetDesc/ARMBaseInfo.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "MCTargetDesc/ARMMCExpr.h"
13 #include "llvm/MC/MCParser/MCAsmLexer.h"
14 #include "llvm/MC/MCParser/MCAsmParser.h"
15 #include "llvm/MC/MCParser/MCParsedAsmOperand.h"
16 #include "llvm/MC/MCAsmInfo.h"
17 #include "llvm/MC/MCContext.h"
18 #include "llvm/MC/MCStreamer.h"
19 #include "llvm/MC/MCExpr.h"
20 #include "llvm/MC/MCInst.h"
21 #include "llvm/MC/MCInstrDesc.h"
22 #include "llvm/MC/MCRegisterInfo.h"
23 #include "llvm/MC/MCSubtargetInfo.h"
24 #include "llvm/MC/MCTargetAsmParser.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/SourceMgr.h"
27 #include "llvm/Support/TargetRegistry.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/ADT/BitVector.h"
30 #include "llvm/ADT/OwningPtr.h"
31 #include "llvm/ADT/STLExtras.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringSwitch.h"
34 #include "llvm/ADT/Twine.h"
35
36 using namespace llvm;
37
38 namespace {
39
40 class ARMOperand;
41
42 enum VectorLaneTy { NoLanes, AllLanes, IndexedLane };
43
44 class ARMAsmParser : public MCTargetAsmParser {
45   MCSubtargetInfo &STI;
46   MCAsmParser &Parser;
47   const MCRegisterInfo *MRI;
48
49   // Map of register aliases registers via the .req directive.
50   StringMap<unsigned> RegisterReqs;
51
52   struct {
53     ARMCC::CondCodes Cond;    // Condition for IT block.
54     unsigned Mask:4;          // Condition mask for instructions.
55                               // Starting at first 1 (from lsb).
56                               //   '1'  condition as indicated in IT.
57                               //   '0'  inverse of condition (else).
58                               // Count of instructions in IT block is
59                               // 4 - trailingzeroes(mask)
60
61     bool FirstCond;           // Explicit flag for when we're parsing the
62                               // First instruction in the IT block. It's
63                               // implied in the mask, so needs special
64                               // handling.
65
66     unsigned CurPosition;     // Current position in parsing of IT
67                               // block. In range [0,3]. Initialized
68                               // according to count of instructions in block.
69                               // ~0U if no active IT block.
70   } ITState;
71   bool inITBlock() { return ITState.CurPosition != ~0U;}
72   void forwardITPosition() {
73     if (!inITBlock()) return;
74     // Move to the next instruction in the IT block, if there is one. If not,
75     // mark the block as done.
76     unsigned TZ = CountTrailingZeros_32(ITState.Mask);
77     if (++ITState.CurPosition == 5 - TZ)
78       ITState.CurPosition = ~0U; // Done with the IT block after this.
79   }
80
81
82   MCAsmParser &getParser() const { return Parser; }
83   MCAsmLexer &getLexer() const { return Parser.getLexer(); }
84
85   bool Warning(SMLoc L, const Twine &Msg,
86                ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
87     return Parser.Warning(L, Msg, Ranges);
88   }
89   bool Error(SMLoc L, const Twine &Msg,
90              ArrayRef<SMRange> Ranges = ArrayRef<SMRange>()) {
91     return Parser.Error(L, Msg, Ranges);
92   }
93
94   int tryParseRegister();
95   bool tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &);
96   int tryParseShiftRegister(SmallVectorImpl<MCParsedAsmOperand*> &);
97   bool parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &);
98   bool parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &);
99   bool parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &, StringRef Mnemonic);
100   bool parsePrefix(ARMMCExpr::VariantKind &RefKind);
101   bool parseMemRegOffsetShift(ARM_AM::ShiftOpc &ShiftType,
102                               unsigned &ShiftAmount);
103   bool parseDirectiveWord(unsigned Size, SMLoc L);
104   bool parseDirectiveThumb(SMLoc L);
105   bool parseDirectiveARM(SMLoc L);
106   bool parseDirectiveThumbFunc(SMLoc L);
107   bool parseDirectiveCode(SMLoc L);
108   bool parseDirectiveSyntax(SMLoc L);
109   bool parseDirectiveReq(StringRef Name, SMLoc L);
110   bool parseDirectiveUnreq(SMLoc L);
111   bool parseDirectiveArch(SMLoc L);
112   bool parseDirectiveEabiAttr(SMLoc L);
113
114   StringRef splitMnemonic(StringRef Mnemonic, unsigned &PredicationCode,
115                           bool &CarrySetting, unsigned &ProcessorIMod,
116                           StringRef &ITMask);
117   void getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
118                              bool &CanAcceptPredicationCode);
119
120   bool isThumb() const {
121     // FIXME: Can tablegen auto-generate this?
122     return (STI.getFeatureBits() & ARM::ModeThumb) != 0;
123   }
124   bool isThumbOne() const {
125     return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2) == 0;
126   }
127   bool isThumbTwo() const {
128     return isThumb() && (STI.getFeatureBits() & ARM::FeatureThumb2);
129   }
130   bool hasV6Ops() const {
131     return STI.getFeatureBits() & ARM::HasV6Ops;
132   }
133   bool hasV7Ops() const {
134     return STI.getFeatureBits() & ARM::HasV7Ops;
135   }
136   void SwitchMode() {
137     unsigned FB = ComputeAvailableFeatures(STI.ToggleFeature(ARM::ModeThumb));
138     setAvailableFeatures(FB);
139   }
140   bool isMClass() const {
141     return STI.getFeatureBits() & ARM::FeatureMClass;
142   }
143
144   /// @name Auto-generated Match Functions
145   /// {
146
147 #define GET_ASSEMBLER_HEADER
148 #include "ARMGenAsmMatcher.inc"
149
150   /// }
151
152   OperandMatchResultTy parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*>&);
153   OperandMatchResultTy parseCoprocNumOperand(
154     SmallVectorImpl<MCParsedAsmOperand*>&);
155   OperandMatchResultTy parseCoprocRegOperand(
156     SmallVectorImpl<MCParsedAsmOperand*>&);
157   OperandMatchResultTy parseCoprocOptionOperand(
158     SmallVectorImpl<MCParsedAsmOperand*>&);
159   OperandMatchResultTy parseMemBarrierOptOperand(
160     SmallVectorImpl<MCParsedAsmOperand*>&);
161   OperandMatchResultTy parseProcIFlagsOperand(
162     SmallVectorImpl<MCParsedAsmOperand*>&);
163   OperandMatchResultTy parseMSRMaskOperand(
164     SmallVectorImpl<MCParsedAsmOperand*>&);
165   OperandMatchResultTy parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &O,
166                                    StringRef Op, int Low, int High);
167   OperandMatchResultTy parsePKHLSLImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
168     return parsePKHImm(O, "lsl", 0, 31);
169   }
170   OperandMatchResultTy parsePKHASRImm(SmallVectorImpl<MCParsedAsmOperand*> &O) {
171     return parsePKHImm(O, "asr", 1, 32);
172   }
173   OperandMatchResultTy parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*>&);
174   OperandMatchResultTy parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*>&);
175   OperandMatchResultTy parseRotImm(SmallVectorImpl<MCParsedAsmOperand*>&);
176   OperandMatchResultTy parseBitfield(SmallVectorImpl<MCParsedAsmOperand*>&);
177   OperandMatchResultTy parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*>&);
178   OperandMatchResultTy parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*>&);
179   OperandMatchResultTy parseFPImm(SmallVectorImpl<MCParsedAsmOperand*>&);
180   OperandMatchResultTy parseVectorList(SmallVectorImpl<MCParsedAsmOperand*>&);
181   OperandMatchResultTy parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index);
182
183   // Asm Match Converter Methods
184   bool cvtT2LdrdPre(MCInst &Inst, unsigned Opcode,
185                     const SmallVectorImpl<MCParsedAsmOperand*> &);
186   bool cvtT2StrdPre(MCInst &Inst, unsigned Opcode,
187                     const SmallVectorImpl<MCParsedAsmOperand*> &);
188   bool cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
189                                   const SmallVectorImpl<MCParsedAsmOperand*> &);
190   bool cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
191                                   const SmallVectorImpl<MCParsedAsmOperand*> &);
192   bool cvtLdWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
193                                   const SmallVectorImpl<MCParsedAsmOperand*> &);
194   bool cvtLdWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
195                                   const SmallVectorImpl<MCParsedAsmOperand*> &);
196   bool cvtStWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
197                                   const SmallVectorImpl<MCParsedAsmOperand*> &);
198   bool cvtStWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
199                                   const SmallVectorImpl<MCParsedAsmOperand*> &);
200   bool cvtStWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
201                                   const SmallVectorImpl<MCParsedAsmOperand*> &);
202   bool cvtLdExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
203                              const SmallVectorImpl<MCParsedAsmOperand*> &);
204   bool cvtLdExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
205                              const SmallVectorImpl<MCParsedAsmOperand*> &);
206   bool cvtStExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
207                              const SmallVectorImpl<MCParsedAsmOperand*> &);
208   bool cvtStExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
209                              const SmallVectorImpl<MCParsedAsmOperand*> &);
210   bool cvtLdrdPre(MCInst &Inst, unsigned Opcode,
211                   const SmallVectorImpl<MCParsedAsmOperand*> &);
212   bool cvtStrdPre(MCInst &Inst, unsigned Opcode,
213                   const SmallVectorImpl<MCParsedAsmOperand*> &);
214   bool cvtLdWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
215                                   const SmallVectorImpl<MCParsedAsmOperand*> &);
216   bool cvtThumbMultiply(MCInst &Inst, unsigned Opcode,
217                         const SmallVectorImpl<MCParsedAsmOperand*> &);
218   bool cvtVLDwbFixed(MCInst &Inst, unsigned Opcode,
219                      const SmallVectorImpl<MCParsedAsmOperand*> &);
220   bool cvtVLDwbRegister(MCInst &Inst, unsigned Opcode,
221                         const SmallVectorImpl<MCParsedAsmOperand*> &);
222   bool cvtVSTwbFixed(MCInst &Inst, unsigned Opcode,
223                      const SmallVectorImpl<MCParsedAsmOperand*> &);
224   bool cvtVSTwbRegister(MCInst &Inst, unsigned Opcode,
225                         const SmallVectorImpl<MCParsedAsmOperand*> &);
226
227   bool validateInstruction(MCInst &Inst,
228                            const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
229   bool processInstruction(MCInst &Inst,
230                           const SmallVectorImpl<MCParsedAsmOperand*> &Ops);
231   bool shouldOmitCCOutOperand(StringRef Mnemonic,
232                               SmallVectorImpl<MCParsedAsmOperand*> &Operands);
233
234 public:
235   enum ARMMatchResultTy {
236     Match_RequiresITBlock = FIRST_TARGET_MATCH_RESULT_TY,
237     Match_RequiresNotITBlock,
238     Match_RequiresV6,
239     Match_RequiresThumb2
240   };
241
242   ARMAsmParser(MCSubtargetInfo &_STI, MCAsmParser &_Parser)
243     : MCTargetAsmParser(), STI(_STI), Parser(_Parser) {
244     MCAsmParserExtension::Initialize(_Parser);
245
246     // Cache the MCRegisterInfo.
247     MRI = &getContext().getRegisterInfo();
248
249     // Initialize the set of available features.
250     setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
251
252     // Not in an ITBlock to start with.
253     ITState.CurPosition = ~0U;
254   }
255
256   // Implementation of the MCTargetAsmParser interface:
257   bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc);
258   bool ParseInstruction(StringRef Name, SMLoc NameLoc,
259                         SmallVectorImpl<MCParsedAsmOperand*> &Operands);
260   bool ParseDirective(AsmToken DirectiveID);
261
262   unsigned checkTargetMatchPredicate(MCInst &Inst);
263
264   bool MatchAndEmitInstruction(SMLoc IDLoc,
265                                SmallVectorImpl<MCParsedAsmOperand*> &Operands,
266                                MCStreamer &Out);
267 };
268 } // end anonymous namespace
269
270 namespace {
271
272 /// ARMOperand - Instances of this class represent a parsed ARM machine
273 /// instruction.
274 class ARMOperand : public MCParsedAsmOperand {
275   enum KindTy {
276     k_CondCode,
277     k_CCOut,
278     k_ITCondMask,
279     k_CoprocNum,
280     k_CoprocReg,
281     k_CoprocOption,
282     k_Immediate,
283     k_MemBarrierOpt,
284     k_Memory,
285     k_PostIndexRegister,
286     k_MSRMask,
287     k_ProcIFlags,
288     k_VectorIndex,
289     k_Register,
290     k_RegisterList,
291     k_DPRRegisterList,
292     k_SPRRegisterList,
293     k_VectorList,
294     k_VectorListAllLanes,
295     k_VectorListIndexed,
296     k_ShiftedRegister,
297     k_ShiftedImmediate,
298     k_ShifterImmediate,
299     k_RotateImmediate,
300     k_BitfieldDescriptor,
301     k_Token
302   } Kind;
303
304   SMLoc StartLoc, EndLoc;
305   SmallVector<unsigned, 8> Registers;
306
307   union {
308     struct {
309       ARMCC::CondCodes Val;
310     } CC;
311
312     struct {
313       unsigned Val;
314     } Cop;
315
316     struct {
317       unsigned Val;
318     } CoprocOption;
319
320     struct {
321       unsigned Mask:4;
322     } ITMask;
323
324     struct {
325       ARM_MB::MemBOpt Val;
326     } MBOpt;
327
328     struct {
329       ARM_PROC::IFlags Val;
330     } IFlags;
331
332     struct {
333       unsigned Val;
334     } MMask;
335
336     struct {
337       const char *Data;
338       unsigned Length;
339     } Tok;
340
341     struct {
342       unsigned RegNum;
343     } Reg;
344
345     // A vector register list is a sequential list of 1 to 4 registers.
346     struct {
347       unsigned RegNum;
348       unsigned Count;
349       unsigned LaneIndex;
350       bool isDoubleSpaced;
351     } VectorList;
352
353     struct {
354       unsigned Val;
355     } VectorIndex;
356
357     struct {
358       const MCExpr *Val;
359     } Imm;
360
361     /// Combined record for all forms of ARM address expressions.
362     struct {
363       unsigned BaseRegNum;
364       // Offset is in OffsetReg or OffsetImm. If both are zero, no offset
365       // was specified.
366       const MCConstantExpr *OffsetImm;  // Offset immediate value
367       unsigned OffsetRegNum;    // Offset register num, when OffsetImm == NULL
368       ARM_AM::ShiftOpc ShiftType; // Shift type for OffsetReg
369       unsigned ShiftImm;        // shift for OffsetReg.
370       unsigned Alignment;       // 0 = no alignment specified
371                                 // n = alignment in bytes (2, 4, 8, 16, or 32)
372       unsigned isNegative : 1;  // Negated OffsetReg? (~'U' bit)
373     } Memory;
374
375     struct {
376       unsigned RegNum;
377       bool isAdd;
378       ARM_AM::ShiftOpc ShiftTy;
379       unsigned ShiftImm;
380     } PostIdxReg;
381
382     struct {
383       bool isASR;
384       unsigned Imm;
385     } ShifterImm;
386     struct {
387       ARM_AM::ShiftOpc ShiftTy;
388       unsigned SrcReg;
389       unsigned ShiftReg;
390       unsigned ShiftImm;
391     } RegShiftedReg;
392     struct {
393       ARM_AM::ShiftOpc ShiftTy;
394       unsigned SrcReg;
395       unsigned ShiftImm;
396     } RegShiftedImm;
397     struct {
398       unsigned Imm;
399     } RotImm;
400     struct {
401       unsigned LSB;
402       unsigned Width;
403     } Bitfield;
404   };
405
406   ARMOperand(KindTy K) : MCParsedAsmOperand(), Kind(K) {}
407 public:
408   ARMOperand(const ARMOperand &o) : MCParsedAsmOperand() {
409     Kind = o.Kind;
410     StartLoc = o.StartLoc;
411     EndLoc = o.EndLoc;
412     switch (Kind) {
413     case k_CondCode:
414       CC = o.CC;
415       break;
416     case k_ITCondMask:
417       ITMask = o.ITMask;
418       break;
419     case k_Token:
420       Tok = o.Tok;
421       break;
422     case k_CCOut:
423     case k_Register:
424       Reg = o.Reg;
425       break;
426     case k_RegisterList:
427     case k_DPRRegisterList:
428     case k_SPRRegisterList:
429       Registers = o.Registers;
430       break;
431     case k_VectorList:
432     case k_VectorListAllLanes:
433     case k_VectorListIndexed:
434       VectorList = o.VectorList;
435       break;
436     case k_CoprocNum:
437     case k_CoprocReg:
438       Cop = o.Cop;
439       break;
440     case k_CoprocOption:
441       CoprocOption = o.CoprocOption;
442       break;
443     case k_Immediate:
444       Imm = o.Imm;
445       break;
446     case k_MemBarrierOpt:
447       MBOpt = o.MBOpt;
448       break;
449     case k_Memory:
450       Memory = o.Memory;
451       break;
452     case k_PostIndexRegister:
453       PostIdxReg = o.PostIdxReg;
454       break;
455     case k_MSRMask:
456       MMask = o.MMask;
457       break;
458     case k_ProcIFlags:
459       IFlags = o.IFlags;
460       break;
461     case k_ShifterImmediate:
462       ShifterImm = o.ShifterImm;
463       break;
464     case k_ShiftedRegister:
465       RegShiftedReg = o.RegShiftedReg;
466       break;
467     case k_ShiftedImmediate:
468       RegShiftedImm = o.RegShiftedImm;
469       break;
470     case k_RotateImmediate:
471       RotImm = o.RotImm;
472       break;
473     case k_BitfieldDescriptor:
474       Bitfield = o.Bitfield;
475       break;
476     case k_VectorIndex:
477       VectorIndex = o.VectorIndex;
478       break;
479     }
480   }
481
482   /// getStartLoc - Get the location of the first token of this operand.
483   SMLoc getStartLoc() const { return StartLoc; }
484   /// getEndLoc - Get the location of the last token of this operand.
485   SMLoc getEndLoc() const { return EndLoc; }
486
487   SMRange getLocRange() const { return SMRange(StartLoc, EndLoc); }
488
489   ARMCC::CondCodes getCondCode() const {
490     assert(Kind == k_CondCode && "Invalid access!");
491     return CC.Val;
492   }
493
494   unsigned getCoproc() const {
495     assert((Kind == k_CoprocNum || Kind == k_CoprocReg) && "Invalid access!");
496     return Cop.Val;
497   }
498
499   StringRef getToken() const {
500     assert(Kind == k_Token && "Invalid access!");
501     return StringRef(Tok.Data, Tok.Length);
502   }
503
504   unsigned getReg() const {
505     assert((Kind == k_Register || Kind == k_CCOut) && "Invalid access!");
506     return Reg.RegNum;
507   }
508
509   const SmallVectorImpl<unsigned> &getRegList() const {
510     assert((Kind == k_RegisterList || Kind == k_DPRRegisterList ||
511             Kind == k_SPRRegisterList) && "Invalid access!");
512     return Registers;
513   }
514
515   const MCExpr *getImm() const {
516     assert(isImm() && "Invalid access!");
517     return Imm.Val;
518   }
519
520   unsigned getVectorIndex() const {
521     assert(Kind == k_VectorIndex && "Invalid access!");
522     return VectorIndex.Val;
523   }
524
525   ARM_MB::MemBOpt getMemBarrierOpt() const {
526     assert(Kind == k_MemBarrierOpt && "Invalid access!");
527     return MBOpt.Val;
528   }
529
530   ARM_PROC::IFlags getProcIFlags() const {
531     assert(Kind == k_ProcIFlags && "Invalid access!");
532     return IFlags.Val;
533   }
534
535   unsigned getMSRMask() const {
536     assert(Kind == k_MSRMask && "Invalid access!");
537     return MMask.Val;
538   }
539
540   bool isCoprocNum() const { return Kind == k_CoprocNum; }
541   bool isCoprocReg() const { return Kind == k_CoprocReg; }
542   bool isCoprocOption() const { return Kind == k_CoprocOption; }
543   bool isCondCode() const { return Kind == k_CondCode; }
544   bool isCCOut() const { return Kind == k_CCOut; }
545   bool isITMask() const { return Kind == k_ITCondMask; }
546   bool isITCondCode() const { return Kind == k_CondCode; }
547   bool isImm() const { return Kind == k_Immediate; }
548   bool isFPImm() const {
549     if (!isImm()) return false;
550     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
551     if (!CE) return false;
552     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
553     return Val != -1;
554   }
555   bool isFBits16() const {
556     if (!isImm()) return false;
557     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
558     if (!CE) return false;
559     int64_t Value = CE->getValue();
560     return Value >= 0 && Value <= 16;
561   }
562   bool isFBits32() const {
563     if (!isImm()) return false;
564     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
565     if (!CE) return false;
566     int64_t Value = CE->getValue();
567     return Value >= 1 && Value <= 32;
568   }
569   bool isImm8s4() const {
570     if (!isImm()) return false;
571     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
572     if (!CE) return false;
573     int64_t Value = CE->getValue();
574     return ((Value & 3) == 0) && Value >= -1020 && Value <= 1020;
575   }
576   bool isImm0_1020s4() const {
577     if (!isImm()) return false;
578     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
579     if (!CE) return false;
580     int64_t Value = CE->getValue();
581     return ((Value & 3) == 0) && Value >= 0 && Value <= 1020;
582   }
583   bool isImm0_508s4() const {
584     if (!isImm()) return false;
585     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
586     if (!CE) return false;
587     int64_t Value = CE->getValue();
588     return ((Value & 3) == 0) && Value >= 0 && Value <= 508;
589   }
590   bool isImm0_508s4Neg() const {
591     if (!isImm()) return false;
592     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
593     if (!CE) return false;
594     int64_t Value = -CE->getValue();
595     // explicitly exclude zero. we want that to use the normal 0_508 version.
596     return ((Value & 3) == 0) && Value > 0 && Value <= 508;
597   }
598   bool isImm0_255() const {
599     if (!isImm()) return false;
600     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
601     if (!CE) return false;
602     int64_t Value = CE->getValue();
603     return Value >= 0 && Value < 256;
604   }
605   bool isImm0_4095() const {
606     if (!isImm()) return false;
607     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
608     if (!CE) return false;
609     int64_t Value = CE->getValue();
610     return Value >= 0 && Value < 4096;
611   }
612   bool isImm0_4095Neg() const {
613     if (!isImm()) return false;
614     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
615     if (!CE) return false;
616     int64_t Value = -CE->getValue();
617     return Value > 0 && Value < 4096;
618   }
619   bool isImm0_1() const {
620     if (!isImm()) return false;
621     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
622     if (!CE) return false;
623     int64_t Value = CE->getValue();
624     return Value >= 0 && Value < 2;
625   }
626   bool isImm0_3() const {
627     if (!isImm()) return false;
628     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
629     if (!CE) return false;
630     int64_t Value = CE->getValue();
631     return Value >= 0 && Value < 4;
632   }
633   bool isImm0_7() const {
634     if (!isImm()) return false;
635     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
636     if (!CE) return false;
637     int64_t Value = CE->getValue();
638     return Value >= 0 && Value < 8;
639   }
640   bool isImm0_15() const {
641     if (!isImm()) return false;
642     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
643     if (!CE) return false;
644     int64_t Value = CE->getValue();
645     return Value >= 0 && Value < 16;
646   }
647   bool isImm0_31() const {
648     if (!isImm()) return false;
649     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
650     if (!CE) return false;
651     int64_t Value = CE->getValue();
652     return Value >= 0 && Value < 32;
653   }
654   bool isImm0_63() const {
655     if (!isImm()) return false;
656     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
657     if (!CE) return false;
658     int64_t Value = CE->getValue();
659     return Value >= 0 && Value < 64;
660   }
661   bool isImm8() const {
662     if (!isImm()) return false;
663     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
664     if (!CE) return false;
665     int64_t Value = CE->getValue();
666     return Value == 8;
667   }
668   bool isImm16() const {
669     if (!isImm()) return false;
670     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
671     if (!CE) return false;
672     int64_t Value = CE->getValue();
673     return Value == 16;
674   }
675   bool isImm32() const {
676     if (!isImm()) return false;
677     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
678     if (!CE) return false;
679     int64_t Value = CE->getValue();
680     return Value == 32;
681   }
682   bool isShrImm8() const {
683     if (!isImm()) return false;
684     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
685     if (!CE) return false;
686     int64_t Value = CE->getValue();
687     return Value > 0 && Value <= 8;
688   }
689   bool isShrImm16() const {
690     if (!isImm()) return false;
691     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
692     if (!CE) return false;
693     int64_t Value = CE->getValue();
694     return Value > 0 && Value <= 16;
695   }
696   bool isShrImm32() const {
697     if (!isImm()) return false;
698     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
699     if (!CE) return false;
700     int64_t Value = CE->getValue();
701     return Value > 0 && Value <= 32;
702   }
703   bool isShrImm64() const {
704     if (!isImm()) return false;
705     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
706     if (!CE) return false;
707     int64_t Value = CE->getValue();
708     return Value > 0 && Value <= 64;
709   }
710   bool isImm1_7() const {
711     if (!isImm()) return false;
712     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
713     if (!CE) return false;
714     int64_t Value = CE->getValue();
715     return Value > 0 && Value < 8;
716   }
717   bool isImm1_15() const {
718     if (!isImm()) return false;
719     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
720     if (!CE) return false;
721     int64_t Value = CE->getValue();
722     return Value > 0 && Value < 16;
723   }
724   bool isImm1_31() const {
725     if (!isImm()) return false;
726     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
727     if (!CE) return false;
728     int64_t Value = CE->getValue();
729     return Value > 0 && Value < 32;
730   }
731   bool isImm1_16() const {
732     if (!isImm()) return false;
733     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
734     if (!CE) return false;
735     int64_t Value = CE->getValue();
736     return Value > 0 && Value < 17;
737   }
738   bool isImm1_32() const {
739     if (!isImm()) return false;
740     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
741     if (!CE) return false;
742     int64_t Value = CE->getValue();
743     return Value > 0 && Value < 33;
744   }
745   bool isImm0_32() const {
746     if (!isImm()) return false;
747     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
748     if (!CE) return false;
749     int64_t Value = CE->getValue();
750     return Value >= 0 && Value < 33;
751   }
752   bool isImm0_65535() const {
753     if (!isImm()) return false;
754     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
755     if (!CE) return false;
756     int64_t Value = CE->getValue();
757     return Value >= 0 && Value < 65536;
758   }
759   bool isImm0_65535Expr() const {
760     if (!isImm()) return false;
761     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
762     // If it's not a constant expression, it'll generate a fixup and be
763     // handled later.
764     if (!CE) return true;
765     int64_t Value = CE->getValue();
766     return Value >= 0 && Value < 65536;
767   }
768   bool isImm24bit() const {
769     if (!isImm()) return false;
770     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
771     if (!CE) return false;
772     int64_t Value = CE->getValue();
773     return Value >= 0 && Value <= 0xffffff;
774   }
775   bool isImmThumbSR() const {
776     if (!isImm()) return false;
777     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
778     if (!CE) return false;
779     int64_t Value = CE->getValue();
780     return Value > 0 && Value < 33;
781   }
782   bool isPKHLSLImm() const {
783     if (!isImm()) return false;
784     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
785     if (!CE) return false;
786     int64_t Value = CE->getValue();
787     return Value >= 0 && Value < 32;
788   }
789   bool isPKHASRImm() const {
790     if (!isImm()) return false;
791     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
792     if (!CE) return false;
793     int64_t Value = CE->getValue();
794     return Value > 0 && Value <= 32;
795   }
796   bool isARMSOImm() const {
797     if (!isImm()) return false;
798     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
799     if (!CE) return false;
800     int64_t Value = CE->getValue();
801     return ARM_AM::getSOImmVal(Value) != -1;
802   }
803   bool isARMSOImmNot() const {
804     if (!isImm()) return false;
805     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
806     if (!CE) return false;
807     int64_t Value = CE->getValue();
808     return ARM_AM::getSOImmVal(~Value) != -1;
809   }
810   bool isARMSOImmNeg() const {
811     if (!isImm()) return false;
812     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
813     if (!CE) return false;
814     int64_t Value = CE->getValue();
815     // Only use this when not representable as a plain so_imm.
816     return ARM_AM::getSOImmVal(Value) == -1 &&
817       ARM_AM::getSOImmVal(-Value) != -1;
818   }
819   bool isT2SOImm() const {
820     if (!isImm()) return false;
821     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
822     if (!CE) return false;
823     int64_t Value = CE->getValue();
824     return ARM_AM::getT2SOImmVal(Value) != -1;
825   }
826   bool isT2SOImmNot() const {
827     if (!isImm()) return false;
828     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
829     if (!CE) return false;
830     int64_t Value = CE->getValue();
831     return ARM_AM::getT2SOImmVal(~Value) != -1;
832   }
833   bool isT2SOImmNeg() const {
834     if (!isImm()) return false;
835     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
836     if (!CE) return false;
837     int64_t Value = CE->getValue();
838     // Only use this when not representable as a plain so_imm.
839     return ARM_AM::getT2SOImmVal(Value) == -1 &&
840       ARM_AM::getT2SOImmVal(-Value) != -1;
841   }
842   bool isSetEndImm() const {
843     if (!isImm()) return false;
844     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
845     if (!CE) return false;
846     int64_t Value = CE->getValue();
847     return Value == 1 || Value == 0;
848   }
849   bool isReg() const { return Kind == k_Register; }
850   bool isRegList() const { return Kind == k_RegisterList; }
851   bool isDPRRegList() const { return Kind == k_DPRRegisterList; }
852   bool isSPRRegList() const { return Kind == k_SPRRegisterList; }
853   bool isToken() const { return Kind == k_Token; }
854   bool isMemBarrierOpt() const { return Kind == k_MemBarrierOpt; }
855   bool isMemory() const { return Kind == k_Memory; }
856   bool isShifterImm() const { return Kind == k_ShifterImmediate; }
857   bool isRegShiftedReg() const { return Kind == k_ShiftedRegister; }
858   bool isRegShiftedImm() const { return Kind == k_ShiftedImmediate; }
859   bool isRotImm() const { return Kind == k_RotateImmediate; }
860   bool isBitfield() const { return Kind == k_BitfieldDescriptor; }
861   bool isPostIdxRegShifted() const { return Kind == k_PostIndexRegister; }
862   bool isPostIdxReg() const {
863     return Kind == k_PostIndexRegister && PostIdxReg.ShiftTy ==ARM_AM::no_shift;
864   }
865   bool isMemNoOffset(bool alignOK = false) const {
866     if (!isMemory())
867       return false;
868     // No offset of any kind.
869     return Memory.OffsetRegNum == 0 && Memory.OffsetImm == 0 &&
870      (alignOK || Memory.Alignment == 0);
871   }
872   bool isMemPCRelImm12() const {
873     if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
874       return false;
875     // Base register must be PC.
876     if (Memory.BaseRegNum != ARM::PC)
877       return false;
878     // Immediate offset in range [-4095, 4095].
879     if (!Memory.OffsetImm) return true;
880     int64_t Val = Memory.OffsetImm->getValue();
881     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
882   }
883   bool isAlignedMemory() const {
884     return isMemNoOffset(true);
885   }
886   bool isAddrMode2() const {
887     if (!isMemory() || Memory.Alignment != 0) return false;
888     // Check for register offset.
889     if (Memory.OffsetRegNum) return true;
890     // Immediate offset in range [-4095, 4095].
891     if (!Memory.OffsetImm) return true;
892     int64_t Val = Memory.OffsetImm->getValue();
893     return Val > -4096 && Val < 4096;
894   }
895   bool isAM2OffsetImm() const {
896     if (!isImm()) return false;
897     // Immediate offset in range [-4095, 4095].
898     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
899     if (!CE) return false;
900     int64_t Val = CE->getValue();
901     return Val > -4096 && Val < 4096;
902   }
903   bool isAddrMode3() const {
904     // If we have an immediate that's not a constant, treat it as a label
905     // reference needing a fixup. If it is a constant, it's something else
906     // and we reject it.
907     if (isImm() && !isa<MCConstantExpr>(getImm()))
908       return true;
909     if (!isMemory() || Memory.Alignment != 0) return false;
910     // No shifts are legal for AM3.
911     if (Memory.ShiftType != ARM_AM::no_shift) return false;
912     // Check for register offset.
913     if (Memory.OffsetRegNum) return true;
914     // Immediate offset in range [-255, 255].
915     if (!Memory.OffsetImm) return true;
916     int64_t Val = Memory.OffsetImm->getValue();
917     // The #-0 offset is encoded as INT32_MIN, and we have to check 
918     // for this too.
919     return (Val > -256 && Val < 256) || Val == INT32_MIN;
920   }
921   bool isAM3Offset() const {
922     if (Kind != k_Immediate && Kind != k_PostIndexRegister)
923       return false;
924     if (Kind == k_PostIndexRegister)
925       return PostIdxReg.ShiftTy == ARM_AM::no_shift;
926     // Immediate offset in range [-255, 255].
927     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
928     if (!CE) return false;
929     int64_t Val = CE->getValue();
930     // Special case, #-0 is INT32_MIN.
931     return (Val > -256 && Val < 256) || Val == INT32_MIN;
932   }
933   bool isAddrMode5() const {
934     // If we have an immediate that's not a constant, treat it as a label
935     // reference needing a fixup. If it is a constant, it's something else
936     // and we reject it.
937     if (isImm() && !isa<MCConstantExpr>(getImm()))
938       return true;
939     if (!isMemory() || Memory.Alignment != 0) return false;
940     // Check for register offset.
941     if (Memory.OffsetRegNum) return false;
942     // Immediate offset in range [-1020, 1020] and a multiple of 4.
943     if (!Memory.OffsetImm) return true;
944     int64_t Val = Memory.OffsetImm->getValue();
945     return (Val >= -1020 && Val <= 1020 && ((Val & 3) == 0)) ||
946       Val == INT32_MIN;
947   }
948   bool isMemTBB() const {
949     if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
950         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
951       return false;
952     return true;
953   }
954   bool isMemTBH() const {
955     if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
956         Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm != 1 ||
957         Memory.Alignment != 0 )
958       return false;
959     return true;
960   }
961   bool isMemRegOffset() const {
962     if (!isMemory() || !Memory.OffsetRegNum || Memory.Alignment != 0)
963       return false;
964     return true;
965   }
966   bool isT2MemRegOffset() const {
967     if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
968         Memory.Alignment != 0)
969       return false;
970     // Only lsl #{0, 1, 2, 3} allowed.
971     if (Memory.ShiftType == ARM_AM::no_shift)
972       return true;
973     if (Memory.ShiftType != ARM_AM::lsl || Memory.ShiftImm > 3)
974       return false;
975     return true;
976   }
977   bool isMemThumbRR() const {
978     // Thumb reg+reg addressing is simple. Just two registers, a base and
979     // an offset. No shifts, negations or any other complicating factors.
980     if (!isMemory() || !Memory.OffsetRegNum || Memory.isNegative ||
981         Memory.ShiftType != ARM_AM::no_shift || Memory.Alignment != 0)
982       return false;
983     return isARMLowRegister(Memory.BaseRegNum) &&
984       (!Memory.OffsetRegNum || isARMLowRegister(Memory.OffsetRegNum));
985   }
986   bool isMemThumbRIs4() const {
987     if (!isMemory() || Memory.OffsetRegNum != 0 ||
988         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
989       return false;
990     // Immediate offset, multiple of 4 in range [0, 124].
991     if (!Memory.OffsetImm) return true;
992     int64_t Val = Memory.OffsetImm->getValue();
993     return Val >= 0 && Val <= 124 && (Val % 4) == 0;
994   }
995   bool isMemThumbRIs2() const {
996     if (!isMemory() || Memory.OffsetRegNum != 0 ||
997         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
998       return false;
999     // Immediate offset, multiple of 4 in range [0, 62].
1000     if (!Memory.OffsetImm) return true;
1001     int64_t Val = Memory.OffsetImm->getValue();
1002     return Val >= 0 && Val <= 62 && (Val % 2) == 0;
1003   }
1004   bool isMemThumbRIs1() const {
1005     if (!isMemory() || Memory.OffsetRegNum != 0 ||
1006         !isARMLowRegister(Memory.BaseRegNum) || Memory.Alignment != 0)
1007       return false;
1008     // Immediate offset in range [0, 31].
1009     if (!Memory.OffsetImm) return true;
1010     int64_t Val = Memory.OffsetImm->getValue();
1011     return Val >= 0 && Val <= 31;
1012   }
1013   bool isMemThumbSPI() const {
1014     if (!isMemory() || Memory.OffsetRegNum != 0 ||
1015         Memory.BaseRegNum != ARM::SP || Memory.Alignment != 0)
1016       return false;
1017     // Immediate offset, multiple of 4 in range [0, 1020].
1018     if (!Memory.OffsetImm) return true;
1019     int64_t Val = Memory.OffsetImm->getValue();
1020     return Val >= 0 && Val <= 1020 && (Val % 4) == 0;
1021   }
1022   bool isMemImm8s4Offset() const {
1023     // If we have an immediate that's not a constant, treat it as a label
1024     // reference needing a fixup. If it is a constant, it's something else
1025     // and we reject it.
1026     if (isImm() && !isa<MCConstantExpr>(getImm()))
1027       return true;
1028     if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1029       return false;
1030     // Immediate offset a multiple of 4 in range [-1020, 1020].
1031     if (!Memory.OffsetImm) return true;
1032     int64_t Val = Memory.OffsetImm->getValue();
1033     return Val >= -1020 && Val <= 1020 && (Val & 3) == 0;
1034   }
1035   bool isMemImm0_1020s4Offset() const {
1036     if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1037       return false;
1038     // Immediate offset a multiple of 4 in range [0, 1020].
1039     if (!Memory.OffsetImm) return true;
1040     int64_t Val = Memory.OffsetImm->getValue();
1041     return Val >= 0 && Val <= 1020 && (Val & 3) == 0;
1042   }
1043   bool isMemImm8Offset() const {
1044     if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1045       return false;
1046     // Base reg of PC isn't allowed for these encodings.
1047     if (Memory.BaseRegNum == ARM::PC) return false;
1048     // Immediate offset in range [-255, 255].
1049     if (!Memory.OffsetImm) return true;
1050     int64_t Val = Memory.OffsetImm->getValue();
1051     return (Val == INT32_MIN) || (Val > -256 && Val < 256);
1052   }
1053   bool isMemPosImm8Offset() const {
1054     if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1055       return false;
1056     // Immediate offset in range [0, 255].
1057     if (!Memory.OffsetImm) return true;
1058     int64_t Val = Memory.OffsetImm->getValue();
1059     return Val >= 0 && Val < 256;
1060   }
1061   bool isMemNegImm8Offset() const {
1062     if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1063       return false;
1064     // Base reg of PC isn't allowed for these encodings.
1065     if (Memory.BaseRegNum == ARM::PC) return false;
1066     // Immediate offset in range [-255, -1].
1067     if (!Memory.OffsetImm) return false;
1068     int64_t Val = Memory.OffsetImm->getValue();
1069     return (Val == INT32_MIN) || (Val > -256 && Val < 0);
1070   }
1071   bool isMemUImm12Offset() const {
1072     if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1073       return false;
1074     // Immediate offset in range [0, 4095].
1075     if (!Memory.OffsetImm) return true;
1076     int64_t Val = Memory.OffsetImm->getValue();
1077     return (Val >= 0 && Val < 4096);
1078   }
1079   bool isMemImm12Offset() const {
1080     // If we have an immediate that's not a constant, treat it as a label
1081     // reference needing a fixup. If it is a constant, it's something else
1082     // and we reject it.
1083     if (isImm() && !isa<MCConstantExpr>(getImm()))
1084       return true;
1085
1086     if (!isMemory() || Memory.OffsetRegNum != 0 || Memory.Alignment != 0)
1087       return false;
1088     // Immediate offset in range [-4095, 4095].
1089     if (!Memory.OffsetImm) return true;
1090     int64_t Val = Memory.OffsetImm->getValue();
1091     return (Val > -4096 && Val < 4096) || (Val == INT32_MIN);
1092   }
1093   bool isPostIdxImm8() const {
1094     if (!isImm()) return false;
1095     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1096     if (!CE) return false;
1097     int64_t Val = CE->getValue();
1098     return (Val > -256 && Val < 256) || (Val == INT32_MIN);
1099   }
1100   bool isPostIdxImm8s4() const {
1101     if (!isImm()) return false;
1102     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1103     if (!CE) return false;
1104     int64_t Val = CE->getValue();
1105     return ((Val & 3) == 0 && Val >= -1020 && Val <= 1020) ||
1106       (Val == INT32_MIN);
1107   }
1108
1109   bool isMSRMask() const { return Kind == k_MSRMask; }
1110   bool isProcIFlags() const { return Kind == k_ProcIFlags; }
1111
1112   // NEON operands.
1113   bool isSingleSpacedVectorList() const {
1114     return Kind == k_VectorList && !VectorList.isDoubleSpaced;
1115   }
1116   bool isDoubleSpacedVectorList() const {
1117     return Kind == k_VectorList && VectorList.isDoubleSpaced;
1118   }
1119   bool isVecListOneD() const {
1120     if (!isSingleSpacedVectorList()) return false;
1121     return VectorList.Count == 1;
1122   }
1123
1124   bool isVecListDPair() const {
1125     if (!isSingleSpacedVectorList()) return false;
1126     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1127               .contains(VectorList.RegNum));
1128   }
1129
1130   bool isVecListThreeD() const {
1131     if (!isSingleSpacedVectorList()) return false;
1132     return VectorList.Count == 3;
1133   }
1134
1135   bool isVecListFourD() const {
1136     if (!isSingleSpacedVectorList()) return false;
1137     return VectorList.Count == 4;
1138   }
1139
1140   bool isVecListDPairSpaced() const {
1141     if (isSingleSpacedVectorList()) return false;
1142     return (ARMMCRegisterClasses[ARM::DPairSpcRegClassID]
1143               .contains(VectorList.RegNum));
1144   }
1145
1146   bool isVecListThreeQ() const {
1147     if (!isDoubleSpacedVectorList()) return false;
1148     return VectorList.Count == 3;
1149   }
1150
1151   bool isVecListFourQ() const {
1152     if (!isDoubleSpacedVectorList()) return false;
1153     return VectorList.Count == 4;
1154   }
1155
1156   bool isSingleSpacedVectorAllLanes() const {
1157     return Kind == k_VectorListAllLanes && !VectorList.isDoubleSpaced;
1158   }
1159   bool isDoubleSpacedVectorAllLanes() const {
1160     return Kind == k_VectorListAllLanes && VectorList.isDoubleSpaced;
1161   }
1162   bool isVecListOneDAllLanes() const {
1163     if (!isSingleSpacedVectorAllLanes()) return false;
1164     return VectorList.Count == 1;
1165   }
1166
1167   bool isVecListDPairAllLanes() const {
1168     if (!isSingleSpacedVectorAllLanes()) return false;
1169     return (ARMMCRegisterClasses[ARM::DPairRegClassID]
1170               .contains(VectorList.RegNum));
1171   }
1172
1173   bool isVecListDPairSpacedAllLanes() const {
1174     if (!isDoubleSpacedVectorAllLanes()) return false;
1175     return VectorList.Count == 2;
1176   }
1177
1178   bool isVecListThreeDAllLanes() const {
1179     if (!isSingleSpacedVectorAllLanes()) return false;
1180     return VectorList.Count == 3;
1181   }
1182
1183   bool isVecListThreeQAllLanes() const {
1184     if (!isDoubleSpacedVectorAllLanes()) return false;
1185     return VectorList.Count == 3;
1186   }
1187
1188   bool isVecListFourDAllLanes() const {
1189     if (!isSingleSpacedVectorAllLanes()) return false;
1190     return VectorList.Count == 4;
1191   }
1192
1193   bool isVecListFourQAllLanes() const {
1194     if (!isDoubleSpacedVectorAllLanes()) return false;
1195     return VectorList.Count == 4;
1196   }
1197
1198   bool isSingleSpacedVectorIndexed() const {
1199     return Kind == k_VectorListIndexed && !VectorList.isDoubleSpaced;
1200   }
1201   bool isDoubleSpacedVectorIndexed() const {
1202     return Kind == k_VectorListIndexed && VectorList.isDoubleSpaced;
1203   }
1204   bool isVecListOneDByteIndexed() const {
1205     if (!isSingleSpacedVectorIndexed()) return false;
1206     return VectorList.Count == 1 && VectorList.LaneIndex <= 7;
1207   }
1208
1209   bool isVecListOneDHWordIndexed() const {
1210     if (!isSingleSpacedVectorIndexed()) return false;
1211     return VectorList.Count == 1 && VectorList.LaneIndex <= 3;
1212   }
1213
1214   bool isVecListOneDWordIndexed() const {
1215     if (!isSingleSpacedVectorIndexed()) return false;
1216     return VectorList.Count == 1 && VectorList.LaneIndex <= 1;
1217   }
1218
1219   bool isVecListTwoDByteIndexed() const {
1220     if (!isSingleSpacedVectorIndexed()) return false;
1221     return VectorList.Count == 2 && VectorList.LaneIndex <= 7;
1222   }
1223
1224   bool isVecListTwoDHWordIndexed() const {
1225     if (!isSingleSpacedVectorIndexed()) return false;
1226     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1227   }
1228
1229   bool isVecListTwoQWordIndexed() const {
1230     if (!isDoubleSpacedVectorIndexed()) return false;
1231     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1232   }
1233
1234   bool isVecListTwoQHWordIndexed() const {
1235     if (!isDoubleSpacedVectorIndexed()) return false;
1236     return VectorList.Count == 2 && VectorList.LaneIndex <= 3;
1237   }
1238
1239   bool isVecListTwoDWordIndexed() const {
1240     if (!isSingleSpacedVectorIndexed()) return false;
1241     return VectorList.Count == 2 && VectorList.LaneIndex <= 1;
1242   }
1243
1244   bool isVecListThreeDByteIndexed() const {
1245     if (!isSingleSpacedVectorIndexed()) return false;
1246     return VectorList.Count == 3 && VectorList.LaneIndex <= 7;
1247   }
1248
1249   bool isVecListThreeDHWordIndexed() const {
1250     if (!isSingleSpacedVectorIndexed()) return false;
1251     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1252   }
1253
1254   bool isVecListThreeQWordIndexed() const {
1255     if (!isDoubleSpacedVectorIndexed()) return false;
1256     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1257   }
1258
1259   bool isVecListThreeQHWordIndexed() const {
1260     if (!isDoubleSpacedVectorIndexed()) return false;
1261     return VectorList.Count == 3 && VectorList.LaneIndex <= 3;
1262   }
1263
1264   bool isVecListThreeDWordIndexed() const {
1265     if (!isSingleSpacedVectorIndexed()) return false;
1266     return VectorList.Count == 3 && VectorList.LaneIndex <= 1;
1267   }
1268
1269   bool isVecListFourDByteIndexed() const {
1270     if (!isSingleSpacedVectorIndexed()) return false;
1271     return VectorList.Count == 4 && VectorList.LaneIndex <= 7;
1272   }
1273
1274   bool isVecListFourDHWordIndexed() const {
1275     if (!isSingleSpacedVectorIndexed()) return false;
1276     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1277   }
1278
1279   bool isVecListFourQWordIndexed() const {
1280     if (!isDoubleSpacedVectorIndexed()) return false;
1281     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1282   }
1283
1284   bool isVecListFourQHWordIndexed() const {
1285     if (!isDoubleSpacedVectorIndexed()) return false;
1286     return VectorList.Count == 4 && VectorList.LaneIndex <= 3;
1287   }
1288
1289   bool isVecListFourDWordIndexed() const {
1290     if (!isSingleSpacedVectorIndexed()) return false;
1291     return VectorList.Count == 4 && VectorList.LaneIndex <= 1;
1292   }
1293
1294   bool isVectorIndex8() const {
1295     if (Kind != k_VectorIndex) return false;
1296     return VectorIndex.Val < 8;
1297   }
1298   bool isVectorIndex16() const {
1299     if (Kind != k_VectorIndex) return false;
1300     return VectorIndex.Val < 4;
1301   }
1302   bool isVectorIndex32() const {
1303     if (Kind != k_VectorIndex) return false;
1304     return VectorIndex.Val < 2;
1305   }
1306
1307   bool isNEONi8splat() const {
1308     if (!isImm()) return false;
1309     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1310     // Must be a constant.
1311     if (!CE) return false;
1312     int64_t Value = CE->getValue();
1313     // i8 value splatted across 8 bytes. The immediate is just the 8 byte
1314     // value.
1315     return Value >= 0 && Value < 256;
1316   }
1317
1318   bool isNEONi16splat() const {
1319     if (!isImm()) return false;
1320     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1321     // Must be a constant.
1322     if (!CE) return false;
1323     int64_t Value = CE->getValue();
1324     // i16 value in the range [0,255] or [0x0100, 0xff00]
1325     return (Value >= 0 && Value < 256) || (Value >= 0x0100 && Value <= 0xff00);
1326   }
1327
1328   bool isNEONi32splat() const {
1329     if (!isImm()) return false;
1330     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1331     // Must be a constant.
1332     if (!CE) return false;
1333     int64_t Value = CE->getValue();
1334     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X.
1335     return (Value >= 0 && Value < 256) ||
1336       (Value >= 0x0100 && Value <= 0xff00) ||
1337       (Value >= 0x010000 && Value <= 0xff0000) ||
1338       (Value >= 0x01000000 && Value <= 0xff000000);
1339   }
1340
1341   bool isNEONi32vmov() const {
1342     if (!isImm()) return false;
1343     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1344     // Must be a constant.
1345     if (!CE) return false;
1346     int64_t Value = CE->getValue();
1347     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1348     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1349     return (Value >= 0 && Value < 256) ||
1350       (Value >= 0x0100 && Value <= 0xff00) ||
1351       (Value >= 0x010000 && Value <= 0xff0000) ||
1352       (Value >= 0x01000000 && Value <= 0xff000000) ||
1353       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1354       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1355   }
1356   bool isNEONi32vmovNeg() const {
1357     if (!isImm()) return false;
1358     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1359     // Must be a constant.
1360     if (!CE) return false;
1361     int64_t Value = ~CE->getValue();
1362     // i32 value with set bits only in one byte X000, 0X00, 00X0, or 000X,
1363     // for VMOV/VMVN only, 00Xf or 0Xff are also accepted.
1364     return (Value >= 0 && Value < 256) ||
1365       (Value >= 0x0100 && Value <= 0xff00) ||
1366       (Value >= 0x010000 && Value <= 0xff0000) ||
1367       (Value >= 0x01000000 && Value <= 0xff000000) ||
1368       (Value >= 0x01ff && Value <= 0xffff && (Value & 0xff) == 0xff) ||
1369       (Value >= 0x01ffff && Value <= 0xffffff && (Value & 0xffff) == 0xffff);
1370   }
1371
1372   bool isNEONi64splat() const {
1373     if (!isImm()) return false;
1374     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1375     // Must be a constant.
1376     if (!CE) return false;
1377     uint64_t Value = CE->getValue();
1378     // i64 value with each byte being either 0 or 0xff.
1379     for (unsigned i = 0; i < 8; ++i)
1380       if ((Value & 0xff) != 0 && (Value & 0xff) != 0xff) return false;
1381     return true;
1382   }
1383
1384   void addExpr(MCInst &Inst, const MCExpr *Expr) const {
1385     // Add as immediates when possible.  Null MCExpr = 0.
1386     if (Expr == 0)
1387       Inst.addOperand(MCOperand::CreateImm(0));
1388     else if (const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr))
1389       Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1390     else
1391       Inst.addOperand(MCOperand::CreateExpr(Expr));
1392   }
1393
1394   void addCondCodeOperands(MCInst &Inst, unsigned N) const {
1395     assert(N == 2 && "Invalid number of operands!");
1396     Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1397     unsigned RegNum = getCondCode() == ARMCC::AL ? 0: ARM::CPSR;
1398     Inst.addOperand(MCOperand::CreateReg(RegNum));
1399   }
1400
1401   void addCoprocNumOperands(MCInst &Inst, unsigned N) const {
1402     assert(N == 1 && "Invalid number of operands!");
1403     Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1404   }
1405
1406   void addCoprocRegOperands(MCInst &Inst, unsigned N) const {
1407     assert(N == 1 && "Invalid number of operands!");
1408     Inst.addOperand(MCOperand::CreateImm(getCoproc()));
1409   }
1410
1411   void addCoprocOptionOperands(MCInst &Inst, unsigned N) const {
1412     assert(N == 1 && "Invalid number of operands!");
1413     Inst.addOperand(MCOperand::CreateImm(CoprocOption.Val));
1414   }
1415
1416   void addITMaskOperands(MCInst &Inst, unsigned N) const {
1417     assert(N == 1 && "Invalid number of operands!");
1418     Inst.addOperand(MCOperand::CreateImm(ITMask.Mask));
1419   }
1420
1421   void addITCondCodeOperands(MCInst &Inst, unsigned N) const {
1422     assert(N == 1 && "Invalid number of operands!");
1423     Inst.addOperand(MCOperand::CreateImm(unsigned(getCondCode())));
1424   }
1425
1426   void addCCOutOperands(MCInst &Inst, unsigned N) const {
1427     assert(N == 1 && "Invalid number of operands!");
1428     Inst.addOperand(MCOperand::CreateReg(getReg()));
1429   }
1430
1431   void addRegOperands(MCInst &Inst, unsigned N) const {
1432     assert(N == 1 && "Invalid number of operands!");
1433     Inst.addOperand(MCOperand::CreateReg(getReg()));
1434   }
1435
1436   void addRegShiftedRegOperands(MCInst &Inst, unsigned N) const {
1437     assert(N == 3 && "Invalid number of operands!");
1438     assert(isRegShiftedReg() &&
1439            "addRegShiftedRegOperands() on non RegShiftedReg!");
1440     Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.SrcReg));
1441     Inst.addOperand(MCOperand::CreateReg(RegShiftedReg.ShiftReg));
1442     Inst.addOperand(MCOperand::CreateImm(
1443       ARM_AM::getSORegOpc(RegShiftedReg.ShiftTy, RegShiftedReg.ShiftImm)));
1444   }
1445
1446   void addRegShiftedImmOperands(MCInst &Inst, unsigned N) const {
1447     assert(N == 2 && "Invalid number of operands!");
1448     assert(isRegShiftedImm() &&
1449            "addRegShiftedImmOperands() on non RegShiftedImm!");
1450     Inst.addOperand(MCOperand::CreateReg(RegShiftedImm.SrcReg));
1451     // Shift of #32 is encoded as 0 where permitted
1452     unsigned Imm = (RegShiftedImm.ShiftImm == 32 ? 0 : RegShiftedImm.ShiftImm);
1453     Inst.addOperand(MCOperand::CreateImm(
1454       ARM_AM::getSORegOpc(RegShiftedImm.ShiftTy, Imm)));
1455   }
1456
1457   void addShifterImmOperands(MCInst &Inst, unsigned N) const {
1458     assert(N == 1 && "Invalid number of operands!");
1459     Inst.addOperand(MCOperand::CreateImm((ShifterImm.isASR << 5) |
1460                                          ShifterImm.Imm));
1461   }
1462
1463   void addRegListOperands(MCInst &Inst, unsigned N) const {
1464     assert(N == 1 && "Invalid number of operands!");
1465     const SmallVectorImpl<unsigned> &RegList = getRegList();
1466     for (SmallVectorImpl<unsigned>::const_iterator
1467            I = RegList.begin(), E = RegList.end(); I != E; ++I)
1468       Inst.addOperand(MCOperand::CreateReg(*I));
1469   }
1470
1471   void addDPRRegListOperands(MCInst &Inst, unsigned N) const {
1472     addRegListOperands(Inst, N);
1473   }
1474
1475   void addSPRRegListOperands(MCInst &Inst, unsigned N) const {
1476     addRegListOperands(Inst, N);
1477   }
1478
1479   void addRotImmOperands(MCInst &Inst, unsigned N) const {
1480     assert(N == 1 && "Invalid number of operands!");
1481     // Encoded as val>>3. The printer handles display as 8, 16, 24.
1482     Inst.addOperand(MCOperand::CreateImm(RotImm.Imm >> 3));
1483   }
1484
1485   void addBitfieldOperands(MCInst &Inst, unsigned N) const {
1486     assert(N == 1 && "Invalid number of operands!");
1487     // Munge the lsb/width into a bitfield mask.
1488     unsigned lsb = Bitfield.LSB;
1489     unsigned width = Bitfield.Width;
1490     // Make a 32-bit mask w/ the referenced bits clear and all other bits set.
1491     uint32_t Mask = ~(((uint32_t)0xffffffff >> lsb) << (32 - width) >>
1492                       (32 - (lsb + width)));
1493     Inst.addOperand(MCOperand::CreateImm(Mask));
1494   }
1495
1496   void addImmOperands(MCInst &Inst, unsigned N) const {
1497     assert(N == 1 && "Invalid number of operands!");
1498     addExpr(Inst, getImm());
1499   }
1500
1501   void addFBits16Operands(MCInst &Inst, unsigned N) const {
1502     assert(N == 1 && "Invalid number of operands!");
1503     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1504     Inst.addOperand(MCOperand::CreateImm(16 - CE->getValue()));
1505   }
1506
1507   void addFBits32Operands(MCInst &Inst, unsigned N) const {
1508     assert(N == 1 && "Invalid number of operands!");
1509     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1510     Inst.addOperand(MCOperand::CreateImm(32 - CE->getValue()));
1511   }
1512
1513   void addFPImmOperands(MCInst &Inst, unsigned N) const {
1514     assert(N == 1 && "Invalid number of operands!");
1515     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1516     int Val = ARM_AM::getFP32Imm(APInt(32, CE->getValue()));
1517     Inst.addOperand(MCOperand::CreateImm(Val));
1518   }
1519
1520   void addImm8s4Operands(MCInst &Inst, unsigned N) const {
1521     assert(N == 1 && "Invalid number of operands!");
1522     // FIXME: We really want to scale the value here, but the LDRD/STRD
1523     // instruction don't encode operands that way yet.
1524     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1525     Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
1526   }
1527
1528   void addImm0_1020s4Operands(MCInst &Inst, unsigned N) const {
1529     assert(N == 1 && "Invalid number of operands!");
1530     // The immediate is scaled by four in the encoding and is stored
1531     // in the MCInst as such. Lop off the low two bits here.
1532     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1533     Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1534   }
1535
1536   void addImm0_508s4NegOperands(MCInst &Inst, unsigned N) const {
1537     assert(N == 1 && "Invalid number of operands!");
1538     // The immediate is scaled by four in the encoding and is stored
1539     // in the MCInst as such. Lop off the low two bits here.
1540     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1541     Inst.addOperand(MCOperand::CreateImm(-(CE->getValue() / 4)));
1542   }
1543
1544   void addImm0_508s4Operands(MCInst &Inst, unsigned N) const {
1545     assert(N == 1 && "Invalid number of operands!");
1546     // The immediate is scaled by four in the encoding and is stored
1547     // in the MCInst as such. Lop off the low two bits here.
1548     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1549     Inst.addOperand(MCOperand::CreateImm(CE->getValue() / 4));
1550   }
1551
1552   void addImm1_16Operands(MCInst &Inst, unsigned N) const {
1553     assert(N == 1 && "Invalid number of operands!");
1554     // The constant encodes as the immediate-1, and we store in the instruction
1555     // the bits as encoded, so subtract off one here.
1556     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1557     Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1558   }
1559
1560   void addImm1_32Operands(MCInst &Inst, unsigned N) const {
1561     assert(N == 1 && "Invalid number of operands!");
1562     // The constant encodes as the immediate-1, and we store in the instruction
1563     // the bits as encoded, so subtract off one here.
1564     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1565     Inst.addOperand(MCOperand::CreateImm(CE->getValue() - 1));
1566   }
1567
1568   void addImmThumbSROperands(MCInst &Inst, unsigned N) const {
1569     assert(N == 1 && "Invalid number of operands!");
1570     // The constant encodes as the immediate, except for 32, which encodes as
1571     // zero.
1572     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1573     unsigned Imm = CE->getValue();
1574     Inst.addOperand(MCOperand::CreateImm((Imm == 32 ? 0 : Imm)));
1575   }
1576
1577   void addPKHASRImmOperands(MCInst &Inst, unsigned N) const {
1578     assert(N == 1 && "Invalid number of operands!");
1579     // An ASR value of 32 encodes as 0, so that's how we want to add it to
1580     // the instruction as well.
1581     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1582     int Val = CE->getValue();
1583     Inst.addOperand(MCOperand::CreateImm(Val == 32 ? 0 : Val));
1584   }
1585
1586   void addT2SOImmNotOperands(MCInst &Inst, unsigned N) const {
1587     assert(N == 1 && "Invalid number of operands!");
1588     // The operand is actually a t2_so_imm, but we have its bitwise
1589     // negation in the assembly source, so twiddle it here.
1590     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1591     Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1592   }
1593
1594   void addT2SOImmNegOperands(MCInst &Inst, unsigned N) const {
1595     assert(N == 1 && "Invalid number of operands!");
1596     // The operand is actually a t2_so_imm, but we have its
1597     // negation in the assembly source, so twiddle it here.
1598     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1599     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1600   }
1601
1602   void addImm0_4095NegOperands(MCInst &Inst, unsigned N) const {
1603     assert(N == 1 && "Invalid number of operands!");
1604     // The operand is actually an imm0_4095, but we have its
1605     // negation in the assembly source, so twiddle it here.
1606     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1607     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1608   }
1609
1610   void addARMSOImmNotOperands(MCInst &Inst, unsigned N) const {
1611     assert(N == 1 && "Invalid number of operands!");
1612     // The operand is actually a so_imm, but we have its bitwise
1613     // negation in the assembly source, so twiddle it here.
1614     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1615     Inst.addOperand(MCOperand::CreateImm(~CE->getValue()));
1616   }
1617
1618   void addARMSOImmNegOperands(MCInst &Inst, unsigned N) const {
1619     assert(N == 1 && "Invalid number of operands!");
1620     // The operand is actually a so_imm, but we have its
1621     // negation in the assembly source, so twiddle it here.
1622     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1623     Inst.addOperand(MCOperand::CreateImm(-CE->getValue()));
1624   }
1625
1626   void addMemBarrierOptOperands(MCInst &Inst, unsigned N) const {
1627     assert(N == 1 && "Invalid number of operands!");
1628     Inst.addOperand(MCOperand::CreateImm(unsigned(getMemBarrierOpt())));
1629   }
1630
1631   void addMemNoOffsetOperands(MCInst &Inst, unsigned N) const {
1632     assert(N == 1 && "Invalid number of operands!");
1633     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1634   }
1635
1636   void addMemPCRelImm12Operands(MCInst &Inst, unsigned N) const {
1637     assert(N == 1 && "Invalid number of operands!");
1638     int32_t Imm = Memory.OffsetImm->getValue();
1639     // FIXME: Handle #-0
1640     if (Imm == INT32_MIN) Imm = 0;
1641     Inst.addOperand(MCOperand::CreateImm(Imm));
1642   }
1643
1644   void addAlignedMemoryOperands(MCInst &Inst, unsigned N) const {
1645     assert(N == 2 && "Invalid number of operands!");
1646     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1647     Inst.addOperand(MCOperand::CreateImm(Memory.Alignment));
1648   }
1649
1650   void addAddrMode2Operands(MCInst &Inst, unsigned N) const {
1651     assert(N == 3 && "Invalid number of operands!");
1652     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1653     if (!Memory.OffsetRegNum) {
1654       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1655       // Special case for #-0
1656       if (Val == INT32_MIN) Val = 0;
1657       if (Val < 0) Val = -Val;
1658       Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1659     } else {
1660       // For register offset, we encode the shift type and negation flag
1661       // here.
1662       Val = ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1663                               Memory.ShiftImm, Memory.ShiftType);
1664     }
1665     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1666     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1667     Inst.addOperand(MCOperand::CreateImm(Val));
1668   }
1669
1670   void addAM2OffsetImmOperands(MCInst &Inst, unsigned N) const {
1671     assert(N == 2 && "Invalid number of operands!");
1672     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1673     assert(CE && "non-constant AM2OffsetImm operand!");
1674     int32_t Val = CE->getValue();
1675     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1676     // Special case for #-0
1677     if (Val == INT32_MIN) Val = 0;
1678     if (Val < 0) Val = -Val;
1679     Val = ARM_AM::getAM2Opc(AddSub, Val, ARM_AM::no_shift);
1680     Inst.addOperand(MCOperand::CreateReg(0));
1681     Inst.addOperand(MCOperand::CreateImm(Val));
1682   }
1683
1684   void addAddrMode3Operands(MCInst &Inst, unsigned N) const {
1685     assert(N == 3 && "Invalid number of operands!");
1686     // If we have an immediate that's not a constant, treat it as a label
1687     // reference needing a fixup. If it is a constant, it's something else
1688     // and we reject it.
1689     if (isImm()) {
1690       Inst.addOperand(MCOperand::CreateExpr(getImm()));
1691       Inst.addOperand(MCOperand::CreateReg(0));
1692       Inst.addOperand(MCOperand::CreateImm(0));
1693       return;
1694     }
1695
1696     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1697     if (!Memory.OffsetRegNum) {
1698       ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1699       // Special case for #-0
1700       if (Val == INT32_MIN) Val = 0;
1701       if (Val < 0) Val = -Val;
1702       Val = ARM_AM::getAM3Opc(AddSub, Val);
1703     } else {
1704       // For register offset, we encode the shift type and negation flag
1705       // here.
1706       Val = ARM_AM::getAM3Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add, 0);
1707     }
1708     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1709     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1710     Inst.addOperand(MCOperand::CreateImm(Val));
1711   }
1712
1713   void addAM3OffsetOperands(MCInst &Inst, unsigned N) const {
1714     assert(N == 2 && "Invalid number of operands!");
1715     if (Kind == k_PostIndexRegister) {
1716       int32_t Val =
1717         ARM_AM::getAM3Opc(PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub, 0);
1718       Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1719       Inst.addOperand(MCOperand::CreateImm(Val));
1720       return;
1721     }
1722
1723     // Constant offset.
1724     const MCConstantExpr *CE = static_cast<const MCConstantExpr*>(getImm());
1725     int32_t Val = CE->getValue();
1726     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1727     // Special case for #-0
1728     if (Val == INT32_MIN) Val = 0;
1729     if (Val < 0) Val = -Val;
1730     Val = ARM_AM::getAM3Opc(AddSub, Val);
1731     Inst.addOperand(MCOperand::CreateReg(0));
1732     Inst.addOperand(MCOperand::CreateImm(Val));
1733   }
1734
1735   void addAddrMode5Operands(MCInst &Inst, unsigned N) const {
1736     assert(N == 2 && "Invalid number of operands!");
1737     // If we have an immediate that's not a constant, treat it as a label
1738     // reference needing a fixup. If it is a constant, it's something else
1739     // and we reject it.
1740     if (isImm()) {
1741       Inst.addOperand(MCOperand::CreateExpr(getImm()));
1742       Inst.addOperand(MCOperand::CreateImm(0));
1743       return;
1744     }
1745
1746     // The lower two bits are always zero and as such are not encoded.
1747     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1748     ARM_AM::AddrOpc AddSub = Val < 0 ? ARM_AM::sub : ARM_AM::add;
1749     // Special case for #-0
1750     if (Val == INT32_MIN) Val = 0;
1751     if (Val < 0) Val = -Val;
1752     Val = ARM_AM::getAM5Opc(AddSub, Val);
1753     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1754     Inst.addOperand(MCOperand::CreateImm(Val));
1755   }
1756
1757   void addMemImm8s4OffsetOperands(MCInst &Inst, unsigned N) const {
1758     assert(N == 2 && "Invalid number of operands!");
1759     // If we have an immediate that's not a constant, treat it as a label
1760     // reference needing a fixup. If it is a constant, it's something else
1761     // and we reject it.
1762     if (isImm()) {
1763       Inst.addOperand(MCOperand::CreateExpr(getImm()));
1764       Inst.addOperand(MCOperand::CreateImm(0));
1765       return;
1766     }
1767
1768     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1769     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1770     Inst.addOperand(MCOperand::CreateImm(Val));
1771   }
1772
1773   void addMemImm0_1020s4OffsetOperands(MCInst &Inst, unsigned N) const {
1774     assert(N == 2 && "Invalid number of operands!");
1775     // The lower two bits are always zero and as such are not encoded.
1776     int32_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() / 4 : 0;
1777     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1778     Inst.addOperand(MCOperand::CreateImm(Val));
1779   }
1780
1781   void addMemImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1782     assert(N == 2 && "Invalid number of operands!");
1783     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1784     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1785     Inst.addOperand(MCOperand::CreateImm(Val));
1786   }
1787
1788   void addMemPosImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1789     addMemImm8OffsetOperands(Inst, N);
1790   }
1791
1792   void addMemNegImm8OffsetOperands(MCInst &Inst, unsigned N) const {
1793     addMemImm8OffsetOperands(Inst, N);
1794   }
1795
1796   void addMemUImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1797     assert(N == 2 && "Invalid number of operands!");
1798     // If this is an immediate, it's a label reference.
1799     if (isImm()) {
1800       addExpr(Inst, getImm());
1801       Inst.addOperand(MCOperand::CreateImm(0));
1802       return;
1803     }
1804
1805     // Otherwise, it's a normal memory reg+offset.
1806     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1807     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1808     Inst.addOperand(MCOperand::CreateImm(Val));
1809   }
1810
1811   void addMemImm12OffsetOperands(MCInst &Inst, unsigned N) const {
1812     assert(N == 2 && "Invalid number of operands!");
1813     // If this is an immediate, it's a label reference.
1814     if (isImm()) {
1815       addExpr(Inst, getImm());
1816       Inst.addOperand(MCOperand::CreateImm(0));
1817       return;
1818     }
1819
1820     // Otherwise, it's a normal memory reg+offset.
1821     int64_t Val = Memory.OffsetImm ? Memory.OffsetImm->getValue() : 0;
1822     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1823     Inst.addOperand(MCOperand::CreateImm(Val));
1824   }
1825
1826   void addMemTBBOperands(MCInst &Inst, unsigned N) const {
1827     assert(N == 2 && "Invalid number of operands!");
1828     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1829     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1830   }
1831
1832   void addMemTBHOperands(MCInst &Inst, unsigned N) const {
1833     assert(N == 2 && "Invalid number of operands!");
1834     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1835     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1836   }
1837
1838   void addMemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1839     assert(N == 3 && "Invalid number of operands!");
1840     unsigned Val =
1841       ARM_AM::getAM2Opc(Memory.isNegative ? ARM_AM::sub : ARM_AM::add,
1842                         Memory.ShiftImm, Memory.ShiftType);
1843     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1844     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1845     Inst.addOperand(MCOperand::CreateImm(Val));
1846   }
1847
1848   void addT2MemRegOffsetOperands(MCInst &Inst, unsigned N) const {
1849     assert(N == 3 && "Invalid number of operands!");
1850     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1851     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1852     Inst.addOperand(MCOperand::CreateImm(Memory.ShiftImm));
1853   }
1854
1855   void addMemThumbRROperands(MCInst &Inst, unsigned N) const {
1856     assert(N == 2 && "Invalid number of operands!");
1857     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1858     Inst.addOperand(MCOperand::CreateReg(Memory.OffsetRegNum));
1859   }
1860
1861   void addMemThumbRIs4Operands(MCInst &Inst, unsigned N) const {
1862     assert(N == 2 && "Invalid number of operands!");
1863     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
1864     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1865     Inst.addOperand(MCOperand::CreateImm(Val));
1866   }
1867
1868   void addMemThumbRIs2Operands(MCInst &Inst, unsigned N) const {
1869     assert(N == 2 && "Invalid number of operands!");
1870     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 2) : 0;
1871     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1872     Inst.addOperand(MCOperand::CreateImm(Val));
1873   }
1874
1875   void addMemThumbRIs1Operands(MCInst &Inst, unsigned N) const {
1876     assert(N == 2 && "Invalid number of operands!");
1877     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue()) : 0;
1878     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1879     Inst.addOperand(MCOperand::CreateImm(Val));
1880   }
1881
1882   void addMemThumbSPIOperands(MCInst &Inst, unsigned N) const {
1883     assert(N == 2 && "Invalid number of operands!");
1884     int64_t Val = Memory.OffsetImm ? (Memory.OffsetImm->getValue() / 4) : 0;
1885     Inst.addOperand(MCOperand::CreateReg(Memory.BaseRegNum));
1886     Inst.addOperand(MCOperand::CreateImm(Val));
1887   }
1888
1889   void addPostIdxImm8Operands(MCInst &Inst, unsigned N) const {
1890     assert(N == 1 && "Invalid number of operands!");
1891     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1892     assert(CE && "non-constant post-idx-imm8 operand!");
1893     int Imm = CE->getValue();
1894     bool isAdd = Imm >= 0;
1895     if (Imm == INT32_MIN) Imm = 0;
1896     Imm = (Imm < 0 ? -Imm : Imm) | (int)isAdd << 8;
1897     Inst.addOperand(MCOperand::CreateImm(Imm));
1898   }
1899
1900   void addPostIdxImm8s4Operands(MCInst &Inst, unsigned N) const {
1901     assert(N == 1 && "Invalid number of operands!");
1902     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1903     assert(CE && "non-constant post-idx-imm8s4 operand!");
1904     int Imm = CE->getValue();
1905     bool isAdd = Imm >= 0;
1906     if (Imm == INT32_MIN) Imm = 0;
1907     // Immediate is scaled by 4.
1908     Imm = ((Imm < 0 ? -Imm : Imm) / 4) | (int)isAdd << 8;
1909     Inst.addOperand(MCOperand::CreateImm(Imm));
1910   }
1911
1912   void addPostIdxRegOperands(MCInst &Inst, unsigned N) const {
1913     assert(N == 2 && "Invalid number of operands!");
1914     Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1915     Inst.addOperand(MCOperand::CreateImm(PostIdxReg.isAdd));
1916   }
1917
1918   void addPostIdxRegShiftedOperands(MCInst &Inst, unsigned N) const {
1919     assert(N == 2 && "Invalid number of operands!");
1920     Inst.addOperand(MCOperand::CreateReg(PostIdxReg.RegNum));
1921     // The sign, shift type, and shift amount are encoded in a single operand
1922     // using the AM2 encoding helpers.
1923     ARM_AM::AddrOpc opc = PostIdxReg.isAdd ? ARM_AM::add : ARM_AM::sub;
1924     unsigned Imm = ARM_AM::getAM2Opc(opc, PostIdxReg.ShiftImm,
1925                                      PostIdxReg.ShiftTy);
1926     Inst.addOperand(MCOperand::CreateImm(Imm));
1927   }
1928
1929   void addMSRMaskOperands(MCInst &Inst, unsigned N) const {
1930     assert(N == 1 && "Invalid number of operands!");
1931     Inst.addOperand(MCOperand::CreateImm(unsigned(getMSRMask())));
1932   }
1933
1934   void addProcIFlagsOperands(MCInst &Inst, unsigned N) const {
1935     assert(N == 1 && "Invalid number of operands!");
1936     Inst.addOperand(MCOperand::CreateImm(unsigned(getProcIFlags())));
1937   }
1938
1939   void addVecListOperands(MCInst &Inst, unsigned N) const {
1940     assert(N == 1 && "Invalid number of operands!");
1941     Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
1942   }
1943
1944   void addVecListIndexedOperands(MCInst &Inst, unsigned N) const {
1945     assert(N == 2 && "Invalid number of operands!");
1946     Inst.addOperand(MCOperand::CreateReg(VectorList.RegNum));
1947     Inst.addOperand(MCOperand::CreateImm(VectorList.LaneIndex));
1948   }
1949
1950   void addVectorIndex8Operands(MCInst &Inst, unsigned N) const {
1951     assert(N == 1 && "Invalid number of operands!");
1952     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
1953   }
1954
1955   void addVectorIndex16Operands(MCInst &Inst, unsigned N) const {
1956     assert(N == 1 && "Invalid number of operands!");
1957     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
1958   }
1959
1960   void addVectorIndex32Operands(MCInst &Inst, unsigned N) const {
1961     assert(N == 1 && "Invalid number of operands!");
1962     Inst.addOperand(MCOperand::CreateImm(getVectorIndex()));
1963   }
1964
1965   void addNEONi8splatOperands(MCInst &Inst, unsigned N) const {
1966     assert(N == 1 && "Invalid number of operands!");
1967     // The immediate encodes the type of constant as well as the value.
1968     // Mask in that this is an i8 splat.
1969     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1970     Inst.addOperand(MCOperand::CreateImm(CE->getValue() | 0xe00));
1971   }
1972
1973   void addNEONi16splatOperands(MCInst &Inst, unsigned N) const {
1974     assert(N == 1 && "Invalid number of operands!");
1975     // The immediate encodes the type of constant as well as the value.
1976     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1977     unsigned Value = CE->getValue();
1978     if (Value >= 256)
1979       Value = (Value >> 8) | 0xa00;
1980     else
1981       Value |= 0x800;
1982     Inst.addOperand(MCOperand::CreateImm(Value));
1983   }
1984
1985   void addNEONi32splatOperands(MCInst &Inst, unsigned N) const {
1986     assert(N == 1 && "Invalid number of operands!");
1987     // The immediate encodes the type of constant as well as the value.
1988     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
1989     unsigned Value = CE->getValue();
1990     if (Value >= 256 && Value <= 0xff00)
1991       Value = (Value >> 8) | 0x200;
1992     else if (Value > 0xffff && Value <= 0xff0000)
1993       Value = (Value >> 16) | 0x400;
1994     else if (Value > 0xffffff)
1995       Value = (Value >> 24) | 0x600;
1996     Inst.addOperand(MCOperand::CreateImm(Value));
1997   }
1998
1999   void addNEONi32vmovOperands(MCInst &Inst, unsigned N) const {
2000     assert(N == 1 && "Invalid number of operands!");
2001     // The immediate encodes the type of constant as well as the value.
2002     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2003     unsigned Value = CE->getValue();
2004     if (Value >= 256 && Value <= 0xffff)
2005       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2006     else if (Value > 0xffff && Value <= 0xffffff)
2007       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2008     else if (Value > 0xffffff)
2009       Value = (Value >> 24) | 0x600;
2010     Inst.addOperand(MCOperand::CreateImm(Value));
2011   }
2012
2013   void addNEONi32vmovNegOperands(MCInst &Inst, unsigned N) const {
2014     assert(N == 1 && "Invalid number of operands!");
2015     // The immediate encodes the type of constant as well as the value.
2016     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2017     unsigned Value = ~CE->getValue();
2018     if (Value >= 256 && Value <= 0xffff)
2019       Value = (Value >> 8) | ((Value & 0xff) ? 0xc00 : 0x200);
2020     else if (Value > 0xffff && Value <= 0xffffff)
2021       Value = (Value >> 16) | ((Value & 0xff) ? 0xd00 : 0x400);
2022     else if (Value > 0xffffff)
2023       Value = (Value >> 24) | 0x600;
2024     Inst.addOperand(MCOperand::CreateImm(Value));
2025   }
2026
2027   void addNEONi64splatOperands(MCInst &Inst, unsigned N) const {
2028     assert(N == 1 && "Invalid number of operands!");
2029     // The immediate encodes the type of constant as well as the value.
2030     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(getImm());
2031     uint64_t Value = CE->getValue();
2032     unsigned Imm = 0;
2033     for (unsigned i = 0; i < 8; ++i, Value >>= 8) {
2034       Imm |= (Value & 1) << i;
2035     }
2036     Inst.addOperand(MCOperand::CreateImm(Imm | 0x1e00));
2037   }
2038
2039   virtual void print(raw_ostream &OS) const;
2040
2041   static ARMOperand *CreateITMask(unsigned Mask, SMLoc S) {
2042     ARMOperand *Op = new ARMOperand(k_ITCondMask);
2043     Op->ITMask.Mask = Mask;
2044     Op->StartLoc = S;
2045     Op->EndLoc = S;
2046     return Op;
2047   }
2048
2049   static ARMOperand *CreateCondCode(ARMCC::CondCodes CC, SMLoc S) {
2050     ARMOperand *Op = new ARMOperand(k_CondCode);
2051     Op->CC.Val = CC;
2052     Op->StartLoc = S;
2053     Op->EndLoc = S;
2054     return Op;
2055   }
2056
2057   static ARMOperand *CreateCoprocNum(unsigned CopVal, SMLoc S) {
2058     ARMOperand *Op = new ARMOperand(k_CoprocNum);
2059     Op->Cop.Val = CopVal;
2060     Op->StartLoc = S;
2061     Op->EndLoc = S;
2062     return Op;
2063   }
2064
2065   static ARMOperand *CreateCoprocReg(unsigned CopVal, SMLoc S) {
2066     ARMOperand *Op = new ARMOperand(k_CoprocReg);
2067     Op->Cop.Val = CopVal;
2068     Op->StartLoc = S;
2069     Op->EndLoc = S;
2070     return Op;
2071   }
2072
2073   static ARMOperand *CreateCoprocOption(unsigned Val, SMLoc S, SMLoc E) {
2074     ARMOperand *Op = new ARMOperand(k_CoprocOption);
2075     Op->Cop.Val = Val;
2076     Op->StartLoc = S;
2077     Op->EndLoc = E;
2078     return Op;
2079   }
2080
2081   static ARMOperand *CreateCCOut(unsigned RegNum, SMLoc S) {
2082     ARMOperand *Op = new ARMOperand(k_CCOut);
2083     Op->Reg.RegNum = RegNum;
2084     Op->StartLoc = S;
2085     Op->EndLoc = S;
2086     return Op;
2087   }
2088
2089   static ARMOperand *CreateToken(StringRef Str, SMLoc S) {
2090     ARMOperand *Op = new ARMOperand(k_Token);
2091     Op->Tok.Data = Str.data();
2092     Op->Tok.Length = Str.size();
2093     Op->StartLoc = S;
2094     Op->EndLoc = S;
2095     return Op;
2096   }
2097
2098   static ARMOperand *CreateReg(unsigned RegNum, SMLoc S, SMLoc E) {
2099     ARMOperand *Op = new ARMOperand(k_Register);
2100     Op->Reg.RegNum = RegNum;
2101     Op->StartLoc = S;
2102     Op->EndLoc = E;
2103     return Op;
2104   }
2105
2106   static ARMOperand *CreateShiftedRegister(ARM_AM::ShiftOpc ShTy,
2107                                            unsigned SrcReg,
2108                                            unsigned ShiftReg,
2109                                            unsigned ShiftImm,
2110                                            SMLoc S, SMLoc E) {
2111     ARMOperand *Op = new ARMOperand(k_ShiftedRegister);
2112     Op->RegShiftedReg.ShiftTy = ShTy;
2113     Op->RegShiftedReg.SrcReg = SrcReg;
2114     Op->RegShiftedReg.ShiftReg = ShiftReg;
2115     Op->RegShiftedReg.ShiftImm = ShiftImm;
2116     Op->StartLoc = S;
2117     Op->EndLoc = E;
2118     return Op;
2119   }
2120
2121   static ARMOperand *CreateShiftedImmediate(ARM_AM::ShiftOpc ShTy,
2122                                             unsigned SrcReg,
2123                                             unsigned ShiftImm,
2124                                             SMLoc S, SMLoc E) {
2125     ARMOperand *Op = new ARMOperand(k_ShiftedImmediate);
2126     Op->RegShiftedImm.ShiftTy = ShTy;
2127     Op->RegShiftedImm.SrcReg = SrcReg;
2128     Op->RegShiftedImm.ShiftImm = ShiftImm;
2129     Op->StartLoc = S;
2130     Op->EndLoc = E;
2131     return Op;
2132   }
2133
2134   static ARMOperand *CreateShifterImm(bool isASR, unsigned Imm,
2135                                    SMLoc S, SMLoc E) {
2136     ARMOperand *Op = new ARMOperand(k_ShifterImmediate);
2137     Op->ShifterImm.isASR = isASR;
2138     Op->ShifterImm.Imm = Imm;
2139     Op->StartLoc = S;
2140     Op->EndLoc = E;
2141     return Op;
2142   }
2143
2144   static ARMOperand *CreateRotImm(unsigned Imm, SMLoc S, SMLoc E) {
2145     ARMOperand *Op = new ARMOperand(k_RotateImmediate);
2146     Op->RotImm.Imm = Imm;
2147     Op->StartLoc = S;
2148     Op->EndLoc = E;
2149     return Op;
2150   }
2151
2152   static ARMOperand *CreateBitfield(unsigned LSB, unsigned Width,
2153                                     SMLoc S, SMLoc E) {
2154     ARMOperand *Op = new ARMOperand(k_BitfieldDescriptor);
2155     Op->Bitfield.LSB = LSB;
2156     Op->Bitfield.Width = Width;
2157     Op->StartLoc = S;
2158     Op->EndLoc = E;
2159     return Op;
2160   }
2161
2162   static ARMOperand *
2163   CreateRegList(const SmallVectorImpl<std::pair<unsigned, SMLoc> > &Regs,
2164                 SMLoc StartLoc, SMLoc EndLoc) {
2165     KindTy Kind = k_RegisterList;
2166
2167     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Regs.front().first))
2168       Kind = k_DPRRegisterList;
2169     else if (ARMMCRegisterClasses[ARM::SPRRegClassID].
2170              contains(Regs.front().first))
2171       Kind = k_SPRRegisterList;
2172
2173     ARMOperand *Op = new ARMOperand(Kind);
2174     for (SmallVectorImpl<std::pair<unsigned, SMLoc> >::const_iterator
2175            I = Regs.begin(), E = Regs.end(); I != E; ++I)
2176       Op->Registers.push_back(I->first);
2177     array_pod_sort(Op->Registers.begin(), Op->Registers.end());
2178     Op->StartLoc = StartLoc;
2179     Op->EndLoc = EndLoc;
2180     return Op;
2181   }
2182
2183   static ARMOperand *CreateVectorList(unsigned RegNum, unsigned Count,
2184                                       bool isDoubleSpaced, SMLoc S, SMLoc E) {
2185     ARMOperand *Op = new ARMOperand(k_VectorList);
2186     Op->VectorList.RegNum = RegNum;
2187     Op->VectorList.Count = Count;
2188     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2189     Op->StartLoc = S;
2190     Op->EndLoc = E;
2191     return Op;
2192   }
2193
2194   static ARMOperand *CreateVectorListAllLanes(unsigned RegNum, unsigned Count,
2195                                               bool isDoubleSpaced,
2196                                               SMLoc S, SMLoc E) {
2197     ARMOperand *Op = new ARMOperand(k_VectorListAllLanes);
2198     Op->VectorList.RegNum = RegNum;
2199     Op->VectorList.Count = Count;
2200     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2201     Op->StartLoc = S;
2202     Op->EndLoc = E;
2203     return Op;
2204   }
2205
2206   static ARMOperand *CreateVectorListIndexed(unsigned RegNum, unsigned Count,
2207                                              unsigned Index,
2208                                              bool isDoubleSpaced,
2209                                              SMLoc S, SMLoc E) {
2210     ARMOperand *Op = new ARMOperand(k_VectorListIndexed);
2211     Op->VectorList.RegNum = RegNum;
2212     Op->VectorList.Count = Count;
2213     Op->VectorList.LaneIndex = Index;
2214     Op->VectorList.isDoubleSpaced = isDoubleSpaced;
2215     Op->StartLoc = S;
2216     Op->EndLoc = E;
2217     return Op;
2218   }
2219
2220   static ARMOperand *CreateVectorIndex(unsigned Idx, SMLoc S, SMLoc E,
2221                                        MCContext &Ctx) {
2222     ARMOperand *Op = new ARMOperand(k_VectorIndex);
2223     Op->VectorIndex.Val = Idx;
2224     Op->StartLoc = S;
2225     Op->EndLoc = E;
2226     return Op;
2227   }
2228
2229   static ARMOperand *CreateImm(const MCExpr *Val, SMLoc S, SMLoc E) {
2230     ARMOperand *Op = new ARMOperand(k_Immediate);
2231     Op->Imm.Val = Val;
2232     Op->StartLoc = S;
2233     Op->EndLoc = E;
2234     return Op;
2235   }
2236
2237   static ARMOperand *CreateMem(unsigned BaseRegNum,
2238                                const MCConstantExpr *OffsetImm,
2239                                unsigned OffsetRegNum,
2240                                ARM_AM::ShiftOpc ShiftType,
2241                                unsigned ShiftImm,
2242                                unsigned Alignment,
2243                                bool isNegative,
2244                                SMLoc S, SMLoc E) {
2245     ARMOperand *Op = new ARMOperand(k_Memory);
2246     Op->Memory.BaseRegNum = BaseRegNum;
2247     Op->Memory.OffsetImm = OffsetImm;
2248     Op->Memory.OffsetRegNum = OffsetRegNum;
2249     Op->Memory.ShiftType = ShiftType;
2250     Op->Memory.ShiftImm = ShiftImm;
2251     Op->Memory.Alignment = Alignment;
2252     Op->Memory.isNegative = isNegative;
2253     Op->StartLoc = S;
2254     Op->EndLoc = E;
2255     return Op;
2256   }
2257
2258   static ARMOperand *CreatePostIdxReg(unsigned RegNum, bool isAdd,
2259                                       ARM_AM::ShiftOpc ShiftTy,
2260                                       unsigned ShiftImm,
2261                                       SMLoc S, SMLoc E) {
2262     ARMOperand *Op = new ARMOperand(k_PostIndexRegister);
2263     Op->PostIdxReg.RegNum = RegNum;
2264     Op->PostIdxReg.isAdd = isAdd;
2265     Op->PostIdxReg.ShiftTy = ShiftTy;
2266     Op->PostIdxReg.ShiftImm = ShiftImm;
2267     Op->StartLoc = S;
2268     Op->EndLoc = E;
2269     return Op;
2270   }
2271
2272   static ARMOperand *CreateMemBarrierOpt(ARM_MB::MemBOpt Opt, SMLoc S) {
2273     ARMOperand *Op = new ARMOperand(k_MemBarrierOpt);
2274     Op->MBOpt.Val = Opt;
2275     Op->StartLoc = S;
2276     Op->EndLoc = S;
2277     return Op;
2278   }
2279
2280   static ARMOperand *CreateProcIFlags(ARM_PROC::IFlags IFlags, SMLoc S) {
2281     ARMOperand *Op = new ARMOperand(k_ProcIFlags);
2282     Op->IFlags.Val = IFlags;
2283     Op->StartLoc = S;
2284     Op->EndLoc = S;
2285     return Op;
2286   }
2287
2288   static ARMOperand *CreateMSRMask(unsigned MMask, SMLoc S) {
2289     ARMOperand *Op = new ARMOperand(k_MSRMask);
2290     Op->MMask.Val = MMask;
2291     Op->StartLoc = S;
2292     Op->EndLoc = S;
2293     return Op;
2294   }
2295 };
2296
2297 } // end anonymous namespace.
2298
2299 void ARMOperand::print(raw_ostream &OS) const {
2300   switch (Kind) {
2301   case k_CondCode:
2302     OS << "<ARMCC::" << ARMCondCodeToString(getCondCode()) << ">";
2303     break;
2304   case k_CCOut:
2305     OS << "<ccout " << getReg() << ">";
2306     break;
2307   case k_ITCondMask: {
2308     static const char *const MaskStr[] = {
2309       "()", "(t)", "(e)", "(tt)", "(et)", "(te)", "(ee)", "(ttt)", "(ett)",
2310       "(tet)", "(eet)", "(tte)", "(ete)", "(tee)", "(eee)"
2311     };
2312     assert((ITMask.Mask & 0xf) == ITMask.Mask);
2313     OS << "<it-mask " << MaskStr[ITMask.Mask] << ">";
2314     break;
2315   }
2316   case k_CoprocNum:
2317     OS << "<coprocessor number: " << getCoproc() << ">";
2318     break;
2319   case k_CoprocReg:
2320     OS << "<coprocessor register: " << getCoproc() << ">";
2321     break;
2322   case k_CoprocOption:
2323     OS << "<coprocessor option: " << CoprocOption.Val << ">";
2324     break;
2325   case k_MSRMask:
2326     OS << "<mask: " << getMSRMask() << ">";
2327     break;
2328   case k_Immediate:
2329     getImm()->print(OS);
2330     break;
2331   case k_MemBarrierOpt:
2332     OS << "<ARM_MB::" << MemBOptToString(getMemBarrierOpt()) << ">";
2333     break;
2334   case k_Memory:
2335     OS << "<memory "
2336        << " base:" << Memory.BaseRegNum;
2337     OS << ">";
2338     break;
2339   case k_PostIndexRegister:
2340     OS << "post-idx register " << (PostIdxReg.isAdd ? "" : "-")
2341        << PostIdxReg.RegNum;
2342     if (PostIdxReg.ShiftTy != ARM_AM::no_shift)
2343       OS << ARM_AM::getShiftOpcStr(PostIdxReg.ShiftTy) << " "
2344          << PostIdxReg.ShiftImm;
2345     OS << ">";
2346     break;
2347   case k_ProcIFlags: {
2348     OS << "<ARM_PROC::";
2349     unsigned IFlags = getProcIFlags();
2350     for (int i=2; i >= 0; --i)
2351       if (IFlags & (1 << i))
2352         OS << ARM_PROC::IFlagsToString(1 << i);
2353     OS << ">";
2354     break;
2355   }
2356   case k_Register:
2357     OS << "<register " << getReg() << ">";
2358     break;
2359   case k_ShifterImmediate:
2360     OS << "<shift " << (ShifterImm.isASR ? "asr" : "lsl")
2361        << " #" << ShifterImm.Imm << ">";
2362     break;
2363   case k_ShiftedRegister:
2364     OS << "<so_reg_reg "
2365        << RegShiftedReg.SrcReg << " "
2366        << ARM_AM::getShiftOpcStr(RegShiftedReg.ShiftTy)
2367        << " " << RegShiftedReg.ShiftReg << ">";
2368     break;
2369   case k_ShiftedImmediate:
2370     OS << "<so_reg_imm "
2371        << RegShiftedImm.SrcReg << " "
2372        << ARM_AM::getShiftOpcStr(RegShiftedImm.ShiftTy)
2373        << " #" << RegShiftedImm.ShiftImm << ">";
2374     break;
2375   case k_RotateImmediate:
2376     OS << "<ror " << " #" << (RotImm.Imm * 8) << ">";
2377     break;
2378   case k_BitfieldDescriptor:
2379     OS << "<bitfield " << "lsb: " << Bitfield.LSB
2380        << ", width: " << Bitfield.Width << ">";
2381     break;
2382   case k_RegisterList:
2383   case k_DPRRegisterList:
2384   case k_SPRRegisterList: {
2385     OS << "<register_list ";
2386
2387     const SmallVectorImpl<unsigned> &RegList = getRegList();
2388     for (SmallVectorImpl<unsigned>::const_iterator
2389            I = RegList.begin(), E = RegList.end(); I != E; ) {
2390       OS << *I;
2391       if (++I < E) OS << ", ";
2392     }
2393
2394     OS << ">";
2395     break;
2396   }
2397   case k_VectorList:
2398     OS << "<vector_list " << VectorList.Count << " * "
2399        << VectorList.RegNum << ">";
2400     break;
2401   case k_VectorListAllLanes:
2402     OS << "<vector_list(all lanes) " << VectorList.Count << " * "
2403        << VectorList.RegNum << ">";
2404     break;
2405   case k_VectorListIndexed:
2406     OS << "<vector_list(lane " << VectorList.LaneIndex << ") "
2407        << VectorList.Count << " * " << VectorList.RegNum << ">";
2408     break;
2409   case k_Token:
2410     OS << "'" << getToken() << "'";
2411     break;
2412   case k_VectorIndex:
2413     OS << "<vectorindex " << getVectorIndex() << ">";
2414     break;
2415   }
2416 }
2417
2418 /// @name Auto-generated Match Functions
2419 /// {
2420
2421 static unsigned MatchRegisterName(StringRef Name);
2422
2423 /// }
2424
2425 bool ARMAsmParser::ParseRegister(unsigned &RegNo,
2426                                  SMLoc &StartLoc, SMLoc &EndLoc) {
2427   StartLoc = Parser.getTok().getLoc();
2428   RegNo = tryParseRegister();
2429   EndLoc = Parser.getTok().getLoc();
2430
2431   return (RegNo == (unsigned)-1);
2432 }
2433
2434 /// Try to parse a register name.  The token must be an Identifier when called,
2435 /// and if it is a register name the token is eaten and the register number is
2436 /// returned.  Otherwise return -1.
2437 ///
2438 int ARMAsmParser::tryParseRegister() {
2439   const AsmToken &Tok = Parser.getTok();
2440   if (Tok.isNot(AsmToken::Identifier)) return -1;
2441
2442   std::string lowerCase = Tok.getString().lower();
2443   unsigned RegNum = MatchRegisterName(lowerCase);
2444   if (!RegNum) {
2445     RegNum = StringSwitch<unsigned>(lowerCase)
2446       .Case("r13", ARM::SP)
2447       .Case("r14", ARM::LR)
2448       .Case("r15", ARM::PC)
2449       .Case("ip", ARM::R12)
2450       // Additional register name aliases for 'gas' compatibility.
2451       .Case("a1", ARM::R0)
2452       .Case("a2", ARM::R1)
2453       .Case("a3", ARM::R2)
2454       .Case("a4", ARM::R3)
2455       .Case("v1", ARM::R4)
2456       .Case("v2", ARM::R5)
2457       .Case("v3", ARM::R6)
2458       .Case("v4", ARM::R7)
2459       .Case("v5", ARM::R8)
2460       .Case("v6", ARM::R9)
2461       .Case("v7", ARM::R10)
2462       .Case("v8", ARM::R11)
2463       .Case("sb", ARM::R9)
2464       .Case("sl", ARM::R10)
2465       .Case("fp", ARM::R11)
2466       .Default(0);
2467   }
2468   if (!RegNum) {
2469     // Check for aliases registered via .req. Canonicalize to lower case.
2470     // That's more consistent since register names are case insensitive, and
2471     // it's how the original entry was passed in from MC/MCParser/AsmParser.
2472     StringMap<unsigned>::const_iterator Entry = RegisterReqs.find(lowerCase);
2473     // If no match, return failure.
2474     if (Entry == RegisterReqs.end())
2475       return -1;
2476     Parser.Lex(); // Eat identifier token.
2477     return Entry->getValue();
2478   }
2479
2480   Parser.Lex(); // Eat identifier token.
2481
2482   return RegNum;
2483 }
2484
2485 // Try to parse a shifter  (e.g., "lsl <amt>"). On success, return 0.
2486 // If a recoverable error occurs, return 1. If an irrecoverable error
2487 // occurs, return -1. An irrecoverable error is one where tokens have been
2488 // consumed in the process of trying to parse the shifter (i.e., when it is
2489 // indeed a shifter operand, but malformed).
2490 int ARMAsmParser::tryParseShiftRegister(
2491                                SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2492   SMLoc S = Parser.getTok().getLoc();
2493   const AsmToken &Tok = Parser.getTok();
2494   assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
2495
2496   std::string lowerCase = Tok.getString().lower();
2497   ARM_AM::ShiftOpc ShiftTy = StringSwitch<ARM_AM::ShiftOpc>(lowerCase)
2498       .Case("asl", ARM_AM::lsl)
2499       .Case("lsl", ARM_AM::lsl)
2500       .Case("lsr", ARM_AM::lsr)
2501       .Case("asr", ARM_AM::asr)
2502       .Case("ror", ARM_AM::ror)
2503       .Case("rrx", ARM_AM::rrx)
2504       .Default(ARM_AM::no_shift);
2505
2506   if (ShiftTy == ARM_AM::no_shift)
2507     return 1;
2508
2509   Parser.Lex(); // Eat the operator.
2510
2511   // The source register for the shift has already been added to the
2512   // operand list, so we need to pop it off and combine it into the shifted
2513   // register operand instead.
2514   OwningPtr<ARMOperand> PrevOp((ARMOperand*)Operands.pop_back_val());
2515   if (!PrevOp->isReg())
2516     return Error(PrevOp->getStartLoc(), "shift must be of a register");
2517   int SrcReg = PrevOp->getReg();
2518   int64_t Imm = 0;
2519   int ShiftReg = 0;
2520   if (ShiftTy == ARM_AM::rrx) {
2521     // RRX Doesn't have an explicit shift amount. The encoder expects
2522     // the shift register to be the same as the source register. Seems odd,
2523     // but OK.
2524     ShiftReg = SrcReg;
2525   } else {
2526     // Figure out if this is shifted by a constant or a register (for non-RRX).
2527     if (Parser.getTok().is(AsmToken::Hash) ||
2528         Parser.getTok().is(AsmToken::Dollar)) {
2529       Parser.Lex(); // Eat hash.
2530       SMLoc ImmLoc = Parser.getTok().getLoc();
2531       const MCExpr *ShiftExpr = 0;
2532       if (getParser().ParseExpression(ShiftExpr)) {
2533         Error(ImmLoc, "invalid immediate shift value");
2534         return -1;
2535       }
2536       // The expression must be evaluatable as an immediate.
2537       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftExpr);
2538       if (!CE) {
2539         Error(ImmLoc, "invalid immediate shift value");
2540         return -1;
2541       }
2542       // Range check the immediate.
2543       // lsl, ror: 0 <= imm <= 31
2544       // lsr, asr: 0 <= imm <= 32
2545       Imm = CE->getValue();
2546       if (Imm < 0 ||
2547           ((ShiftTy == ARM_AM::lsl || ShiftTy == ARM_AM::ror) && Imm > 31) ||
2548           ((ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr) && Imm > 32)) {
2549         Error(ImmLoc, "immediate shift value out of range");
2550         return -1;
2551       }
2552       // shift by zero is a nop. Always send it through as lsl.
2553       // ('as' compatibility)
2554       if (Imm == 0)
2555         ShiftTy = ARM_AM::lsl;
2556     } else if (Parser.getTok().is(AsmToken::Identifier)) {
2557       ShiftReg = tryParseRegister();
2558       SMLoc L = Parser.getTok().getLoc();
2559       if (ShiftReg == -1) {
2560         Error (L, "expected immediate or register in shift operand");
2561         return -1;
2562       }
2563     } else {
2564       Error (Parser.getTok().getLoc(),
2565                     "expected immediate or register in shift operand");
2566       return -1;
2567     }
2568   }
2569
2570   if (ShiftReg && ShiftTy != ARM_AM::rrx)
2571     Operands.push_back(ARMOperand::CreateShiftedRegister(ShiftTy, SrcReg,
2572                                                          ShiftReg, Imm,
2573                                                S, Parser.getTok().getLoc()));
2574   else
2575     Operands.push_back(ARMOperand::CreateShiftedImmediate(ShiftTy, SrcReg, Imm,
2576                                                S, Parser.getTok().getLoc()));
2577
2578   return 0;
2579 }
2580
2581
2582 /// Try to parse a register name.  The token must be an Identifier when called.
2583 /// If it's a register, an AsmOperand is created. Another AsmOperand is created
2584 /// if there is a "writeback". 'true' if it's not a register.
2585 ///
2586 /// TODO this is likely to change to allow different register types and or to
2587 /// parse for a specific register type.
2588 bool ARMAsmParser::
2589 tryParseRegisterWithWriteBack(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2590   SMLoc S = Parser.getTok().getLoc();
2591   int RegNo = tryParseRegister();
2592   if (RegNo == -1)
2593     return true;
2594
2595   Operands.push_back(ARMOperand::CreateReg(RegNo, S, Parser.getTok().getLoc()));
2596
2597   const AsmToken &ExclaimTok = Parser.getTok();
2598   if (ExclaimTok.is(AsmToken::Exclaim)) {
2599     Operands.push_back(ARMOperand::CreateToken(ExclaimTok.getString(),
2600                                                ExclaimTok.getLoc()));
2601     Parser.Lex(); // Eat exclaim token
2602     return false;
2603   }
2604
2605   // Also check for an index operand. This is only legal for vector registers,
2606   // but that'll get caught OK in operand matching, so we don't need to
2607   // explicitly filter everything else out here.
2608   if (Parser.getTok().is(AsmToken::LBrac)) {
2609     SMLoc SIdx = Parser.getTok().getLoc();
2610     Parser.Lex(); // Eat left bracket token.
2611
2612     const MCExpr *ImmVal;
2613     if (getParser().ParseExpression(ImmVal))
2614       return true;
2615     const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(ImmVal);
2616     if (!MCE)
2617       return TokError("immediate value expected for vector index");
2618
2619     SMLoc E = Parser.getTok().getLoc();
2620     if (Parser.getTok().isNot(AsmToken::RBrac))
2621       return Error(E, "']' expected");
2622
2623     Parser.Lex(); // Eat right bracket token.
2624
2625     Operands.push_back(ARMOperand::CreateVectorIndex(MCE->getValue(),
2626                                                      SIdx, E,
2627                                                      getContext()));
2628   }
2629
2630   return false;
2631 }
2632
2633 /// MatchCoprocessorOperandName - Try to parse an coprocessor related
2634 /// instruction with a symbolic operand name. Example: "p1", "p7", "c3",
2635 /// "c5", ...
2636 static int MatchCoprocessorOperandName(StringRef Name, char CoprocOp) {
2637   // Use the same layout as the tablegen'erated register name matcher. Ugly,
2638   // but efficient.
2639   switch (Name.size()) {
2640   default: return -1;
2641   case 2:
2642     if (Name[0] != CoprocOp)
2643       return -1;
2644     switch (Name[1]) {
2645     default:  return -1;
2646     case '0': return 0;
2647     case '1': return 1;
2648     case '2': return 2;
2649     case '3': return 3;
2650     case '4': return 4;
2651     case '5': return 5;
2652     case '6': return 6;
2653     case '7': return 7;
2654     case '8': return 8;
2655     case '9': return 9;
2656     }
2657   case 3:
2658     if (Name[0] != CoprocOp || Name[1] != '1')
2659       return -1;
2660     switch (Name[2]) {
2661     default:  return -1;
2662     case '0': return 10;
2663     case '1': return 11;
2664     case '2': return 12;
2665     case '3': return 13;
2666     case '4': return 14;
2667     case '5': return 15;
2668     }
2669   }
2670 }
2671
2672 /// parseITCondCode - Try to parse a condition code for an IT instruction.
2673 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2674 parseITCondCode(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2675   SMLoc S = Parser.getTok().getLoc();
2676   const AsmToken &Tok = Parser.getTok();
2677   if (!Tok.is(AsmToken::Identifier))
2678     return MatchOperand_NoMatch;
2679   unsigned CC = StringSwitch<unsigned>(Tok.getString().lower())
2680     .Case("eq", ARMCC::EQ)
2681     .Case("ne", ARMCC::NE)
2682     .Case("hs", ARMCC::HS)
2683     .Case("cs", ARMCC::HS)
2684     .Case("lo", ARMCC::LO)
2685     .Case("cc", ARMCC::LO)
2686     .Case("mi", ARMCC::MI)
2687     .Case("pl", ARMCC::PL)
2688     .Case("vs", ARMCC::VS)
2689     .Case("vc", ARMCC::VC)
2690     .Case("hi", ARMCC::HI)
2691     .Case("ls", ARMCC::LS)
2692     .Case("ge", ARMCC::GE)
2693     .Case("lt", ARMCC::LT)
2694     .Case("gt", ARMCC::GT)
2695     .Case("le", ARMCC::LE)
2696     .Case("al", ARMCC::AL)
2697     .Default(~0U);
2698   if (CC == ~0U)
2699     return MatchOperand_NoMatch;
2700   Parser.Lex(); // Eat the token.
2701
2702   Operands.push_back(ARMOperand::CreateCondCode(ARMCC::CondCodes(CC), S));
2703
2704   return MatchOperand_Success;
2705 }
2706
2707 /// parseCoprocNumOperand - Try to parse an coprocessor number operand. The
2708 /// token must be an Identifier when called, and if it is a coprocessor
2709 /// number, the token is eaten and the operand is added to the operand list.
2710 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2711 parseCoprocNumOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2712   SMLoc S = Parser.getTok().getLoc();
2713   const AsmToken &Tok = Parser.getTok();
2714   if (Tok.isNot(AsmToken::Identifier))
2715     return MatchOperand_NoMatch;
2716
2717   int Num = MatchCoprocessorOperandName(Tok.getString(), 'p');
2718   if (Num == -1)
2719     return MatchOperand_NoMatch;
2720
2721   Parser.Lex(); // Eat identifier token.
2722   Operands.push_back(ARMOperand::CreateCoprocNum(Num, S));
2723   return MatchOperand_Success;
2724 }
2725
2726 /// parseCoprocRegOperand - Try to parse an coprocessor register operand. The
2727 /// token must be an Identifier when called, and if it is a coprocessor
2728 /// number, the token is eaten and the operand is added to the operand list.
2729 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2730 parseCoprocRegOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2731   SMLoc S = Parser.getTok().getLoc();
2732   const AsmToken &Tok = Parser.getTok();
2733   if (Tok.isNot(AsmToken::Identifier))
2734     return MatchOperand_NoMatch;
2735
2736   int Reg = MatchCoprocessorOperandName(Tok.getString(), 'c');
2737   if (Reg == -1)
2738     return MatchOperand_NoMatch;
2739
2740   Parser.Lex(); // Eat identifier token.
2741   Operands.push_back(ARMOperand::CreateCoprocReg(Reg, S));
2742   return MatchOperand_Success;
2743 }
2744
2745 /// parseCoprocOptionOperand - Try to parse an coprocessor option operand.
2746 /// coproc_option : '{' imm0_255 '}'
2747 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2748 parseCoprocOptionOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2749   SMLoc S = Parser.getTok().getLoc();
2750
2751   // If this isn't a '{', this isn't a coprocessor immediate operand.
2752   if (Parser.getTok().isNot(AsmToken::LCurly))
2753     return MatchOperand_NoMatch;
2754   Parser.Lex(); // Eat the '{'
2755
2756   const MCExpr *Expr;
2757   SMLoc Loc = Parser.getTok().getLoc();
2758   if (getParser().ParseExpression(Expr)) {
2759     Error(Loc, "illegal expression");
2760     return MatchOperand_ParseFail;
2761   }
2762   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
2763   if (!CE || CE->getValue() < 0 || CE->getValue() > 255) {
2764     Error(Loc, "coprocessor option must be an immediate in range [0, 255]");
2765     return MatchOperand_ParseFail;
2766   }
2767   int Val = CE->getValue();
2768
2769   // Check for and consume the closing '}'
2770   if (Parser.getTok().isNot(AsmToken::RCurly))
2771     return MatchOperand_ParseFail;
2772   SMLoc E = Parser.getTok().getLoc();
2773   Parser.Lex(); // Eat the '}'
2774
2775   Operands.push_back(ARMOperand::CreateCoprocOption(Val, S, E));
2776   return MatchOperand_Success;
2777 }
2778
2779 // For register list parsing, we need to map from raw GPR register numbering
2780 // to the enumeration values. The enumeration values aren't sorted by
2781 // register number due to our using "sp", "lr" and "pc" as canonical names.
2782 static unsigned getNextRegister(unsigned Reg) {
2783   // If this is a GPR, we need to do it manually, otherwise we can rely
2784   // on the sort ordering of the enumeration since the other reg-classes
2785   // are sane.
2786   if (!ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2787     return Reg + 1;
2788   switch(Reg) {
2789   default: llvm_unreachable("Invalid GPR number!");
2790   case ARM::R0:  return ARM::R1;  case ARM::R1:  return ARM::R2;
2791   case ARM::R2:  return ARM::R3;  case ARM::R3:  return ARM::R4;
2792   case ARM::R4:  return ARM::R5;  case ARM::R5:  return ARM::R6;
2793   case ARM::R6:  return ARM::R7;  case ARM::R7:  return ARM::R8;
2794   case ARM::R8:  return ARM::R9;  case ARM::R9:  return ARM::R10;
2795   case ARM::R10: return ARM::R11; case ARM::R11: return ARM::R12;
2796   case ARM::R12: return ARM::SP;  case ARM::SP:  return ARM::LR;
2797   case ARM::LR:  return ARM::PC;  case ARM::PC:  return ARM::R0;
2798   }
2799 }
2800
2801 // Return the low-subreg of a given Q register.
2802 static unsigned getDRegFromQReg(unsigned QReg) {
2803   switch (QReg) {
2804   default: llvm_unreachable("expected a Q register!");
2805   case ARM::Q0:  return ARM::D0;
2806   case ARM::Q1:  return ARM::D2;
2807   case ARM::Q2:  return ARM::D4;
2808   case ARM::Q3:  return ARM::D6;
2809   case ARM::Q4:  return ARM::D8;
2810   case ARM::Q5:  return ARM::D10;
2811   case ARM::Q6:  return ARM::D12;
2812   case ARM::Q7:  return ARM::D14;
2813   case ARM::Q8:  return ARM::D16;
2814   case ARM::Q9:  return ARM::D18;
2815   case ARM::Q10: return ARM::D20;
2816   case ARM::Q11: return ARM::D22;
2817   case ARM::Q12: return ARM::D24;
2818   case ARM::Q13: return ARM::D26;
2819   case ARM::Q14: return ARM::D28;
2820   case ARM::Q15: return ARM::D30;
2821   }
2822 }
2823
2824 /// Parse a register list.
2825 bool ARMAsmParser::
2826 parseRegisterList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
2827   assert(Parser.getTok().is(AsmToken::LCurly) &&
2828          "Token is not a Left Curly Brace");
2829   SMLoc S = Parser.getTok().getLoc();
2830   Parser.Lex(); // Eat '{' token.
2831   SMLoc RegLoc = Parser.getTok().getLoc();
2832
2833   // Check the first register in the list to see what register class
2834   // this is a list of.
2835   int Reg = tryParseRegister();
2836   if (Reg == -1)
2837     return Error(RegLoc, "register expected");
2838
2839   // The reglist instructions have at most 16 registers, so reserve
2840   // space for that many.
2841   SmallVector<std::pair<unsigned, SMLoc>, 16> Registers;
2842
2843   // Allow Q regs and just interpret them as the two D sub-registers.
2844   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
2845     Reg = getDRegFromQReg(Reg);
2846     Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2847     ++Reg;
2848   }
2849   const MCRegisterClass *RC;
2850   if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2851     RC = &ARMMCRegisterClasses[ARM::GPRRegClassID];
2852   else if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg))
2853     RC = &ARMMCRegisterClasses[ARM::DPRRegClassID];
2854   else if (ARMMCRegisterClasses[ARM::SPRRegClassID].contains(Reg))
2855     RC = &ARMMCRegisterClasses[ARM::SPRRegClassID];
2856   else
2857     return Error(RegLoc, "invalid register in register list");
2858
2859   // Store the register.
2860   Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2861
2862   // This starts immediately after the first register token in the list,
2863   // so we can see either a comma or a minus (range separator) as a legal
2864   // next token.
2865   while (Parser.getTok().is(AsmToken::Comma) ||
2866          Parser.getTok().is(AsmToken::Minus)) {
2867     if (Parser.getTok().is(AsmToken::Minus)) {
2868       Parser.Lex(); // Eat the minus.
2869       SMLoc EndLoc = Parser.getTok().getLoc();
2870       int EndReg = tryParseRegister();
2871       if (EndReg == -1)
2872         return Error(EndLoc, "register expected");
2873       // Allow Q regs and just interpret them as the two D sub-registers.
2874       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
2875         EndReg = getDRegFromQReg(EndReg) + 1;
2876       // If the register is the same as the start reg, there's nothing
2877       // more to do.
2878       if (Reg == EndReg)
2879         continue;
2880       // The register must be in the same register class as the first.
2881       if (!RC->contains(EndReg))
2882         return Error(EndLoc, "invalid register in register list");
2883       // Ranges must go from low to high.
2884       if (getARMRegisterNumbering(Reg) > getARMRegisterNumbering(EndReg))
2885         return Error(EndLoc, "bad range in register list");
2886
2887       // Add all the registers in the range to the register list.
2888       while (Reg != EndReg) {
2889         Reg = getNextRegister(Reg);
2890         Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2891       }
2892       continue;
2893     }
2894     Parser.Lex(); // Eat the comma.
2895     RegLoc = Parser.getTok().getLoc();
2896     int OldReg = Reg;
2897     const AsmToken RegTok = Parser.getTok();
2898     Reg = tryParseRegister();
2899     if (Reg == -1)
2900       return Error(RegLoc, "register expected");
2901     // Allow Q regs and just interpret them as the two D sub-registers.
2902     bool isQReg = false;
2903     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
2904       Reg = getDRegFromQReg(Reg);
2905       isQReg = true;
2906     }
2907     // The register must be in the same register class as the first.
2908     if (!RC->contains(Reg))
2909       return Error(RegLoc, "invalid register in register list");
2910     // List must be monotonically increasing.
2911     if (getARMRegisterNumbering(Reg) < getARMRegisterNumbering(OldReg)) {
2912       if (ARMMCRegisterClasses[ARM::GPRRegClassID].contains(Reg))
2913         Warning(RegLoc, "register list not in ascending order");
2914       else
2915         return Error(RegLoc, "register list not in ascending order");
2916     }
2917     if (getARMRegisterNumbering(Reg) == getARMRegisterNumbering(OldReg)) {
2918       Warning(RegLoc, "duplicated register (" + RegTok.getString() +
2919               ") in register list");
2920       continue;
2921     }
2922     // VFP register lists must also be contiguous.
2923     // It's OK to use the enumeration values directly here rather, as the
2924     // VFP register classes have the enum sorted properly.
2925     if (RC != &ARMMCRegisterClasses[ARM::GPRRegClassID] &&
2926         Reg != OldReg + 1)
2927       return Error(RegLoc, "non-contiguous register range");
2928     Registers.push_back(std::pair<unsigned, SMLoc>(Reg, RegLoc));
2929     if (isQReg)
2930       Registers.push_back(std::pair<unsigned, SMLoc>(++Reg, RegLoc));
2931   }
2932
2933   SMLoc E = Parser.getTok().getLoc();
2934   if (Parser.getTok().isNot(AsmToken::RCurly))
2935     return Error(E, "'}' expected");
2936   Parser.Lex(); // Eat '}' token.
2937
2938   // Push the register list operand.
2939   Operands.push_back(ARMOperand::CreateRegList(Registers, S, E));
2940
2941   // The ARM system instruction variants for LDM/STM have a '^' token here.
2942   if (Parser.getTok().is(AsmToken::Caret)) {
2943     Operands.push_back(ARMOperand::CreateToken("^",Parser.getTok().getLoc()));
2944     Parser.Lex(); // Eat '^' token.
2945   }
2946
2947   return false;
2948 }
2949
2950 // Helper function to parse the lane index for vector lists.
2951 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
2952 parseVectorLane(VectorLaneTy &LaneKind, unsigned &Index) {
2953   Index = 0; // Always return a defined index value.
2954   if (Parser.getTok().is(AsmToken::LBrac)) {
2955     Parser.Lex(); // Eat the '['.
2956     if (Parser.getTok().is(AsmToken::RBrac)) {
2957       // "Dn[]" is the 'all lanes' syntax.
2958       LaneKind = AllLanes;
2959       Parser.Lex(); // Eat the ']'.
2960       return MatchOperand_Success;
2961     }
2962
2963     // There's an optional '#' token here. Normally there wouldn't be, but
2964     // inline assemble puts one in, and it's friendly to accept that.
2965     if (Parser.getTok().is(AsmToken::Hash))
2966       Parser.Lex(); // Eat the '#'
2967
2968     const MCExpr *LaneIndex;
2969     SMLoc Loc = Parser.getTok().getLoc();
2970     if (getParser().ParseExpression(LaneIndex)) {
2971       Error(Loc, "illegal expression");
2972       return MatchOperand_ParseFail;
2973     }
2974     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LaneIndex);
2975     if (!CE) {
2976       Error(Loc, "lane index must be empty or an integer");
2977       return MatchOperand_ParseFail;
2978     }
2979     if (Parser.getTok().isNot(AsmToken::RBrac)) {
2980       Error(Parser.getTok().getLoc(), "']' expected");
2981       return MatchOperand_ParseFail;
2982     }
2983     Parser.Lex(); // Eat the ']'.
2984     int64_t Val = CE->getValue();
2985
2986     // FIXME: Make this range check context sensitive for .8, .16, .32.
2987     if (Val < 0 || Val > 7) {
2988       Error(Parser.getTok().getLoc(), "lane index out of range");
2989       return MatchOperand_ParseFail;
2990     }
2991     Index = Val;
2992     LaneKind = IndexedLane;
2993     return MatchOperand_Success;
2994   }
2995   LaneKind = NoLanes;
2996   return MatchOperand_Success;
2997 }
2998
2999 // parse a vector register list
3000 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3001 parseVectorList(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3002   VectorLaneTy LaneKind;
3003   unsigned LaneIndex;
3004   SMLoc S = Parser.getTok().getLoc();
3005   // As an extension (to match gas), support a plain D register or Q register
3006   // (without encosing curly braces) as a single or double entry list,
3007   // respectively.
3008   if (Parser.getTok().is(AsmToken::Identifier)) {
3009     int Reg = tryParseRegister();
3010     if (Reg == -1)
3011       return MatchOperand_NoMatch;
3012     SMLoc E = Parser.getTok().getLoc();
3013     if (ARMMCRegisterClasses[ARM::DPRRegClassID].contains(Reg)) {
3014       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex);
3015       if (Res != MatchOperand_Success)
3016         return Res;
3017       switch (LaneKind) {
3018       case NoLanes:
3019         E = Parser.getTok().getLoc();
3020         Operands.push_back(ARMOperand::CreateVectorList(Reg, 1, false, S, E));
3021         break;
3022       case AllLanes:
3023         E = Parser.getTok().getLoc();
3024         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 1, false,
3025                                                                 S, E));
3026         break;
3027       case IndexedLane:
3028         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 1,
3029                                                                LaneIndex,
3030                                                                false, S, E));
3031         break;
3032       }
3033       return MatchOperand_Success;
3034     }
3035     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3036       Reg = getDRegFromQReg(Reg);
3037       OperandMatchResultTy Res = parseVectorLane(LaneKind, LaneIndex);
3038       if (Res != MatchOperand_Success)
3039         return Res;
3040       switch (LaneKind) {
3041       case NoLanes:
3042         E = Parser.getTok().getLoc();
3043         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3044                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3045         Operands.push_back(ARMOperand::CreateVectorList(Reg, 2, false, S, E));
3046         break;
3047       case AllLanes:
3048         E = Parser.getTok().getLoc();
3049         Reg = MRI->getMatchingSuperReg(Reg, ARM::dsub_0,
3050                                    &ARMMCRegisterClasses[ARM::DPairRegClassID]);
3051         Operands.push_back(ARMOperand::CreateVectorListAllLanes(Reg, 2, false,
3052                                                                 S, E));
3053         break;
3054       case IndexedLane:
3055         Operands.push_back(ARMOperand::CreateVectorListIndexed(Reg, 2,
3056                                                                LaneIndex,
3057                                                                false, S, E));
3058         break;
3059       }
3060       return MatchOperand_Success;
3061     }
3062     Error(S, "vector register expected");
3063     return MatchOperand_ParseFail;
3064   }
3065
3066   if (Parser.getTok().isNot(AsmToken::LCurly))
3067     return MatchOperand_NoMatch;
3068
3069   Parser.Lex(); // Eat '{' token.
3070   SMLoc RegLoc = Parser.getTok().getLoc();
3071
3072   int Reg = tryParseRegister();
3073   if (Reg == -1) {
3074     Error(RegLoc, "register expected");
3075     return MatchOperand_ParseFail;
3076   }
3077   unsigned Count = 1;
3078   int Spacing = 0;
3079   unsigned FirstReg = Reg;
3080   // The list is of D registers, but we also allow Q regs and just interpret
3081   // them as the two D sub-registers.
3082   if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3083     FirstReg = Reg = getDRegFromQReg(Reg);
3084     Spacing = 1; // double-spacing requires explicit D registers, otherwise
3085                  // it's ambiguous with four-register single spaced.
3086     ++Reg;
3087     ++Count;
3088   }
3089   if (parseVectorLane(LaneKind, LaneIndex) != MatchOperand_Success)
3090     return MatchOperand_ParseFail;
3091
3092   while (Parser.getTok().is(AsmToken::Comma) ||
3093          Parser.getTok().is(AsmToken::Minus)) {
3094     if (Parser.getTok().is(AsmToken::Minus)) {
3095       if (!Spacing)
3096         Spacing = 1; // Register range implies a single spaced list.
3097       else if (Spacing == 2) {
3098         Error(Parser.getTok().getLoc(),
3099               "sequential registers in double spaced list");
3100         return MatchOperand_ParseFail;
3101       }
3102       Parser.Lex(); // Eat the minus.
3103       SMLoc EndLoc = Parser.getTok().getLoc();
3104       int EndReg = tryParseRegister();
3105       if (EndReg == -1) {
3106         Error(EndLoc, "register expected");
3107         return MatchOperand_ParseFail;
3108       }
3109       // Allow Q regs and just interpret them as the two D sub-registers.
3110       if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(EndReg))
3111         EndReg = getDRegFromQReg(EndReg) + 1;
3112       // If the register is the same as the start reg, there's nothing
3113       // more to do.
3114       if (Reg == EndReg)
3115         continue;
3116       // The register must be in the same register class as the first.
3117       if (!ARMMCRegisterClasses[ARM::DPRRegClassID].contains(EndReg)) {
3118         Error(EndLoc, "invalid register in register list");
3119         return MatchOperand_ParseFail;
3120       }
3121       // Ranges must go from low to high.
3122       if (Reg > EndReg) {
3123         Error(EndLoc, "bad range in register list");
3124         return MatchOperand_ParseFail;
3125       }
3126       // Parse the lane specifier if present.
3127       VectorLaneTy NextLaneKind;
3128       unsigned NextLaneIndex;
3129       if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
3130         return MatchOperand_ParseFail;
3131       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3132         Error(EndLoc, "mismatched lane index in register list");
3133         return MatchOperand_ParseFail;
3134       }
3135       EndLoc = Parser.getTok().getLoc();
3136
3137       // Add all the registers in the range to the register list.
3138       Count += EndReg - Reg;
3139       Reg = EndReg;
3140       continue;
3141     }
3142     Parser.Lex(); // Eat the comma.
3143     RegLoc = Parser.getTok().getLoc();
3144     int OldReg = Reg;
3145     Reg = tryParseRegister();
3146     if (Reg == -1) {
3147       Error(RegLoc, "register expected");
3148       return MatchOperand_ParseFail;
3149     }
3150     // vector register lists must be contiguous.
3151     // It's OK to use the enumeration values directly here rather, as the
3152     // VFP register classes have the enum sorted properly.
3153     //
3154     // The list is of D registers, but we also allow Q regs and just interpret
3155     // them as the two D sub-registers.
3156     if (ARMMCRegisterClasses[ARM::QPRRegClassID].contains(Reg)) {
3157       if (!Spacing)
3158         Spacing = 1; // Register range implies a single spaced list.
3159       else if (Spacing == 2) {
3160         Error(RegLoc,
3161               "invalid register in double-spaced list (must be 'D' register')");
3162         return MatchOperand_ParseFail;
3163       }
3164       Reg = getDRegFromQReg(Reg);
3165       if (Reg != OldReg + 1) {
3166         Error(RegLoc, "non-contiguous register range");
3167         return MatchOperand_ParseFail;
3168       }
3169       ++Reg;
3170       Count += 2;
3171       // Parse the lane specifier if present.
3172       VectorLaneTy NextLaneKind;
3173       unsigned NextLaneIndex;
3174       SMLoc EndLoc = Parser.getTok().getLoc();
3175       if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
3176         return MatchOperand_ParseFail;
3177       if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3178         Error(EndLoc, "mismatched lane index in register list");
3179         return MatchOperand_ParseFail;
3180       }
3181       continue;
3182     }
3183     // Normal D register.
3184     // Figure out the register spacing (single or double) of the list if
3185     // we don't know it already.
3186     if (!Spacing)
3187       Spacing = 1 + (Reg == OldReg + 2);
3188
3189     // Just check that it's contiguous and keep going.
3190     if (Reg != OldReg + Spacing) {
3191       Error(RegLoc, "non-contiguous register range");
3192       return MatchOperand_ParseFail;
3193     }
3194     ++Count;
3195     // Parse the lane specifier if present.
3196     VectorLaneTy NextLaneKind;
3197     unsigned NextLaneIndex;
3198     SMLoc EndLoc = Parser.getTok().getLoc();
3199     if (parseVectorLane(NextLaneKind, NextLaneIndex) != MatchOperand_Success)
3200       return MatchOperand_ParseFail;
3201     if (NextLaneKind != LaneKind || LaneIndex != NextLaneIndex) {
3202       Error(EndLoc, "mismatched lane index in register list");
3203       return MatchOperand_ParseFail;
3204     }
3205   }
3206
3207   SMLoc E = Parser.getTok().getLoc();
3208   if (Parser.getTok().isNot(AsmToken::RCurly)) {
3209     Error(E, "'}' expected");
3210     return MatchOperand_ParseFail;
3211   }
3212   Parser.Lex(); // Eat '}' token.
3213
3214   switch (LaneKind) {
3215   case NoLanes:
3216     // Two-register operands have been converted to the
3217     // composite register classes.
3218     if (Count == 2) {
3219       const MCRegisterClass *RC = (Spacing == 1) ?
3220         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3221         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3222       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3223     }
3224
3225     Operands.push_back(ARMOperand::CreateVectorList(FirstReg, Count,
3226                                                     (Spacing == 2), S, E));
3227     break;
3228   case AllLanes:
3229     // Two-register operands have been converted to the
3230     // composite register classes.
3231     if (Count == 2) {
3232       const MCRegisterClass *RC = (Spacing == 1) ?
3233         &ARMMCRegisterClasses[ARM::DPairRegClassID] :
3234         &ARMMCRegisterClasses[ARM::DPairSpcRegClassID];
3235       FirstReg = MRI->getMatchingSuperReg(FirstReg, ARM::dsub_0, RC);
3236     }
3237     Operands.push_back(ARMOperand::CreateVectorListAllLanes(FirstReg, Count,
3238                                                             (Spacing == 2),
3239                                                             S, E));
3240     break;
3241   case IndexedLane:
3242     Operands.push_back(ARMOperand::CreateVectorListIndexed(FirstReg, Count,
3243                                                            LaneIndex,
3244                                                            (Spacing == 2),
3245                                                            S, E));
3246     break;
3247   }
3248   return MatchOperand_Success;
3249 }
3250
3251 /// parseMemBarrierOptOperand - Try to parse DSB/DMB data barrier options.
3252 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3253 parseMemBarrierOptOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3254   SMLoc S = Parser.getTok().getLoc();
3255   const AsmToken &Tok = Parser.getTok();
3256   assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
3257   StringRef OptStr = Tok.getString();
3258
3259   unsigned Opt = StringSwitch<unsigned>(OptStr.slice(0, OptStr.size()))
3260     .Case("sy",    ARM_MB::SY)
3261     .Case("st",    ARM_MB::ST)
3262     .Case("sh",    ARM_MB::ISH)
3263     .Case("ish",   ARM_MB::ISH)
3264     .Case("shst",  ARM_MB::ISHST)
3265     .Case("ishst", ARM_MB::ISHST)
3266     .Case("nsh",   ARM_MB::NSH)
3267     .Case("un",    ARM_MB::NSH)
3268     .Case("nshst", ARM_MB::NSHST)
3269     .Case("unst",  ARM_MB::NSHST)
3270     .Case("osh",   ARM_MB::OSH)
3271     .Case("oshst", ARM_MB::OSHST)
3272     .Default(~0U);
3273
3274   if (Opt == ~0U)
3275     return MatchOperand_NoMatch;
3276
3277   Parser.Lex(); // Eat identifier token.
3278   Operands.push_back(ARMOperand::CreateMemBarrierOpt((ARM_MB::MemBOpt)Opt, S));
3279   return MatchOperand_Success;
3280 }
3281
3282 /// parseProcIFlagsOperand - Try to parse iflags from CPS instruction.
3283 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3284 parseProcIFlagsOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3285   SMLoc S = Parser.getTok().getLoc();
3286   const AsmToken &Tok = Parser.getTok();
3287   if (!Tok.is(AsmToken::Identifier)) 
3288     return MatchOperand_NoMatch;
3289   StringRef IFlagsStr = Tok.getString();
3290
3291   // An iflags string of "none" is interpreted to mean that none of the AIF
3292   // bits are set.  Not a terribly useful instruction, but a valid encoding.
3293   unsigned IFlags = 0;
3294   if (IFlagsStr != "none") {
3295         for (int i = 0, e = IFlagsStr.size(); i != e; ++i) {
3296       unsigned Flag = StringSwitch<unsigned>(IFlagsStr.substr(i, 1))
3297         .Case("a", ARM_PROC::A)
3298         .Case("i", ARM_PROC::I)
3299         .Case("f", ARM_PROC::F)
3300         .Default(~0U);
3301
3302       // If some specific iflag is already set, it means that some letter is
3303       // present more than once, this is not acceptable.
3304       if (Flag == ~0U || (IFlags & Flag))
3305         return MatchOperand_NoMatch;
3306
3307       IFlags |= Flag;
3308     }
3309   }
3310
3311   Parser.Lex(); // Eat identifier token.
3312   Operands.push_back(ARMOperand::CreateProcIFlags((ARM_PROC::IFlags)IFlags, S));
3313   return MatchOperand_Success;
3314 }
3315
3316 /// parseMSRMaskOperand - Try to parse mask flags from MSR instruction.
3317 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3318 parseMSRMaskOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3319   SMLoc S = Parser.getTok().getLoc();
3320   const AsmToken &Tok = Parser.getTok();
3321   assert(Tok.is(AsmToken::Identifier) && "Token is not an Identifier");
3322   StringRef Mask = Tok.getString();
3323
3324   if (isMClass()) {
3325     // See ARMv6-M 10.1.1
3326     std::string Name = Mask.lower();
3327     unsigned FlagsVal = StringSwitch<unsigned>(Name)
3328       // Note: in the documentation:
3329       //  ARM deprecates using MSR APSR without a _<bits> qualifier as an alias
3330       //  for MSR APSR_nzcvq.
3331       // but we do make it an alias here.  This is so to get the "mask encoding"
3332       // bits correct on MSR APSR writes.
3333       //
3334       // FIXME: Note the 0xc00 "mask encoding" bits version of the registers
3335       // should really only be allowed when writing a special register.  Note
3336       // they get dropped in the MRS instruction reading a special register as
3337       // the SYSm field is only 8 bits.
3338       //
3339       // FIXME: the _g and _nzcvqg versions are only allowed if the processor
3340       // includes the DSP extension but that is not checked.
3341       .Case("apsr", 0x800)
3342       .Case("apsr_nzcvq", 0x800)
3343       .Case("apsr_g", 0x400)
3344       .Case("apsr_nzcvqg", 0xc00)
3345       .Case("iapsr", 0x801)
3346       .Case("iapsr_nzcvq", 0x801)
3347       .Case("iapsr_g", 0x401)
3348       .Case("iapsr_nzcvqg", 0xc01)
3349       .Case("eapsr", 0x802)
3350       .Case("eapsr_nzcvq", 0x802)
3351       .Case("eapsr_g", 0x402)
3352       .Case("eapsr_nzcvqg", 0xc02)
3353       .Case("xpsr", 0x803)
3354       .Case("xpsr_nzcvq", 0x803)
3355       .Case("xpsr_g", 0x403)
3356       .Case("xpsr_nzcvqg", 0xc03)
3357       .Case("ipsr", 5)
3358       .Case("epsr", 6)
3359       .Case("iepsr", 7)
3360       .Case("msp", 8)
3361       .Case("psp", 9)
3362       .Case("primask", 16)
3363       .Case("basepri", 17)
3364       .Case("basepri_max", 18)
3365       .Case("faultmask", 19)
3366       .Case("control", 20)
3367       .Default(~0U);
3368
3369     if (FlagsVal == ~0U)
3370       return MatchOperand_NoMatch;
3371
3372     if (!hasV7Ops() && FlagsVal >= 17 && FlagsVal <= 19)
3373       // basepri, basepri_max and faultmask only valid for V7m.
3374       return MatchOperand_NoMatch;
3375
3376     Parser.Lex(); // Eat identifier token.
3377     Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3378     return MatchOperand_Success;
3379   }
3380
3381   // Split spec_reg from flag, example: CPSR_sxf => "CPSR" and "sxf"
3382   size_t Start = 0, Next = Mask.find('_');
3383   StringRef Flags = "";
3384   std::string SpecReg = Mask.slice(Start, Next).lower();
3385   if (Next != StringRef::npos)
3386     Flags = Mask.slice(Next+1, Mask.size());
3387
3388   // FlagsVal contains the complete mask:
3389   // 3-0: Mask
3390   // 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3391   unsigned FlagsVal = 0;
3392
3393   if (SpecReg == "apsr") {
3394     FlagsVal = StringSwitch<unsigned>(Flags)
3395     .Case("nzcvq",  0x8) // same as CPSR_f
3396     .Case("g",      0x4) // same as CPSR_s
3397     .Case("nzcvqg", 0xc) // same as CPSR_fs
3398     .Default(~0U);
3399
3400     if (FlagsVal == ~0U) {
3401       if (!Flags.empty())
3402         return MatchOperand_NoMatch;
3403       else
3404         FlagsVal = 8; // No flag
3405     }
3406   } else if (SpecReg == "cpsr" || SpecReg == "spsr") {
3407     // cpsr_all is an alias for cpsr_fc, as is plain cpsr.
3408     if (Flags == "all" || Flags == "")
3409       Flags = "fc";
3410     for (int i = 0, e = Flags.size(); i != e; ++i) {
3411       unsigned Flag = StringSwitch<unsigned>(Flags.substr(i, 1))
3412       .Case("c", 1)
3413       .Case("x", 2)
3414       .Case("s", 4)
3415       .Case("f", 8)
3416       .Default(~0U);
3417
3418       // If some specific flag is already set, it means that some letter is
3419       // present more than once, this is not acceptable.
3420       if (FlagsVal == ~0U || (FlagsVal & Flag))
3421         return MatchOperand_NoMatch;
3422       FlagsVal |= Flag;
3423     }
3424   } else // No match for special register.
3425     return MatchOperand_NoMatch;
3426
3427   // Special register without flags is NOT equivalent to "fc" flags.
3428   // NOTE: This is a divergence from gas' behavior.  Uncommenting the following
3429   // two lines would enable gas compatibility at the expense of breaking
3430   // round-tripping.
3431   //
3432   // if (!FlagsVal)
3433   //  FlagsVal = 0x9;
3434
3435   // Bit 4: Special Reg (cpsr, apsr => 0; spsr => 1)
3436   if (SpecReg == "spsr")
3437     FlagsVal |= 16;
3438
3439   Parser.Lex(); // Eat identifier token.
3440   Operands.push_back(ARMOperand::CreateMSRMask(FlagsVal, S));
3441   return MatchOperand_Success;
3442 }
3443
3444 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3445 parsePKHImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands, StringRef Op,
3446             int Low, int High) {
3447   const AsmToken &Tok = Parser.getTok();
3448   if (Tok.isNot(AsmToken::Identifier)) {
3449     Error(Parser.getTok().getLoc(), Op + " operand expected.");
3450     return MatchOperand_ParseFail;
3451   }
3452   StringRef ShiftName = Tok.getString();
3453   std::string LowerOp = Op.lower();
3454   std::string UpperOp = Op.upper();
3455   if (ShiftName != LowerOp && ShiftName != UpperOp) {
3456     Error(Parser.getTok().getLoc(), Op + " operand expected.");
3457     return MatchOperand_ParseFail;
3458   }
3459   Parser.Lex(); // Eat shift type token.
3460
3461   // There must be a '#' and a shift amount.
3462   if (Parser.getTok().isNot(AsmToken::Hash) &&
3463       Parser.getTok().isNot(AsmToken::Dollar)) {
3464     Error(Parser.getTok().getLoc(), "'#' expected");
3465     return MatchOperand_ParseFail;
3466   }
3467   Parser.Lex(); // Eat hash token.
3468
3469   const MCExpr *ShiftAmount;
3470   SMLoc Loc = Parser.getTok().getLoc();
3471   if (getParser().ParseExpression(ShiftAmount)) {
3472     Error(Loc, "illegal expression");
3473     return MatchOperand_ParseFail;
3474   }
3475   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3476   if (!CE) {
3477     Error(Loc, "constant expression expected");
3478     return MatchOperand_ParseFail;
3479   }
3480   int Val = CE->getValue();
3481   if (Val < Low || Val > High) {
3482     Error(Loc, "immediate value out of range");
3483     return MatchOperand_ParseFail;
3484   }
3485
3486   Operands.push_back(ARMOperand::CreateImm(CE, Loc, Parser.getTok().getLoc()));
3487
3488   return MatchOperand_Success;
3489 }
3490
3491 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3492 parseSetEndImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3493   const AsmToken &Tok = Parser.getTok();
3494   SMLoc S = Tok.getLoc();
3495   if (Tok.isNot(AsmToken::Identifier)) {
3496     Error(Tok.getLoc(), "'be' or 'le' operand expected");
3497     return MatchOperand_ParseFail;
3498   }
3499   int Val = StringSwitch<int>(Tok.getString())
3500     .Case("be", 1)
3501     .Case("le", 0)
3502     .Default(-1);
3503   Parser.Lex(); // Eat the token.
3504
3505   if (Val == -1) {
3506     Error(Tok.getLoc(), "'be' or 'le' operand expected");
3507     return MatchOperand_ParseFail;
3508   }
3509   Operands.push_back(ARMOperand::CreateImm(MCConstantExpr::Create(Val,
3510                                                                   getContext()),
3511                                            S, Parser.getTok().getLoc()));
3512   return MatchOperand_Success;
3513 }
3514
3515 /// parseShifterImm - Parse the shifter immediate operand for SSAT/USAT
3516 /// instructions. Legal values are:
3517 ///     lsl #n  'n' in [0,31]
3518 ///     asr #n  'n' in [1,32]
3519 ///             n == 32 encoded as n == 0.
3520 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3521 parseShifterImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3522   const AsmToken &Tok = Parser.getTok();
3523   SMLoc S = Tok.getLoc();
3524   if (Tok.isNot(AsmToken::Identifier)) {
3525     Error(S, "shift operator 'asr' or 'lsl' expected");
3526     return MatchOperand_ParseFail;
3527   }
3528   StringRef ShiftName = Tok.getString();
3529   bool isASR;
3530   if (ShiftName == "lsl" || ShiftName == "LSL")
3531     isASR = false;
3532   else if (ShiftName == "asr" || ShiftName == "ASR")
3533     isASR = true;
3534   else {
3535     Error(S, "shift operator 'asr' or 'lsl' expected");
3536     return MatchOperand_ParseFail;
3537   }
3538   Parser.Lex(); // Eat the operator.
3539
3540   // A '#' and a shift amount.
3541   if (Parser.getTok().isNot(AsmToken::Hash) &&
3542       Parser.getTok().isNot(AsmToken::Dollar)) {
3543     Error(Parser.getTok().getLoc(), "'#' expected");
3544     return MatchOperand_ParseFail;
3545   }
3546   Parser.Lex(); // Eat hash token.
3547
3548   const MCExpr *ShiftAmount;
3549   SMLoc E = Parser.getTok().getLoc();
3550   if (getParser().ParseExpression(ShiftAmount)) {
3551     Error(E, "malformed shift expression");
3552     return MatchOperand_ParseFail;
3553   }
3554   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3555   if (!CE) {
3556     Error(E, "shift amount must be an immediate");
3557     return MatchOperand_ParseFail;
3558   }
3559
3560   int64_t Val = CE->getValue();
3561   if (isASR) {
3562     // Shift amount must be in [1,32]
3563     if (Val < 1 || Val > 32) {
3564       Error(E, "'asr' shift amount must be in range [1,32]");
3565       return MatchOperand_ParseFail;
3566     }
3567     // asr #32 encoded as asr #0, but is not allowed in Thumb2 mode.
3568     if (isThumb() && Val == 32) {
3569       Error(E, "'asr #32' shift amount not allowed in Thumb mode");
3570       return MatchOperand_ParseFail;
3571     }
3572     if (Val == 32) Val = 0;
3573   } else {
3574     // Shift amount must be in [1,32]
3575     if (Val < 0 || Val > 31) {
3576       Error(E, "'lsr' shift amount must be in range [0,31]");
3577       return MatchOperand_ParseFail;
3578     }
3579   }
3580
3581   E = Parser.getTok().getLoc();
3582   Operands.push_back(ARMOperand::CreateShifterImm(isASR, Val, S, E));
3583
3584   return MatchOperand_Success;
3585 }
3586
3587 /// parseRotImm - Parse the shifter immediate operand for SXTB/UXTB family
3588 /// of instructions. Legal values are:
3589 ///     ror #n  'n' in {0, 8, 16, 24}
3590 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3591 parseRotImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3592   const AsmToken &Tok = Parser.getTok();
3593   SMLoc S = Tok.getLoc();
3594   if (Tok.isNot(AsmToken::Identifier))
3595     return MatchOperand_NoMatch;
3596   StringRef ShiftName = Tok.getString();
3597   if (ShiftName != "ror" && ShiftName != "ROR")
3598     return MatchOperand_NoMatch;
3599   Parser.Lex(); // Eat the operator.
3600
3601   // A '#' and a rotate amount.
3602   if (Parser.getTok().isNot(AsmToken::Hash) &&
3603       Parser.getTok().isNot(AsmToken::Dollar)) {
3604     Error(Parser.getTok().getLoc(), "'#' expected");
3605     return MatchOperand_ParseFail;
3606   }
3607   Parser.Lex(); // Eat hash token.
3608
3609   const MCExpr *ShiftAmount;
3610   SMLoc E = Parser.getTok().getLoc();
3611   if (getParser().ParseExpression(ShiftAmount)) {
3612     Error(E, "malformed rotate expression");
3613     return MatchOperand_ParseFail;
3614   }
3615   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ShiftAmount);
3616   if (!CE) {
3617     Error(E, "rotate amount must be an immediate");
3618     return MatchOperand_ParseFail;
3619   }
3620
3621   int64_t Val = CE->getValue();
3622   // Shift amount must be in {0, 8, 16, 24} (0 is undocumented extension)
3623   // normally, zero is represented in asm by omitting the rotate operand
3624   // entirely.
3625   if (Val != 8 && Val != 16 && Val != 24 && Val != 0) {
3626     Error(E, "'ror' rotate amount must be 8, 16, or 24");
3627     return MatchOperand_ParseFail;
3628   }
3629
3630   E = Parser.getTok().getLoc();
3631   Operands.push_back(ARMOperand::CreateRotImm(Val, S, E));
3632
3633   return MatchOperand_Success;
3634 }
3635
3636 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3637 parseBitfield(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3638   SMLoc S = Parser.getTok().getLoc();
3639   // The bitfield descriptor is really two operands, the LSB and the width.
3640   if (Parser.getTok().isNot(AsmToken::Hash) &&
3641       Parser.getTok().isNot(AsmToken::Dollar)) {
3642     Error(Parser.getTok().getLoc(), "'#' expected");
3643     return MatchOperand_ParseFail;
3644   }
3645   Parser.Lex(); // Eat hash token.
3646
3647   const MCExpr *LSBExpr;
3648   SMLoc E = Parser.getTok().getLoc();
3649   if (getParser().ParseExpression(LSBExpr)) {
3650     Error(E, "malformed immediate expression");
3651     return MatchOperand_ParseFail;
3652   }
3653   const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(LSBExpr);
3654   if (!CE) {
3655     Error(E, "'lsb' operand must be an immediate");
3656     return MatchOperand_ParseFail;
3657   }
3658
3659   int64_t LSB = CE->getValue();
3660   // The LSB must be in the range [0,31]
3661   if (LSB < 0 || LSB > 31) {
3662     Error(E, "'lsb' operand must be in the range [0,31]");
3663     return MatchOperand_ParseFail;
3664   }
3665   E = Parser.getTok().getLoc();
3666
3667   // Expect another immediate operand.
3668   if (Parser.getTok().isNot(AsmToken::Comma)) {
3669     Error(Parser.getTok().getLoc(), "too few operands");
3670     return MatchOperand_ParseFail;
3671   }
3672   Parser.Lex(); // Eat hash token.
3673   if (Parser.getTok().isNot(AsmToken::Hash) &&
3674       Parser.getTok().isNot(AsmToken::Dollar)) {
3675     Error(Parser.getTok().getLoc(), "'#' expected");
3676     return MatchOperand_ParseFail;
3677   }
3678   Parser.Lex(); // Eat hash token.
3679
3680   const MCExpr *WidthExpr;
3681   if (getParser().ParseExpression(WidthExpr)) {
3682     Error(E, "malformed immediate expression");
3683     return MatchOperand_ParseFail;
3684   }
3685   CE = dyn_cast<MCConstantExpr>(WidthExpr);
3686   if (!CE) {
3687     Error(E, "'width' operand must be an immediate");
3688     return MatchOperand_ParseFail;
3689   }
3690
3691   int64_t Width = CE->getValue();
3692   // The LSB must be in the range [1,32-lsb]
3693   if (Width < 1 || Width > 32 - LSB) {
3694     Error(E, "'width' operand must be in the range [1,32-lsb]");
3695     return MatchOperand_ParseFail;
3696   }
3697   E = Parser.getTok().getLoc();
3698
3699   Operands.push_back(ARMOperand::CreateBitfield(LSB, Width, S, E));
3700
3701   return MatchOperand_Success;
3702 }
3703
3704 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3705 parsePostIdxReg(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3706   // Check for a post-index addressing register operand. Specifically:
3707   // postidx_reg := '+' register {, shift}
3708   //              | '-' register {, shift}
3709   //              | register {, shift}
3710
3711   // This method must return MatchOperand_NoMatch without consuming any tokens
3712   // in the case where there is no match, as other alternatives take other
3713   // parse methods.
3714   AsmToken Tok = Parser.getTok();
3715   SMLoc S = Tok.getLoc();
3716   bool haveEaten = false;
3717   bool isAdd = true;
3718   int Reg = -1;
3719   if (Tok.is(AsmToken::Plus)) {
3720     Parser.Lex(); // Eat the '+' token.
3721     haveEaten = true;
3722   } else if (Tok.is(AsmToken::Minus)) {
3723     Parser.Lex(); // Eat the '-' token.
3724     isAdd = false;
3725     haveEaten = true;
3726   }
3727   if (Parser.getTok().is(AsmToken::Identifier))
3728     Reg = tryParseRegister();
3729   if (Reg == -1) {
3730     if (!haveEaten)
3731       return MatchOperand_NoMatch;
3732     Error(Parser.getTok().getLoc(), "register expected");
3733     return MatchOperand_ParseFail;
3734   }
3735   SMLoc E = Parser.getTok().getLoc();
3736
3737   ARM_AM::ShiftOpc ShiftTy = ARM_AM::no_shift;
3738   unsigned ShiftImm = 0;
3739   if (Parser.getTok().is(AsmToken::Comma)) {
3740     Parser.Lex(); // Eat the ','.
3741     if (parseMemRegOffsetShift(ShiftTy, ShiftImm))
3742       return MatchOperand_ParseFail;
3743   }
3744
3745   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ShiftTy,
3746                                                   ShiftImm, S, E));
3747
3748   return MatchOperand_Success;
3749 }
3750
3751 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
3752 parseAM3Offset(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3753   // Check for a post-index addressing register operand. Specifically:
3754   // am3offset := '+' register
3755   //              | '-' register
3756   //              | register
3757   //              | # imm
3758   //              | # + imm
3759   //              | # - imm
3760
3761   // This method must return MatchOperand_NoMatch without consuming any tokens
3762   // in the case where there is no match, as other alternatives take other
3763   // parse methods.
3764   AsmToken Tok = Parser.getTok();
3765   SMLoc S = Tok.getLoc();
3766
3767   // Do immediates first, as we always parse those if we have a '#'.
3768   if (Parser.getTok().is(AsmToken::Hash) ||
3769       Parser.getTok().is(AsmToken::Dollar)) {
3770     Parser.Lex(); // Eat the '#'.
3771     // Explicitly look for a '-', as we need to encode negative zero
3772     // differently.
3773     bool isNegative = Parser.getTok().is(AsmToken::Minus);
3774     const MCExpr *Offset;
3775     if (getParser().ParseExpression(Offset))
3776       return MatchOperand_ParseFail;
3777     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
3778     if (!CE) {
3779       Error(S, "constant expression expected");
3780       return MatchOperand_ParseFail;
3781     }
3782     SMLoc E = Tok.getLoc();
3783     // Negative zero is encoded as the flag value INT32_MIN.
3784     int32_t Val = CE->getValue();
3785     if (isNegative && Val == 0)
3786       Val = INT32_MIN;
3787
3788     Operands.push_back(
3789       ARMOperand::CreateImm(MCConstantExpr::Create(Val, getContext()), S, E));
3790
3791     return MatchOperand_Success;
3792   }
3793
3794
3795   bool haveEaten = false;
3796   bool isAdd = true;
3797   int Reg = -1;
3798   if (Tok.is(AsmToken::Plus)) {
3799     Parser.Lex(); // Eat the '+' token.
3800     haveEaten = true;
3801   } else if (Tok.is(AsmToken::Minus)) {
3802     Parser.Lex(); // Eat the '-' token.
3803     isAdd = false;
3804     haveEaten = true;
3805   }
3806   if (Parser.getTok().is(AsmToken::Identifier))
3807     Reg = tryParseRegister();
3808   if (Reg == -1) {
3809     if (!haveEaten)
3810       return MatchOperand_NoMatch;
3811     Error(Parser.getTok().getLoc(), "register expected");
3812     return MatchOperand_ParseFail;
3813   }
3814   SMLoc E = Parser.getTok().getLoc();
3815
3816   Operands.push_back(ARMOperand::CreatePostIdxReg(Reg, isAdd, ARM_AM::no_shift,
3817                                                   0, S, E));
3818
3819   return MatchOperand_Success;
3820 }
3821
3822 /// cvtT2LdrdPre - Convert parsed operands to MCInst.
3823 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3824 /// when they refer multiple MIOperands inside a single one.
3825 bool ARMAsmParser::
3826 cvtT2LdrdPre(MCInst &Inst, unsigned Opcode,
3827              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3828   // Rt, Rt2
3829   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3830   ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
3831   // Create a writeback register dummy placeholder.
3832   Inst.addOperand(MCOperand::CreateReg(0));
3833   // addr
3834   ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
3835   // pred
3836   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3837   return true;
3838 }
3839
3840 /// cvtT2StrdPre - Convert parsed operands to MCInst.
3841 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3842 /// when they refer multiple MIOperands inside a single one.
3843 bool ARMAsmParser::
3844 cvtT2StrdPre(MCInst &Inst, unsigned Opcode,
3845              const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3846   // Create a writeback register dummy placeholder.
3847   Inst.addOperand(MCOperand::CreateReg(0));
3848   // Rt, Rt2
3849   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3850   ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
3851   // addr
3852   ((ARMOperand*)Operands[4])->addMemImm8s4OffsetOperands(Inst, 2);
3853   // pred
3854   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3855   return true;
3856 }
3857
3858 /// cvtLdWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
3859 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3860 /// when they refer multiple MIOperands inside a single one.
3861 bool ARMAsmParser::
3862 cvtLdWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
3863                          const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3864   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3865
3866   // Create a writeback register dummy placeholder.
3867   Inst.addOperand(MCOperand::CreateImm(0));
3868
3869   ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
3870   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3871   return true;
3872 }
3873
3874 /// cvtStWriteBackRegT2AddrModeImm8 - Convert parsed operands to MCInst.
3875 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3876 /// when they refer multiple MIOperands inside a single one.
3877 bool ARMAsmParser::
3878 cvtStWriteBackRegT2AddrModeImm8(MCInst &Inst, unsigned Opcode,
3879                          const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3880   // Create a writeback register dummy placeholder.
3881   Inst.addOperand(MCOperand::CreateImm(0));
3882   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3883   ((ARMOperand*)Operands[3])->addMemImm8OffsetOperands(Inst, 2);
3884   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3885   return true;
3886 }
3887
3888 /// cvtLdWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
3889 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3890 /// when they refer multiple MIOperands inside a single one.
3891 bool ARMAsmParser::
3892 cvtLdWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
3893                          const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3894   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3895
3896   // Create a writeback register dummy placeholder.
3897   Inst.addOperand(MCOperand::CreateImm(0));
3898
3899   ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
3900   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3901   return true;
3902 }
3903
3904 /// cvtLdWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
3905 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3906 /// when they refer multiple MIOperands inside a single one.
3907 bool ARMAsmParser::
3908 cvtLdWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
3909                          const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3910   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3911
3912   // Create a writeback register dummy placeholder.
3913   Inst.addOperand(MCOperand::CreateImm(0));
3914
3915   ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
3916   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3917   return true;
3918 }
3919
3920
3921 /// cvtStWriteBackRegAddrModeImm12 - Convert parsed operands to MCInst.
3922 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3923 /// when they refer multiple MIOperands inside a single one.
3924 bool ARMAsmParser::
3925 cvtStWriteBackRegAddrModeImm12(MCInst &Inst, unsigned Opcode,
3926                          const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3927   // Create a writeback register dummy placeholder.
3928   Inst.addOperand(MCOperand::CreateImm(0));
3929   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3930   ((ARMOperand*)Operands[3])->addMemImm12OffsetOperands(Inst, 2);
3931   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3932   return true;
3933 }
3934
3935 /// cvtStWriteBackRegAddrMode2 - Convert parsed operands to MCInst.
3936 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3937 /// when they refer multiple MIOperands inside a single one.
3938 bool ARMAsmParser::
3939 cvtStWriteBackRegAddrMode2(MCInst &Inst, unsigned Opcode,
3940                          const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3941   // Create a writeback register dummy placeholder.
3942   Inst.addOperand(MCOperand::CreateImm(0));
3943   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3944   ((ARMOperand*)Operands[3])->addAddrMode2Operands(Inst, 3);
3945   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3946   return true;
3947 }
3948
3949 /// cvtStWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
3950 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3951 /// when they refer multiple MIOperands inside a single one.
3952 bool ARMAsmParser::
3953 cvtStWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
3954                          const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3955   // Create a writeback register dummy placeholder.
3956   Inst.addOperand(MCOperand::CreateImm(0));
3957   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3958   ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
3959   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3960   return true;
3961 }
3962
3963 /// cvtLdExtTWriteBackImm - Convert parsed operands to MCInst.
3964 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3965 /// when they refer multiple MIOperands inside a single one.
3966 bool ARMAsmParser::
3967 cvtLdExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
3968                       const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3969   // Rt
3970   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3971   // Create a writeback register dummy placeholder.
3972   Inst.addOperand(MCOperand::CreateImm(0));
3973   // addr
3974   ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
3975   // offset
3976   ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
3977   // pred
3978   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3979   return true;
3980 }
3981
3982 /// cvtLdExtTWriteBackReg - Convert parsed operands to MCInst.
3983 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
3984 /// when they refer multiple MIOperands inside a single one.
3985 bool ARMAsmParser::
3986 cvtLdExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
3987                       const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
3988   // Rt
3989   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
3990   // Create a writeback register dummy placeholder.
3991   Inst.addOperand(MCOperand::CreateImm(0));
3992   // addr
3993   ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
3994   // offset
3995   ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
3996   // pred
3997   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
3998   return true;
3999 }
4000
4001 /// cvtStExtTWriteBackImm - Convert parsed operands to MCInst.
4002 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4003 /// when they refer multiple MIOperands inside a single one.
4004 bool ARMAsmParser::
4005 cvtStExtTWriteBackImm(MCInst &Inst, unsigned Opcode,
4006                       const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4007   // Create a writeback register dummy placeholder.
4008   Inst.addOperand(MCOperand::CreateImm(0));
4009   // Rt
4010   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4011   // addr
4012   ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4013   // offset
4014   ((ARMOperand*)Operands[4])->addPostIdxImm8Operands(Inst, 1);
4015   // pred
4016   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4017   return true;
4018 }
4019
4020 /// cvtStExtTWriteBackReg - Convert parsed operands to MCInst.
4021 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4022 /// when they refer multiple MIOperands inside a single one.
4023 bool ARMAsmParser::
4024 cvtStExtTWriteBackReg(MCInst &Inst, unsigned Opcode,
4025                       const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4026   // Create a writeback register dummy placeholder.
4027   Inst.addOperand(MCOperand::CreateImm(0));
4028   // Rt
4029   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4030   // addr
4031   ((ARMOperand*)Operands[3])->addMemNoOffsetOperands(Inst, 1);
4032   // offset
4033   ((ARMOperand*)Operands[4])->addPostIdxRegOperands(Inst, 2);
4034   // pred
4035   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4036   return true;
4037 }
4038
4039 /// cvtLdrdPre - Convert parsed operands to MCInst.
4040 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4041 /// when they refer multiple MIOperands inside a single one.
4042 bool ARMAsmParser::
4043 cvtLdrdPre(MCInst &Inst, unsigned Opcode,
4044            const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4045   // Rt, Rt2
4046   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4047   ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4048   // Create a writeback register dummy placeholder.
4049   Inst.addOperand(MCOperand::CreateImm(0));
4050   // addr
4051   ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4052   // pred
4053   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4054   return true;
4055 }
4056
4057 /// cvtStrdPre - Convert parsed operands to MCInst.
4058 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4059 /// when they refer multiple MIOperands inside a single one.
4060 bool ARMAsmParser::
4061 cvtStrdPre(MCInst &Inst, unsigned Opcode,
4062            const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4063   // Create a writeback register dummy placeholder.
4064   Inst.addOperand(MCOperand::CreateImm(0));
4065   // Rt, Rt2
4066   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4067   ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4068   // addr
4069   ((ARMOperand*)Operands[4])->addAddrMode3Operands(Inst, 3);
4070   // pred
4071   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4072   return true;
4073 }
4074
4075 /// cvtLdWriteBackRegAddrMode3 - Convert parsed operands to MCInst.
4076 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4077 /// when they refer multiple MIOperands inside a single one.
4078 bool ARMAsmParser::
4079 cvtLdWriteBackRegAddrMode3(MCInst &Inst, unsigned Opcode,
4080                          const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4081   ((ARMOperand*)Operands[2])->addRegOperands(Inst, 1);
4082   // Create a writeback register dummy placeholder.
4083   Inst.addOperand(MCOperand::CreateImm(0));
4084   ((ARMOperand*)Operands[3])->addAddrMode3Operands(Inst, 3);
4085   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4086   return true;
4087 }
4088
4089 /// cvtThumbMultiple- Convert parsed operands to MCInst.
4090 /// Needed here because the Asm Gen Matcher can't handle properly tied operands
4091 /// when they refer multiple MIOperands inside a single one.
4092 bool ARMAsmParser::
4093 cvtThumbMultiply(MCInst &Inst, unsigned Opcode,
4094            const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4095   // The second source operand must be the same register as the destination
4096   // operand.
4097   if (Operands.size() == 6 &&
4098       (((ARMOperand*)Operands[3])->getReg() !=
4099        ((ARMOperand*)Operands[5])->getReg()) &&
4100       (((ARMOperand*)Operands[3])->getReg() !=
4101        ((ARMOperand*)Operands[4])->getReg())) {
4102     Error(Operands[3]->getStartLoc(),
4103           "destination register must match source register");
4104     return false;
4105   }
4106   ((ARMOperand*)Operands[3])->addRegOperands(Inst, 1);
4107   ((ARMOperand*)Operands[1])->addCCOutOperands(Inst, 1);
4108   // If we have a three-operand form, make sure to set Rn to be the operand
4109   // that isn't the same as Rd.
4110   unsigned RegOp = 4;
4111   if (Operands.size() == 6 &&
4112       ((ARMOperand*)Operands[4])->getReg() ==
4113         ((ARMOperand*)Operands[3])->getReg())
4114     RegOp = 5;
4115   ((ARMOperand*)Operands[RegOp])->addRegOperands(Inst, 1);
4116   Inst.addOperand(Inst.getOperand(0));
4117   ((ARMOperand*)Operands[2])->addCondCodeOperands(Inst, 2);
4118
4119   return true;
4120 }
4121
4122 bool ARMAsmParser::
4123 cvtVLDwbFixed(MCInst &Inst, unsigned Opcode,
4124               const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4125   // Vd
4126   ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4127   // Create a writeback register dummy placeholder.
4128   Inst.addOperand(MCOperand::CreateImm(0));
4129   // Vn
4130   ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4131   // pred
4132   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4133   return true;
4134 }
4135
4136 bool ARMAsmParser::
4137 cvtVLDwbRegister(MCInst &Inst, unsigned Opcode,
4138                  const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4139   // Vd
4140   ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4141   // Create a writeback register dummy placeholder.
4142   Inst.addOperand(MCOperand::CreateImm(0));
4143   // Vn
4144   ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4145   // Vm
4146   ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4147   // pred
4148   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4149   return true;
4150 }
4151
4152 bool ARMAsmParser::
4153 cvtVSTwbFixed(MCInst &Inst, unsigned Opcode,
4154               const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4155   // Create a writeback register dummy placeholder.
4156   Inst.addOperand(MCOperand::CreateImm(0));
4157   // Vn
4158   ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4159   // Vt
4160   ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4161   // pred
4162   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4163   return true;
4164 }
4165
4166 bool ARMAsmParser::
4167 cvtVSTwbRegister(MCInst &Inst, unsigned Opcode,
4168                  const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4169   // Create a writeback register dummy placeholder.
4170   Inst.addOperand(MCOperand::CreateImm(0));
4171   // Vn
4172   ((ARMOperand*)Operands[4])->addAlignedMemoryOperands(Inst, 2);
4173   // Vm
4174   ((ARMOperand*)Operands[5])->addRegOperands(Inst, 1);
4175   // Vt
4176   ((ARMOperand*)Operands[3])->addVecListOperands(Inst, 1);
4177   // pred
4178   ((ARMOperand*)Operands[1])->addCondCodeOperands(Inst, 2);
4179   return true;
4180 }
4181
4182 /// Parse an ARM memory expression, return false if successful else return true
4183 /// or an error.  The first token must be a '[' when called.
4184 bool ARMAsmParser::
4185 parseMemory(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4186   SMLoc S, E;
4187   assert(Parser.getTok().is(AsmToken::LBrac) &&
4188          "Token is not a Left Bracket");
4189   S = Parser.getTok().getLoc();
4190   Parser.Lex(); // Eat left bracket token.
4191
4192   const AsmToken &BaseRegTok = Parser.getTok();
4193   int BaseRegNum = tryParseRegister();
4194   if (BaseRegNum == -1)
4195     return Error(BaseRegTok.getLoc(), "register expected");
4196
4197   // The next token must either be a comma or a closing bracket.
4198   const AsmToken &Tok = Parser.getTok();
4199   if (!Tok.is(AsmToken::Comma) && !Tok.is(AsmToken::RBrac))
4200     return Error(Tok.getLoc(), "malformed memory operand");
4201
4202   if (Tok.is(AsmToken::RBrac)) {
4203     E = Tok.getLoc();
4204     Parser.Lex(); // Eat right bracket token.
4205
4206     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0, ARM_AM::no_shift,
4207                                              0, 0, false, S, E));
4208
4209     // If there's a pre-indexing writeback marker, '!', just add it as a token
4210     // operand. It's rather odd, but syntactically valid.
4211     if (Parser.getTok().is(AsmToken::Exclaim)) {
4212       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4213       Parser.Lex(); // Eat the '!'.
4214     }
4215
4216     return false;
4217   }
4218
4219   assert(Tok.is(AsmToken::Comma) && "Lost comma in memory operand?!");
4220   Parser.Lex(); // Eat the comma.
4221
4222   // If we have a ':', it's an alignment specifier.
4223   if (Parser.getTok().is(AsmToken::Colon)) {
4224     Parser.Lex(); // Eat the ':'.
4225     E = Parser.getTok().getLoc();
4226
4227     const MCExpr *Expr;
4228     if (getParser().ParseExpression(Expr))
4229      return true;
4230
4231     // The expression has to be a constant. Memory references with relocations
4232     // don't come through here, as they use the <label> forms of the relevant
4233     // instructions.
4234     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4235     if (!CE)
4236       return Error (E, "constant expression expected");
4237
4238     unsigned Align = 0;
4239     switch (CE->getValue()) {
4240     default:
4241       return Error(E,
4242                    "alignment specifier must be 16, 32, 64, 128, or 256 bits");
4243     case 16:  Align = 2; break;
4244     case 32:  Align = 4; break;
4245     case 64:  Align = 8; break;
4246     case 128: Align = 16; break;
4247     case 256: Align = 32; break;
4248     }
4249
4250     // Now we should have the closing ']'
4251     E = Parser.getTok().getLoc();
4252     if (Parser.getTok().isNot(AsmToken::RBrac))
4253       return Error(E, "']' expected");
4254     Parser.Lex(); // Eat right bracket token.
4255
4256     // Don't worry about range checking the value here. That's handled by
4257     // the is*() predicates.
4258     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, 0,
4259                                              ARM_AM::no_shift, 0, Align,
4260                                              false, S, E));
4261
4262     // If there's a pre-indexing writeback marker, '!', just add it as a token
4263     // operand.
4264     if (Parser.getTok().is(AsmToken::Exclaim)) {
4265       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4266       Parser.Lex(); // Eat the '!'.
4267     }
4268
4269     return false;
4270   }
4271
4272   // If we have a '#', it's an immediate offset, else assume it's a register
4273   // offset. Be friendly and also accept a plain integer (without a leading
4274   // hash) for gas compatibility.
4275   if (Parser.getTok().is(AsmToken::Hash) ||
4276       Parser.getTok().is(AsmToken::Dollar) ||
4277       Parser.getTok().is(AsmToken::Integer)) {
4278     if (Parser.getTok().isNot(AsmToken::Integer))
4279       Parser.Lex(); // Eat the '#'.
4280     E = Parser.getTok().getLoc();
4281
4282     bool isNegative = getParser().getTok().is(AsmToken::Minus);
4283     const MCExpr *Offset;
4284     if (getParser().ParseExpression(Offset))
4285      return true;
4286
4287     // The expression has to be a constant. Memory references with relocations
4288     // don't come through here, as they use the <label> forms of the relevant
4289     // instructions.
4290     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Offset);
4291     if (!CE)
4292       return Error (E, "constant expression expected");
4293
4294     // If the constant was #-0, represent it as INT32_MIN.
4295     int32_t Val = CE->getValue();
4296     if (isNegative && Val == 0)
4297       CE = MCConstantExpr::Create(INT32_MIN, getContext());
4298
4299     // Now we should have the closing ']'
4300     E = Parser.getTok().getLoc();
4301     if (Parser.getTok().isNot(AsmToken::RBrac))
4302       return Error(E, "']' expected");
4303     Parser.Lex(); // Eat right bracket token.
4304
4305     // Don't worry about range checking the value here. That's handled by
4306     // the is*() predicates.
4307     Operands.push_back(ARMOperand::CreateMem(BaseRegNum, CE, 0,
4308                                              ARM_AM::no_shift, 0, 0,
4309                                              false, S, E));
4310
4311     // If there's a pre-indexing writeback marker, '!', just add it as a token
4312     // operand.
4313     if (Parser.getTok().is(AsmToken::Exclaim)) {
4314       Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4315       Parser.Lex(); // Eat the '!'.
4316     }
4317
4318     return false;
4319   }
4320
4321   // The register offset is optionally preceded by a '+' or '-'
4322   bool isNegative = false;
4323   if (Parser.getTok().is(AsmToken::Minus)) {
4324     isNegative = true;
4325     Parser.Lex(); // Eat the '-'.
4326   } else if (Parser.getTok().is(AsmToken::Plus)) {
4327     // Nothing to do.
4328     Parser.Lex(); // Eat the '+'.
4329   }
4330
4331   E = Parser.getTok().getLoc();
4332   int OffsetRegNum = tryParseRegister();
4333   if (OffsetRegNum == -1)
4334     return Error(E, "register expected");
4335
4336   // If there's a shift operator, handle it.
4337   ARM_AM::ShiftOpc ShiftType = ARM_AM::no_shift;
4338   unsigned ShiftImm = 0;
4339   if (Parser.getTok().is(AsmToken::Comma)) {
4340     Parser.Lex(); // Eat the ','.
4341     if (parseMemRegOffsetShift(ShiftType, ShiftImm))
4342       return true;
4343   }
4344
4345   // Now we should have the closing ']'
4346   E = Parser.getTok().getLoc();
4347   if (Parser.getTok().isNot(AsmToken::RBrac))
4348     return Error(E, "']' expected");
4349   Parser.Lex(); // Eat right bracket token.
4350
4351   Operands.push_back(ARMOperand::CreateMem(BaseRegNum, 0, OffsetRegNum,
4352                                            ShiftType, ShiftImm, 0, isNegative,
4353                                            S, E));
4354
4355   // If there's a pre-indexing writeback marker, '!', just add it as a token
4356   // operand.
4357   if (Parser.getTok().is(AsmToken::Exclaim)) {
4358     Operands.push_back(ARMOperand::CreateToken("!",Parser.getTok().getLoc()));
4359     Parser.Lex(); // Eat the '!'.
4360   }
4361
4362   return false;
4363 }
4364
4365 /// parseMemRegOffsetShift - one of these two:
4366 ///   ( lsl | lsr | asr | ror ) , # shift_amount
4367 ///   rrx
4368 /// return true if it parses a shift otherwise it returns false.
4369 bool ARMAsmParser::parseMemRegOffsetShift(ARM_AM::ShiftOpc &St,
4370                                           unsigned &Amount) {
4371   SMLoc Loc = Parser.getTok().getLoc();
4372   const AsmToken &Tok = Parser.getTok();
4373   if (Tok.isNot(AsmToken::Identifier))
4374     return true;
4375   StringRef ShiftName = Tok.getString();
4376   if (ShiftName == "lsl" || ShiftName == "LSL" ||
4377       ShiftName == "asl" || ShiftName == "ASL")
4378     St = ARM_AM::lsl;
4379   else if (ShiftName == "lsr" || ShiftName == "LSR")
4380     St = ARM_AM::lsr;
4381   else if (ShiftName == "asr" || ShiftName == "ASR")
4382     St = ARM_AM::asr;
4383   else if (ShiftName == "ror" || ShiftName == "ROR")
4384     St = ARM_AM::ror;
4385   else if (ShiftName == "rrx" || ShiftName == "RRX")
4386     St = ARM_AM::rrx;
4387   else
4388     return Error(Loc, "illegal shift operator");
4389   Parser.Lex(); // Eat shift type token.
4390
4391   // rrx stands alone.
4392   Amount = 0;
4393   if (St != ARM_AM::rrx) {
4394     Loc = Parser.getTok().getLoc();
4395     // A '#' and a shift amount.
4396     const AsmToken &HashTok = Parser.getTok();
4397     if (HashTok.isNot(AsmToken::Hash) &&
4398         HashTok.isNot(AsmToken::Dollar))
4399       return Error(HashTok.getLoc(), "'#' expected");
4400     Parser.Lex(); // Eat hash token.
4401
4402     const MCExpr *Expr;
4403     if (getParser().ParseExpression(Expr))
4404       return true;
4405     // Range check the immediate.
4406     // lsl, ror: 0 <= imm <= 31
4407     // lsr, asr: 0 <= imm <= 32
4408     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Expr);
4409     if (!CE)
4410       return Error(Loc, "shift amount must be an immediate");
4411     int64_t Imm = CE->getValue();
4412     if (Imm < 0 ||
4413         ((St == ARM_AM::lsl || St == ARM_AM::ror) && Imm > 31) ||
4414         ((St == ARM_AM::lsr || St == ARM_AM::asr) && Imm > 32))
4415       return Error(Loc, "immediate shift value out of range");
4416     Amount = Imm;
4417   }
4418
4419   return false;
4420 }
4421
4422 /// parseFPImm - A floating point immediate expression operand.
4423 ARMAsmParser::OperandMatchResultTy ARMAsmParser::
4424 parseFPImm(SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4425   // Anything that can accept a floating point constant as an operand
4426   // needs to go through here, as the regular ParseExpression is
4427   // integer only.
4428   //
4429   // This routine still creates a generic Immediate operand, containing
4430   // a bitcast of the 64-bit floating point value. The various operands
4431   // that accept floats can check whether the value is valid for them
4432   // via the standard is*() predicates.
4433
4434   SMLoc S = Parser.getTok().getLoc();
4435
4436   if (Parser.getTok().isNot(AsmToken::Hash) &&
4437       Parser.getTok().isNot(AsmToken::Dollar))
4438     return MatchOperand_NoMatch;
4439
4440   // Disambiguate the VMOV forms that can accept an FP immediate.
4441   // vmov.f32 <sreg>, #imm
4442   // vmov.f64 <dreg>, #imm
4443   // vmov.f32 <dreg>, #imm  @ vector f32x2
4444   // vmov.f32 <qreg>, #imm  @ vector f32x4
4445   //
4446   // There are also the NEON VMOV instructions which expect an
4447   // integer constant. Make sure we don't try to parse an FPImm
4448   // for these:
4449   // vmov.i{8|16|32|64} <dreg|qreg>, #imm
4450   ARMOperand *TyOp = static_cast<ARMOperand*>(Operands[2]);
4451   if (!TyOp->isToken() || (TyOp->getToken() != ".f32" &&
4452                            TyOp->getToken() != ".f64"))
4453     return MatchOperand_NoMatch;
4454
4455   Parser.Lex(); // Eat the '#'.
4456
4457   // Handle negation, as that still comes through as a separate token.
4458   bool isNegative = false;
4459   if (Parser.getTok().is(AsmToken::Minus)) {
4460     isNegative = true;
4461     Parser.Lex();
4462   }
4463   const AsmToken &Tok = Parser.getTok();
4464   SMLoc Loc = Tok.getLoc();
4465   if (Tok.is(AsmToken::Real)) {
4466     APFloat RealVal(APFloat::IEEEsingle, Tok.getString());
4467     uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
4468     // If we had a '-' in front, toggle the sign bit.
4469     IntVal ^= (uint64_t)isNegative << 31;
4470     Parser.Lex(); // Eat the token.
4471     Operands.push_back(ARMOperand::CreateImm(
4472           MCConstantExpr::Create(IntVal, getContext()),
4473           S, Parser.getTok().getLoc()));
4474     return MatchOperand_Success;
4475   }
4476   // Also handle plain integers. Instructions which allow floating point
4477   // immediates also allow a raw encoded 8-bit value.
4478   if (Tok.is(AsmToken::Integer)) {
4479     int64_t Val = Tok.getIntVal();
4480     Parser.Lex(); // Eat the token.
4481     if (Val > 255 || Val < 0) {
4482       Error(Loc, "encoded floating point value out of range");
4483       return MatchOperand_ParseFail;
4484     }
4485     double RealVal = ARM_AM::getFPImmFloat(Val);
4486     Val = APFloat(APFloat::IEEEdouble, RealVal).bitcastToAPInt().getZExtValue();
4487     Operands.push_back(ARMOperand::CreateImm(
4488         MCConstantExpr::Create(Val, getContext()), S,
4489         Parser.getTok().getLoc()));
4490     return MatchOperand_Success;
4491   }
4492
4493   Error(Loc, "invalid floating point immediate");
4494   return MatchOperand_ParseFail;
4495 }
4496
4497 /// Parse a arm instruction operand.  For now this parses the operand regardless
4498 /// of the mnemonic.
4499 bool ARMAsmParser::parseOperand(SmallVectorImpl<MCParsedAsmOperand*> &Operands,
4500                                 StringRef Mnemonic) {
4501   SMLoc S, E;
4502
4503   // Check if the current operand has a custom associated parser, if so, try to
4504   // custom parse the operand, or fallback to the general approach.
4505   OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
4506   if (ResTy == MatchOperand_Success)
4507     return false;
4508   // If there wasn't a custom match, try the generic matcher below. Otherwise,
4509   // there was a match, but an error occurred, in which case, just return that
4510   // the operand parsing failed.
4511   if (ResTy == MatchOperand_ParseFail)
4512     return true;
4513
4514   switch (getLexer().getKind()) {
4515   default:
4516     Error(Parser.getTok().getLoc(), "unexpected token in operand");
4517     return true;
4518   case AsmToken::Identifier: {
4519     if (!tryParseRegisterWithWriteBack(Operands))
4520       return false;
4521     int Res = tryParseShiftRegister(Operands);
4522     if (Res == 0) // success
4523       return false;
4524     else if (Res == -1) // irrecoverable error
4525       return true;
4526     // If this is VMRS, check for the apsr_nzcv operand.
4527     if (Mnemonic == "vmrs" &&
4528         Parser.getTok().getString().equals_lower("apsr_nzcv")) {
4529       S = Parser.getTok().getLoc();
4530       Parser.Lex();
4531       Operands.push_back(ARMOperand::CreateToken("APSR_nzcv", S));
4532       return false;
4533     }
4534
4535     // Fall though for the Identifier case that is not a register or a
4536     // special name.
4537   }
4538   case AsmToken::LParen:  // parenthesized expressions like (_strcmp-4)
4539   case AsmToken::Integer: // things like 1f and 2b as a branch targets
4540   case AsmToken::String:  // quoted label names.
4541   case AsmToken::Dot: {   // . as a branch target
4542     // This was not a register so parse other operands that start with an
4543     // identifier (like labels) as expressions and create them as immediates.
4544     const MCExpr *IdVal;
4545     S = Parser.getTok().getLoc();
4546     if (getParser().ParseExpression(IdVal))
4547       return true;
4548     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4549     Operands.push_back(ARMOperand::CreateImm(IdVal, S, E));
4550     return false;
4551   }
4552   case AsmToken::LBrac:
4553     return parseMemory(Operands);
4554   case AsmToken::LCurly:
4555     return parseRegisterList(Operands);
4556   case AsmToken::Dollar:
4557   case AsmToken::Hash: {
4558     // #42 -> immediate.
4559     S = Parser.getTok().getLoc();
4560     Parser.Lex();
4561
4562     if (Parser.getTok().isNot(AsmToken::Colon)) {
4563       bool isNegative = Parser.getTok().is(AsmToken::Minus);
4564       const MCExpr *ImmVal;
4565       if (getParser().ParseExpression(ImmVal))
4566         return true;
4567       const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(ImmVal);
4568       if (CE) {
4569         int32_t Val = CE->getValue();
4570         if (isNegative && Val == 0)
4571           ImmVal = MCConstantExpr::Create(INT32_MIN, getContext());
4572       }
4573       E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4574       Operands.push_back(ARMOperand::CreateImm(ImmVal, S, E));
4575       return false;
4576     }
4577     // w/ a ':' after the '#', it's just like a plain ':'.
4578     // FALLTHROUGH
4579   }
4580   case AsmToken::Colon: {
4581     // ":lower16:" and ":upper16:" expression prefixes
4582     // FIXME: Check it's an expression prefix,
4583     // e.g. (FOO - :lower16:BAR) isn't legal.
4584     ARMMCExpr::VariantKind RefKind;
4585     if (parsePrefix(RefKind))
4586       return true;
4587
4588     const MCExpr *SubExprVal;
4589     if (getParser().ParseExpression(SubExprVal))
4590       return true;
4591
4592     const MCExpr *ExprVal = ARMMCExpr::Create(RefKind, SubExprVal,
4593                                                    getContext());
4594     E = SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
4595     Operands.push_back(ARMOperand::CreateImm(ExprVal, S, E));
4596     return false;
4597   }
4598   }
4599 }
4600
4601 // parsePrefix - Parse ARM 16-bit relocations expression prefix, i.e.
4602 //  :lower16: and :upper16:.
4603 bool ARMAsmParser::parsePrefix(ARMMCExpr::VariantKind &RefKind) {
4604   RefKind = ARMMCExpr::VK_ARM_None;
4605
4606   // :lower16: and :upper16: modifiers
4607   assert(getLexer().is(AsmToken::Colon) && "expected a :");
4608   Parser.Lex(); // Eat ':'
4609
4610   if (getLexer().isNot(AsmToken::Identifier)) {
4611     Error(Parser.getTok().getLoc(), "expected prefix identifier in operand");
4612     return true;
4613   }
4614
4615   StringRef IDVal = Parser.getTok().getIdentifier();
4616   if (IDVal == "lower16") {
4617     RefKind = ARMMCExpr::VK_ARM_LO16;
4618   } else if (IDVal == "upper16") {
4619     RefKind = ARMMCExpr::VK_ARM_HI16;
4620   } else {
4621     Error(Parser.getTok().getLoc(), "unexpected prefix in operand");
4622     return true;
4623   }
4624   Parser.Lex();
4625
4626   if (getLexer().isNot(AsmToken::Colon)) {
4627     Error(Parser.getTok().getLoc(), "unexpected token after prefix");
4628     return true;
4629   }
4630   Parser.Lex(); // Eat the last ':'
4631   return false;
4632 }
4633
4634 /// \brief Given a mnemonic, split out possible predication code and carry
4635 /// setting letters to form a canonical mnemonic and flags.
4636 //
4637 // FIXME: Would be nice to autogen this.
4638 // FIXME: This is a bit of a maze of special cases.
4639 StringRef ARMAsmParser::splitMnemonic(StringRef Mnemonic,
4640                                       unsigned &PredicationCode,
4641                                       bool &CarrySetting,
4642                                       unsigned &ProcessorIMod,
4643                                       StringRef &ITMask) {
4644   PredicationCode = ARMCC::AL;
4645   CarrySetting = false;
4646   ProcessorIMod = 0;
4647
4648   // Ignore some mnemonics we know aren't predicated forms.
4649   //
4650   // FIXME: Would be nice to autogen this.
4651   if ((Mnemonic == "movs" && isThumb()) ||
4652       Mnemonic == "teq"   || Mnemonic == "vceq"   || Mnemonic == "svc"   ||
4653       Mnemonic == "mls"   || Mnemonic == "smmls"  || Mnemonic == "vcls"  ||
4654       Mnemonic == "vmls"  || Mnemonic == "vnmls"  || Mnemonic == "vacge" ||
4655       Mnemonic == "vcge"  || Mnemonic == "vclt"   || Mnemonic == "vacgt" ||
4656       Mnemonic == "vcgt"  || Mnemonic == "vcle"   || Mnemonic == "smlal" ||
4657       Mnemonic == "umaal" || Mnemonic == "umlal"  || Mnemonic == "vabal" ||
4658       Mnemonic == "vmlal" || Mnemonic == "vpadal" || Mnemonic == "vqdmlal" ||
4659       Mnemonic == "fmuls")
4660     return Mnemonic;
4661
4662   // First, split out any predication code. Ignore mnemonics we know aren't
4663   // predicated but do have a carry-set and so weren't caught above.
4664   if (Mnemonic != "adcs" && Mnemonic != "bics" && Mnemonic != "movs" &&
4665       Mnemonic != "muls" && Mnemonic != "smlals" && Mnemonic != "smulls" &&
4666       Mnemonic != "umlals" && Mnemonic != "umulls" && Mnemonic != "lsls" &&
4667       Mnemonic != "sbcs" && Mnemonic != "rscs") {
4668     unsigned CC = StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2))
4669       .Case("eq", ARMCC::EQ)
4670       .Case("ne", ARMCC::NE)
4671       .Case("hs", ARMCC::HS)
4672       .Case("cs", ARMCC::HS)
4673       .Case("lo", ARMCC::LO)
4674       .Case("cc", ARMCC::LO)
4675       .Case("mi", ARMCC::MI)
4676       .Case("pl", ARMCC::PL)
4677       .Case("vs", ARMCC::VS)
4678       .Case("vc", ARMCC::VC)
4679       .Case("hi", ARMCC::HI)
4680       .Case("ls", ARMCC::LS)
4681       .Case("ge", ARMCC::GE)
4682       .Case("lt", ARMCC::LT)
4683       .Case("gt", ARMCC::GT)
4684       .Case("le", ARMCC::LE)
4685       .Case("al", ARMCC::AL)
4686       .Default(~0U);
4687     if (CC != ~0U) {
4688       Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 2);
4689       PredicationCode = CC;
4690     }
4691   }
4692
4693   // Next, determine if we have a carry setting bit. We explicitly ignore all
4694   // the instructions we know end in 's'.
4695   if (Mnemonic.endswith("s") &&
4696       !(Mnemonic == "cps" || Mnemonic == "mls" ||
4697         Mnemonic == "mrs" || Mnemonic == "smmls" || Mnemonic == "vabs" ||
4698         Mnemonic == "vcls" || Mnemonic == "vmls" || Mnemonic == "vmrs" ||
4699         Mnemonic == "vnmls" || Mnemonic == "vqabs" || Mnemonic == "vrecps" ||
4700         Mnemonic == "vrsqrts" || Mnemonic == "srs" || Mnemonic == "flds" ||
4701         Mnemonic == "fmrs" || Mnemonic == "fsqrts" || Mnemonic == "fsubs" ||
4702         Mnemonic == "fsts" || Mnemonic == "fcpys" || Mnemonic == "fdivs" ||
4703         Mnemonic == "fmuls" || Mnemonic == "fcmps" || Mnemonic == "fcmpzs" ||
4704         Mnemonic == "vfms" || Mnemonic == "vfnms" ||
4705         (Mnemonic == "movs" && isThumb()))) {
4706     Mnemonic = Mnemonic.slice(0, Mnemonic.size() - 1);
4707     CarrySetting = true;
4708   }
4709
4710   // The "cps" instruction can have a interrupt mode operand which is glued into
4711   // the mnemonic. Check if this is the case, split it and parse the imod op
4712   if (Mnemonic.startswith("cps")) {
4713     // Split out any imod code.
4714     unsigned IMod =
4715       StringSwitch<unsigned>(Mnemonic.substr(Mnemonic.size()-2, 2))
4716       .Case("ie", ARM_PROC::IE)
4717       .Case("id", ARM_PROC::ID)
4718       .Default(~0U);
4719     if (IMod != ~0U) {
4720       Mnemonic = Mnemonic.slice(0, Mnemonic.size()-2);
4721       ProcessorIMod = IMod;
4722     }
4723   }
4724
4725   // The "it" instruction has the condition mask on the end of the mnemonic.
4726   if (Mnemonic.startswith("it")) {
4727     ITMask = Mnemonic.slice(2, Mnemonic.size());
4728     Mnemonic = Mnemonic.slice(0, 2);
4729   }
4730
4731   return Mnemonic;
4732 }
4733
4734 /// \brief Given a canonical mnemonic, determine if the instruction ever allows
4735 /// inclusion of carry set or predication code operands.
4736 //
4737 // FIXME: It would be nice to autogen this.
4738 void ARMAsmParser::
4739 getMnemonicAcceptInfo(StringRef Mnemonic, bool &CanAcceptCarrySet,
4740                       bool &CanAcceptPredicationCode) {
4741   if (Mnemonic == "and" || Mnemonic == "lsl" || Mnemonic == "lsr" ||
4742       Mnemonic == "rrx" || Mnemonic == "ror" || Mnemonic == "sub" ||
4743       Mnemonic == "add" || Mnemonic == "adc" ||
4744       Mnemonic == "mul" || Mnemonic == "bic" || Mnemonic == "asr" ||
4745       Mnemonic == "orr" || Mnemonic == "mvn" ||
4746       Mnemonic == "rsb" || Mnemonic == "rsc" || Mnemonic == "orn" ||
4747       Mnemonic == "sbc" || Mnemonic == "eor" || Mnemonic == "neg" ||
4748       Mnemonic == "vfm" || Mnemonic == "vfnm" ||
4749       (!isThumb() && (Mnemonic == "smull" || Mnemonic == "mov" ||
4750                       Mnemonic == "mla" || Mnemonic == "smlal" ||
4751                       Mnemonic == "umlal" || Mnemonic == "umull"))) {
4752     CanAcceptCarrySet = true;
4753   } else
4754     CanAcceptCarrySet = false;
4755
4756   if (Mnemonic == "cbnz" || Mnemonic == "setend" || Mnemonic == "dmb" ||
4757       Mnemonic == "cps" || Mnemonic == "mcr2" || Mnemonic == "it" ||
4758       Mnemonic == "mcrr2" || Mnemonic == "cbz" || Mnemonic == "cdp2" ||
4759       Mnemonic == "trap" || Mnemonic == "mrc2" || Mnemonic == "mrrc2" ||
4760       Mnemonic == "dsb" || Mnemonic == "isb" || Mnemonic == "setend" ||
4761       (Mnemonic == "clrex" && !isThumb()) ||
4762       (Mnemonic == "nop" && isThumbOne()) ||
4763       ((Mnemonic == "pld" || Mnemonic == "pli" || Mnemonic == "pldw" ||
4764         Mnemonic == "ldc2" || Mnemonic == "ldc2l" ||
4765         Mnemonic == "stc2" || Mnemonic == "stc2l") && !isThumb()) ||
4766       ((Mnemonic.startswith("rfe") || Mnemonic.startswith("srs")) &&
4767        !isThumb()) ||
4768       Mnemonic.startswith("cps") || (Mnemonic == "movs" && isThumbOne())) {
4769     CanAcceptPredicationCode = false;
4770   } else
4771     CanAcceptPredicationCode = true;
4772
4773   if (isThumb()) {
4774     if (Mnemonic == "bkpt" || Mnemonic == "mcr" || Mnemonic == "mcrr" ||
4775         Mnemonic == "mrc" || Mnemonic == "mrrc" || Mnemonic == "cdp")
4776       CanAcceptPredicationCode = false;
4777   }
4778 }
4779
4780 bool ARMAsmParser::shouldOmitCCOutOperand(StringRef Mnemonic,
4781                                SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4782   // FIXME: This is all horribly hacky. We really need a better way to deal
4783   // with optional operands like this in the matcher table.
4784
4785   // The 'mov' mnemonic is special. One variant has a cc_out operand, while
4786   // another does not. Specifically, the MOVW instruction does not. So we
4787   // special case it here and remove the defaulted (non-setting) cc_out
4788   // operand if that's the instruction we're trying to match.
4789   //
4790   // We do this as post-processing of the explicit operands rather than just
4791   // conditionally adding the cc_out in the first place because we need
4792   // to check the type of the parsed immediate operand.
4793   if (Mnemonic == "mov" && Operands.size() > 4 && !isThumb() &&
4794       !static_cast<ARMOperand*>(Operands[4])->isARMSOImm() &&
4795       static_cast<ARMOperand*>(Operands[4])->isImm0_65535Expr() &&
4796       static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4797     return true;
4798
4799   // Register-register 'add' for thumb does not have a cc_out operand
4800   // when there are only two register operands.
4801   if (isThumb() && Mnemonic == "add" && Operands.size() == 5 &&
4802       static_cast<ARMOperand*>(Operands[3])->isReg() &&
4803       static_cast<ARMOperand*>(Operands[4])->isReg() &&
4804       static_cast<ARMOperand*>(Operands[1])->getReg() == 0)
4805     return true;
4806   // Register-register 'add' for thumb does not have a cc_out operand
4807   // when it's an ADD Rdm, SP, {Rdm|#imm0_255} instruction. We do
4808   // have to check the immediate range here since Thumb2 has a variant
4809   // that can handle a different range and has a cc_out operand.
4810   if (((isThumb() && Mnemonic == "add") ||
4811        (isThumbTwo() && Mnemonic == "sub")) &&
4812       Operands.size() == 6 &&
4813       static_cast<ARMOperand*>(Operands[3])->isReg() &&
4814       static_cast<ARMOperand*>(Operands[4])->isReg() &&
4815       static_cast<ARMOperand*>(Operands[4])->getReg() == ARM::SP &&
4816       static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4817       ((Mnemonic == "add" &&static_cast<ARMOperand*>(Operands[5])->isReg()) ||
4818        static_cast<ARMOperand*>(Operands[5])->isImm0_1020s4()))
4819     return true;
4820   // For Thumb2, add/sub immediate does not have a cc_out operand for the
4821   // imm0_4095 variant. That's the least-preferred variant when
4822   // selecting via the generic "add" mnemonic, so to know that we
4823   // should remove the cc_out operand, we have to explicitly check that
4824   // it's not one of the other variants. Ugh.
4825   if (isThumbTwo() && (Mnemonic == "add" || Mnemonic == "sub") &&
4826       Operands.size() == 6 &&
4827       static_cast<ARMOperand*>(Operands[3])->isReg() &&
4828       static_cast<ARMOperand*>(Operands[4])->isReg() &&
4829       static_cast<ARMOperand*>(Operands[5])->isImm()) {
4830     // Nest conditions rather than one big 'if' statement for readability.
4831     //
4832     // If either register is a high reg, it's either one of the SP
4833     // variants (handled above) or a 32-bit encoding, so we just
4834     // check against T3. If the second register is the PC, this is an
4835     // alternate form of ADR, which uses encoding T4, so check for that too.
4836     if ((!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4837          !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg())) &&
4838         static_cast<ARMOperand*>(Operands[4])->getReg() != ARM::PC &&
4839         static_cast<ARMOperand*>(Operands[5])->isT2SOImm())
4840       return false;
4841     // If both registers are low, we're in an IT block, and the immediate is
4842     // in range, we should use encoding T1 instead, which has a cc_out.
4843     if (inITBlock() &&
4844         isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
4845         isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) &&
4846         static_cast<ARMOperand*>(Operands[5])->isImm0_7())
4847       return false;
4848
4849     // Otherwise, we use encoding T4, which does not have a cc_out
4850     // operand.
4851     return true;
4852   }
4853
4854   // The thumb2 multiply instruction doesn't have a CCOut register, so
4855   // if we have a "mul" mnemonic in Thumb mode, check if we'll be able to
4856   // use the 16-bit encoding or not.
4857   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 6 &&
4858       static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4859       static_cast<ARMOperand*>(Operands[3])->isReg() &&
4860       static_cast<ARMOperand*>(Operands[4])->isReg() &&
4861       static_cast<ARMOperand*>(Operands[5])->isReg() &&
4862       // If the registers aren't low regs, the destination reg isn't the
4863       // same as one of the source regs, or the cc_out operand is zero
4864       // outside of an IT block, we have to use the 32-bit encoding, so
4865       // remove the cc_out operand.
4866       (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4867        !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4868        !isARMLowRegister(static_cast<ARMOperand*>(Operands[5])->getReg()) ||
4869        !inITBlock() ||
4870        (static_cast<ARMOperand*>(Operands[3])->getReg() !=
4871         static_cast<ARMOperand*>(Operands[5])->getReg() &&
4872         static_cast<ARMOperand*>(Operands[3])->getReg() !=
4873         static_cast<ARMOperand*>(Operands[4])->getReg())))
4874     return true;
4875
4876   // Also check the 'mul' syntax variant that doesn't specify an explicit
4877   // destination register.
4878   if (isThumbTwo() && Mnemonic == "mul" && Operands.size() == 5 &&
4879       static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4880       static_cast<ARMOperand*>(Operands[3])->isReg() &&
4881       static_cast<ARMOperand*>(Operands[4])->isReg() &&
4882       // If the registers aren't low regs  or the cc_out operand is zero
4883       // outside of an IT block, we have to use the 32-bit encoding, so
4884       // remove the cc_out operand.
4885       (!isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) ||
4886        !isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()) ||
4887        !inITBlock()))
4888     return true;
4889
4890
4891
4892   // Register-register 'add/sub' for thumb does not have a cc_out operand
4893   // when it's an ADD/SUB SP, #imm. Be lenient on count since there's also
4894   // the "add/sub SP, SP, #imm" version. If the follow-up operands aren't
4895   // right, this will result in better diagnostics (which operand is off)
4896   // anyway.
4897   if (isThumb() && (Mnemonic == "add" || Mnemonic == "sub") &&
4898       (Operands.size() == 5 || Operands.size() == 6) &&
4899       static_cast<ARMOperand*>(Operands[3])->isReg() &&
4900       static_cast<ARMOperand*>(Operands[3])->getReg() == ARM::SP &&
4901       static_cast<ARMOperand*>(Operands[1])->getReg() == 0 &&
4902       (static_cast<ARMOperand*>(Operands[4])->isImm() ||
4903        (Operands.size() == 6 &&
4904         static_cast<ARMOperand*>(Operands[5])->isImm())))
4905     return true;
4906
4907   return false;
4908 }
4909
4910 static bool isDataTypeToken(StringRef Tok) {
4911   return Tok == ".8" || Tok == ".16" || Tok == ".32" || Tok == ".64" ||
4912     Tok == ".i8" || Tok == ".i16" || Tok == ".i32" || Tok == ".i64" ||
4913     Tok == ".u8" || Tok == ".u16" || Tok == ".u32" || Tok == ".u64" ||
4914     Tok == ".s8" || Tok == ".s16" || Tok == ".s32" || Tok == ".s64" ||
4915     Tok == ".p8" || Tok == ".p16" || Tok == ".f32" || Tok == ".f64" ||
4916     Tok == ".f" || Tok == ".d";
4917 }
4918
4919 // FIXME: This bit should probably be handled via an explicit match class
4920 // in the .td files that matches the suffix instead of having it be
4921 // a literal string token the way it is now.
4922 static bool doesIgnoreDataTypeSuffix(StringRef Mnemonic, StringRef DT) {
4923   return Mnemonic.startswith("vldm") || Mnemonic.startswith("vstm");
4924 }
4925
4926 static void applyMnemonicAliases(StringRef &Mnemonic, unsigned Features);
4927 /// Parse an arm instruction mnemonic followed by its operands.
4928 bool ARMAsmParser::ParseInstruction(StringRef Name, SMLoc NameLoc,
4929                                SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
4930   // Apply mnemonic aliases before doing anything else, as the destination
4931   // mnemnonic may include suffices and we want to handle them normally.
4932   // The generic tblgen'erated code does this later, at the start of
4933   // MatchInstructionImpl(), but that's too late for aliases that include
4934   // any sort of suffix.
4935   unsigned AvailableFeatures = getAvailableFeatures();
4936   applyMnemonicAliases(Name, AvailableFeatures);
4937
4938   // First check for the ARM-specific .req directive.
4939   if (Parser.getTok().is(AsmToken::Identifier) &&
4940       Parser.getTok().getIdentifier() == ".req") {
4941     parseDirectiveReq(Name, NameLoc);
4942     // We always return 'error' for this, as we're done with this
4943     // statement and don't need to match the 'instruction."
4944     return true;
4945   }
4946
4947   // Create the leading tokens for the mnemonic, split by '.' characters.
4948   size_t Start = 0, Next = Name.find('.');
4949   StringRef Mnemonic = Name.slice(Start, Next);
4950
4951   // Split out the predication code and carry setting flag from the mnemonic.
4952   unsigned PredicationCode;
4953   unsigned ProcessorIMod;
4954   bool CarrySetting;
4955   StringRef ITMask;
4956   Mnemonic = splitMnemonic(Mnemonic, PredicationCode, CarrySetting,
4957                            ProcessorIMod, ITMask);
4958
4959   // In Thumb1, only the branch (B) instruction can be predicated.
4960   if (isThumbOne() && PredicationCode != ARMCC::AL && Mnemonic != "b") {
4961     Parser.EatToEndOfStatement();
4962     return Error(NameLoc, "conditional execution not supported in Thumb1");
4963   }
4964
4965   Operands.push_back(ARMOperand::CreateToken(Mnemonic, NameLoc));
4966
4967   // Handle the IT instruction ITMask. Convert it to a bitmask. This
4968   // is the mask as it will be for the IT encoding if the conditional
4969   // encoding has a '1' as it's bit0 (i.e. 't' ==> '1'). In the case
4970   // where the conditional bit0 is zero, the instruction post-processing
4971   // will adjust the mask accordingly.
4972   if (Mnemonic == "it") {
4973     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + 2);
4974     if (ITMask.size() > 3) {
4975       Parser.EatToEndOfStatement();
4976       return Error(Loc, "too many conditions on IT instruction");
4977     }
4978     unsigned Mask = 8;
4979     for (unsigned i = ITMask.size(); i != 0; --i) {
4980       char pos = ITMask[i - 1];
4981       if (pos != 't' && pos != 'e') {
4982         Parser.EatToEndOfStatement();
4983         return Error(Loc, "illegal IT block condition mask '" + ITMask + "'");
4984       }
4985       Mask >>= 1;
4986       if (ITMask[i - 1] == 't')
4987         Mask |= 8;
4988     }
4989     Operands.push_back(ARMOperand::CreateITMask(Mask, Loc));
4990   }
4991
4992   // FIXME: This is all a pretty gross hack. We should automatically handle
4993   // optional operands like this via tblgen.
4994
4995   // Next, add the CCOut and ConditionCode operands, if needed.
4996   //
4997   // For mnemonics which can ever incorporate a carry setting bit or predication
4998   // code, our matching model involves us always generating CCOut and
4999   // ConditionCode operands to match the mnemonic "as written" and then we let
5000   // the matcher deal with finding the right instruction or generating an
5001   // appropriate error.
5002   bool CanAcceptCarrySet, CanAcceptPredicationCode;
5003   getMnemonicAcceptInfo(Mnemonic, CanAcceptCarrySet, CanAcceptPredicationCode);
5004
5005   // If we had a carry-set on an instruction that can't do that, issue an
5006   // error.
5007   if (!CanAcceptCarrySet && CarrySetting) {
5008     Parser.EatToEndOfStatement();
5009     return Error(NameLoc, "instruction '" + Mnemonic +
5010                  "' can not set flags, but 's' suffix specified");
5011   }
5012   // If we had a predication code on an instruction that can't do that, issue an
5013   // error.
5014   if (!CanAcceptPredicationCode && PredicationCode != ARMCC::AL) {
5015     Parser.EatToEndOfStatement();
5016     return Error(NameLoc, "instruction '" + Mnemonic +
5017                  "' is not predicable, but condition code specified");
5018   }
5019
5020   // Add the carry setting operand, if necessary.
5021   if (CanAcceptCarrySet) {
5022     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size());
5023     Operands.push_back(ARMOperand::CreateCCOut(CarrySetting ? ARM::CPSR : 0,
5024                                                Loc));
5025   }
5026
5027   // Add the predication code operand, if necessary.
5028   if (CanAcceptPredicationCode) {
5029     SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Mnemonic.size() +
5030                                       CarrySetting);
5031     Operands.push_back(ARMOperand::CreateCondCode(
5032                          ARMCC::CondCodes(PredicationCode), Loc));
5033   }
5034
5035   // Add the processor imod operand, if necessary.
5036   if (ProcessorIMod) {
5037     Operands.push_back(ARMOperand::CreateImm(
5038           MCConstantExpr::Create(ProcessorIMod, getContext()),
5039                                  NameLoc, NameLoc));
5040   }
5041
5042   // Add the remaining tokens in the mnemonic.
5043   while (Next != StringRef::npos) {
5044     Start = Next;
5045     Next = Name.find('.', Start + 1);
5046     StringRef ExtraToken = Name.slice(Start, Next);
5047
5048     // Some NEON instructions have an optional datatype suffix that is
5049     // completely ignored. Check for that.
5050     if (isDataTypeToken(ExtraToken) &&
5051         doesIgnoreDataTypeSuffix(Mnemonic, ExtraToken))
5052       continue;
5053
5054     if (ExtraToken != ".n") {
5055       SMLoc Loc = SMLoc::getFromPointer(NameLoc.getPointer() + Start);
5056       Operands.push_back(ARMOperand::CreateToken(ExtraToken, Loc));
5057     }
5058   }
5059
5060   // Read the remaining operands.
5061   if (getLexer().isNot(AsmToken::EndOfStatement)) {
5062     // Read the first operand.
5063     if (parseOperand(Operands, Mnemonic)) {
5064       Parser.EatToEndOfStatement();
5065       return true;
5066     }
5067
5068     while (getLexer().is(AsmToken::Comma)) {
5069       Parser.Lex();  // Eat the comma.
5070
5071       // Parse and remember the operand.
5072       if (parseOperand(Operands, Mnemonic)) {
5073         Parser.EatToEndOfStatement();
5074         return true;
5075       }
5076     }
5077   }
5078
5079   if (getLexer().isNot(AsmToken::EndOfStatement)) {
5080     SMLoc Loc = getLexer().getLoc();
5081     Parser.EatToEndOfStatement();
5082     return Error(Loc, "unexpected token in argument list");
5083   }
5084
5085   Parser.Lex(); // Consume the EndOfStatement
5086
5087   // Some instructions, mostly Thumb, have forms for the same mnemonic that
5088   // do and don't have a cc_out optional-def operand. With some spot-checks
5089   // of the operand list, we can figure out which variant we're trying to
5090   // parse and adjust accordingly before actually matching. We shouldn't ever
5091   // try to remove a cc_out operand that was explicitly set on the the
5092   // mnemonic, of course (CarrySetting == true). Reason number #317 the
5093   // table driven matcher doesn't fit well with the ARM instruction set.
5094   if (!CarrySetting && shouldOmitCCOutOperand(Mnemonic, Operands)) {
5095     ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5096     Operands.erase(Operands.begin() + 1);
5097     delete Op;
5098   }
5099
5100   // ARM mode 'blx' need special handling, as the register operand version
5101   // is predicable, but the label operand version is not. So, we can't rely
5102   // on the Mnemonic based checking to correctly figure out when to put
5103   // a k_CondCode operand in the list. If we're trying to match the label
5104   // version, remove the k_CondCode operand here.
5105   if (!isThumb() && Mnemonic == "blx" && Operands.size() == 3 &&
5106       static_cast<ARMOperand*>(Operands[2])->isImm()) {
5107     ARMOperand *Op = static_cast<ARMOperand*>(Operands[1]);
5108     Operands.erase(Operands.begin() + 1);
5109     delete Op;
5110   }
5111
5112   // The vector-compare-to-zero instructions have a literal token "#0" at
5113   // the end that comes to here as an immediate operand. Convert it to a
5114   // token to play nicely with the matcher.
5115   if ((Mnemonic == "vceq" || Mnemonic == "vcge" || Mnemonic == "vcgt" ||
5116       Mnemonic == "vcle" || Mnemonic == "vclt") && Operands.size() == 6 &&
5117       static_cast<ARMOperand*>(Operands[5])->isImm()) {
5118     ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
5119     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
5120     if (CE && CE->getValue() == 0) {
5121       Operands.erase(Operands.begin() + 5);
5122       Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
5123       delete Op;
5124     }
5125   }
5126   // VCMP{E} does the same thing, but with a different operand count.
5127   if ((Mnemonic == "vcmp" || Mnemonic == "vcmpe") && Operands.size() == 5 &&
5128       static_cast<ARMOperand*>(Operands[4])->isImm()) {
5129     ARMOperand *Op = static_cast<ARMOperand*>(Operands[4]);
5130     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
5131     if (CE && CE->getValue() == 0) {
5132       Operands.erase(Operands.begin() + 4);
5133       Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
5134       delete Op;
5135     }
5136   }
5137   // Similarly, the Thumb1 "RSB" instruction has a literal "#0" on the
5138   // end. Convert it to a token here. Take care not to convert those
5139   // that should hit the Thumb2 encoding.
5140   if (Mnemonic == "rsb" && isThumb() && Operands.size() == 6 &&
5141       static_cast<ARMOperand*>(Operands[3])->isReg() &&
5142       static_cast<ARMOperand*>(Operands[4])->isReg() &&
5143       static_cast<ARMOperand*>(Operands[5])->isImm()) {
5144     ARMOperand *Op = static_cast<ARMOperand*>(Operands[5]);
5145     const MCConstantExpr *CE = dyn_cast<MCConstantExpr>(Op->getImm());
5146     if (CE && CE->getValue() == 0 &&
5147         (isThumbOne() ||
5148          // The cc_out operand matches the IT block.
5149          ((inITBlock() != CarrySetting) &&
5150          // Neither register operand is a high register.
5151          (isARMLowRegister(static_cast<ARMOperand*>(Operands[3])->getReg()) &&
5152           isARMLowRegister(static_cast<ARMOperand*>(Operands[4])->getReg()))))){
5153       Operands.erase(Operands.begin() + 5);
5154       Operands.push_back(ARMOperand::CreateToken("#0", Op->getStartLoc()));
5155       delete Op;
5156     }
5157   }
5158
5159   return false;
5160 }
5161
5162 // Validate context-sensitive operand constraints.
5163
5164 // return 'true' if register list contains non-low GPR registers,
5165 // 'false' otherwise. If Reg is in the register list or is HiReg, set
5166 // 'containsReg' to true.
5167 static bool checkLowRegisterList(MCInst Inst, unsigned OpNo, unsigned Reg,
5168                                  unsigned HiReg, bool &containsReg) {
5169   containsReg = false;
5170   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5171     unsigned OpReg = Inst.getOperand(i).getReg();
5172     if (OpReg == Reg)
5173       containsReg = true;
5174     // Anything other than a low register isn't legal here.
5175     if (!isARMLowRegister(OpReg) && (!HiReg || OpReg != HiReg))
5176       return true;
5177   }
5178   return false;
5179 }
5180
5181 // Check if the specified regisgter is in the register list of the inst,
5182 // starting at the indicated operand number.
5183 static bool listContainsReg(MCInst &Inst, unsigned OpNo, unsigned Reg) {
5184   for (unsigned i = OpNo; i < Inst.getNumOperands(); ++i) {
5185     unsigned OpReg = Inst.getOperand(i).getReg();
5186     if (OpReg == Reg)
5187       return true;
5188   }
5189   return false;
5190 }
5191
5192 // FIXME: We would really prefer to have MCInstrInfo (the wrapper around
5193 // the ARMInsts array) instead. Getting that here requires awkward
5194 // API changes, though. Better way?
5195 namespace llvm {
5196 extern const MCInstrDesc ARMInsts[];
5197 }
5198 static const MCInstrDesc &getInstDesc(unsigned Opcode) {
5199   return ARMInsts[Opcode];
5200 }
5201
5202 // FIXME: We would really like to be able to tablegen'erate this.
5203 bool ARMAsmParser::
5204 validateInstruction(MCInst &Inst,
5205                     const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5206   const MCInstrDesc &MCID = getInstDesc(Inst.getOpcode());
5207   SMLoc Loc = Operands[0]->getStartLoc();
5208   // Check the IT block state first.
5209   // NOTE: BKPT instruction has the interesting property of being
5210   // allowed in IT blocks, but not being predicable.  It just always
5211   // executes.
5212   if (inITBlock() && Inst.getOpcode() != ARM::tBKPT &&
5213       Inst.getOpcode() != ARM::BKPT) {
5214     unsigned bit = 1;
5215     if (ITState.FirstCond)
5216       ITState.FirstCond = false;
5217     else
5218       bit = (ITState.Mask >> (5 - ITState.CurPosition)) & 1;
5219     // The instruction must be predicable.
5220     if (!MCID.isPredicable())
5221       return Error(Loc, "instructions in IT block must be predicable");
5222     unsigned Cond = Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm();
5223     unsigned ITCond = bit ? ITState.Cond :
5224       ARMCC::getOppositeCondition(ITState.Cond);
5225     if (Cond != ITCond) {
5226       // Find the condition code Operand to get its SMLoc information.
5227       SMLoc CondLoc;
5228       for (unsigned i = 1; i < Operands.size(); ++i)
5229         if (static_cast<ARMOperand*>(Operands[i])->isCondCode())
5230           CondLoc = Operands[i]->getStartLoc();
5231       return Error(CondLoc, "incorrect condition in IT block; got '" +
5232                    StringRef(ARMCondCodeToString(ARMCC::CondCodes(Cond))) +
5233                    "', but expected '" +
5234                    ARMCondCodeToString(ARMCC::CondCodes(ITCond)) + "'");
5235     }
5236   // Check for non-'al' condition codes outside of the IT block.
5237   } else if (isThumbTwo() && MCID.isPredicable() &&
5238              Inst.getOperand(MCID.findFirstPredOperandIdx()).getImm() !=
5239              ARMCC::AL && Inst.getOpcode() != ARM::tB &&
5240              Inst.getOpcode() != ARM::t2B)
5241     return Error(Loc, "predicated instructions must be in IT block");
5242
5243   switch (Inst.getOpcode()) {
5244   case ARM::LDRD:
5245   case ARM::LDRD_PRE:
5246   case ARM::LDRD_POST:
5247   case ARM::LDREXD: {
5248     // Rt2 must be Rt + 1.
5249     unsigned Rt = getARMRegisterNumbering(Inst.getOperand(0).getReg());
5250     unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(1).getReg());
5251     if (Rt2 != Rt + 1)
5252       return Error(Operands[3]->getStartLoc(),
5253                    "destination operands must be sequential");
5254     return false;
5255   }
5256   case ARM::STRD: {
5257     // Rt2 must be Rt + 1.
5258     unsigned Rt = getARMRegisterNumbering(Inst.getOperand(0).getReg());
5259     unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(1).getReg());
5260     if (Rt2 != Rt + 1)
5261       return Error(Operands[3]->getStartLoc(),
5262                    "source operands must be sequential");
5263     return false;
5264   }
5265   case ARM::STRD_PRE:
5266   case ARM::STRD_POST:
5267   case ARM::STREXD: {
5268     // Rt2 must be Rt + 1.
5269     unsigned Rt = getARMRegisterNumbering(Inst.getOperand(1).getReg());
5270     unsigned Rt2 = getARMRegisterNumbering(Inst.getOperand(2).getReg());
5271     if (Rt2 != Rt + 1)
5272       return Error(Operands[3]->getStartLoc(),
5273                    "source operands must be sequential");
5274     return false;
5275   }
5276   case ARM::SBFX:
5277   case ARM::UBFX: {
5278     // width must be in range [1, 32-lsb]
5279     unsigned lsb = Inst.getOperand(2).getImm();
5280     unsigned widthm1 = Inst.getOperand(3).getImm();
5281     if (widthm1 >= 32 - lsb)
5282       return Error(Operands[5]->getStartLoc(),
5283                    "bitfield width must be in range [1,32-lsb]");
5284     return false;
5285   }
5286   case ARM::tLDMIA: {
5287     // If we're parsing Thumb2, the .w variant is available and handles
5288     // most cases that are normally illegal for a Thumb1 LDM
5289     // instruction. We'll make the transformation in processInstruction()
5290     // if necessary.
5291     //
5292     // Thumb LDM instructions are writeback iff the base register is not
5293     // in the register list.
5294     unsigned Rn = Inst.getOperand(0).getReg();
5295     bool hasWritebackToken =
5296       (static_cast<ARMOperand*>(Operands[3])->isToken() &&
5297        static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
5298     bool listContainsBase;
5299     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) && !isThumbTwo())
5300       return Error(Operands[3 + hasWritebackToken]->getStartLoc(),
5301                    "registers must be in range r0-r7");
5302     // If we should have writeback, then there should be a '!' token.
5303     if (!listContainsBase && !hasWritebackToken && !isThumbTwo())
5304       return Error(Operands[2]->getStartLoc(),
5305                    "writeback operator '!' expected");
5306     // If we should not have writeback, there must not be a '!'. This is
5307     // true even for the 32-bit wide encodings.
5308     if (listContainsBase && hasWritebackToken)
5309       return Error(Operands[3]->getStartLoc(),
5310                    "writeback operator '!' not allowed when base register "
5311                    "in register list");
5312
5313     break;
5314   }
5315   case ARM::t2LDMIA_UPD: {
5316     if (listContainsReg(Inst, 3, Inst.getOperand(0).getReg()))
5317       return Error(Operands[4]->getStartLoc(),
5318                    "writeback operator '!' not allowed when base register "
5319                    "in register list");
5320     break;
5321   }
5322   // Like for ldm/stm, push and pop have hi-reg handling version in Thumb2,
5323   // so only issue a diagnostic for thumb1. The instructions will be
5324   // switched to the t2 encodings in processInstruction() if necessary.
5325   case ARM::tPOP: {
5326     bool listContainsBase;
5327     if (checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase) &&
5328         !isThumbTwo())
5329       return Error(Operands[2]->getStartLoc(),
5330                    "registers must be in range r0-r7 or pc");
5331     break;
5332   }
5333   case ARM::tPUSH: {
5334     bool listContainsBase;
5335     if (checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase) &&
5336         !isThumbTwo())
5337       return Error(Operands[2]->getStartLoc(),
5338                    "registers must be in range r0-r7 or lr");
5339     break;
5340   }
5341   case ARM::tSTMIA_UPD: {
5342     bool listContainsBase;
5343     if (checkLowRegisterList(Inst, 4, 0, 0, listContainsBase) && !isThumbTwo())
5344       return Error(Operands[4]->getStartLoc(),
5345                    "registers must be in range r0-r7");
5346     break;
5347   }
5348   case ARM::tADDrSP: {
5349     // If the non-SP source operand and the destination operand are not the
5350     // same, we need thumb2 (for the wide encoding), or we have an error.
5351     if (!isThumbTwo() &&
5352         Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
5353       return Error(Operands[4]->getStartLoc(),
5354                    "source register must be the same as destination");
5355     }
5356     break;
5357   }
5358   }
5359
5360   return false;
5361 }
5362
5363 static unsigned getRealVSTOpcode(unsigned Opc, unsigned &Spacing) {
5364   switch(Opc) {
5365   default: llvm_unreachable("unexpected opcode!");
5366   // VST1LN
5367   case ARM::VST1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5368   case ARM::VST1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5369   case ARM::VST1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5370   case ARM::VST1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST1LNd8_UPD;
5371   case ARM::VST1LNdWB_register_Asm_16: Spacing = 1; return ARM::VST1LNd16_UPD;
5372   case ARM::VST1LNdWB_register_Asm_32: Spacing = 1; return ARM::VST1LNd32_UPD;
5373   case ARM::VST1LNdAsm_8:  Spacing = 1; return ARM::VST1LNd8;
5374   case ARM::VST1LNdAsm_16: Spacing = 1; return ARM::VST1LNd16;
5375   case ARM::VST1LNdAsm_32: Spacing = 1; return ARM::VST1LNd32;
5376
5377   // VST2LN
5378   case ARM::VST2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5379   case ARM::VST2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5380   case ARM::VST2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5381   case ARM::VST2LNqWB_fixed_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5382   case ARM::VST2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5383
5384   case ARM::VST2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST2LNd8_UPD;
5385   case ARM::VST2LNdWB_register_Asm_16: Spacing = 1; return ARM::VST2LNd16_UPD;
5386   case ARM::VST2LNdWB_register_Asm_32: Spacing = 1; return ARM::VST2LNd32_UPD;
5387   case ARM::VST2LNqWB_register_Asm_16: Spacing = 2; return ARM::VST2LNq16_UPD;
5388   case ARM::VST2LNqWB_register_Asm_32: Spacing = 2; return ARM::VST2LNq32_UPD;
5389
5390   case ARM::VST2LNdAsm_8:  Spacing = 1; return ARM::VST2LNd8;
5391   case ARM::VST2LNdAsm_16: Spacing = 1; return ARM::VST2LNd16;
5392   case ARM::VST2LNdAsm_32: Spacing = 1; return ARM::VST2LNd32;
5393   case ARM::VST2LNqAsm_16: Spacing = 2; return ARM::VST2LNq16;
5394   case ARM::VST2LNqAsm_32: Spacing = 2; return ARM::VST2LNq32;
5395
5396   // VST3LN
5397   case ARM::VST3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5398   case ARM::VST3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5399   case ARM::VST3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5400   case ARM::VST3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST3LNq16_UPD;
5401   case ARM::VST3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5402   case ARM::VST3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST3LNd8_UPD;
5403   case ARM::VST3LNdWB_register_Asm_16: Spacing = 1; return ARM::VST3LNd16_UPD;
5404   case ARM::VST3LNdWB_register_Asm_32: Spacing = 1; return ARM::VST3LNd32_UPD;
5405   case ARM::VST3LNqWB_register_Asm_16: Spacing = 2; return ARM::VST3LNq16_UPD;
5406   case ARM::VST3LNqWB_register_Asm_32: Spacing = 2; return ARM::VST3LNq32_UPD;
5407   case ARM::VST3LNdAsm_8:  Spacing = 1; return ARM::VST3LNd8;
5408   case ARM::VST3LNdAsm_16: Spacing = 1; return ARM::VST3LNd16;
5409   case ARM::VST3LNdAsm_32: Spacing = 1; return ARM::VST3LNd32;
5410   case ARM::VST3LNqAsm_16: Spacing = 2; return ARM::VST3LNq16;
5411   case ARM::VST3LNqAsm_32: Spacing = 2; return ARM::VST3LNq32;
5412
5413   // VST3
5414   case ARM::VST3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5415   case ARM::VST3dWB_fixed_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5416   case ARM::VST3dWB_fixed_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5417   case ARM::VST3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5418   case ARM::VST3qWB_fixed_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5419   case ARM::VST3qWB_fixed_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5420   case ARM::VST3dWB_register_Asm_8:  Spacing = 1; return ARM::VST3d8_UPD;
5421   case ARM::VST3dWB_register_Asm_16: Spacing = 1; return ARM::VST3d16_UPD;
5422   case ARM::VST3dWB_register_Asm_32: Spacing = 1; return ARM::VST3d32_UPD;
5423   case ARM::VST3qWB_register_Asm_8:  Spacing = 2; return ARM::VST3q8_UPD;
5424   case ARM::VST3qWB_register_Asm_16: Spacing = 2; return ARM::VST3q16_UPD;
5425   case ARM::VST3qWB_register_Asm_32: Spacing = 2; return ARM::VST3q32_UPD;
5426   case ARM::VST3dAsm_8:  Spacing = 1; return ARM::VST3d8;
5427   case ARM::VST3dAsm_16: Spacing = 1; return ARM::VST3d16;
5428   case ARM::VST3dAsm_32: Spacing = 1; return ARM::VST3d32;
5429   case ARM::VST3qAsm_8:  Spacing = 2; return ARM::VST3q8;
5430   case ARM::VST3qAsm_16: Spacing = 2; return ARM::VST3q16;
5431   case ARM::VST3qAsm_32: Spacing = 2; return ARM::VST3q32;
5432
5433   // VST4LN
5434   case ARM::VST4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5435   case ARM::VST4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5436   case ARM::VST4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5437   case ARM::VST4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VST4LNq16_UPD;
5438   case ARM::VST4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5439   case ARM::VST4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VST4LNd8_UPD;
5440   case ARM::VST4LNdWB_register_Asm_16: Spacing = 1; return ARM::VST4LNd16_UPD;
5441   case ARM::VST4LNdWB_register_Asm_32: Spacing = 1; return ARM::VST4LNd32_UPD;
5442   case ARM::VST4LNqWB_register_Asm_16: Spacing = 2; return ARM::VST4LNq16_UPD;
5443   case ARM::VST4LNqWB_register_Asm_32: Spacing = 2; return ARM::VST4LNq32_UPD;
5444   case ARM::VST4LNdAsm_8:  Spacing = 1; return ARM::VST4LNd8;
5445   case ARM::VST4LNdAsm_16: Spacing = 1; return ARM::VST4LNd16;
5446   case ARM::VST4LNdAsm_32: Spacing = 1; return ARM::VST4LNd32;
5447   case ARM::VST4LNqAsm_16: Spacing = 2; return ARM::VST4LNq16;
5448   case ARM::VST4LNqAsm_32: Spacing = 2; return ARM::VST4LNq32;
5449
5450   // VST4
5451   case ARM::VST4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5452   case ARM::VST4dWB_fixed_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5453   case ARM::VST4dWB_fixed_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5454   case ARM::VST4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5455   case ARM::VST4qWB_fixed_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5456   case ARM::VST4qWB_fixed_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5457   case ARM::VST4dWB_register_Asm_8:  Spacing = 1; return ARM::VST4d8_UPD;
5458   case ARM::VST4dWB_register_Asm_16: Spacing = 1; return ARM::VST4d16_UPD;
5459   case ARM::VST4dWB_register_Asm_32: Spacing = 1; return ARM::VST4d32_UPD;
5460   case ARM::VST4qWB_register_Asm_8:  Spacing = 2; return ARM::VST4q8_UPD;
5461   case ARM::VST4qWB_register_Asm_16: Spacing = 2; return ARM::VST4q16_UPD;
5462   case ARM::VST4qWB_register_Asm_32: Spacing = 2; return ARM::VST4q32_UPD;
5463   case ARM::VST4dAsm_8:  Spacing = 1; return ARM::VST4d8;
5464   case ARM::VST4dAsm_16: Spacing = 1; return ARM::VST4d16;
5465   case ARM::VST4dAsm_32: Spacing = 1; return ARM::VST4d32;
5466   case ARM::VST4qAsm_8:  Spacing = 2; return ARM::VST4q8;
5467   case ARM::VST4qAsm_16: Spacing = 2; return ARM::VST4q16;
5468   case ARM::VST4qAsm_32: Spacing = 2; return ARM::VST4q32;
5469   }
5470 }
5471
5472 static unsigned getRealVLDOpcode(unsigned Opc, unsigned &Spacing) {
5473   switch(Opc) {
5474   default: llvm_unreachable("unexpected opcode!");
5475   // VLD1LN
5476   case ARM::VLD1LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5477   case ARM::VLD1LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5478   case ARM::VLD1LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5479   case ARM::VLD1LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD1LNd8_UPD;
5480   case ARM::VLD1LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD1LNd16_UPD;
5481   case ARM::VLD1LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD1LNd32_UPD;
5482   case ARM::VLD1LNdAsm_8:  Spacing = 1; return ARM::VLD1LNd8;
5483   case ARM::VLD1LNdAsm_16: Spacing = 1; return ARM::VLD1LNd16;
5484   case ARM::VLD1LNdAsm_32: Spacing = 1; return ARM::VLD1LNd32;
5485
5486   // VLD2LN
5487   case ARM::VLD2LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5488   case ARM::VLD2LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5489   case ARM::VLD2LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5490   case ARM::VLD2LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD2LNq16_UPD;
5491   case ARM::VLD2LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5492   case ARM::VLD2LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD2LNd8_UPD;
5493   case ARM::VLD2LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD2LNd16_UPD;
5494   case ARM::VLD2LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD2LNd32_UPD;
5495   case ARM::VLD2LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD2LNq16_UPD;
5496   case ARM::VLD2LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD2LNq32_UPD;
5497   case ARM::VLD2LNdAsm_8:  Spacing = 1; return ARM::VLD2LNd8;
5498   case ARM::VLD2LNdAsm_16: Spacing = 1; return ARM::VLD2LNd16;
5499   case ARM::VLD2LNdAsm_32: Spacing = 1; return ARM::VLD2LNd32;
5500   case ARM::VLD2LNqAsm_16: Spacing = 2; return ARM::VLD2LNq16;
5501   case ARM::VLD2LNqAsm_32: Spacing = 2; return ARM::VLD2LNq32;
5502
5503   // VLD3DUP
5504   case ARM::VLD3DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5505   case ARM::VLD3DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5506   case ARM::VLD3DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5507   case ARM::VLD3DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD3DUPq8_UPD;
5508   case ARM::VLD3DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3DUPq16_UPD;
5509   case ARM::VLD3DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5510   case ARM::VLD3DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3DUPd8_UPD;
5511   case ARM::VLD3DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD3DUPd16_UPD;
5512   case ARM::VLD3DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD3DUPd32_UPD;
5513   case ARM::VLD3DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD3DUPq8_UPD;
5514   case ARM::VLD3DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD3DUPq16_UPD;
5515   case ARM::VLD3DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD3DUPq32_UPD;
5516   case ARM::VLD3DUPdAsm_8:  Spacing = 1; return ARM::VLD3DUPd8;
5517   case ARM::VLD3DUPdAsm_16: Spacing = 1; return ARM::VLD3DUPd16;
5518   case ARM::VLD3DUPdAsm_32: Spacing = 1; return ARM::VLD3DUPd32;
5519   case ARM::VLD3DUPqAsm_8: Spacing = 2; return ARM::VLD3DUPq8;
5520   case ARM::VLD3DUPqAsm_16: Spacing = 2; return ARM::VLD3DUPq16;
5521   case ARM::VLD3DUPqAsm_32: Spacing = 2; return ARM::VLD3DUPq32;
5522
5523   // VLD3LN
5524   case ARM::VLD3LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5525   case ARM::VLD3LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5526   case ARM::VLD3LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5527   case ARM::VLD3LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3LNq16_UPD;
5528   case ARM::VLD3LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5529   case ARM::VLD3LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD3LNd8_UPD;
5530   case ARM::VLD3LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD3LNd16_UPD;
5531   case ARM::VLD3LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD3LNd32_UPD;
5532   case ARM::VLD3LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD3LNq16_UPD;
5533   case ARM::VLD3LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD3LNq32_UPD;
5534   case ARM::VLD3LNdAsm_8:  Spacing = 1; return ARM::VLD3LNd8;
5535   case ARM::VLD3LNdAsm_16: Spacing = 1; return ARM::VLD3LNd16;
5536   case ARM::VLD3LNdAsm_32: Spacing = 1; return ARM::VLD3LNd32;
5537   case ARM::VLD3LNqAsm_16: Spacing = 2; return ARM::VLD3LNq16;
5538   case ARM::VLD3LNqAsm_32: Spacing = 2; return ARM::VLD3LNq32;
5539
5540   // VLD3
5541   case ARM::VLD3dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5542   case ARM::VLD3dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5543   case ARM::VLD3dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5544   case ARM::VLD3qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5545   case ARM::VLD3qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5546   case ARM::VLD3qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5547   case ARM::VLD3dWB_register_Asm_8:  Spacing = 1; return ARM::VLD3d8_UPD;
5548   case ARM::VLD3dWB_register_Asm_16: Spacing = 1; return ARM::VLD3d16_UPD;
5549   case ARM::VLD3dWB_register_Asm_32: Spacing = 1; return ARM::VLD3d32_UPD;
5550   case ARM::VLD3qWB_register_Asm_8:  Spacing = 2; return ARM::VLD3q8_UPD;
5551   case ARM::VLD3qWB_register_Asm_16: Spacing = 2; return ARM::VLD3q16_UPD;
5552   case ARM::VLD3qWB_register_Asm_32: Spacing = 2; return ARM::VLD3q32_UPD;
5553   case ARM::VLD3dAsm_8:  Spacing = 1; return ARM::VLD3d8;
5554   case ARM::VLD3dAsm_16: Spacing = 1; return ARM::VLD3d16;
5555   case ARM::VLD3dAsm_32: Spacing = 1; return ARM::VLD3d32;
5556   case ARM::VLD3qAsm_8:  Spacing = 2; return ARM::VLD3q8;
5557   case ARM::VLD3qAsm_16: Spacing = 2; return ARM::VLD3q16;
5558   case ARM::VLD3qAsm_32: Spacing = 2; return ARM::VLD3q32;
5559
5560   // VLD4LN
5561   case ARM::VLD4LNdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5562   case ARM::VLD4LNdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5563   case ARM::VLD4LNdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5564   case ARM::VLD4LNqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4LNq16_UPD;
5565   case ARM::VLD4LNqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5566   case ARM::VLD4LNdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4LNd8_UPD;
5567   case ARM::VLD4LNdWB_register_Asm_16: Spacing = 1; return ARM::VLD4LNd16_UPD;
5568   case ARM::VLD4LNdWB_register_Asm_32: Spacing = 1; return ARM::VLD4LNd32_UPD;
5569   case ARM::VLD4LNqWB_register_Asm_16: Spacing = 2; return ARM::VLD4LNq16_UPD;
5570   case ARM::VLD4LNqWB_register_Asm_32: Spacing = 2; return ARM::VLD4LNq32_UPD;
5571   case ARM::VLD4LNdAsm_8:  Spacing = 1; return ARM::VLD4LNd8;
5572   case ARM::VLD4LNdAsm_16: Spacing = 1; return ARM::VLD4LNd16;
5573   case ARM::VLD4LNdAsm_32: Spacing = 1; return ARM::VLD4LNd32;
5574   case ARM::VLD4LNqAsm_16: Spacing = 2; return ARM::VLD4LNq16;
5575   case ARM::VLD4LNqAsm_32: Spacing = 2; return ARM::VLD4LNq32;
5576
5577   // VLD4DUP
5578   case ARM::VLD4DUPdWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5579   case ARM::VLD4DUPdWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5580   case ARM::VLD4DUPdWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5581   case ARM::VLD4DUPqWB_fixed_Asm_8: Spacing = 1; return ARM::VLD4DUPq8_UPD;
5582   case ARM::VLD4DUPqWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4DUPq16_UPD;
5583   case ARM::VLD4DUPqWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5584   case ARM::VLD4DUPdWB_register_Asm_8:  Spacing = 1; return ARM::VLD4DUPd8_UPD;
5585   case ARM::VLD4DUPdWB_register_Asm_16: Spacing = 1; return ARM::VLD4DUPd16_UPD;
5586   case ARM::VLD4DUPdWB_register_Asm_32: Spacing = 1; return ARM::VLD4DUPd32_UPD;
5587   case ARM::VLD4DUPqWB_register_Asm_8: Spacing = 2; return ARM::VLD4DUPq8_UPD;
5588   case ARM::VLD4DUPqWB_register_Asm_16: Spacing = 2; return ARM::VLD4DUPq16_UPD;
5589   case ARM::VLD4DUPqWB_register_Asm_32: Spacing = 2; return ARM::VLD4DUPq32_UPD;
5590   case ARM::VLD4DUPdAsm_8:  Spacing = 1; return ARM::VLD4DUPd8;
5591   case ARM::VLD4DUPdAsm_16: Spacing = 1; return ARM::VLD4DUPd16;
5592   case ARM::VLD4DUPdAsm_32: Spacing = 1; return ARM::VLD4DUPd32;
5593   case ARM::VLD4DUPqAsm_8: Spacing = 2; return ARM::VLD4DUPq8;
5594   case ARM::VLD4DUPqAsm_16: Spacing = 2; return ARM::VLD4DUPq16;
5595   case ARM::VLD4DUPqAsm_32: Spacing = 2; return ARM::VLD4DUPq32;
5596
5597   // VLD4
5598   case ARM::VLD4dWB_fixed_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5599   case ARM::VLD4dWB_fixed_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5600   case ARM::VLD4dWB_fixed_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5601   case ARM::VLD4qWB_fixed_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5602   case ARM::VLD4qWB_fixed_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5603   case ARM::VLD4qWB_fixed_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5604   case ARM::VLD4dWB_register_Asm_8:  Spacing = 1; return ARM::VLD4d8_UPD;
5605   case ARM::VLD4dWB_register_Asm_16: Spacing = 1; return ARM::VLD4d16_UPD;
5606   case ARM::VLD4dWB_register_Asm_32: Spacing = 1; return ARM::VLD4d32_UPD;
5607   case ARM::VLD4qWB_register_Asm_8:  Spacing = 2; return ARM::VLD4q8_UPD;
5608   case ARM::VLD4qWB_register_Asm_16: Spacing = 2; return ARM::VLD4q16_UPD;
5609   case ARM::VLD4qWB_register_Asm_32: Spacing = 2; return ARM::VLD4q32_UPD;
5610   case ARM::VLD4dAsm_8:  Spacing = 1; return ARM::VLD4d8;
5611   case ARM::VLD4dAsm_16: Spacing = 1; return ARM::VLD4d16;
5612   case ARM::VLD4dAsm_32: Spacing = 1; return ARM::VLD4d32;
5613   case ARM::VLD4qAsm_8:  Spacing = 2; return ARM::VLD4q8;
5614   case ARM::VLD4qAsm_16: Spacing = 2; return ARM::VLD4q16;
5615   case ARM::VLD4qAsm_32: Spacing = 2; return ARM::VLD4q32;
5616   }
5617 }
5618
5619 bool ARMAsmParser::
5620 processInstruction(MCInst &Inst,
5621                    const SmallVectorImpl<MCParsedAsmOperand*> &Operands) {
5622   switch (Inst.getOpcode()) {
5623   // Aliases for alternate PC+imm syntax of LDR instructions.
5624   case ARM::t2LDRpcrel:
5625     Inst.setOpcode(ARM::t2LDRpci);
5626     return true;
5627   case ARM::t2LDRBpcrel:
5628     Inst.setOpcode(ARM::t2LDRBpci);
5629     return true;
5630   case ARM::t2LDRHpcrel:
5631     Inst.setOpcode(ARM::t2LDRHpci);
5632     return true;
5633   case ARM::t2LDRSBpcrel:
5634     Inst.setOpcode(ARM::t2LDRSBpci);
5635     return true;
5636   case ARM::t2LDRSHpcrel:
5637     Inst.setOpcode(ARM::t2LDRSHpci);
5638     return true;
5639   // Handle NEON VST complex aliases.
5640   case ARM::VST1LNdWB_register_Asm_8:
5641   case ARM::VST1LNdWB_register_Asm_16:
5642   case ARM::VST1LNdWB_register_Asm_32: {
5643     MCInst TmpInst;
5644     // Shuffle the operands around so the lane index operand is in the
5645     // right place.
5646     unsigned Spacing;
5647     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5648     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5649     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5650     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5651     TmpInst.addOperand(Inst.getOperand(4)); // Rm
5652     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5653     TmpInst.addOperand(Inst.getOperand(1)); // lane
5654     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5655     TmpInst.addOperand(Inst.getOperand(6));
5656     Inst = TmpInst;
5657     return true;
5658   }
5659
5660   case ARM::VST2LNdWB_register_Asm_8:
5661   case ARM::VST2LNdWB_register_Asm_16:
5662   case ARM::VST2LNdWB_register_Asm_32:
5663   case ARM::VST2LNqWB_register_Asm_16:
5664   case ARM::VST2LNqWB_register_Asm_32: {
5665     MCInst TmpInst;
5666     // Shuffle the operands around so the lane index operand is in the
5667     // right place.
5668     unsigned Spacing;
5669     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5670     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5671     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5672     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5673     TmpInst.addOperand(Inst.getOperand(4)); // Rm
5674     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5675     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5676                                             Spacing));
5677     TmpInst.addOperand(Inst.getOperand(1)); // lane
5678     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5679     TmpInst.addOperand(Inst.getOperand(6));
5680     Inst = TmpInst;
5681     return true;
5682   }
5683
5684   case ARM::VST3LNdWB_register_Asm_8:
5685   case ARM::VST3LNdWB_register_Asm_16:
5686   case ARM::VST3LNdWB_register_Asm_32:
5687   case ARM::VST3LNqWB_register_Asm_16:
5688   case ARM::VST3LNqWB_register_Asm_32: {
5689     MCInst TmpInst;
5690     // Shuffle the operands around so the lane index operand is in the
5691     // right place.
5692     unsigned Spacing;
5693     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5694     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5695     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5696     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5697     TmpInst.addOperand(Inst.getOperand(4)); // Rm
5698     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5699     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5700                                             Spacing));
5701     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5702                                             Spacing * 2));
5703     TmpInst.addOperand(Inst.getOperand(1)); // lane
5704     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5705     TmpInst.addOperand(Inst.getOperand(6));
5706     Inst = TmpInst;
5707     return true;
5708   }
5709
5710   case ARM::VST4LNdWB_register_Asm_8:
5711   case ARM::VST4LNdWB_register_Asm_16:
5712   case ARM::VST4LNdWB_register_Asm_32:
5713   case ARM::VST4LNqWB_register_Asm_16:
5714   case ARM::VST4LNqWB_register_Asm_32: {
5715     MCInst TmpInst;
5716     // Shuffle the operands around so the lane index operand is in the
5717     // right place.
5718     unsigned Spacing;
5719     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5720     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5721     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5722     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5723     TmpInst.addOperand(Inst.getOperand(4)); // Rm
5724     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5725     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5726                                             Spacing));
5727     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5728                                             Spacing * 2));
5729     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5730                                             Spacing * 3));
5731     TmpInst.addOperand(Inst.getOperand(1)); // lane
5732     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5733     TmpInst.addOperand(Inst.getOperand(6));
5734     Inst = TmpInst;
5735     return true;
5736   }
5737
5738   case ARM::VST1LNdWB_fixed_Asm_8:
5739   case ARM::VST1LNdWB_fixed_Asm_16:
5740   case ARM::VST1LNdWB_fixed_Asm_32: {
5741     MCInst TmpInst;
5742     // Shuffle the operands around so the lane index operand is in the
5743     // right place.
5744     unsigned Spacing;
5745     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5746     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5747     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5748     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5749     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5750     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5751     TmpInst.addOperand(Inst.getOperand(1)); // lane
5752     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5753     TmpInst.addOperand(Inst.getOperand(5));
5754     Inst = TmpInst;
5755     return true;
5756   }
5757
5758   case ARM::VST2LNdWB_fixed_Asm_8:
5759   case ARM::VST2LNdWB_fixed_Asm_16:
5760   case ARM::VST2LNdWB_fixed_Asm_32:
5761   case ARM::VST2LNqWB_fixed_Asm_16:
5762   case ARM::VST2LNqWB_fixed_Asm_32: {
5763     MCInst TmpInst;
5764     // Shuffle the operands around so the lane index operand is in the
5765     // right place.
5766     unsigned Spacing;
5767     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5768     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5769     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5770     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5771     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5772     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5773     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5774                                             Spacing));
5775     TmpInst.addOperand(Inst.getOperand(1)); // lane
5776     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5777     TmpInst.addOperand(Inst.getOperand(5));
5778     Inst = TmpInst;
5779     return true;
5780   }
5781
5782   case ARM::VST3LNdWB_fixed_Asm_8:
5783   case ARM::VST3LNdWB_fixed_Asm_16:
5784   case ARM::VST3LNdWB_fixed_Asm_32:
5785   case ARM::VST3LNqWB_fixed_Asm_16:
5786   case ARM::VST3LNqWB_fixed_Asm_32: {
5787     MCInst TmpInst;
5788     // Shuffle the operands around so the lane index operand is in the
5789     // right place.
5790     unsigned Spacing;
5791     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5792     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5793     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5794     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5795     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5796     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5797     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5798                                             Spacing));
5799     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5800                                             Spacing * 2));
5801     TmpInst.addOperand(Inst.getOperand(1)); // lane
5802     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5803     TmpInst.addOperand(Inst.getOperand(5));
5804     Inst = TmpInst;
5805     return true;
5806   }
5807
5808   case ARM::VST4LNdWB_fixed_Asm_8:
5809   case ARM::VST4LNdWB_fixed_Asm_16:
5810   case ARM::VST4LNdWB_fixed_Asm_32:
5811   case ARM::VST4LNqWB_fixed_Asm_16:
5812   case ARM::VST4LNqWB_fixed_Asm_32: {
5813     MCInst TmpInst;
5814     // Shuffle the operands around so the lane index operand is in the
5815     // right place.
5816     unsigned Spacing;
5817     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5818     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5819     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5820     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5821     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
5822     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5823     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5824                                             Spacing));
5825     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5826                                             Spacing * 2));
5827     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5828                                             Spacing * 3));
5829     TmpInst.addOperand(Inst.getOperand(1)); // lane
5830     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5831     TmpInst.addOperand(Inst.getOperand(5));
5832     Inst = TmpInst;
5833     return true;
5834   }
5835
5836   case ARM::VST1LNdAsm_8:
5837   case ARM::VST1LNdAsm_16:
5838   case ARM::VST1LNdAsm_32: {
5839     MCInst TmpInst;
5840     // Shuffle the operands around so the lane index operand is in the
5841     // right place.
5842     unsigned Spacing;
5843     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5844     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5845     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5846     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5847     TmpInst.addOperand(Inst.getOperand(1)); // lane
5848     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5849     TmpInst.addOperand(Inst.getOperand(5));
5850     Inst = TmpInst;
5851     return true;
5852   }
5853
5854   case ARM::VST2LNdAsm_8:
5855   case ARM::VST2LNdAsm_16:
5856   case ARM::VST2LNdAsm_32:
5857   case ARM::VST2LNqAsm_16:
5858   case ARM::VST2LNqAsm_32: {
5859     MCInst TmpInst;
5860     // Shuffle the operands around so the lane index operand is in the
5861     // right place.
5862     unsigned Spacing;
5863     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5864     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5865     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5866     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5867     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5868                                             Spacing));
5869     TmpInst.addOperand(Inst.getOperand(1)); // lane
5870     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5871     TmpInst.addOperand(Inst.getOperand(5));
5872     Inst = TmpInst;
5873     return true;
5874   }
5875
5876   case ARM::VST3LNdAsm_8:
5877   case ARM::VST3LNdAsm_16:
5878   case ARM::VST3LNdAsm_32:
5879   case ARM::VST3LNqAsm_16:
5880   case ARM::VST3LNqAsm_32: {
5881     MCInst TmpInst;
5882     // Shuffle the operands around so the lane index operand is in the
5883     // right place.
5884     unsigned Spacing;
5885     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5886     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5887     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5888     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5889     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5890                                             Spacing));
5891     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5892                                             Spacing * 2));
5893     TmpInst.addOperand(Inst.getOperand(1)); // lane
5894     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5895     TmpInst.addOperand(Inst.getOperand(5));
5896     Inst = TmpInst;
5897     return true;
5898   }
5899
5900   case ARM::VST4LNdAsm_8:
5901   case ARM::VST4LNdAsm_16:
5902   case ARM::VST4LNdAsm_32:
5903   case ARM::VST4LNqAsm_16:
5904   case ARM::VST4LNqAsm_32: {
5905     MCInst TmpInst;
5906     // Shuffle the operands around so the lane index operand is in the
5907     // right place.
5908     unsigned Spacing;
5909     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
5910     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5911     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5912     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5913     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5914                                             Spacing));
5915     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5916                                             Spacing * 2));
5917     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5918                                             Spacing * 3));
5919     TmpInst.addOperand(Inst.getOperand(1)); // lane
5920     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
5921     TmpInst.addOperand(Inst.getOperand(5));
5922     Inst = TmpInst;
5923     return true;
5924   }
5925
5926   // Handle NEON VLD complex aliases.
5927   case ARM::VLD1LNdWB_register_Asm_8:
5928   case ARM::VLD1LNdWB_register_Asm_16:
5929   case ARM::VLD1LNdWB_register_Asm_32: {
5930     MCInst TmpInst;
5931     // Shuffle the operands around so the lane index operand is in the
5932     // right place.
5933     unsigned Spacing;
5934     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
5935     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5936     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5937     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5938     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5939     TmpInst.addOperand(Inst.getOperand(4)); // Rm
5940     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
5941     TmpInst.addOperand(Inst.getOperand(1)); // lane
5942     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5943     TmpInst.addOperand(Inst.getOperand(6));
5944     Inst = TmpInst;
5945     return true;
5946   }
5947
5948   case ARM::VLD2LNdWB_register_Asm_8:
5949   case ARM::VLD2LNdWB_register_Asm_16:
5950   case ARM::VLD2LNdWB_register_Asm_32:
5951   case ARM::VLD2LNqWB_register_Asm_16:
5952   case ARM::VLD2LNqWB_register_Asm_32: {
5953     MCInst TmpInst;
5954     // Shuffle the operands around so the lane index operand is in the
5955     // right place.
5956     unsigned Spacing;
5957     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
5958     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5959     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5960                                             Spacing));
5961     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5962     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5963     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5964     TmpInst.addOperand(Inst.getOperand(4)); // Rm
5965     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
5966     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5967                                             Spacing));
5968     TmpInst.addOperand(Inst.getOperand(1)); // lane
5969     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
5970     TmpInst.addOperand(Inst.getOperand(6));
5971     Inst = TmpInst;
5972     return true;
5973   }
5974
5975   case ARM::VLD3LNdWB_register_Asm_8:
5976   case ARM::VLD3LNdWB_register_Asm_16:
5977   case ARM::VLD3LNdWB_register_Asm_32:
5978   case ARM::VLD3LNqWB_register_Asm_16:
5979   case ARM::VLD3LNqWB_register_Asm_32: {
5980     MCInst TmpInst;
5981     // Shuffle the operands around so the lane index operand is in the
5982     // right place.
5983     unsigned Spacing;
5984     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
5985     TmpInst.addOperand(Inst.getOperand(0)); // Vd
5986     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5987                                             Spacing));
5988     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5989                                             Spacing * 2));
5990     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
5991     TmpInst.addOperand(Inst.getOperand(2)); // Rn
5992     TmpInst.addOperand(Inst.getOperand(3)); // alignment
5993     TmpInst.addOperand(Inst.getOperand(4)); // Rm
5994     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
5995     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5996                                             Spacing));
5997     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
5998                                             Spacing * 2));
5999     TmpInst.addOperand(Inst.getOperand(1)); // lane
6000     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6001     TmpInst.addOperand(Inst.getOperand(6));
6002     Inst = TmpInst;
6003     return true;
6004   }
6005
6006   case ARM::VLD4LNdWB_register_Asm_8:
6007   case ARM::VLD4LNdWB_register_Asm_16:
6008   case ARM::VLD4LNdWB_register_Asm_32:
6009   case ARM::VLD4LNqWB_register_Asm_16:
6010   case ARM::VLD4LNqWB_register_Asm_32: {
6011     MCInst TmpInst;
6012     // Shuffle the operands around so the lane index operand is in the
6013     // right place.
6014     unsigned Spacing;
6015     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6016     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6017     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6018                                             Spacing));
6019     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6020                                             Spacing * 2));
6021     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6022                                             Spacing * 3));
6023     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6024     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6025     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6026     TmpInst.addOperand(Inst.getOperand(4)); // Rm
6027     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6028     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6029                                             Spacing));
6030     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6031                                             Spacing * 2));
6032     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6033                                             Spacing * 3));
6034     TmpInst.addOperand(Inst.getOperand(1)); // lane
6035     TmpInst.addOperand(Inst.getOperand(5)); // CondCode
6036     TmpInst.addOperand(Inst.getOperand(6));
6037     Inst = TmpInst;
6038     return true;
6039   }
6040
6041   case ARM::VLD1LNdWB_fixed_Asm_8:
6042   case ARM::VLD1LNdWB_fixed_Asm_16:
6043   case ARM::VLD1LNdWB_fixed_Asm_32: {
6044     MCInst TmpInst;
6045     // Shuffle the operands around so the lane index operand is in the
6046     // right place.
6047     unsigned Spacing;
6048     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6049     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6050     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6051     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6052     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6053     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6054     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6055     TmpInst.addOperand(Inst.getOperand(1)); // lane
6056     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6057     TmpInst.addOperand(Inst.getOperand(5));
6058     Inst = TmpInst;
6059     return true;
6060   }
6061
6062   case ARM::VLD2LNdWB_fixed_Asm_8:
6063   case ARM::VLD2LNdWB_fixed_Asm_16:
6064   case ARM::VLD2LNdWB_fixed_Asm_32:
6065   case ARM::VLD2LNqWB_fixed_Asm_16:
6066   case ARM::VLD2LNqWB_fixed_Asm_32: {
6067     MCInst TmpInst;
6068     // Shuffle the operands around so the lane index operand is in the
6069     // right place.
6070     unsigned Spacing;
6071     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6072     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6073     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6074                                             Spacing));
6075     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6076     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6077     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6078     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6079     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6080     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6081                                             Spacing));
6082     TmpInst.addOperand(Inst.getOperand(1)); // lane
6083     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6084     TmpInst.addOperand(Inst.getOperand(5));
6085     Inst = TmpInst;
6086     return true;
6087   }
6088
6089   case ARM::VLD3LNdWB_fixed_Asm_8:
6090   case ARM::VLD3LNdWB_fixed_Asm_16:
6091   case ARM::VLD3LNdWB_fixed_Asm_32:
6092   case ARM::VLD3LNqWB_fixed_Asm_16:
6093   case ARM::VLD3LNqWB_fixed_Asm_32: {
6094     MCInst TmpInst;
6095     // Shuffle the operands around so the lane index operand is in the
6096     // right place.
6097     unsigned Spacing;
6098     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6099     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6100     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6101                                             Spacing));
6102     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6103                                             Spacing * 2));
6104     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6105     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6106     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6107     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6108     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6109     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6110                                             Spacing));
6111     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6112                                             Spacing * 2));
6113     TmpInst.addOperand(Inst.getOperand(1)); // lane
6114     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6115     TmpInst.addOperand(Inst.getOperand(5));
6116     Inst = TmpInst;
6117     return true;
6118   }
6119
6120   case ARM::VLD4LNdWB_fixed_Asm_8:
6121   case ARM::VLD4LNdWB_fixed_Asm_16:
6122   case ARM::VLD4LNdWB_fixed_Asm_32:
6123   case ARM::VLD4LNqWB_fixed_Asm_16:
6124   case ARM::VLD4LNqWB_fixed_Asm_32: {
6125     MCInst TmpInst;
6126     // Shuffle the operands around so the lane index operand is in the
6127     // right place.
6128     unsigned Spacing;
6129     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6130     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6131     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6132                                             Spacing));
6133     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6134                                             Spacing * 2));
6135     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6136                                             Spacing * 3));
6137     TmpInst.addOperand(Inst.getOperand(2)); // Rn_wb
6138     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6139     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6140     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6141     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6142     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6143                                             Spacing));
6144     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6145                                             Spacing * 2));
6146     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6147                                             Spacing * 3));
6148     TmpInst.addOperand(Inst.getOperand(1)); // lane
6149     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6150     TmpInst.addOperand(Inst.getOperand(5));
6151     Inst = TmpInst;
6152     return true;
6153   }
6154
6155   case ARM::VLD1LNdAsm_8:
6156   case ARM::VLD1LNdAsm_16:
6157   case ARM::VLD1LNdAsm_32: {
6158     MCInst TmpInst;
6159     // Shuffle the operands around so the lane index operand is in the
6160     // right place.
6161     unsigned Spacing;
6162     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6163     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6164     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6165     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6166     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6167     TmpInst.addOperand(Inst.getOperand(1)); // lane
6168     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6169     TmpInst.addOperand(Inst.getOperand(5));
6170     Inst = TmpInst;
6171     return true;
6172   }
6173
6174   case ARM::VLD2LNdAsm_8:
6175   case ARM::VLD2LNdAsm_16:
6176   case ARM::VLD2LNdAsm_32:
6177   case ARM::VLD2LNqAsm_16:
6178   case ARM::VLD2LNqAsm_32: {
6179     MCInst TmpInst;
6180     // Shuffle the operands around so the lane index operand is in the
6181     // right place.
6182     unsigned Spacing;
6183     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6184     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6185     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6186                                             Spacing));
6187     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6188     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6189     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6190     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6191                                             Spacing));
6192     TmpInst.addOperand(Inst.getOperand(1)); // lane
6193     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6194     TmpInst.addOperand(Inst.getOperand(5));
6195     Inst = TmpInst;
6196     return true;
6197   }
6198
6199   case ARM::VLD3LNdAsm_8:
6200   case ARM::VLD3LNdAsm_16:
6201   case ARM::VLD3LNdAsm_32:
6202   case ARM::VLD3LNqAsm_16:
6203   case ARM::VLD3LNqAsm_32: {
6204     MCInst TmpInst;
6205     // Shuffle the operands around so the lane index operand is in the
6206     // right place.
6207     unsigned Spacing;
6208     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6209     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6210     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6211                                             Spacing));
6212     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6213                                             Spacing * 2));
6214     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6215     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6216     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6217     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6218                                             Spacing));
6219     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6220                                             Spacing * 2));
6221     TmpInst.addOperand(Inst.getOperand(1)); // lane
6222     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6223     TmpInst.addOperand(Inst.getOperand(5));
6224     Inst = TmpInst;
6225     return true;
6226   }
6227
6228   case ARM::VLD4LNdAsm_8:
6229   case ARM::VLD4LNdAsm_16:
6230   case ARM::VLD4LNdAsm_32:
6231   case ARM::VLD4LNqAsm_16:
6232   case ARM::VLD4LNqAsm_32: {
6233     MCInst TmpInst;
6234     // Shuffle the operands around so the lane index operand is in the
6235     // right place.
6236     unsigned Spacing;
6237     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6238     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6239     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6240                                             Spacing));
6241     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6242                                             Spacing * 2));
6243     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6244                                             Spacing * 3));
6245     TmpInst.addOperand(Inst.getOperand(2)); // Rn
6246     TmpInst.addOperand(Inst.getOperand(3)); // alignment
6247     TmpInst.addOperand(Inst.getOperand(0)); // Tied operand src (== Vd)
6248     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6249                                             Spacing));
6250     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6251                                             Spacing * 2));
6252     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6253                                             Spacing * 3));
6254     TmpInst.addOperand(Inst.getOperand(1)); // lane
6255     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6256     TmpInst.addOperand(Inst.getOperand(5));
6257     Inst = TmpInst;
6258     return true;
6259   }
6260
6261   // VLD3DUP single 3-element structure to all lanes instructions.
6262   case ARM::VLD3DUPdAsm_8:
6263   case ARM::VLD3DUPdAsm_16:
6264   case ARM::VLD3DUPdAsm_32:
6265   case ARM::VLD3DUPqAsm_8:
6266   case ARM::VLD3DUPqAsm_16:
6267   case ARM::VLD3DUPqAsm_32: {
6268     MCInst TmpInst;
6269     unsigned Spacing;
6270     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6271     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6272     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6273                                             Spacing));
6274     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6275                                             Spacing * 2));
6276     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6277     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6278     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6279     TmpInst.addOperand(Inst.getOperand(4));
6280     Inst = TmpInst;
6281     return true;
6282   }
6283
6284   case ARM::VLD3DUPdWB_fixed_Asm_8:
6285   case ARM::VLD3DUPdWB_fixed_Asm_16:
6286   case ARM::VLD3DUPdWB_fixed_Asm_32:
6287   case ARM::VLD3DUPqWB_fixed_Asm_8:
6288   case ARM::VLD3DUPqWB_fixed_Asm_16:
6289   case ARM::VLD3DUPqWB_fixed_Asm_32: {
6290     MCInst TmpInst;
6291     unsigned Spacing;
6292     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6293     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6294     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6295                                             Spacing));
6296     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6297                                             Spacing * 2));
6298     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6299     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6300     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6301     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6302     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6303     TmpInst.addOperand(Inst.getOperand(4));
6304     Inst = TmpInst;
6305     return true;
6306   }
6307
6308   case ARM::VLD3DUPdWB_register_Asm_8:
6309   case ARM::VLD3DUPdWB_register_Asm_16:
6310   case ARM::VLD3DUPdWB_register_Asm_32:
6311   case ARM::VLD3DUPqWB_register_Asm_8:
6312   case ARM::VLD3DUPqWB_register_Asm_16:
6313   case ARM::VLD3DUPqWB_register_Asm_32: {
6314     MCInst TmpInst;
6315     unsigned Spacing;
6316     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6317     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6318     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6319                                             Spacing));
6320     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6321                                             Spacing * 2));
6322     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6323     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6324     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6325     TmpInst.addOperand(Inst.getOperand(3)); // Rm
6326     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6327     TmpInst.addOperand(Inst.getOperand(5));
6328     Inst = TmpInst;
6329     return true;
6330   }
6331
6332   // VLD3 multiple 3-element structure instructions.
6333   case ARM::VLD3dAsm_8:
6334   case ARM::VLD3dAsm_16:
6335   case ARM::VLD3dAsm_32:
6336   case ARM::VLD3qAsm_8:
6337   case ARM::VLD3qAsm_16:
6338   case ARM::VLD3qAsm_32: {
6339     MCInst TmpInst;
6340     unsigned Spacing;
6341     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6342     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6343     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6344                                             Spacing));
6345     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6346                                             Spacing * 2));
6347     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6348     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6349     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6350     TmpInst.addOperand(Inst.getOperand(4));
6351     Inst = TmpInst;
6352     return true;
6353   }
6354
6355   case ARM::VLD3dWB_fixed_Asm_8:
6356   case ARM::VLD3dWB_fixed_Asm_16:
6357   case ARM::VLD3dWB_fixed_Asm_32:
6358   case ARM::VLD3qWB_fixed_Asm_8:
6359   case ARM::VLD3qWB_fixed_Asm_16:
6360   case ARM::VLD3qWB_fixed_Asm_32: {
6361     MCInst TmpInst;
6362     unsigned Spacing;
6363     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6364     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6365     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6366                                             Spacing));
6367     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6368                                             Spacing * 2));
6369     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6370     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6371     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6372     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6373     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6374     TmpInst.addOperand(Inst.getOperand(4));
6375     Inst = TmpInst;
6376     return true;
6377   }
6378
6379   case ARM::VLD3dWB_register_Asm_8:
6380   case ARM::VLD3dWB_register_Asm_16:
6381   case ARM::VLD3dWB_register_Asm_32:
6382   case ARM::VLD3qWB_register_Asm_8:
6383   case ARM::VLD3qWB_register_Asm_16:
6384   case ARM::VLD3qWB_register_Asm_32: {
6385     MCInst TmpInst;
6386     unsigned Spacing;
6387     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6388     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6389     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6390                                             Spacing));
6391     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6392                                             Spacing * 2));
6393     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6394     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6395     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6396     TmpInst.addOperand(Inst.getOperand(3)); // Rm
6397     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6398     TmpInst.addOperand(Inst.getOperand(5));
6399     Inst = TmpInst;
6400     return true;
6401   }
6402
6403   // VLD4DUP single 3-element structure to all lanes instructions.
6404   case ARM::VLD4DUPdAsm_8:
6405   case ARM::VLD4DUPdAsm_16:
6406   case ARM::VLD4DUPdAsm_32:
6407   case ARM::VLD4DUPqAsm_8:
6408   case ARM::VLD4DUPqAsm_16:
6409   case ARM::VLD4DUPqAsm_32: {
6410     MCInst TmpInst;
6411     unsigned Spacing;
6412     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6413     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6414     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6415                                             Spacing));
6416     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6417                                             Spacing * 2));
6418     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6419                                             Spacing * 3));
6420     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6421     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6422     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6423     TmpInst.addOperand(Inst.getOperand(4));
6424     Inst = TmpInst;
6425     return true;
6426   }
6427
6428   case ARM::VLD4DUPdWB_fixed_Asm_8:
6429   case ARM::VLD4DUPdWB_fixed_Asm_16:
6430   case ARM::VLD4DUPdWB_fixed_Asm_32:
6431   case ARM::VLD4DUPqWB_fixed_Asm_8:
6432   case ARM::VLD4DUPqWB_fixed_Asm_16:
6433   case ARM::VLD4DUPqWB_fixed_Asm_32: {
6434     MCInst TmpInst;
6435     unsigned Spacing;
6436     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6437     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6438     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6439                                             Spacing));
6440     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6441                                             Spacing * 2));
6442     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6443                                             Spacing * 3));
6444     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6445     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6446     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6447     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6448     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6449     TmpInst.addOperand(Inst.getOperand(4));
6450     Inst = TmpInst;
6451     return true;
6452   }
6453
6454   case ARM::VLD4DUPdWB_register_Asm_8:
6455   case ARM::VLD4DUPdWB_register_Asm_16:
6456   case ARM::VLD4DUPdWB_register_Asm_32:
6457   case ARM::VLD4DUPqWB_register_Asm_8:
6458   case ARM::VLD4DUPqWB_register_Asm_16:
6459   case ARM::VLD4DUPqWB_register_Asm_32: {
6460     MCInst TmpInst;
6461     unsigned Spacing;
6462     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6463     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6464     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6465                                             Spacing));
6466     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6467                                             Spacing * 2));
6468     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6469                                             Spacing * 3));
6470     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6471     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6472     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6473     TmpInst.addOperand(Inst.getOperand(3)); // Rm
6474     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6475     TmpInst.addOperand(Inst.getOperand(5));
6476     Inst = TmpInst;
6477     return true;
6478   }
6479
6480   // VLD4 multiple 4-element structure instructions.
6481   case ARM::VLD4dAsm_8:
6482   case ARM::VLD4dAsm_16:
6483   case ARM::VLD4dAsm_32:
6484   case ARM::VLD4qAsm_8:
6485   case ARM::VLD4qAsm_16:
6486   case ARM::VLD4qAsm_32: {
6487     MCInst TmpInst;
6488     unsigned Spacing;
6489     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6490     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6491     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6492                                             Spacing));
6493     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6494                                             Spacing * 2));
6495     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6496                                             Spacing * 3));
6497     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6498     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6499     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6500     TmpInst.addOperand(Inst.getOperand(4));
6501     Inst = TmpInst;
6502     return true;
6503   }
6504
6505   case ARM::VLD4dWB_fixed_Asm_8:
6506   case ARM::VLD4dWB_fixed_Asm_16:
6507   case ARM::VLD4dWB_fixed_Asm_32:
6508   case ARM::VLD4qWB_fixed_Asm_8:
6509   case ARM::VLD4qWB_fixed_Asm_16:
6510   case ARM::VLD4qWB_fixed_Asm_32: {
6511     MCInst TmpInst;
6512     unsigned Spacing;
6513     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6514     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6515     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6516                                             Spacing));
6517     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6518                                             Spacing * 2));
6519     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6520                                             Spacing * 3));
6521     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6522     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6523     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6524     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6525     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6526     TmpInst.addOperand(Inst.getOperand(4));
6527     Inst = TmpInst;
6528     return true;
6529   }
6530
6531   case ARM::VLD4dWB_register_Asm_8:
6532   case ARM::VLD4dWB_register_Asm_16:
6533   case ARM::VLD4dWB_register_Asm_32:
6534   case ARM::VLD4qWB_register_Asm_8:
6535   case ARM::VLD4qWB_register_Asm_16:
6536   case ARM::VLD4qWB_register_Asm_32: {
6537     MCInst TmpInst;
6538     unsigned Spacing;
6539     TmpInst.setOpcode(getRealVLDOpcode(Inst.getOpcode(), Spacing));
6540     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6541     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6542                                             Spacing));
6543     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6544                                             Spacing * 2));
6545     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6546                                             Spacing * 3));
6547     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6548     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6549     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6550     TmpInst.addOperand(Inst.getOperand(3)); // Rm
6551     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6552     TmpInst.addOperand(Inst.getOperand(5));
6553     Inst = TmpInst;
6554     return true;
6555   }
6556
6557   // VST3 multiple 3-element structure instructions.
6558   case ARM::VST3dAsm_8:
6559   case ARM::VST3dAsm_16:
6560   case ARM::VST3dAsm_32:
6561   case ARM::VST3qAsm_8:
6562   case ARM::VST3qAsm_16:
6563   case ARM::VST3qAsm_32: {
6564     MCInst TmpInst;
6565     unsigned Spacing;
6566     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6567     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6568     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6569     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6570     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6571                                             Spacing));
6572     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6573                                             Spacing * 2));
6574     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6575     TmpInst.addOperand(Inst.getOperand(4));
6576     Inst = TmpInst;
6577     return true;
6578   }
6579
6580   case ARM::VST3dWB_fixed_Asm_8:
6581   case ARM::VST3dWB_fixed_Asm_16:
6582   case ARM::VST3dWB_fixed_Asm_32:
6583   case ARM::VST3qWB_fixed_Asm_8:
6584   case ARM::VST3qWB_fixed_Asm_16:
6585   case ARM::VST3qWB_fixed_Asm_32: {
6586     MCInst TmpInst;
6587     unsigned Spacing;
6588     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6589     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6590     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6591     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6592     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6593     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6594     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6595                                             Spacing));
6596     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6597                                             Spacing * 2));
6598     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6599     TmpInst.addOperand(Inst.getOperand(4));
6600     Inst = TmpInst;
6601     return true;
6602   }
6603
6604   case ARM::VST3dWB_register_Asm_8:
6605   case ARM::VST3dWB_register_Asm_16:
6606   case ARM::VST3dWB_register_Asm_32:
6607   case ARM::VST3qWB_register_Asm_8:
6608   case ARM::VST3qWB_register_Asm_16:
6609   case ARM::VST3qWB_register_Asm_32: {
6610     MCInst TmpInst;
6611     unsigned Spacing;
6612     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6613     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6614     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6615     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6616     TmpInst.addOperand(Inst.getOperand(3)); // Rm
6617     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6618     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6619                                             Spacing));
6620     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6621                                             Spacing * 2));
6622     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6623     TmpInst.addOperand(Inst.getOperand(5));
6624     Inst = TmpInst;
6625     return true;
6626   }
6627
6628   // VST4 multiple 3-element structure instructions.
6629   case ARM::VST4dAsm_8:
6630   case ARM::VST4dAsm_16:
6631   case ARM::VST4dAsm_32:
6632   case ARM::VST4qAsm_8:
6633   case ARM::VST4qAsm_16:
6634   case ARM::VST4qAsm_32: {
6635     MCInst TmpInst;
6636     unsigned Spacing;
6637     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6638     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6639     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6640     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6641     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6642                                             Spacing));
6643     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6644                                             Spacing * 2));
6645     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6646                                             Spacing * 3));
6647     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6648     TmpInst.addOperand(Inst.getOperand(4));
6649     Inst = TmpInst;
6650     return true;
6651   }
6652
6653   case ARM::VST4dWB_fixed_Asm_8:
6654   case ARM::VST4dWB_fixed_Asm_16:
6655   case ARM::VST4dWB_fixed_Asm_32:
6656   case ARM::VST4qWB_fixed_Asm_8:
6657   case ARM::VST4qWB_fixed_Asm_16:
6658   case ARM::VST4qWB_fixed_Asm_32: {
6659     MCInst TmpInst;
6660     unsigned Spacing;
6661     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6662     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6663     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6664     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6665     TmpInst.addOperand(MCOperand::CreateReg(0)); // Rm
6666     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6667     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6668                                             Spacing));
6669     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6670                                             Spacing * 2));
6671     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6672                                             Spacing * 3));
6673     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6674     TmpInst.addOperand(Inst.getOperand(4));
6675     Inst = TmpInst;
6676     return true;
6677   }
6678
6679   case ARM::VST4dWB_register_Asm_8:
6680   case ARM::VST4dWB_register_Asm_16:
6681   case ARM::VST4dWB_register_Asm_32:
6682   case ARM::VST4qWB_register_Asm_8:
6683   case ARM::VST4qWB_register_Asm_16:
6684   case ARM::VST4qWB_register_Asm_32: {
6685     MCInst TmpInst;
6686     unsigned Spacing;
6687     TmpInst.setOpcode(getRealVSTOpcode(Inst.getOpcode(), Spacing));
6688     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6689     TmpInst.addOperand(Inst.getOperand(1)); // Rn_wb == tied Rn
6690     TmpInst.addOperand(Inst.getOperand(2)); // alignment
6691     TmpInst.addOperand(Inst.getOperand(3)); // Rm
6692     TmpInst.addOperand(Inst.getOperand(0)); // Vd
6693     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6694                                             Spacing));
6695     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6696                                             Spacing * 2));
6697     TmpInst.addOperand(MCOperand::CreateReg(Inst.getOperand(0).getReg() +
6698                                             Spacing * 3));
6699     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6700     TmpInst.addOperand(Inst.getOperand(5));
6701     Inst = TmpInst;
6702     return true;
6703   }
6704
6705   // Handle encoding choice for the shift-immediate instructions.
6706   case ARM::t2LSLri:
6707   case ARM::t2LSRri:
6708   case ARM::t2ASRri: {
6709     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6710         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6711         Inst.getOperand(5).getReg() == (inITBlock() ? 0 : ARM::CPSR) &&
6712         !(static_cast<ARMOperand*>(Operands[3])->isToken() &&
6713          static_cast<ARMOperand*>(Operands[3])->getToken() == ".w")) {
6714       unsigned NewOpc;
6715       switch (Inst.getOpcode()) {
6716       default: llvm_unreachable("unexpected opcode");
6717       case ARM::t2LSLri: NewOpc = ARM::tLSLri; break;
6718       case ARM::t2LSRri: NewOpc = ARM::tLSRri; break;
6719       case ARM::t2ASRri: NewOpc = ARM::tASRri; break;
6720       }
6721       // The Thumb1 operands aren't in the same order. Awesome, eh?
6722       MCInst TmpInst;
6723       TmpInst.setOpcode(NewOpc);
6724       TmpInst.addOperand(Inst.getOperand(0));
6725       TmpInst.addOperand(Inst.getOperand(5));
6726       TmpInst.addOperand(Inst.getOperand(1));
6727       TmpInst.addOperand(Inst.getOperand(2));
6728       TmpInst.addOperand(Inst.getOperand(3));
6729       TmpInst.addOperand(Inst.getOperand(4));
6730       Inst = TmpInst;
6731       return true;
6732     }
6733     return false;
6734   }
6735
6736   // Handle the Thumb2 mode MOV complex aliases.
6737   case ARM::t2MOVsr:
6738   case ARM::t2MOVSsr: {
6739     // Which instruction to expand to depends on the CCOut operand and
6740     // whether we're in an IT block if the register operands are low
6741     // registers.
6742     bool isNarrow = false;
6743     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6744         isARMLowRegister(Inst.getOperand(1).getReg()) &&
6745         isARMLowRegister(Inst.getOperand(2).getReg()) &&
6746         Inst.getOperand(0).getReg() == Inst.getOperand(1).getReg() &&
6747         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsr))
6748       isNarrow = true;
6749     MCInst TmpInst;
6750     unsigned newOpc;
6751     switch(ARM_AM::getSORegShOp(Inst.getOperand(3).getImm())) {
6752     default: llvm_unreachable("unexpected opcode!");
6753     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRrr : ARM::t2ASRrr; break;
6754     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRrr : ARM::t2LSRrr; break;
6755     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLrr : ARM::t2LSLrr; break;
6756     case ARM_AM::ror: newOpc = isNarrow ? ARM::tROR   : ARM::t2RORrr; break;
6757     }
6758     TmpInst.setOpcode(newOpc);
6759     TmpInst.addOperand(Inst.getOperand(0)); // Rd
6760     if (isNarrow)
6761       TmpInst.addOperand(MCOperand::CreateReg(
6762           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6763     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6764     TmpInst.addOperand(Inst.getOperand(2)); // Rm
6765     TmpInst.addOperand(Inst.getOperand(4)); // CondCode
6766     TmpInst.addOperand(Inst.getOperand(5));
6767     if (!isNarrow)
6768       TmpInst.addOperand(MCOperand::CreateReg(
6769           Inst.getOpcode() == ARM::t2MOVSsr ? ARM::CPSR : 0));
6770     Inst = TmpInst;
6771     return true;
6772   }
6773   case ARM::t2MOVsi:
6774   case ARM::t2MOVSsi: {
6775     // Which instruction to expand to depends on the CCOut operand and
6776     // whether we're in an IT block if the register operands are low
6777     // registers.
6778     bool isNarrow = false;
6779     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
6780         isARMLowRegister(Inst.getOperand(1).getReg()) &&
6781         inITBlock() == (Inst.getOpcode() == ARM::t2MOVsi))
6782       isNarrow = true;
6783     MCInst TmpInst;
6784     unsigned newOpc;
6785     switch(ARM_AM::getSORegShOp(Inst.getOperand(2).getImm())) {
6786     default: llvm_unreachable("unexpected opcode!");
6787     case ARM_AM::asr: newOpc = isNarrow ? ARM::tASRri : ARM::t2ASRri; break;
6788     case ARM_AM::lsr: newOpc = isNarrow ? ARM::tLSRri : ARM::t2LSRri; break;
6789     case ARM_AM::lsl: newOpc = isNarrow ? ARM::tLSLri : ARM::t2LSLri; break;
6790     case ARM_AM::ror: newOpc = ARM::t2RORri; isNarrow = false; break;
6791     case ARM_AM::rrx: isNarrow = false; newOpc = ARM::t2RRX; break;
6792     }
6793     unsigned Amount = ARM_AM::getSORegOffset(Inst.getOperand(2).getImm());
6794     if (Amount == 32) Amount = 0;
6795     TmpInst.setOpcode(newOpc);
6796     TmpInst.addOperand(Inst.getOperand(0)); // Rd
6797     if (isNarrow)
6798       TmpInst.addOperand(MCOperand::CreateReg(
6799           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6800     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6801     if (newOpc != ARM::t2RRX)
6802       TmpInst.addOperand(MCOperand::CreateImm(Amount));
6803     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6804     TmpInst.addOperand(Inst.getOperand(4));
6805     if (!isNarrow)
6806       TmpInst.addOperand(MCOperand::CreateReg(
6807           Inst.getOpcode() == ARM::t2MOVSsi ? ARM::CPSR : 0));
6808     Inst = TmpInst;
6809     return true;
6810   }
6811   // Handle the ARM mode MOV complex aliases.
6812   case ARM::ASRr:
6813   case ARM::LSRr:
6814   case ARM::LSLr:
6815   case ARM::RORr: {
6816     ARM_AM::ShiftOpc ShiftTy;
6817     switch(Inst.getOpcode()) {
6818     default: llvm_unreachable("unexpected opcode!");
6819     case ARM::ASRr: ShiftTy = ARM_AM::asr; break;
6820     case ARM::LSRr: ShiftTy = ARM_AM::lsr; break;
6821     case ARM::LSLr: ShiftTy = ARM_AM::lsl; break;
6822     case ARM::RORr: ShiftTy = ARM_AM::ror; break;
6823     }
6824     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, 0);
6825     MCInst TmpInst;
6826     TmpInst.setOpcode(ARM::MOVsr);
6827     TmpInst.addOperand(Inst.getOperand(0)); // Rd
6828     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6829     TmpInst.addOperand(Inst.getOperand(2)); // Rm
6830     TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6831     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6832     TmpInst.addOperand(Inst.getOperand(4));
6833     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
6834     Inst = TmpInst;
6835     return true;
6836   }
6837   case ARM::ASRi:
6838   case ARM::LSRi:
6839   case ARM::LSLi:
6840   case ARM::RORi: {
6841     ARM_AM::ShiftOpc ShiftTy;
6842     switch(Inst.getOpcode()) {
6843     default: llvm_unreachable("unexpected opcode!");
6844     case ARM::ASRi: ShiftTy = ARM_AM::asr; break;
6845     case ARM::LSRi: ShiftTy = ARM_AM::lsr; break;
6846     case ARM::LSLi: ShiftTy = ARM_AM::lsl; break;
6847     case ARM::RORi: ShiftTy = ARM_AM::ror; break;
6848     }
6849     // A shift by zero is a plain MOVr, not a MOVsi.
6850     unsigned Amt = Inst.getOperand(2).getImm();
6851     unsigned Opc = Amt == 0 ? ARM::MOVr : ARM::MOVsi;
6852     // A shift by 32 should be encoded as 0 when permitted
6853     if (Amt == 32 && (ShiftTy == ARM_AM::lsr || ShiftTy == ARM_AM::asr))
6854       Amt = 0;
6855     unsigned Shifter = ARM_AM::getSORegOpc(ShiftTy, Amt);
6856     MCInst TmpInst;
6857     TmpInst.setOpcode(Opc);
6858     TmpInst.addOperand(Inst.getOperand(0)); // Rd
6859     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6860     if (Opc == ARM::MOVsi)
6861       TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6862     TmpInst.addOperand(Inst.getOperand(3)); // CondCode
6863     TmpInst.addOperand(Inst.getOperand(4));
6864     TmpInst.addOperand(Inst.getOperand(5)); // cc_out
6865     Inst = TmpInst;
6866     return true;
6867   }
6868   case ARM::RRXi: {
6869     unsigned Shifter = ARM_AM::getSORegOpc(ARM_AM::rrx, 0);
6870     MCInst TmpInst;
6871     TmpInst.setOpcode(ARM::MOVsi);
6872     TmpInst.addOperand(Inst.getOperand(0)); // Rd
6873     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6874     TmpInst.addOperand(MCOperand::CreateImm(Shifter)); // Shift value and ty
6875     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6876     TmpInst.addOperand(Inst.getOperand(3));
6877     TmpInst.addOperand(Inst.getOperand(4)); // cc_out
6878     Inst = TmpInst;
6879     return true;
6880   }
6881   case ARM::t2LDMIA_UPD: {
6882     // If this is a load of a single register, then we should use
6883     // a post-indexed LDR instruction instead, per the ARM ARM.
6884     if (Inst.getNumOperands() != 5)
6885       return false;
6886     MCInst TmpInst;
6887     TmpInst.setOpcode(ARM::t2LDR_POST);
6888     TmpInst.addOperand(Inst.getOperand(4)); // Rt
6889     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6890     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6891     TmpInst.addOperand(MCOperand::CreateImm(4));
6892     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6893     TmpInst.addOperand(Inst.getOperand(3));
6894     Inst = TmpInst;
6895     return true;
6896   }
6897   case ARM::t2STMDB_UPD: {
6898     // If this is a store of a single register, then we should use
6899     // a pre-indexed STR instruction instead, per the ARM ARM.
6900     if (Inst.getNumOperands() != 5)
6901       return false;
6902     MCInst TmpInst;
6903     TmpInst.setOpcode(ARM::t2STR_PRE);
6904     TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6905     TmpInst.addOperand(Inst.getOperand(4)); // Rt
6906     TmpInst.addOperand(Inst.getOperand(1)); // Rn
6907     TmpInst.addOperand(MCOperand::CreateImm(-4));
6908     TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6909     TmpInst.addOperand(Inst.getOperand(3));
6910     Inst = TmpInst;
6911     return true;
6912   }
6913   case ARM::LDMIA_UPD:
6914     // If this is a load of a single register via a 'pop', then we should use
6915     // a post-indexed LDR instruction instead, per the ARM ARM.
6916     if (static_cast<ARMOperand*>(Operands[0])->getToken() == "pop" &&
6917         Inst.getNumOperands() == 5) {
6918       MCInst TmpInst;
6919       TmpInst.setOpcode(ARM::LDR_POST_IMM);
6920       TmpInst.addOperand(Inst.getOperand(4)); // Rt
6921       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6922       TmpInst.addOperand(Inst.getOperand(1)); // Rn
6923       TmpInst.addOperand(MCOperand::CreateReg(0));  // am2offset
6924       TmpInst.addOperand(MCOperand::CreateImm(4));
6925       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6926       TmpInst.addOperand(Inst.getOperand(3));
6927       Inst = TmpInst;
6928       return true;
6929     }
6930     break;
6931   case ARM::STMDB_UPD:
6932     // If this is a store of a single register via a 'push', then we should use
6933     // a pre-indexed STR instruction instead, per the ARM ARM.
6934     if (static_cast<ARMOperand*>(Operands[0])->getToken() == "push" &&
6935         Inst.getNumOperands() == 5) {
6936       MCInst TmpInst;
6937       TmpInst.setOpcode(ARM::STR_PRE_IMM);
6938       TmpInst.addOperand(Inst.getOperand(0)); // Rn_wb
6939       TmpInst.addOperand(Inst.getOperand(4)); // Rt
6940       TmpInst.addOperand(Inst.getOperand(1)); // addrmode_imm12
6941       TmpInst.addOperand(MCOperand::CreateImm(-4));
6942       TmpInst.addOperand(Inst.getOperand(2)); // CondCode
6943       TmpInst.addOperand(Inst.getOperand(3));
6944       Inst = TmpInst;
6945     }
6946     break;
6947   case ARM::t2ADDri12:
6948     // If the immediate fits for encoding T3 (t2ADDri) and the generic "add"
6949     // mnemonic was used (not "addw"), encoding T3 is preferred.
6950     if (static_cast<ARMOperand*>(Operands[0])->getToken() != "add" ||
6951         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
6952       break;
6953     Inst.setOpcode(ARM::t2ADDri);
6954     Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
6955     break;
6956   case ARM::t2SUBri12:
6957     // If the immediate fits for encoding T3 (t2SUBri) and the generic "sub"
6958     // mnemonic was used (not "subw"), encoding T3 is preferred.
6959     if (static_cast<ARMOperand*>(Operands[0])->getToken() != "sub" ||
6960         ARM_AM::getT2SOImmVal(Inst.getOperand(2).getImm()) == -1)
6961       break;
6962     Inst.setOpcode(ARM::t2SUBri);
6963     Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
6964     break;
6965   case ARM::tADDi8:
6966     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
6967     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
6968     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
6969     // to encoding T1 if <Rd> is omitted."
6970     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
6971       Inst.setOpcode(ARM::tADDi3);
6972       return true;
6973     }
6974     break;
6975   case ARM::tSUBi8:
6976     // If the immediate is in the range 0-7, we want tADDi3 iff Rd was
6977     // explicitly specified. From the ARM ARM: "Encoding T1 is preferred
6978     // to encoding T2 if <Rd> is specified and encoding T2 is preferred
6979     // to encoding T1 if <Rd> is omitted."
6980     if ((unsigned)Inst.getOperand(3).getImm() < 8 && Operands.size() == 6) {
6981       Inst.setOpcode(ARM::tSUBi3);
6982       return true;
6983     }
6984     break;
6985   case ARM::t2ADDri:
6986   case ARM::t2SUBri: {
6987     // If the destination and first source operand are the same, and
6988     // the flags are compatible with the current IT status, use encoding T2
6989     // instead of T3. For compatibility with the system 'as'. Make sure the
6990     // wide encoding wasn't explicit.
6991     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
6992         !isARMLowRegister(Inst.getOperand(0).getReg()) ||
6993         (unsigned)Inst.getOperand(2).getImm() > 255 ||
6994         ((!inITBlock() && Inst.getOperand(5).getReg() != ARM::CPSR) ||
6995         (inITBlock() && Inst.getOperand(5).getReg() != 0)) ||
6996         (static_cast<ARMOperand*>(Operands[3])->isToken() &&
6997          static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
6998       break;
6999     MCInst TmpInst;
7000     TmpInst.setOpcode(Inst.getOpcode() == ARM::t2ADDri ?
7001                       ARM::tADDi8 : ARM::tSUBi8);
7002     TmpInst.addOperand(Inst.getOperand(0));
7003     TmpInst.addOperand(Inst.getOperand(5));
7004     TmpInst.addOperand(Inst.getOperand(0));
7005     TmpInst.addOperand(Inst.getOperand(2));
7006     TmpInst.addOperand(Inst.getOperand(3));
7007     TmpInst.addOperand(Inst.getOperand(4));
7008     Inst = TmpInst;
7009     return true;
7010   }
7011   case ARM::t2ADDrr: {
7012     // If the destination and first source operand are the same, and
7013     // there's no setting of the flags, use encoding T2 instead of T3.
7014     // Note that this is only for ADD, not SUB. This mirrors the system
7015     // 'as' behaviour. Make sure the wide encoding wasn't explicit.
7016     if (Inst.getOperand(0).getReg() != Inst.getOperand(1).getReg() ||
7017         Inst.getOperand(5).getReg() != 0 ||
7018         (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7019          static_cast<ARMOperand*>(Operands[3])->getToken() == ".w"))
7020       break;
7021     MCInst TmpInst;
7022     TmpInst.setOpcode(ARM::tADDhirr);
7023     TmpInst.addOperand(Inst.getOperand(0));
7024     TmpInst.addOperand(Inst.getOperand(0));
7025     TmpInst.addOperand(Inst.getOperand(2));
7026     TmpInst.addOperand(Inst.getOperand(3));
7027     TmpInst.addOperand(Inst.getOperand(4));
7028     Inst = TmpInst;
7029     return true;
7030   }
7031   case ARM::tADDrSP: {
7032     // If the non-SP source operand and the destination operand are not the
7033     // same, we need to use the 32-bit encoding if it's available.
7034     if (Inst.getOperand(0).getReg() != Inst.getOperand(2).getReg()) {
7035       Inst.setOpcode(ARM::t2ADDrr);
7036       Inst.addOperand(MCOperand::CreateReg(0)); // cc_out
7037       return true;
7038     }
7039     break;
7040   }
7041   case ARM::tB:
7042     // A Thumb conditional branch outside of an IT block is a tBcc.
7043     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()) {
7044       Inst.setOpcode(ARM::tBcc);
7045       return true;
7046     }
7047     break;
7048   case ARM::t2B:
7049     // A Thumb2 conditional branch outside of an IT block is a t2Bcc.
7050     if (Inst.getOperand(1).getImm() != ARMCC::AL && !inITBlock()){
7051       Inst.setOpcode(ARM::t2Bcc);
7052       return true;
7053     }
7054     break;
7055   case ARM::t2Bcc:
7056     // If the conditional is AL or we're in an IT block, we really want t2B.
7057     if (Inst.getOperand(1).getImm() == ARMCC::AL || inITBlock()) {
7058       Inst.setOpcode(ARM::t2B);
7059       return true;
7060     }
7061     break;
7062   case ARM::tBcc:
7063     // If the conditional is AL, we really want tB.
7064     if (Inst.getOperand(1).getImm() == ARMCC::AL) {
7065       Inst.setOpcode(ARM::tB);
7066       return true;
7067     }
7068     break;
7069   case ARM::tLDMIA: {
7070     // If the register list contains any high registers, or if the writeback
7071     // doesn't match what tLDMIA can do, we need to use the 32-bit encoding
7072     // instead if we're in Thumb2. Otherwise, this should have generated
7073     // an error in validateInstruction().
7074     unsigned Rn = Inst.getOperand(0).getReg();
7075     bool hasWritebackToken =
7076       (static_cast<ARMOperand*>(Operands[3])->isToken() &&
7077        static_cast<ARMOperand*>(Operands[3])->getToken() == "!");
7078     bool listContainsBase;
7079     if (checkLowRegisterList(Inst, 3, Rn, 0, listContainsBase) ||
7080         (!listContainsBase && !hasWritebackToken) ||
7081         (listContainsBase && hasWritebackToken)) {
7082       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7083       assert (isThumbTwo());
7084       Inst.setOpcode(hasWritebackToken ? ARM::t2LDMIA_UPD : ARM::t2LDMIA);
7085       // If we're switching to the updating version, we need to insert
7086       // the writeback tied operand.
7087       if (hasWritebackToken)
7088         Inst.insert(Inst.begin(),
7089                     MCOperand::CreateReg(Inst.getOperand(0).getReg()));
7090       return true;
7091     }
7092     break;
7093   }
7094   case ARM::tSTMIA_UPD: {
7095     // If the register list contains any high registers, we need to use
7096     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7097     // should have generated an error in validateInstruction().
7098     unsigned Rn = Inst.getOperand(0).getReg();
7099     bool listContainsBase;
7100     if (checkLowRegisterList(Inst, 4, Rn, 0, listContainsBase)) {
7101       // 16-bit encoding isn't sufficient. Switch to the 32-bit version.
7102       assert (isThumbTwo());
7103       Inst.setOpcode(ARM::t2STMIA_UPD);
7104       return true;
7105     }
7106     break;
7107   }
7108   case ARM::tPOP: {
7109     bool listContainsBase;
7110     // If the register list contains any high registers, we need to use
7111     // the 32-bit encoding instead if we're in Thumb2. Otherwise, this
7112     // should have generated an error in validateInstruction().
7113     if (!checkLowRegisterList(Inst, 2, 0, ARM::PC, listContainsBase))
7114       return false;
7115     assert (isThumbTwo());
7116     Inst.setOpcode(ARM::t2LDMIA_UPD);
7117     // Add the base register and writeback operands.
7118     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7119     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7120     return true;
7121   }
7122   case ARM::tPUSH: {
7123     bool listContainsBase;
7124     if (!checkLowRegisterList(Inst, 2, 0, ARM::LR, listContainsBase))
7125       return false;
7126     assert (isThumbTwo());
7127     Inst.setOpcode(ARM::t2STMDB_UPD);
7128     // Add the base register and writeback operands.
7129     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7130     Inst.insert(Inst.begin(), MCOperand::CreateReg(ARM::SP));
7131     return true;
7132   }
7133   case ARM::t2MOVi: {
7134     // If we can use the 16-bit encoding and the user didn't explicitly
7135     // request the 32-bit variant, transform it here.
7136     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7137         (unsigned)Inst.getOperand(1).getImm() <= 255 &&
7138         ((!inITBlock() && Inst.getOperand(2).getImm() == ARMCC::AL &&
7139          Inst.getOperand(4).getReg() == ARM::CPSR) ||
7140         (inITBlock() && Inst.getOperand(4).getReg() == 0)) &&
7141         (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7142          static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7143       // The operands aren't in the same order for tMOVi8...
7144       MCInst TmpInst;
7145       TmpInst.setOpcode(ARM::tMOVi8);
7146       TmpInst.addOperand(Inst.getOperand(0));
7147       TmpInst.addOperand(Inst.getOperand(4));
7148       TmpInst.addOperand(Inst.getOperand(1));
7149       TmpInst.addOperand(Inst.getOperand(2));
7150       TmpInst.addOperand(Inst.getOperand(3));
7151       Inst = TmpInst;
7152       return true;
7153     }
7154     break;
7155   }
7156   case ARM::t2MOVr: {
7157     // If we can use the 16-bit encoding and the user didn't explicitly
7158     // request the 32-bit variant, transform it here.
7159     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7160         isARMLowRegister(Inst.getOperand(1).getReg()) &&
7161         Inst.getOperand(2).getImm() == ARMCC::AL &&
7162         Inst.getOperand(4).getReg() == ARM::CPSR &&
7163         (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7164          static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7165       // The operands aren't the same for tMOV[S]r... (no cc_out)
7166       MCInst TmpInst;
7167       TmpInst.setOpcode(Inst.getOperand(4).getReg() ? ARM::tMOVSr : ARM::tMOVr);
7168       TmpInst.addOperand(Inst.getOperand(0));
7169       TmpInst.addOperand(Inst.getOperand(1));
7170       TmpInst.addOperand(Inst.getOperand(2));
7171       TmpInst.addOperand(Inst.getOperand(3));
7172       Inst = TmpInst;
7173       return true;
7174     }
7175     break;
7176   }
7177   case ARM::t2SXTH:
7178   case ARM::t2SXTB:
7179   case ARM::t2UXTH:
7180   case ARM::t2UXTB: {
7181     // If we can use the 16-bit encoding and the user didn't explicitly
7182     // request the 32-bit variant, transform it here.
7183     if (isARMLowRegister(Inst.getOperand(0).getReg()) &&
7184         isARMLowRegister(Inst.getOperand(1).getReg()) &&
7185         Inst.getOperand(2).getImm() == 0 &&
7186         (!static_cast<ARMOperand*>(Operands[2])->isToken() ||
7187          static_cast<ARMOperand*>(Operands[2])->getToken() != ".w")) {
7188       unsigned NewOpc;
7189       switch (Inst.getOpcode()) {
7190       default: llvm_unreachable("Illegal opcode!");
7191       case ARM::t2SXTH: NewOpc = ARM::tSXTH; break;
7192       case ARM::t2SXTB: NewOpc = ARM::tSXTB; break;
7193       case ARM::t2UXTH: NewOpc = ARM::tUXTH; break;
7194       case ARM::t2UXTB: NewOpc = ARM::tUXTB; break;
7195       }
7196       // The operands aren't the same for thumb1 (no rotate operand).
7197       MCInst TmpInst;
7198       TmpInst.setOpcode(NewOpc);
7199       TmpInst.addOperand(Inst.getOperand(0));
7200       TmpInst.addOperand(Inst.getOperand(1));
7201       TmpInst.addOperand(Inst.getOperand(3));
7202       TmpInst.addOperand(Inst.getOperand(4));
7203       Inst = TmpInst;
7204       return true;
7205     }
7206     break;
7207   }
7208   case ARM::MOVsi: {
7209     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(2).getImm());
7210     // rrx shifts and asr/lsr of #32 is encoded as 0
7211     if (SOpc == ARM_AM::rrx || SOpc == ARM_AM::asr || SOpc == ARM_AM::lsr) 
7212       return false;
7213     if (ARM_AM::getSORegOffset(Inst.getOperand(2).getImm()) == 0) {
7214       // Shifting by zero is accepted as a vanilla 'MOVr'
7215       MCInst TmpInst;
7216       TmpInst.setOpcode(ARM::MOVr);
7217       TmpInst.addOperand(Inst.getOperand(0));
7218       TmpInst.addOperand(Inst.getOperand(1));
7219       TmpInst.addOperand(Inst.getOperand(3));
7220       TmpInst.addOperand(Inst.getOperand(4));
7221       TmpInst.addOperand(Inst.getOperand(5));
7222       Inst = TmpInst;
7223       return true;
7224     }
7225     return false;
7226   }
7227   case ARM::ANDrsi:
7228   case ARM::ORRrsi:
7229   case ARM::EORrsi:
7230   case ARM::BICrsi:
7231   case ARM::SUBrsi:
7232   case ARM::ADDrsi: {
7233     unsigned newOpc;
7234     ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(Inst.getOperand(3).getImm());
7235     if (SOpc == ARM_AM::rrx) return false;
7236     switch (Inst.getOpcode()) {
7237     default: llvm_unreachable("unexpected opcode!");
7238     case ARM::ANDrsi: newOpc = ARM::ANDrr; break;
7239     case ARM::ORRrsi: newOpc = ARM::ORRrr; break;
7240     case ARM::EORrsi: newOpc = ARM::EORrr; break;
7241     case ARM::BICrsi: newOpc = ARM::BICrr; break;
7242     case ARM::SUBrsi: newOpc = ARM::SUBrr; break;
7243     case ARM::ADDrsi: newOpc = ARM::ADDrr; break;
7244     }
7245     // If the shift is by zero, use the non-shifted instruction definition.
7246     if (ARM_AM::getSORegOffset(Inst.getOperand(3).getImm()) == 0) {
7247       MCInst TmpInst;
7248       TmpInst.setOpcode(newOpc);
7249       TmpInst.addOperand(Inst.getOperand(0));
7250       TmpInst.addOperand(Inst.getOperand(1));
7251       TmpInst.addOperand(Inst.getOperand(2));
7252       TmpInst.addOperand(Inst.getOperand(4));
7253       TmpInst.addOperand(Inst.getOperand(5));
7254       TmpInst.addOperand(Inst.getOperand(6));
7255       Inst = TmpInst;
7256       return true;
7257     }
7258     return false;
7259   }
7260   case ARM::ITasm:
7261   case ARM::t2IT: {
7262     // The mask bits for all but the first condition are represented as
7263     // the low bit of the condition code value implies 't'. We currently
7264     // always have 1 implies 't', so XOR toggle the bits if the low bit
7265     // of the condition code is zero. 
7266     MCOperand &MO = Inst.getOperand(1);
7267     unsigned Mask = MO.getImm();
7268     unsigned OrigMask = Mask;
7269     unsigned TZ = CountTrailingZeros_32(Mask);
7270     if ((Inst.getOperand(0).getImm() & 1) == 0) {
7271       assert(Mask && TZ <= 3 && "illegal IT mask value!");
7272       for (unsigned i = 3; i != TZ; --i)
7273         Mask ^= 1 << i;
7274     }
7275     MO.setImm(Mask);
7276
7277     // Set up the IT block state according to the IT instruction we just
7278     // matched.
7279     assert(!inITBlock() && "nested IT blocks?!");
7280     ITState.Cond = ARMCC::CondCodes(Inst.getOperand(0).getImm());
7281     ITState.Mask = OrigMask; // Use the original mask, not the updated one.
7282     ITState.CurPosition = 0;
7283     ITState.FirstCond = true;
7284     break;
7285   }
7286   }
7287   return false;
7288 }
7289
7290 unsigned ARMAsmParser::checkTargetMatchPredicate(MCInst &Inst) {
7291   // 16-bit thumb arithmetic instructions either require or preclude the 'S'
7292   // suffix depending on whether they're in an IT block or not.
7293   unsigned Opc = Inst.getOpcode();
7294   const MCInstrDesc &MCID = getInstDesc(Opc);
7295   if (MCID.TSFlags & ARMII::ThumbArithFlagSetting) {
7296     assert(MCID.hasOptionalDef() &&
7297            "optionally flag setting instruction missing optional def operand");
7298     assert(MCID.NumOperands == Inst.getNumOperands() &&
7299            "operand count mismatch!");
7300     // Find the optional-def operand (cc_out).
7301     unsigned OpNo;
7302     for (OpNo = 0;
7303          !MCID.OpInfo[OpNo].isOptionalDef() && OpNo < MCID.NumOperands;
7304          ++OpNo)
7305       ;
7306     // If we're parsing Thumb1, reject it completely.
7307     if (isThumbOne() && Inst.getOperand(OpNo).getReg() != ARM::CPSR)
7308       return Match_MnemonicFail;
7309     // If we're parsing Thumb2, which form is legal depends on whether we're
7310     // in an IT block.
7311     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() != ARM::CPSR &&
7312         !inITBlock())
7313       return Match_RequiresITBlock;
7314     if (isThumbTwo() && Inst.getOperand(OpNo).getReg() == ARM::CPSR &&
7315         inITBlock())
7316       return Match_RequiresNotITBlock;
7317   }
7318   // Some high-register supporting Thumb1 encodings only allow both registers
7319   // to be from r0-r7 when in Thumb2.
7320   else if (Opc == ARM::tADDhirr && isThumbOne() &&
7321            isARMLowRegister(Inst.getOperand(1).getReg()) &&
7322            isARMLowRegister(Inst.getOperand(2).getReg()))
7323     return Match_RequiresThumb2;
7324   // Others only require ARMv6 or later.
7325   else if (Opc == ARM::tMOVr && isThumbOne() && !hasV6Ops() &&
7326            isARMLowRegister(Inst.getOperand(0).getReg()) &&
7327            isARMLowRegister(Inst.getOperand(1).getReg()))
7328     return Match_RequiresV6;
7329   return Match_Success;
7330 }
7331
7332 static const char *getSubtargetFeatureName(unsigned Val);
7333 bool ARMAsmParser::
7334 MatchAndEmitInstruction(SMLoc IDLoc,
7335                         SmallVectorImpl<MCParsedAsmOperand*> &Operands,
7336                         MCStreamer &Out) {
7337   MCInst Inst;
7338   unsigned ErrorInfo;
7339   unsigned MatchResult;
7340   MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo);
7341   switch (MatchResult) {
7342   default: break;
7343   case Match_Success:
7344     // Context sensitive operand constraints aren't handled by the matcher,
7345     // so check them here.
7346     if (validateInstruction(Inst, Operands)) {
7347       // Still progress the IT block, otherwise one wrong condition causes
7348       // nasty cascading errors.
7349       forwardITPosition();
7350       return true;
7351     }
7352
7353     // Some instructions need post-processing to, for example, tweak which
7354     // encoding is selected. Loop on it while changes happen so the
7355     // individual transformations can chain off each other. E.g.,
7356     // tPOP(r8)->t2LDMIA_UPD(sp,r8)->t2STR_POST(sp,r8)
7357     while (processInstruction(Inst, Operands))
7358       ;
7359
7360     // Only move forward at the very end so that everything in validate
7361     // and process gets a consistent answer about whether we're in an IT
7362     // block.
7363     forwardITPosition();
7364
7365     // ITasm is an ARM mode pseudo-instruction that just sets the ITblock and
7366     // doesn't actually encode.
7367     if (Inst.getOpcode() == ARM::ITasm)
7368       return false;
7369
7370     Inst.setLoc(IDLoc);
7371     Out.EmitInstruction(Inst);
7372     return false;
7373   case Match_MissingFeature: {
7374     assert(ErrorInfo && "Unknown missing feature!");
7375     // Special case the error message for the very common case where only
7376     // a single subtarget feature is missing (Thumb vs. ARM, e.g.).
7377     std::string Msg = "instruction requires:";
7378     unsigned Mask = 1;
7379     for (unsigned i = 0; i < (sizeof(ErrorInfo)*8-1); ++i) {
7380       if (ErrorInfo & Mask) {
7381         Msg += " ";
7382         Msg += getSubtargetFeatureName(ErrorInfo & Mask);
7383       }
7384       Mask <<= 1;
7385     }
7386     return Error(IDLoc, Msg);
7387   }
7388   case Match_InvalidOperand: {
7389     SMLoc ErrorLoc = IDLoc;
7390     if (ErrorInfo != ~0U) {
7391       if (ErrorInfo >= Operands.size())
7392         return Error(IDLoc, "too few operands for instruction");
7393
7394       ErrorLoc = ((ARMOperand*)Operands[ErrorInfo])->getStartLoc();
7395       if (ErrorLoc == SMLoc()) ErrorLoc = IDLoc;
7396     }
7397
7398     return Error(ErrorLoc, "invalid operand for instruction");
7399   }
7400   case Match_MnemonicFail:
7401     return Error(IDLoc, "invalid instruction",
7402                  ((ARMOperand*)Operands[0])->getLocRange());
7403   case Match_ConversionFail:
7404     // The converter function will have already emitted a diagnostic.
7405     return true;
7406   case Match_RequiresNotITBlock:
7407     return Error(IDLoc, "flag setting instruction only valid outside IT block");
7408   case Match_RequiresITBlock:
7409     return Error(IDLoc, "instruction only valid inside IT block");
7410   case Match_RequiresV6:
7411     return Error(IDLoc, "instruction variant requires ARMv6 or later");
7412   case Match_RequiresThumb2:
7413     return Error(IDLoc, "instruction variant requires Thumb2");
7414   }
7415
7416   llvm_unreachable("Implement any new match types added!");
7417 }
7418
7419 /// parseDirective parses the arm specific directives
7420 bool ARMAsmParser::ParseDirective(AsmToken DirectiveID) {
7421   StringRef IDVal = DirectiveID.getIdentifier();
7422   if (IDVal == ".word")
7423     return parseDirectiveWord(4, DirectiveID.getLoc());
7424   else if (IDVal == ".thumb")
7425     return parseDirectiveThumb(DirectiveID.getLoc());
7426   else if (IDVal == ".arm")
7427     return parseDirectiveARM(DirectiveID.getLoc());
7428   else if (IDVal == ".thumb_func")
7429     return parseDirectiveThumbFunc(DirectiveID.getLoc());
7430   else if (IDVal == ".code")
7431     return parseDirectiveCode(DirectiveID.getLoc());
7432   else if (IDVal == ".syntax")
7433     return parseDirectiveSyntax(DirectiveID.getLoc());
7434   else if (IDVal == ".unreq")
7435     return parseDirectiveUnreq(DirectiveID.getLoc());
7436   else if (IDVal == ".arch")
7437     return parseDirectiveArch(DirectiveID.getLoc());
7438   else if (IDVal == ".eabi_attribute")
7439     return parseDirectiveEabiAttr(DirectiveID.getLoc());
7440   return true;
7441 }
7442
7443 /// parseDirectiveWord
7444 ///  ::= .word [ expression (, expression)* ]
7445 bool ARMAsmParser::parseDirectiveWord(unsigned Size, SMLoc L) {
7446   if (getLexer().isNot(AsmToken::EndOfStatement)) {
7447     for (;;) {
7448       const MCExpr *Value;
7449       if (getParser().ParseExpression(Value))
7450         return true;
7451
7452       getParser().getStreamer().EmitValue(Value, Size, 0/*addrspace*/);
7453
7454       if (getLexer().is(AsmToken::EndOfStatement))
7455         break;
7456
7457       // FIXME: Improve diagnostic.
7458       if (getLexer().isNot(AsmToken::Comma))
7459         return Error(L, "unexpected token in directive");
7460       Parser.Lex();
7461     }
7462   }
7463
7464   Parser.Lex();
7465   return false;
7466 }
7467
7468 /// parseDirectiveThumb
7469 ///  ::= .thumb
7470 bool ARMAsmParser::parseDirectiveThumb(SMLoc L) {
7471   if (getLexer().isNot(AsmToken::EndOfStatement))
7472     return Error(L, "unexpected token in directive");
7473   Parser.Lex();
7474
7475   if (!isThumb())
7476     SwitchMode();
7477   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7478   return false;
7479 }
7480
7481 /// parseDirectiveARM
7482 ///  ::= .arm
7483 bool ARMAsmParser::parseDirectiveARM(SMLoc L) {
7484   if (getLexer().isNot(AsmToken::EndOfStatement))
7485     return Error(L, "unexpected token in directive");
7486   Parser.Lex();
7487
7488   if (isThumb())
7489     SwitchMode();
7490   getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7491   return false;
7492 }
7493
7494 /// parseDirectiveThumbFunc
7495 ///  ::= .thumbfunc symbol_name
7496 bool ARMAsmParser::parseDirectiveThumbFunc(SMLoc L) {
7497   const MCAsmInfo &MAI = getParser().getStreamer().getContext().getAsmInfo();
7498   bool isMachO = MAI.hasSubsectionsViaSymbols();
7499   StringRef Name;
7500   bool needFuncName = true;
7501
7502   // Darwin asm has (optionally) function name after .thumb_func direction
7503   // ELF doesn't
7504   if (isMachO) {
7505     const AsmToken &Tok = Parser.getTok();
7506     if (Tok.isNot(AsmToken::EndOfStatement)) {
7507       if (Tok.isNot(AsmToken::Identifier) && Tok.isNot(AsmToken::String))
7508         return Error(L, "unexpected token in .thumb_func directive");
7509       Name = Tok.getIdentifier();
7510       Parser.Lex(); // Consume the identifier token.
7511       needFuncName = false;
7512     }
7513   }
7514
7515   if (getLexer().isNot(AsmToken::EndOfStatement))
7516     return Error(L, "unexpected token in directive");
7517
7518   // Eat the end of statement and any blank lines that follow.
7519   while (getLexer().is(AsmToken::EndOfStatement))
7520     Parser.Lex();
7521
7522   // FIXME: assuming function name will be the line following .thumb_func
7523   // We really should be checking the next symbol definition even if there's
7524   // stuff in between.
7525   if (needFuncName) {
7526     Name = Parser.getTok().getIdentifier();
7527   }
7528
7529   // Mark symbol as a thumb symbol.
7530   MCSymbol *Func = getParser().getContext().GetOrCreateSymbol(Name);
7531   getParser().getStreamer().EmitThumbFunc(Func);
7532   return false;
7533 }
7534
7535 /// parseDirectiveSyntax
7536 ///  ::= .syntax unified | divided
7537 bool ARMAsmParser::parseDirectiveSyntax(SMLoc L) {
7538   const AsmToken &Tok = Parser.getTok();
7539   if (Tok.isNot(AsmToken::Identifier))
7540     return Error(L, "unexpected token in .syntax directive");
7541   StringRef Mode = Tok.getString();
7542   if (Mode == "unified" || Mode == "UNIFIED")
7543     Parser.Lex();
7544   else if (Mode == "divided" || Mode == "DIVIDED")
7545     return Error(L, "'.syntax divided' arm asssembly not supported");
7546   else
7547     return Error(L, "unrecognized syntax mode in .syntax directive");
7548
7549   if (getLexer().isNot(AsmToken::EndOfStatement))
7550     return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7551   Parser.Lex();
7552
7553   // TODO tell the MC streamer the mode
7554   // getParser().getStreamer().Emit???();
7555   return false;
7556 }
7557
7558 /// parseDirectiveCode
7559 ///  ::= .code 16 | 32
7560 bool ARMAsmParser::parseDirectiveCode(SMLoc L) {
7561   const AsmToken &Tok = Parser.getTok();
7562   if (Tok.isNot(AsmToken::Integer))
7563     return Error(L, "unexpected token in .code directive");
7564   int64_t Val = Parser.getTok().getIntVal();
7565   if (Val == 16)
7566     Parser.Lex();
7567   else if (Val == 32)
7568     Parser.Lex();
7569   else
7570     return Error(L, "invalid operand to .code directive");
7571
7572   if (getLexer().isNot(AsmToken::EndOfStatement))
7573     return Error(Parser.getTok().getLoc(), "unexpected token in directive");
7574   Parser.Lex();
7575
7576   if (Val == 16) {
7577     if (!isThumb())
7578       SwitchMode();
7579     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code16);
7580   } else {
7581     if (isThumb())
7582       SwitchMode();
7583     getParser().getStreamer().EmitAssemblerFlag(MCAF_Code32);
7584   }
7585
7586   return false;
7587 }
7588
7589 /// parseDirectiveReq
7590 ///  ::= name .req registername
7591 bool ARMAsmParser::parseDirectiveReq(StringRef Name, SMLoc L) {
7592   Parser.Lex(); // Eat the '.req' token.
7593   unsigned Reg;
7594   SMLoc SRegLoc, ERegLoc;
7595   if (ParseRegister(Reg, SRegLoc, ERegLoc)) {
7596     Parser.EatToEndOfStatement();
7597     return Error(SRegLoc, "register name expected");
7598   }
7599
7600   // Shouldn't be anything else.
7601   if (Parser.getTok().isNot(AsmToken::EndOfStatement)) {
7602     Parser.EatToEndOfStatement();
7603     return Error(Parser.getTok().getLoc(),
7604                  "unexpected input in .req directive.");
7605   }
7606
7607   Parser.Lex(); // Consume the EndOfStatement
7608
7609   if (RegisterReqs.GetOrCreateValue(Name, Reg).getValue() != Reg)
7610     return Error(SRegLoc, "redefinition of '" + Name +
7611                           "' does not match original.");
7612
7613   return false;
7614 }
7615
7616 /// parseDirectiveUneq
7617 ///  ::= .unreq registername
7618 bool ARMAsmParser::parseDirectiveUnreq(SMLoc L) {
7619   if (Parser.getTok().isNot(AsmToken::Identifier)) {
7620     Parser.EatToEndOfStatement();
7621     return Error(L, "unexpected input in .unreq directive.");
7622   }
7623   RegisterReqs.erase(Parser.getTok().getIdentifier());
7624   Parser.Lex(); // Eat the identifier.
7625   return false;
7626 }
7627
7628 /// parseDirectiveArch
7629 ///  ::= .arch token
7630 bool ARMAsmParser::parseDirectiveArch(SMLoc L) {
7631   return true;
7632 }
7633
7634 /// parseDirectiveEabiAttr
7635 ///  ::= .eabi_attribute int, int
7636 bool ARMAsmParser::parseDirectiveEabiAttr(SMLoc L) {
7637   return true;
7638 }
7639
7640 extern "C" void LLVMInitializeARMAsmLexer();
7641
7642 /// Force static initialization.
7643 extern "C" void LLVMInitializeARMAsmParser() {
7644   RegisterMCAsmParser<ARMAsmParser> X(TheARMTarget);
7645   RegisterMCAsmParser<ARMAsmParser> Y(TheThumbTarget);
7646   LLVMInitializeARMAsmLexer();
7647 }
7648
7649 #define GET_REGISTER_MATCHER
7650 #define GET_SUBTARGET_FEATURE_NAME
7651 #define GET_MATCHER_IMPLEMENTATION
7652 #include "ARMGenAsmMatcher.inc"