1 //===-- CBackend.cpp - Library for converting LLVM code to C --------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This library converts LLVM code to C code, compilable by GCC and other C
13 //===----------------------------------------------------------------------===//
15 #include "CTargetMachine.h"
16 #include "llvm/CallingConv.h"
17 #include "llvm/Constants.h"
18 #include "llvm/DerivedTypes.h"
19 #include "llvm/Module.h"
20 #include "llvm/Instructions.h"
21 #include "llvm/Pass.h"
22 #include "llvm/PassManager.h"
23 #include "llvm/TypeSymbolTable.h"
24 #include "llvm/Intrinsics.h"
25 #include "llvm/IntrinsicInst.h"
26 #include "llvm/InlineAsm.h"
27 #include "llvm/Analysis/ConstantsScanner.h"
28 #include "llvm/Analysis/FindUsedTypes.h"
29 #include "llvm/Analysis/LoopInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/CodeGen/IntrinsicLowering.h"
32 #include "llvm/Transforms/Scalar.h"
33 #include "llvm/Target/TargetMachineRegistry.h"
34 #include "llvm/Target/TargetAsmInfo.h"
35 #include "llvm/Target/TargetData.h"
36 #include "llvm/Support/CallSite.h"
37 #include "llvm/Support/CFG.h"
38 #include "llvm/Support/GetElementPtrTypeIterator.h"
39 #include "llvm/Support/InstVisitor.h"
40 #include "llvm/Support/Mangler.h"
41 #include "llvm/Support/MathExtras.h"
42 #include "llvm/ADT/StringExtras.h"
43 #include "llvm/ADT/STLExtras.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Config/config.h"
51 // Register the target.
52 RegisterTarget<CTargetMachine> X("c", " C backend");
54 /// CBackendNameAllUsedStructsAndMergeFunctions - This pass inserts names for
55 /// any unnamed structure types that are used by the program, and merges
56 /// external functions with the same name.
58 class CBackendNameAllUsedStructsAndMergeFunctions : public ModulePass {
61 CBackendNameAllUsedStructsAndMergeFunctions()
62 : ModulePass((intptr_t)&ID) {}
63 void getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.addRequired<FindUsedTypes>();
67 virtual const char *getPassName() const {
68 return "C backend type canonicalizer";
71 virtual bool runOnModule(Module &M);
74 char CBackendNameAllUsedStructsAndMergeFunctions::ID = 0;
76 /// CWriter - This class is the main chunk of code that converts an LLVM
77 /// module to a C translation unit.
78 class CWriter : public FunctionPass, public InstVisitor<CWriter> {
80 IntrinsicLowering *IL;
83 const Module *TheModule;
84 const TargetAsmInfo* TAsm;
86 std::map<const Type *, std::string> TypeNames;
87 std::map<const ConstantFP *, unsigned> FPConstantMap;
88 std::set<Function*> intrinsicPrototypesAlreadyGenerated;
89 std::set<const Argument*> ByValParams;
93 explicit CWriter(std::ostream &o)
94 : FunctionPass((intptr_t)&ID), Out(o), IL(0), Mang(0), LI(0),
95 TheModule(0), TAsm(0), TD(0) {}
97 virtual const char *getPassName() const { return "C backend"; }
99 void getAnalysisUsage(AnalysisUsage &AU) const {
100 AU.addRequired<LoopInfo>();
101 AU.setPreservesAll();
104 virtual bool doInitialization(Module &M);
106 bool runOnFunction(Function &F) {
107 LI = &getAnalysis<LoopInfo>();
109 // Get rid of intrinsics we can't handle.
112 // Output all floating point constants that cannot be printed accurately.
113 printFloatingPointConstants(F);
119 virtual bool doFinalization(Module &M) {
122 FPConstantMap.clear();
125 intrinsicPrototypesAlreadyGenerated.clear();
129 std::ostream &printType(std::ostream &Out, const Type *Ty,
130 bool isSigned = false,
131 const std::string &VariableName = "",
132 bool IgnoreName = false,
133 const PAListPtr &PAL = PAListPtr());
134 std::ostream &printSimpleType(std::ostream &Out, const Type *Ty,
136 const std::string &NameSoFar = "");
138 void printStructReturnPointerFunctionType(std::ostream &Out,
139 const PAListPtr &PAL,
140 const PointerType *Ty);
142 /// writeOperandDeref - Print the result of dereferencing the specified
143 /// operand with '*'. This is equivalent to printing '*' then using
144 /// writeOperand, but avoids excess syntax in some cases.
145 void writeOperandDeref(Value *Operand) {
146 if (isAddressExposed(Operand)) {
147 // Already something with an address exposed.
148 writeOperandInternal(Operand);
151 writeOperand(Operand);
156 void writeOperand(Value *Operand);
157 void writeOperandRaw(Value *Operand);
158 void writeOperandInternal(Value *Operand);
159 void writeOperandWithCast(Value* Operand, unsigned Opcode);
160 void writeOperandWithCast(Value* Operand, const ICmpInst &I);
161 bool writeInstructionCast(const Instruction &I);
163 void writeMemoryAccess(Value *Operand, const Type *OperandType,
164 bool IsVolatile, unsigned Alignment);
167 std::string InterpretASMConstraint(InlineAsm::ConstraintInfo& c);
169 void lowerIntrinsics(Function &F);
171 void printModule(Module *M);
172 void printModuleTypes(const TypeSymbolTable &ST);
173 void printContainedStructs(const Type *Ty, std::set<const StructType *> &);
174 void printFloatingPointConstants(Function &F);
175 void printFunctionSignature(const Function *F, bool Prototype);
177 void printFunction(Function &);
178 void printBasicBlock(BasicBlock *BB);
179 void printLoop(Loop *L);
181 void printCast(unsigned opcode, const Type *SrcTy, const Type *DstTy);
182 void printConstant(Constant *CPV);
183 void printConstantWithCast(Constant *CPV, unsigned Opcode);
184 bool printConstExprCast(const ConstantExpr *CE);
185 void printConstantArray(ConstantArray *CPA);
186 void printConstantVector(ConstantVector *CV);
188 /// isAddressExposed - Return true if the specified value's name needs to
189 /// have its address taken in order to get a C value of the correct type.
190 /// This happens for global variables, byval parameters, and direct allocas.
191 bool isAddressExposed(const Value *V) const {
192 if (const Argument *A = dyn_cast<Argument>(V))
193 return ByValParams.count(A);
194 return isa<GlobalVariable>(V) || isDirectAlloca(V);
197 // isInlinableInst - Attempt to inline instructions into their uses to build
198 // trees as much as possible. To do this, we have to consistently decide
199 // what is acceptable to inline, so that variable declarations don't get
200 // printed and an extra copy of the expr is not emitted.
202 static bool isInlinableInst(const Instruction &I) {
203 // Always inline cmp instructions, even if they are shared by multiple
204 // expressions. GCC generates horrible code if we don't.
208 // Must be an expression, must be used exactly once. If it is dead, we
209 // emit it inline where it would go.
210 if (I.getType() == Type::VoidTy || !I.hasOneUse() ||
211 isa<TerminatorInst>(I) || isa<CallInst>(I) || isa<PHINode>(I) ||
212 isa<LoadInst>(I) || isa<VAArgInst>(I) || isa<InsertElementInst>(I))
213 // Don't inline a load across a store or other bad things!
216 // Must not be used in inline asm, extractelement, or shufflevector.
218 const Instruction &User = cast<Instruction>(*I.use_back());
219 if (isInlineAsm(User) || isa<ExtractElementInst>(User) ||
220 isa<ShuffleVectorInst>(User))
224 // Only inline instruction it if it's use is in the same BB as the inst.
225 return I.getParent() == cast<Instruction>(I.use_back())->getParent();
228 // isDirectAlloca - Define fixed sized allocas in the entry block as direct
229 // variables which are accessed with the & operator. This causes GCC to
230 // generate significantly better code than to emit alloca calls directly.
232 static const AllocaInst *isDirectAlloca(const Value *V) {
233 const AllocaInst *AI = dyn_cast<AllocaInst>(V);
234 if (!AI) return false;
235 if (AI->isArrayAllocation())
236 return 0; // FIXME: we can also inline fixed size array allocas!
237 if (AI->getParent() != &AI->getParent()->getParent()->getEntryBlock())
242 // isInlineAsm - Check if the instruction is a call to an inline asm chunk
243 static bool isInlineAsm(const Instruction& I) {
244 if (isa<CallInst>(&I) && isa<InlineAsm>(I.getOperand(0)))
249 // Instruction visitation functions
250 friend class InstVisitor<CWriter>;
252 void visitReturnInst(ReturnInst &I);
253 void visitBranchInst(BranchInst &I);
254 void visitSwitchInst(SwitchInst &I);
255 void visitInvokeInst(InvokeInst &I) {
256 assert(0 && "Lowerinvoke pass didn't work!");
259 void visitUnwindInst(UnwindInst &I) {
260 assert(0 && "Lowerinvoke pass didn't work!");
262 void visitUnreachableInst(UnreachableInst &I);
264 void visitPHINode(PHINode &I);
265 void visitBinaryOperator(Instruction &I);
266 void visitICmpInst(ICmpInst &I);
267 void visitFCmpInst(FCmpInst &I);
269 void visitCastInst (CastInst &I);
270 void visitSelectInst(SelectInst &I);
271 void visitCallInst (CallInst &I);
272 void visitInlineAsm(CallInst &I);
273 bool visitBuiltinCall(CallInst &I, Intrinsic::ID ID, bool &WroteCallee);
275 void visitMallocInst(MallocInst &I);
276 void visitAllocaInst(AllocaInst &I);
277 void visitFreeInst (FreeInst &I);
278 void visitLoadInst (LoadInst &I);
279 void visitStoreInst (StoreInst &I);
280 void visitGetElementPtrInst(GetElementPtrInst &I);
281 void visitVAArgInst (VAArgInst &I);
283 void visitInsertElementInst(InsertElementInst &I);
284 void visitExtractElementInst(ExtractElementInst &I);
285 void visitShuffleVectorInst(ShuffleVectorInst &SVI);
286 void visitGetResultInst(GetResultInst &GRI);
288 void visitInstruction(Instruction &I) {
289 cerr << "C Writer does not know about " << I;
293 void outputLValue(Instruction *I) {
294 Out << " " << GetValueName(I) << " = ";
297 bool isGotoCodeNecessary(BasicBlock *From, BasicBlock *To);
298 void printPHICopiesForSuccessor(BasicBlock *CurBlock,
299 BasicBlock *Successor, unsigned Indent);
300 void printBranchToBlock(BasicBlock *CurBlock, BasicBlock *SuccBlock,
302 void printGEPExpression(Value *Ptr, gep_type_iterator I,
303 gep_type_iterator E);
305 std::string GetValueName(const Value *Operand);
309 char CWriter::ID = 0;
311 /// This method inserts names for any unnamed structure types that are used by
312 /// the program, and removes names from structure types that are not used by the
315 bool CBackendNameAllUsedStructsAndMergeFunctions::runOnModule(Module &M) {
316 // Get a set of types that are used by the program...
317 std::set<const Type *> UT = getAnalysis<FindUsedTypes>().getTypes();
319 // Loop over the module symbol table, removing types from UT that are
320 // already named, and removing names for types that are not used.
322 TypeSymbolTable &TST = M.getTypeSymbolTable();
323 for (TypeSymbolTable::iterator TI = TST.begin(), TE = TST.end();
325 TypeSymbolTable::iterator I = TI++;
327 // If this isn't a struct type, remove it from our set of types to name.
328 // This simplifies emission later.
329 if (!isa<StructType>(I->second) && !isa<OpaqueType>(I->second)) {
332 // If this is not used, remove it from the symbol table.
333 std::set<const Type *>::iterator UTI = UT.find(I->second);
337 UT.erase(UTI); // Only keep one name for this type.
341 // UT now contains types that are not named. Loop over it, naming
344 bool Changed = false;
345 unsigned RenameCounter = 0;
346 for (std::set<const Type *>::const_iterator I = UT.begin(), E = UT.end();
348 if (const StructType *ST = dyn_cast<StructType>(*I)) {
349 while (M.addTypeName("unnamed"+utostr(RenameCounter), ST))
355 // Loop over all external functions and globals. If we have two with
356 // identical names, merge them.
357 // FIXME: This code should disappear when we don't allow values with the same
358 // names when they have different types!
359 std::map<std::string, GlobalValue*> ExtSymbols;
360 for (Module::iterator I = M.begin(), E = M.end(); I != E;) {
362 if (GV->isDeclaration() && GV->hasName()) {
363 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
364 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
366 // Found a conflict, replace this global with the previous one.
367 GlobalValue *OldGV = X.first->second;
368 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
369 GV->eraseFromParent();
374 // Do the same for globals.
375 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
377 GlobalVariable *GV = I++;
378 if (GV->isDeclaration() && GV->hasName()) {
379 std::pair<std::map<std::string, GlobalValue*>::iterator, bool> X
380 = ExtSymbols.insert(std::make_pair(GV->getName(), GV));
382 // Found a conflict, replace this global with the previous one.
383 GlobalValue *OldGV = X.first->second;
384 GV->replaceAllUsesWith(ConstantExpr::getBitCast(OldGV, GV->getType()));
385 GV->eraseFromParent();
394 /// printStructReturnPointerFunctionType - This is like printType for a struct
395 /// return type, except, instead of printing the type as void (*)(Struct*, ...)
396 /// print it as "Struct (*)(...)", for struct return functions.
397 void CWriter::printStructReturnPointerFunctionType(std::ostream &Out,
398 const PAListPtr &PAL,
399 const PointerType *TheTy) {
400 const FunctionType *FTy = cast<FunctionType>(TheTy->getElementType());
401 std::stringstream FunctionInnards;
402 FunctionInnards << " (*) (";
403 bool PrintedType = false;
405 FunctionType::param_iterator I = FTy->param_begin(), E = FTy->param_end();
406 const Type *RetTy = cast<PointerType>(I->get())->getElementType();
408 for (++I, ++Idx; I != E; ++I, ++Idx) {
410 FunctionInnards << ", ";
411 const Type *ArgTy = *I;
412 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
413 assert(isa<PointerType>(ArgTy));
414 ArgTy = cast<PointerType>(ArgTy)->getElementType();
416 printType(FunctionInnards, ArgTy,
417 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
420 if (FTy->isVarArg()) {
422 FunctionInnards << ", ...";
423 } else if (!PrintedType) {
424 FunctionInnards << "void";
426 FunctionInnards << ')';
427 std::string tstr = FunctionInnards.str();
428 printType(Out, RetTy,
429 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
433 CWriter::printSimpleType(std::ostream &Out, const Type *Ty, bool isSigned,
434 const std::string &NameSoFar) {
435 assert((Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) &&
436 "Invalid type for printSimpleType");
437 switch (Ty->getTypeID()) {
438 case Type::VoidTyID: return Out << "void " << NameSoFar;
439 case Type::IntegerTyID: {
440 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
442 return Out << "bool " << NameSoFar;
443 else if (NumBits <= 8)
444 return Out << (isSigned?"signed":"unsigned") << " char " << NameSoFar;
445 else if (NumBits <= 16)
446 return Out << (isSigned?"signed":"unsigned") << " short " << NameSoFar;
447 else if (NumBits <= 32)
448 return Out << (isSigned?"signed":"unsigned") << " int " << NameSoFar;
449 else if (NumBits <= 64)
450 return Out << (isSigned?"signed":"unsigned") << " long long "<< NameSoFar;
452 assert(NumBits <= 128 && "Bit widths > 128 not implemented yet");
453 return Out << (isSigned?"llvmInt128":"llvmUInt128") << " " << NameSoFar;
456 case Type::FloatTyID: return Out << "float " << NameSoFar;
457 case Type::DoubleTyID: return Out << "double " << NameSoFar;
458 // Lacking emulation of FP80 on PPC, etc., we assume whichever of these is
459 // present matches host 'long double'.
460 case Type::X86_FP80TyID:
461 case Type::PPC_FP128TyID:
462 case Type::FP128TyID: return Out << "long double " << NameSoFar;
464 case Type::VectorTyID: {
465 const VectorType *VTy = cast<VectorType>(Ty);
466 return printSimpleType(Out, VTy->getElementType(), isSigned,
467 " __attribute__((vector_size(" +
468 utostr(TD->getABITypeSize(VTy)) + " ))) " + NameSoFar);
472 cerr << "Unknown primitive type: " << *Ty << "\n";
477 // Pass the Type* and the variable name and this prints out the variable
480 std::ostream &CWriter::printType(std::ostream &Out, const Type *Ty,
481 bool isSigned, const std::string &NameSoFar,
482 bool IgnoreName, const PAListPtr &PAL) {
483 if (Ty->isPrimitiveType() || Ty->isInteger() || isa<VectorType>(Ty)) {
484 printSimpleType(Out, Ty, isSigned, NameSoFar);
488 // Check to see if the type is named.
489 if (!IgnoreName || isa<OpaqueType>(Ty)) {
490 std::map<const Type *, std::string>::iterator I = TypeNames.find(Ty);
491 if (I != TypeNames.end()) return Out << I->second << ' ' << NameSoFar;
494 switch (Ty->getTypeID()) {
495 case Type::FunctionTyID: {
496 const FunctionType *FTy = cast<FunctionType>(Ty);
497 std::stringstream FunctionInnards;
498 FunctionInnards << " (" << NameSoFar << ") (";
500 for (FunctionType::param_iterator I = FTy->param_begin(),
501 E = FTy->param_end(); I != E; ++I) {
502 const Type *ArgTy = *I;
503 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
504 assert(isa<PointerType>(ArgTy));
505 ArgTy = cast<PointerType>(ArgTy)->getElementType();
507 if (I != FTy->param_begin())
508 FunctionInnards << ", ";
509 printType(FunctionInnards, ArgTy,
510 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt), "");
513 if (FTy->isVarArg()) {
514 if (FTy->getNumParams())
515 FunctionInnards << ", ...";
516 } else if (!FTy->getNumParams()) {
517 FunctionInnards << "void";
519 FunctionInnards << ')';
520 std::string tstr = FunctionInnards.str();
521 printType(Out, FTy->getReturnType(),
522 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt), tstr);
525 case Type::StructTyID: {
526 const StructType *STy = cast<StructType>(Ty);
527 Out << NameSoFar + " {\n";
529 for (StructType::element_iterator I = STy->element_begin(),
530 E = STy->element_end(); I != E; ++I) {
532 printType(Out, *I, false, "field" + utostr(Idx++));
537 Out << " __attribute__ ((packed))";
541 case Type::PointerTyID: {
542 const PointerType *PTy = cast<PointerType>(Ty);
543 std::string ptrName = "*" + NameSoFar;
545 if (isa<ArrayType>(PTy->getElementType()) ||
546 isa<VectorType>(PTy->getElementType()))
547 ptrName = "(" + ptrName + ")";
550 // Must be a function ptr cast!
551 return printType(Out, PTy->getElementType(), false, ptrName, true, PAL);
552 return printType(Out, PTy->getElementType(), false, ptrName);
555 case Type::ArrayTyID: {
556 const ArrayType *ATy = cast<ArrayType>(Ty);
557 unsigned NumElements = ATy->getNumElements();
558 if (NumElements == 0) NumElements = 1;
559 return printType(Out, ATy->getElementType(), false,
560 NameSoFar + "[" + utostr(NumElements) + "]");
563 case Type::OpaqueTyID: {
564 static int Count = 0;
565 std::string TyName = "struct opaque_" + itostr(Count++);
566 assert(TypeNames.find(Ty) == TypeNames.end());
567 TypeNames[Ty] = TyName;
568 return Out << TyName << ' ' << NameSoFar;
571 assert(0 && "Unhandled case in getTypeProps!");
578 void CWriter::printConstantArray(ConstantArray *CPA) {
580 // As a special case, print the array as a string if it is an array of
581 // ubytes or an array of sbytes with positive values.
583 const Type *ETy = CPA->getType()->getElementType();
584 bool isString = (ETy == Type::Int8Ty || ETy == Type::Int8Ty);
586 // Make sure the last character is a null char, as automatically added by C
587 if (isString && (CPA->getNumOperands() == 0 ||
588 !cast<Constant>(*(CPA->op_end()-1))->isNullValue()))
593 // Keep track of whether the last number was a hexadecimal escape
594 bool LastWasHex = false;
596 // Do not include the last character, which we know is null
597 for (unsigned i = 0, e = CPA->getNumOperands()-1; i != e; ++i) {
598 unsigned char C = cast<ConstantInt>(CPA->getOperand(i))->getZExtValue();
600 // Print it out literally if it is a printable character. The only thing
601 // to be careful about is when the last letter output was a hex escape
602 // code, in which case we have to be careful not to print out hex digits
603 // explicitly (the C compiler thinks it is a continuation of the previous
604 // character, sheesh...)
606 if (isprint(C) && (!LastWasHex || !isxdigit(C))) {
608 if (C == '"' || C == '\\')
615 case '\n': Out << "\\n"; break;
616 case '\t': Out << "\\t"; break;
617 case '\r': Out << "\\r"; break;
618 case '\v': Out << "\\v"; break;
619 case '\a': Out << "\\a"; break;
620 case '\"': Out << "\\\""; break;
621 case '\'': Out << "\\\'"; break;
624 Out << (char)(( C/16 < 10) ? ( C/16 +'0') : ( C/16 -10+'A'));
625 Out << (char)(((C&15) < 10) ? ((C&15)+'0') : ((C&15)-10+'A'));
634 if (CPA->getNumOperands()) {
636 printConstant(cast<Constant>(CPA->getOperand(0)));
637 for (unsigned i = 1, e = CPA->getNumOperands(); i != e; ++i) {
639 printConstant(cast<Constant>(CPA->getOperand(i)));
646 void CWriter::printConstantVector(ConstantVector *CP) {
648 if (CP->getNumOperands()) {
650 printConstant(cast<Constant>(CP->getOperand(0)));
651 for (unsigned i = 1, e = CP->getNumOperands(); i != e; ++i) {
653 printConstant(cast<Constant>(CP->getOperand(i)));
659 // isFPCSafeToPrint - Returns true if we may assume that CFP may be written out
660 // textually as a double (rather than as a reference to a stack-allocated
661 // variable). We decide this by converting CFP to a string and back into a
662 // double, and then checking whether the conversion results in a bit-equal
663 // double to the original value of CFP. This depends on us and the target C
664 // compiler agreeing on the conversion process (which is pretty likely since we
665 // only deal in IEEE FP).
667 static bool isFPCSafeToPrint(const ConstantFP *CFP) {
668 // Do long doubles in hex for now.
669 if (CFP->getType()!=Type::FloatTy && CFP->getType()!=Type::DoubleTy)
671 APFloat APF = APFloat(CFP->getValueAPF()); // copy
672 if (CFP->getType()==Type::FloatTy)
673 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven);
674 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
676 sprintf(Buffer, "%a", APF.convertToDouble());
677 if (!strncmp(Buffer, "0x", 2) ||
678 !strncmp(Buffer, "-0x", 3) ||
679 !strncmp(Buffer, "+0x", 3))
680 return APF.bitwiseIsEqual(APFloat(atof(Buffer)));
683 std::string StrVal = ftostr(APF);
685 while (StrVal[0] == ' ')
686 StrVal.erase(StrVal.begin());
688 // Check to make sure that the stringized number is not some string like "Inf"
689 // or NaN. Check that the string matches the "[-+]?[0-9]" regex.
690 if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
691 ((StrVal[0] == '-' || StrVal[0] == '+') &&
692 (StrVal[1] >= '0' && StrVal[1] <= '9')))
693 // Reparse stringized version!
694 return APF.bitwiseIsEqual(APFloat(atof(StrVal.c_str())));
699 /// Print out the casting for a cast operation. This does the double casting
700 /// necessary for conversion to the destination type, if necessary.
701 /// @brief Print a cast
702 void CWriter::printCast(unsigned opc, const Type *SrcTy, const Type *DstTy) {
703 // Print the destination type cast
705 case Instruction::UIToFP:
706 case Instruction::SIToFP:
707 case Instruction::IntToPtr:
708 case Instruction::Trunc:
709 case Instruction::BitCast:
710 case Instruction::FPExt:
711 case Instruction::FPTrunc: // For these the DstTy sign doesn't matter
713 printType(Out, DstTy);
716 case Instruction::ZExt:
717 case Instruction::PtrToInt:
718 case Instruction::FPToUI: // For these, make sure we get an unsigned dest
720 printSimpleType(Out, DstTy, false);
723 case Instruction::SExt:
724 case Instruction::FPToSI: // For these, make sure we get a signed dest
726 printSimpleType(Out, DstTy, true);
730 assert(0 && "Invalid cast opcode");
733 // Print the source type cast
735 case Instruction::UIToFP:
736 case Instruction::ZExt:
738 printSimpleType(Out, SrcTy, false);
741 case Instruction::SIToFP:
742 case Instruction::SExt:
744 printSimpleType(Out, SrcTy, true);
747 case Instruction::IntToPtr:
748 case Instruction::PtrToInt:
749 // Avoid "cast to pointer from integer of different size" warnings
750 Out << "(unsigned long)";
752 case Instruction::Trunc:
753 case Instruction::BitCast:
754 case Instruction::FPExt:
755 case Instruction::FPTrunc:
756 case Instruction::FPToSI:
757 case Instruction::FPToUI:
758 break; // These don't need a source cast.
760 assert(0 && "Invalid cast opcode");
765 // printConstant - The LLVM Constant to C Constant converter.
766 void CWriter::printConstant(Constant *CPV) {
767 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CPV)) {
768 switch (CE->getOpcode()) {
769 case Instruction::Trunc:
770 case Instruction::ZExt:
771 case Instruction::SExt:
772 case Instruction::FPTrunc:
773 case Instruction::FPExt:
774 case Instruction::UIToFP:
775 case Instruction::SIToFP:
776 case Instruction::FPToUI:
777 case Instruction::FPToSI:
778 case Instruction::PtrToInt:
779 case Instruction::IntToPtr:
780 case Instruction::BitCast:
782 printCast(CE->getOpcode(), CE->getOperand(0)->getType(), CE->getType());
783 if (CE->getOpcode() == Instruction::SExt &&
784 CE->getOperand(0)->getType() == Type::Int1Ty) {
785 // Make sure we really sext from bool here by subtracting from 0
788 printConstant(CE->getOperand(0));
789 if (CE->getType() == Type::Int1Ty &&
790 (CE->getOpcode() == Instruction::Trunc ||
791 CE->getOpcode() == Instruction::FPToUI ||
792 CE->getOpcode() == Instruction::FPToSI ||
793 CE->getOpcode() == Instruction::PtrToInt)) {
794 // Make sure we really truncate to bool here by anding with 1
800 case Instruction::GetElementPtr:
802 printGEPExpression(CE->getOperand(0), gep_type_begin(CPV),
806 case Instruction::Select:
808 printConstant(CE->getOperand(0));
810 printConstant(CE->getOperand(1));
812 printConstant(CE->getOperand(2));
815 case Instruction::Add:
816 case Instruction::Sub:
817 case Instruction::Mul:
818 case Instruction::SDiv:
819 case Instruction::UDiv:
820 case Instruction::FDiv:
821 case Instruction::URem:
822 case Instruction::SRem:
823 case Instruction::FRem:
824 case Instruction::And:
825 case Instruction::Or:
826 case Instruction::Xor:
827 case Instruction::ICmp:
828 case Instruction::Shl:
829 case Instruction::LShr:
830 case Instruction::AShr:
833 bool NeedsClosingParens = printConstExprCast(CE);
834 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
835 switch (CE->getOpcode()) {
836 case Instruction::Add: Out << " + "; break;
837 case Instruction::Sub: Out << " - "; break;
838 case Instruction::Mul: Out << " * "; break;
839 case Instruction::URem:
840 case Instruction::SRem:
841 case Instruction::FRem: Out << " % "; break;
842 case Instruction::UDiv:
843 case Instruction::SDiv:
844 case Instruction::FDiv: Out << " / "; break;
845 case Instruction::And: Out << " & "; break;
846 case Instruction::Or: Out << " | "; break;
847 case Instruction::Xor: Out << " ^ "; break;
848 case Instruction::Shl: Out << " << "; break;
849 case Instruction::LShr:
850 case Instruction::AShr: Out << " >> "; break;
851 case Instruction::ICmp:
852 switch (CE->getPredicate()) {
853 case ICmpInst::ICMP_EQ: Out << " == "; break;
854 case ICmpInst::ICMP_NE: Out << " != "; break;
855 case ICmpInst::ICMP_SLT:
856 case ICmpInst::ICMP_ULT: Out << " < "; break;
857 case ICmpInst::ICMP_SLE:
858 case ICmpInst::ICMP_ULE: Out << " <= "; break;
859 case ICmpInst::ICMP_SGT:
860 case ICmpInst::ICMP_UGT: Out << " > "; break;
861 case ICmpInst::ICMP_SGE:
862 case ICmpInst::ICMP_UGE: Out << " >= "; break;
863 default: assert(0 && "Illegal ICmp predicate");
866 default: assert(0 && "Illegal opcode here!");
868 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
869 if (NeedsClosingParens)
874 case Instruction::FCmp: {
876 bool NeedsClosingParens = printConstExprCast(CE);
877 if (CE->getPredicate() == FCmpInst::FCMP_FALSE)
879 else if (CE->getPredicate() == FCmpInst::FCMP_TRUE)
883 switch (CE->getPredicate()) {
884 default: assert(0 && "Illegal FCmp predicate");
885 case FCmpInst::FCMP_ORD: op = "ord"; break;
886 case FCmpInst::FCMP_UNO: op = "uno"; break;
887 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
888 case FCmpInst::FCMP_UNE: op = "une"; break;
889 case FCmpInst::FCMP_ULT: op = "ult"; break;
890 case FCmpInst::FCMP_ULE: op = "ule"; break;
891 case FCmpInst::FCMP_UGT: op = "ugt"; break;
892 case FCmpInst::FCMP_UGE: op = "uge"; break;
893 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
894 case FCmpInst::FCMP_ONE: op = "one"; break;
895 case FCmpInst::FCMP_OLT: op = "olt"; break;
896 case FCmpInst::FCMP_OLE: op = "ole"; break;
897 case FCmpInst::FCMP_OGT: op = "ogt"; break;
898 case FCmpInst::FCMP_OGE: op = "oge"; break;
900 Out << "llvm_fcmp_" << op << "(";
901 printConstantWithCast(CE->getOperand(0), CE->getOpcode());
903 printConstantWithCast(CE->getOperand(1), CE->getOpcode());
906 if (NeedsClosingParens)
912 cerr << "CWriter Error: Unhandled constant expression: "
916 } else if (isa<UndefValue>(CPV) && CPV->getType()->isFirstClassType()) {
918 printType(Out, CPV->getType()); // sign doesn't matter
920 if (!isa<VectorType>(CPV->getType())) {
928 if (ConstantInt *CI = dyn_cast<ConstantInt>(CPV)) {
929 const Type* Ty = CI->getType();
930 if (Ty == Type::Int1Ty)
931 Out << (CI->getZExtValue() ? '1' : '0');
932 else if (Ty == Type::Int32Ty)
933 Out << CI->getZExtValue() << 'u';
934 else if (Ty->getPrimitiveSizeInBits() > 32)
935 Out << CI->getZExtValue() << "ull";
938 printSimpleType(Out, Ty, false) << ')';
939 if (CI->isMinValue(true))
940 Out << CI->getZExtValue() << 'u';
942 Out << CI->getSExtValue();
948 switch (CPV->getType()->getTypeID()) {
949 case Type::FloatTyID:
950 case Type::DoubleTyID:
951 case Type::X86_FP80TyID:
952 case Type::PPC_FP128TyID:
953 case Type::FP128TyID: {
954 ConstantFP *FPC = cast<ConstantFP>(CPV);
955 std::map<const ConstantFP*, unsigned>::iterator I = FPConstantMap.find(FPC);
956 if (I != FPConstantMap.end()) {
957 // Because of FP precision problems we must load from a stack allocated
958 // value that holds the value in hex.
959 Out << "(*(" << (FPC->getType() == Type::FloatTy ? "float" :
960 FPC->getType() == Type::DoubleTy ? "double" :
962 << "*)&FPConstant" << I->second << ')';
964 assert(FPC->getType() == Type::FloatTy ||
965 FPC->getType() == Type::DoubleTy);
966 double V = FPC->getType() == Type::FloatTy ?
967 FPC->getValueAPF().convertToFloat() :
968 FPC->getValueAPF().convertToDouble();
972 // FIXME the actual NaN bits should be emitted.
973 // The prefix for a quiet NaN is 0x7FF8. For a signalling NaN,
975 const unsigned long QuietNaN = 0x7ff8UL;
976 //const unsigned long SignalNaN = 0x7ff4UL;
978 // We need to grab the first part of the FP #
981 uint64_t ll = DoubleToBits(V);
982 sprintf(Buffer, "0x%llx", static_cast<long long>(ll));
984 std::string Num(&Buffer[0], &Buffer[6]);
985 unsigned long Val = strtoul(Num.c_str(), 0, 16);
987 if (FPC->getType() == Type::FloatTy)
988 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "F(\""
989 << Buffer << "\") /*nan*/ ";
991 Out << "LLVM_NAN" << (Val == QuietNaN ? "" : "S") << "(\""
992 << Buffer << "\") /*nan*/ ";
993 } else if (IsInf(V)) {
995 if (V < 0) Out << '-';
996 Out << "LLVM_INF" << (FPC->getType() == Type::FloatTy ? "F" : "")
1000 #if HAVE_PRINTF_A && ENABLE_CBE_PRINTF_A
1001 // Print out the constant as a floating point number.
1003 sprintf(Buffer, "%a", V);
1006 Num = ftostr(FPC->getValueAPF());
1014 case Type::ArrayTyID:
1015 if (ConstantArray *CA = dyn_cast<ConstantArray>(CPV)) {
1016 printConstantArray(CA);
1018 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1019 const ArrayType *AT = cast<ArrayType>(CPV->getType());
1021 if (AT->getNumElements()) {
1023 Constant *CZ = Constant::getNullValue(AT->getElementType());
1025 for (unsigned i = 1, e = AT->getNumElements(); i != e; ++i) {
1034 case Type::VectorTyID:
1035 // Use C99 compound expression literal initializer syntax.
1037 printType(Out, CPV->getType());
1039 if (ConstantVector *CV = dyn_cast<ConstantVector>(CPV)) {
1040 printConstantVector(CV);
1042 assert(isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV));
1043 const VectorType *VT = cast<VectorType>(CPV->getType());
1045 Constant *CZ = Constant::getNullValue(VT->getElementType());
1047 for (unsigned i = 1, e = VT->getNumElements(); i != e; ++i) {
1055 case Type::StructTyID:
1056 if (isa<ConstantAggregateZero>(CPV) || isa<UndefValue>(CPV)) {
1057 const StructType *ST = cast<StructType>(CPV->getType());
1059 if (ST->getNumElements()) {
1061 printConstant(Constant::getNullValue(ST->getElementType(0)));
1062 for (unsigned i = 1, e = ST->getNumElements(); i != e; ++i) {
1064 printConstant(Constant::getNullValue(ST->getElementType(i)));
1070 if (CPV->getNumOperands()) {
1072 printConstant(cast<Constant>(CPV->getOperand(0)));
1073 for (unsigned i = 1, e = CPV->getNumOperands(); i != e; ++i) {
1075 printConstant(cast<Constant>(CPV->getOperand(i)));
1082 case Type::PointerTyID:
1083 if (isa<ConstantPointerNull>(CPV)) {
1085 printType(Out, CPV->getType()); // sign doesn't matter
1086 Out << ")/*NULL*/0)";
1088 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(CPV)) {
1094 cerr << "Unknown constant type: " << *CPV << "\n";
1099 // Some constant expressions need to be casted back to the original types
1100 // because their operands were casted to the expected type. This function takes
1101 // care of detecting that case and printing the cast for the ConstantExpr.
1102 bool CWriter::printConstExprCast(const ConstantExpr* CE) {
1103 bool NeedsExplicitCast = false;
1104 const Type *Ty = CE->getOperand(0)->getType();
1105 bool TypeIsSigned = false;
1106 switch (CE->getOpcode()) {
1107 case Instruction::LShr:
1108 case Instruction::URem:
1109 case Instruction::UDiv: NeedsExplicitCast = true; break;
1110 case Instruction::AShr:
1111 case Instruction::SRem:
1112 case Instruction::SDiv: NeedsExplicitCast = true; TypeIsSigned = true; break;
1113 case Instruction::SExt:
1115 NeedsExplicitCast = true;
1116 TypeIsSigned = true;
1118 case Instruction::ZExt:
1119 case Instruction::Trunc:
1120 case Instruction::FPTrunc:
1121 case Instruction::FPExt:
1122 case Instruction::UIToFP:
1123 case Instruction::SIToFP:
1124 case Instruction::FPToUI:
1125 case Instruction::FPToSI:
1126 case Instruction::PtrToInt:
1127 case Instruction::IntToPtr:
1128 case Instruction::BitCast:
1130 NeedsExplicitCast = true;
1134 if (NeedsExplicitCast) {
1136 if (Ty->isInteger() && Ty != Type::Int1Ty)
1137 printSimpleType(Out, Ty, TypeIsSigned);
1139 printType(Out, Ty); // not integer, sign doesn't matter
1142 return NeedsExplicitCast;
1145 // Print a constant assuming that it is the operand for a given Opcode. The
1146 // opcodes that care about sign need to cast their operands to the expected
1147 // type before the operation proceeds. This function does the casting.
1148 void CWriter::printConstantWithCast(Constant* CPV, unsigned Opcode) {
1150 // Extract the operand's type, we'll need it.
1151 const Type* OpTy = CPV->getType();
1153 // Indicate whether to do the cast or not.
1154 bool shouldCast = false;
1155 bool typeIsSigned = false;
1157 // Based on the Opcode for which this Constant is being written, determine
1158 // the new type to which the operand should be casted by setting the value
1159 // of OpTy. If we change OpTy, also set shouldCast to true so it gets
1163 // for most instructions, it doesn't matter
1165 case Instruction::LShr:
1166 case Instruction::UDiv:
1167 case Instruction::URem:
1170 case Instruction::AShr:
1171 case Instruction::SDiv:
1172 case Instruction::SRem:
1174 typeIsSigned = true;
1178 // Write out the casted constant if we should, otherwise just write the
1182 printSimpleType(Out, OpTy, typeIsSigned);
1190 std::string CWriter::GetValueName(const Value *Operand) {
1193 if (!isa<GlobalValue>(Operand) && Operand->getName() != "") {
1194 std::string VarName;
1196 Name = Operand->getName();
1197 VarName.reserve(Name.capacity());
1199 for (std::string::iterator I = Name.begin(), E = Name.end();
1203 if (!((ch >= 'a' && ch <= 'z') || (ch >= 'A' && ch <= 'Z') ||
1204 (ch >= '0' && ch <= '9') || ch == '_')) {
1206 sprintf(buffer, "_%x_", ch);
1212 Name = "llvm_cbe_" + VarName;
1214 Name = Mang->getValueName(Operand);
1220 void CWriter::writeOperandInternal(Value *Operand) {
1221 if (Instruction *I = dyn_cast<Instruction>(Operand))
1222 if (isInlinableInst(*I) && !isDirectAlloca(I)) {
1223 // Should we inline this instruction to build a tree?
1230 Constant* CPV = dyn_cast<Constant>(Operand);
1232 if (CPV && !isa<GlobalValue>(CPV))
1235 Out << GetValueName(Operand);
1238 void CWriter::writeOperandRaw(Value *Operand) {
1239 Constant* CPV = dyn_cast<Constant>(Operand);
1240 if (CPV && !isa<GlobalValue>(CPV)) {
1243 Out << GetValueName(Operand);
1247 void CWriter::writeOperand(Value *Operand) {
1248 bool isAddressImplicit = isAddressExposed(Operand);
1249 if (isAddressImplicit)
1250 Out << "(&"; // Global variables are referenced as their addresses by llvm
1252 writeOperandInternal(Operand);
1254 if (isAddressImplicit)
1258 // Some instructions need to have their result value casted back to the
1259 // original types because their operands were casted to the expected type.
1260 // This function takes care of detecting that case and printing the cast
1261 // for the Instruction.
1262 bool CWriter::writeInstructionCast(const Instruction &I) {
1263 const Type *Ty = I.getOperand(0)->getType();
1264 switch (I.getOpcode()) {
1265 case Instruction::LShr:
1266 case Instruction::URem:
1267 case Instruction::UDiv:
1269 printSimpleType(Out, Ty, false);
1272 case Instruction::AShr:
1273 case Instruction::SRem:
1274 case Instruction::SDiv:
1276 printSimpleType(Out, Ty, true);
1284 // Write the operand with a cast to another type based on the Opcode being used.
1285 // This will be used in cases where an instruction has specific type
1286 // requirements (usually signedness) for its operands.
1287 void CWriter::writeOperandWithCast(Value* Operand, unsigned Opcode) {
1289 // Extract the operand's type, we'll need it.
1290 const Type* OpTy = Operand->getType();
1292 // Indicate whether to do the cast or not.
1293 bool shouldCast = false;
1295 // Indicate whether the cast should be to a signed type or not.
1296 bool castIsSigned = false;
1298 // Based on the Opcode for which this Operand is being written, determine
1299 // the new type to which the operand should be casted by setting the value
1300 // of OpTy. If we change OpTy, also set shouldCast to true.
1303 // for most instructions, it doesn't matter
1305 case Instruction::LShr:
1306 case Instruction::UDiv:
1307 case Instruction::URem: // Cast to unsigned first
1309 castIsSigned = false;
1311 case Instruction::GetElementPtr:
1312 case Instruction::AShr:
1313 case Instruction::SDiv:
1314 case Instruction::SRem: // Cast to signed first
1316 castIsSigned = true;
1320 // Write out the casted operand if we should, otherwise just write the
1324 printSimpleType(Out, OpTy, castIsSigned);
1326 writeOperand(Operand);
1329 writeOperand(Operand);
1332 // Write the operand with a cast to another type based on the icmp predicate
1334 void CWriter::writeOperandWithCast(Value* Operand, const ICmpInst &Cmp) {
1335 // This has to do a cast to ensure the operand has the right signedness.
1336 // Also, if the operand is a pointer, we make sure to cast to an integer when
1337 // doing the comparison both for signedness and so that the C compiler doesn't
1338 // optimize things like "p < NULL" to false (p may contain an integer value
1340 bool shouldCast = Cmp.isRelational();
1342 // Write out the casted operand if we should, otherwise just write the
1345 writeOperand(Operand);
1349 // Should this be a signed comparison? If so, convert to signed.
1350 bool castIsSigned = Cmp.isSignedPredicate();
1352 // If the operand was a pointer, convert to a large integer type.
1353 const Type* OpTy = Operand->getType();
1354 if (isa<PointerType>(OpTy))
1355 OpTy = TD->getIntPtrType();
1358 printSimpleType(Out, OpTy, castIsSigned);
1360 writeOperand(Operand);
1364 // generateCompilerSpecificCode - This is where we add conditional compilation
1365 // directives to cater to specific compilers as need be.
1367 static void generateCompilerSpecificCode(std::ostream& Out,
1368 const TargetData *TD) {
1369 // Alloca is hard to get, and we don't want to include stdlib.h here.
1370 Out << "/* get a declaration for alloca */\n"
1371 << "#if defined(__CYGWIN__) || defined(__MINGW32__)\n"
1372 << "#define alloca(x) __builtin_alloca((x))\n"
1373 << "#define _alloca(x) __builtin_alloca((x))\n"
1374 << "#elif defined(__APPLE__)\n"
1375 << "extern void *__builtin_alloca(unsigned long);\n"
1376 << "#define alloca(x) __builtin_alloca(x)\n"
1377 << "#define longjmp _longjmp\n"
1378 << "#define setjmp _setjmp\n"
1379 << "#elif defined(__sun__)\n"
1380 << "#if defined(__sparcv9)\n"
1381 << "extern void *__builtin_alloca(unsigned long);\n"
1383 << "extern void *__builtin_alloca(unsigned int);\n"
1385 << "#define alloca(x) __builtin_alloca(x)\n"
1386 << "#elif defined(__FreeBSD__) || defined(__NetBSD__) || defined(__OpenBSD__)\n"
1387 << "#define alloca(x) __builtin_alloca(x)\n"
1388 << "#elif defined(_MSC_VER)\n"
1389 << "#define inline _inline\n"
1390 << "#define alloca(x) _alloca(x)\n"
1392 << "#include <alloca.h>\n"
1395 // We output GCC specific attributes to preserve 'linkonce'ness on globals.
1396 // If we aren't being compiled with GCC, just drop these attributes.
1397 Out << "#ifndef __GNUC__ /* Can only support \"linkonce\" vars with GCC */\n"
1398 << "#define __attribute__(X)\n"
1401 // On Mac OS X, "external weak" is spelled "__attribute__((weak_import))".
1402 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1403 << "#define __EXTERNAL_WEAK__ __attribute__((weak_import))\n"
1404 << "#elif defined(__GNUC__)\n"
1405 << "#define __EXTERNAL_WEAK__ __attribute__((weak))\n"
1407 << "#define __EXTERNAL_WEAK__\n"
1410 // For now, turn off the weak linkage attribute on Mac OS X. (See above.)
1411 Out << "#if defined(__GNUC__) && defined(__APPLE_CC__)\n"
1412 << "#define __ATTRIBUTE_WEAK__\n"
1413 << "#elif defined(__GNUC__)\n"
1414 << "#define __ATTRIBUTE_WEAK__ __attribute__((weak))\n"
1416 << "#define __ATTRIBUTE_WEAK__\n"
1419 // Add hidden visibility support. FIXME: APPLE_CC?
1420 Out << "#if defined(__GNUC__)\n"
1421 << "#define __HIDDEN__ __attribute__((visibility(\"hidden\")))\n"
1424 // Define NaN and Inf as GCC builtins if using GCC, as 0 otherwise
1425 // From the GCC documentation:
1427 // double __builtin_nan (const char *str)
1429 // This is an implementation of the ISO C99 function nan.
1431 // Since ISO C99 defines this function in terms of strtod, which we do
1432 // not implement, a description of the parsing is in order. The string is
1433 // parsed as by strtol; that is, the base is recognized by leading 0 or
1434 // 0x prefixes. The number parsed is placed in the significand such that
1435 // the least significant bit of the number is at the least significant
1436 // bit of the significand. The number is truncated to fit the significand
1437 // field provided. The significand is forced to be a quiet NaN.
1439 // This function, if given a string literal, is evaluated early enough
1440 // that it is considered a compile-time constant.
1442 // float __builtin_nanf (const char *str)
1444 // Similar to __builtin_nan, except the return type is float.
1446 // double __builtin_inf (void)
1448 // Similar to __builtin_huge_val, except a warning is generated if the
1449 // target floating-point format does not support infinities. This
1450 // function is suitable for implementing the ISO C99 macro INFINITY.
1452 // float __builtin_inff (void)
1454 // Similar to __builtin_inf, except the return type is float.
1455 Out << "#ifdef __GNUC__\n"
1456 << "#define LLVM_NAN(NanStr) __builtin_nan(NanStr) /* Double */\n"
1457 << "#define LLVM_NANF(NanStr) __builtin_nanf(NanStr) /* Float */\n"
1458 << "#define LLVM_NANS(NanStr) __builtin_nans(NanStr) /* Double */\n"
1459 << "#define LLVM_NANSF(NanStr) __builtin_nansf(NanStr) /* Float */\n"
1460 << "#define LLVM_INF __builtin_inf() /* Double */\n"
1461 << "#define LLVM_INFF __builtin_inff() /* Float */\n"
1462 << "#define LLVM_PREFETCH(addr,rw,locality) "
1463 "__builtin_prefetch(addr,rw,locality)\n"
1464 << "#define __ATTRIBUTE_CTOR__ __attribute__((constructor))\n"
1465 << "#define __ATTRIBUTE_DTOR__ __attribute__((destructor))\n"
1466 << "#define LLVM_ASM __asm__\n"
1468 << "#define LLVM_NAN(NanStr) ((double)0.0) /* Double */\n"
1469 << "#define LLVM_NANF(NanStr) 0.0F /* Float */\n"
1470 << "#define LLVM_NANS(NanStr) ((double)0.0) /* Double */\n"
1471 << "#define LLVM_NANSF(NanStr) 0.0F /* Float */\n"
1472 << "#define LLVM_INF ((double)0.0) /* Double */\n"
1473 << "#define LLVM_INFF 0.0F /* Float */\n"
1474 << "#define LLVM_PREFETCH(addr,rw,locality) /* PREFETCH */\n"
1475 << "#define __ATTRIBUTE_CTOR__\n"
1476 << "#define __ATTRIBUTE_DTOR__\n"
1477 << "#define LLVM_ASM(X)\n"
1480 Out << "#if __GNUC__ < 4 /* Old GCC's, or compilers not GCC */ \n"
1481 << "#define __builtin_stack_save() 0 /* not implemented */\n"
1482 << "#define __builtin_stack_restore(X) /* noop */\n"
1485 // Output typedefs for 128-bit integers. If these are needed with a
1486 // 32-bit target or with a C compiler that doesn't support mode(TI),
1487 // more drastic measures will be needed.
1488 if (TD->getPointerSize() >= 8) {
1489 Out << "#ifdef __GNUC__ /* 128-bit integer types */\n"
1490 << "typedef int __attribute__((mode(TI))) llvmInt128;\n"
1491 << "typedef unsigned __attribute__((mode(TI))) llvmUInt128;\n"
1495 // Output target-specific code that should be inserted into main.
1496 Out << "#define CODE_FOR_MAIN() /* Any target-specific code for main()*/\n";
1499 /// FindStaticTors - Given a static ctor/dtor list, unpack its contents into
1500 /// the StaticTors set.
1501 static void FindStaticTors(GlobalVariable *GV, std::set<Function*> &StaticTors){
1502 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
1503 if (!InitList) return;
1505 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i)
1506 if (ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i))){
1507 if (CS->getNumOperands() != 2) return; // Not array of 2-element structs.
1509 if (CS->getOperand(1)->isNullValue())
1510 return; // Found a null terminator, exit printing.
1511 Constant *FP = CS->getOperand(1);
1512 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
1514 FP = CE->getOperand(0);
1515 if (Function *F = dyn_cast<Function>(FP))
1516 StaticTors.insert(F);
1520 enum SpecialGlobalClass {
1522 GlobalCtors, GlobalDtors,
1526 /// getGlobalVariableClass - If this is a global that is specially recognized
1527 /// by LLVM, return a code that indicates how we should handle it.
1528 static SpecialGlobalClass getGlobalVariableClass(const GlobalVariable *GV) {
1529 // If this is a global ctors/dtors list, handle it now.
1530 if (GV->hasAppendingLinkage() && GV->use_empty()) {
1531 if (GV->getName() == "llvm.global_ctors")
1533 else if (GV->getName() == "llvm.global_dtors")
1537 // Otherwise, it it is other metadata, don't print it. This catches things
1538 // like debug information.
1539 if (GV->getSection() == "llvm.metadata")
1546 bool CWriter::doInitialization(Module &M) {
1550 TD = new TargetData(&M);
1551 IL = new IntrinsicLowering(*TD);
1552 IL->AddPrototypes(M);
1554 // Ensure that all structure types have names...
1555 Mang = new Mangler(M);
1556 Mang->markCharUnacceptable('.');
1558 // Keep track of which functions are static ctors/dtors so they can have
1559 // an attribute added to their prototypes.
1560 std::set<Function*> StaticCtors, StaticDtors;
1561 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1563 switch (getGlobalVariableClass(I)) {
1566 FindStaticTors(I, StaticCtors);
1569 FindStaticTors(I, StaticDtors);
1574 // get declaration for alloca
1575 Out << "/* Provide Declarations */\n";
1576 Out << "#include <stdarg.h>\n"; // Varargs support
1577 Out << "#include <setjmp.h>\n"; // Unwind support
1578 generateCompilerSpecificCode(Out, TD);
1580 // Provide a definition for `bool' if not compiling with a C++ compiler.
1582 << "#ifndef __cplusplus\ntypedef unsigned char bool;\n#endif\n"
1584 << "\n\n/* Support for floating point constants */\n"
1585 << "typedef unsigned long long ConstantDoubleTy;\n"
1586 << "typedef unsigned int ConstantFloatTy;\n"
1587 << "typedef struct { unsigned long long f1; unsigned short f2; "
1588 "unsigned short pad[3]; } ConstantFP80Ty;\n"
1589 // This is used for both kinds of 128-bit long double; meaning differs.
1590 << "typedef struct { unsigned long long f1; unsigned long long f2; }"
1591 " ConstantFP128Ty;\n"
1592 << "\n\n/* Global Declarations */\n";
1594 // First output all the declarations for the program, because C requires
1595 // Functions & globals to be declared before they are used.
1598 // Loop over the symbol table, emitting all named constants...
1599 printModuleTypes(M.getTypeSymbolTable());
1601 // Global variable declarations...
1602 if (!M.global_empty()) {
1603 Out << "\n/* External Global Variable Declarations */\n";
1604 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1607 if (I->hasExternalLinkage() || I->hasExternalWeakLinkage())
1609 else if (I->hasDLLImportLinkage())
1610 Out << "__declspec(dllimport) ";
1612 continue; // Internal Global
1614 // Thread Local Storage
1615 if (I->isThreadLocal())
1618 printType(Out, I->getType()->getElementType(), false, GetValueName(I));
1620 if (I->hasExternalWeakLinkage())
1621 Out << " __EXTERNAL_WEAK__";
1626 // Function declarations
1627 Out << "\n/* Function Declarations */\n";
1628 Out << "double fmod(double, double);\n"; // Support for FP rem
1629 Out << "float fmodf(float, float);\n";
1630 Out << "long double fmodl(long double, long double);\n";
1632 for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
1633 // Don't print declarations for intrinsic functions.
1634 if (!I->isIntrinsic() && I->getName() != "setjmp" &&
1635 I->getName() != "longjmp" && I->getName() != "_setjmp") {
1636 if (I->hasExternalWeakLinkage())
1638 printFunctionSignature(I, true);
1639 if (I->hasWeakLinkage() || I->hasLinkOnceLinkage())
1640 Out << " __ATTRIBUTE_WEAK__";
1641 if (I->hasExternalWeakLinkage())
1642 Out << " __EXTERNAL_WEAK__";
1643 if (StaticCtors.count(I))
1644 Out << " __ATTRIBUTE_CTOR__";
1645 if (StaticDtors.count(I))
1646 Out << " __ATTRIBUTE_DTOR__";
1647 if (I->hasHiddenVisibility())
1648 Out << " __HIDDEN__";
1650 if (I->hasName() && I->getName()[0] == 1)
1651 Out << " LLVM_ASM(\"" << I->getName().c_str()+1 << "\")";
1657 // Output the global variable declarations
1658 if (!M.global_empty()) {
1659 Out << "\n\n/* Global Variable Declarations */\n";
1660 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1662 if (!I->isDeclaration()) {
1663 // Ignore special globals, such as debug info.
1664 if (getGlobalVariableClass(I))
1667 if (I->hasInternalLinkage())
1672 // Thread Local Storage
1673 if (I->isThreadLocal())
1676 printType(Out, I->getType()->getElementType(), false,
1679 if (I->hasLinkOnceLinkage())
1680 Out << " __attribute__((common))";
1681 else if (I->hasWeakLinkage())
1682 Out << " __ATTRIBUTE_WEAK__";
1683 else if (I->hasExternalWeakLinkage())
1684 Out << " __EXTERNAL_WEAK__";
1685 if (I->hasHiddenVisibility())
1686 Out << " __HIDDEN__";
1691 // Output the global variable definitions and contents...
1692 if (!M.global_empty()) {
1693 Out << "\n\n/* Global Variable Definitions and Initialization */\n";
1694 for (Module::global_iterator I = M.global_begin(), E = M.global_end();
1696 if (!I->isDeclaration()) {
1697 // Ignore special globals, such as debug info.
1698 if (getGlobalVariableClass(I))
1701 if (I->hasInternalLinkage())
1703 else if (I->hasDLLImportLinkage())
1704 Out << "__declspec(dllimport) ";
1705 else if (I->hasDLLExportLinkage())
1706 Out << "__declspec(dllexport) ";
1708 // Thread Local Storage
1709 if (I->isThreadLocal())
1712 printType(Out, I->getType()->getElementType(), false,
1714 if (I->hasLinkOnceLinkage())
1715 Out << " __attribute__((common))";
1716 else if (I->hasWeakLinkage())
1717 Out << " __ATTRIBUTE_WEAK__";
1719 if (I->hasHiddenVisibility())
1720 Out << " __HIDDEN__";
1722 // If the initializer is not null, emit the initializer. If it is null,
1723 // we try to avoid emitting large amounts of zeros. The problem with
1724 // this, however, occurs when the variable has weak linkage. In this
1725 // case, the assembler will complain about the variable being both weak
1726 // and common, so we disable this optimization.
1727 if (!I->getInitializer()->isNullValue()) {
1729 writeOperand(I->getInitializer());
1730 } else if (I->hasWeakLinkage()) {
1731 // We have to specify an initializer, but it doesn't have to be
1732 // complete. If the value is an aggregate, print out { 0 }, and let
1733 // the compiler figure out the rest of the zeros.
1735 if (isa<StructType>(I->getInitializer()->getType()) ||
1736 isa<ArrayType>(I->getInitializer()->getType()) ||
1737 isa<VectorType>(I->getInitializer()->getType())) {
1740 // Just print it out normally.
1741 writeOperand(I->getInitializer());
1749 Out << "\n\n/* Function Bodies */\n";
1751 // Emit some helper functions for dealing with FCMP instruction's
1753 Out << "static inline int llvm_fcmp_ord(double X, double Y) { ";
1754 Out << "return X == X && Y == Y; }\n";
1755 Out << "static inline int llvm_fcmp_uno(double X, double Y) { ";
1756 Out << "return X != X || Y != Y; }\n";
1757 Out << "static inline int llvm_fcmp_ueq(double X, double Y) { ";
1758 Out << "return X == Y || llvm_fcmp_uno(X, Y); }\n";
1759 Out << "static inline int llvm_fcmp_une(double X, double Y) { ";
1760 Out << "return X != Y; }\n";
1761 Out << "static inline int llvm_fcmp_ult(double X, double Y) { ";
1762 Out << "return X < Y || llvm_fcmp_uno(X, Y); }\n";
1763 Out << "static inline int llvm_fcmp_ugt(double X, double Y) { ";
1764 Out << "return X > Y || llvm_fcmp_uno(X, Y); }\n";
1765 Out << "static inline int llvm_fcmp_ule(double X, double Y) { ";
1766 Out << "return X <= Y || llvm_fcmp_uno(X, Y); }\n";
1767 Out << "static inline int llvm_fcmp_uge(double X, double Y) { ";
1768 Out << "return X >= Y || llvm_fcmp_uno(X, Y); }\n";
1769 Out << "static inline int llvm_fcmp_oeq(double X, double Y) { ";
1770 Out << "return X == Y ; }\n";
1771 Out << "static inline int llvm_fcmp_one(double X, double Y) { ";
1772 Out << "return X != Y && llvm_fcmp_ord(X, Y); }\n";
1773 Out << "static inline int llvm_fcmp_olt(double X, double Y) { ";
1774 Out << "return X < Y ; }\n";
1775 Out << "static inline int llvm_fcmp_ogt(double X, double Y) { ";
1776 Out << "return X > Y ; }\n";
1777 Out << "static inline int llvm_fcmp_ole(double X, double Y) { ";
1778 Out << "return X <= Y ; }\n";
1779 Out << "static inline int llvm_fcmp_oge(double X, double Y) { ";
1780 Out << "return X >= Y ; }\n";
1785 /// Output all floating point constants that cannot be printed accurately...
1786 void CWriter::printFloatingPointConstants(Function &F) {
1787 // Scan the module for floating point constants. If any FP constant is used
1788 // in the function, we want to redirect it here so that we do not depend on
1789 // the precision of the printed form, unless the printed form preserves
1792 static unsigned FPCounter = 0;
1793 for (constant_iterator I = constant_begin(&F), E = constant_end(&F);
1795 if (const ConstantFP *FPC = dyn_cast<ConstantFP>(*I))
1796 if (!isFPCSafeToPrint(FPC) && // Do not put in FPConstantMap if safe.
1797 !FPConstantMap.count(FPC)) {
1798 FPConstantMap[FPC] = FPCounter; // Number the FP constants
1800 if (FPC->getType() == Type::DoubleTy) {
1801 double Val = FPC->getValueAPF().convertToDouble();
1802 uint64_t i = FPC->getValueAPF().convertToAPInt().getZExtValue();
1803 Out << "static const ConstantDoubleTy FPConstant" << FPCounter++
1804 << " = 0x" << std::hex << i << std::dec
1805 << "ULL; /* " << Val << " */\n";
1806 } else if (FPC->getType() == Type::FloatTy) {
1807 float Val = FPC->getValueAPF().convertToFloat();
1808 uint32_t i = (uint32_t)FPC->getValueAPF().convertToAPInt().
1810 Out << "static const ConstantFloatTy FPConstant" << FPCounter++
1811 << " = 0x" << std::hex << i << std::dec
1812 << "U; /* " << Val << " */\n";
1813 } else if (FPC->getType() == Type::X86_FP80Ty) {
1814 // api needed to prevent premature destruction
1815 APInt api = FPC->getValueAPF().convertToAPInt();
1816 const uint64_t *p = api.getRawData();
1817 Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
1818 << " = { 0x" << std::hex
1819 << ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
1820 << ", 0x" << (uint16_t)(p[0] >> 48) << ",0,0,0"
1821 << "}; /* Long double constant */\n" << std::dec;
1822 } else if (FPC->getType() == Type::PPC_FP128Ty) {
1823 APInt api = FPC->getValueAPF().convertToAPInt();
1824 const uint64_t *p = api.getRawData();
1825 Out << "static const ConstantFP128Ty FPConstant" << FPCounter++
1826 << " = { 0x" << std::hex
1827 << p[0] << ", 0x" << p[1]
1828 << "}; /* Long double constant */\n" << std::dec;
1831 assert(0 && "Unknown float type!");
1838 /// printSymbolTable - Run through symbol table looking for type names. If a
1839 /// type name is found, emit its declaration...
1841 void CWriter::printModuleTypes(const TypeSymbolTable &TST) {
1842 Out << "/* Helper union for bitcasts */\n";
1843 Out << "typedef union {\n";
1844 Out << " unsigned int Int32;\n";
1845 Out << " unsigned long long Int64;\n";
1846 Out << " float Float;\n";
1847 Out << " double Double;\n";
1848 Out << "} llvmBitCastUnion;\n";
1850 // We are only interested in the type plane of the symbol table.
1851 TypeSymbolTable::const_iterator I = TST.begin();
1852 TypeSymbolTable::const_iterator End = TST.end();
1854 // If there are no type names, exit early.
1855 if (I == End) return;
1857 // Print out forward declarations for structure types before anything else!
1858 Out << "/* Structure forward decls */\n";
1859 for (; I != End; ++I) {
1860 std::string Name = "struct l_" + Mang->makeNameProper(I->first);
1861 Out << Name << ";\n";
1862 TypeNames.insert(std::make_pair(I->second, Name));
1867 // Now we can print out typedefs. Above, we guaranteed that this can only be
1868 // for struct or opaque types.
1869 Out << "/* Typedefs */\n";
1870 for (I = TST.begin(); I != End; ++I) {
1871 std::string Name = "l_" + Mang->makeNameProper(I->first);
1873 printType(Out, I->second, false, Name);
1879 // Keep track of which structures have been printed so far...
1880 std::set<const StructType *> StructPrinted;
1882 // Loop over all structures then push them into the stack so they are
1883 // printed in the correct order.
1885 Out << "/* Structure contents */\n";
1886 for (I = TST.begin(); I != End; ++I)
1887 if (const StructType *STy = dyn_cast<StructType>(I->second))
1888 // Only print out used types!
1889 printContainedStructs(STy, StructPrinted);
1892 // Push the struct onto the stack and recursively push all structs
1893 // this one depends on.
1895 // TODO: Make this work properly with vector types
1897 void CWriter::printContainedStructs(const Type *Ty,
1898 std::set<const StructType*> &StructPrinted){
1899 // Don't walk through pointers.
1900 if (isa<PointerType>(Ty) || Ty->isPrimitiveType() || Ty->isInteger()) return;
1902 // Print all contained types first.
1903 for (Type::subtype_iterator I = Ty->subtype_begin(),
1904 E = Ty->subtype_end(); I != E; ++I)
1905 printContainedStructs(*I, StructPrinted);
1907 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
1908 // Check to see if we have already printed this struct.
1909 if (StructPrinted.insert(STy).second) {
1910 // Print structure type out.
1911 std::string Name = TypeNames[STy];
1912 printType(Out, STy, false, Name, true);
1918 void CWriter::printFunctionSignature(const Function *F, bool Prototype) {
1919 /// isStructReturn - Should this function actually return a struct by-value?
1920 bool isStructReturn = F->hasStructRetAttr();
1922 if (F->hasInternalLinkage()) Out << "static ";
1923 if (F->hasDLLImportLinkage()) Out << "__declspec(dllimport) ";
1924 if (F->hasDLLExportLinkage()) Out << "__declspec(dllexport) ";
1925 switch (F->getCallingConv()) {
1926 case CallingConv::X86_StdCall:
1927 Out << "__stdcall ";
1929 case CallingConv::X86_FastCall:
1930 Out << "__fastcall ";
1934 // Loop over the arguments, printing them...
1935 const FunctionType *FT = cast<FunctionType>(F->getFunctionType());
1936 const PAListPtr &PAL = F->getParamAttrs();
1938 std::stringstream FunctionInnards;
1940 // Print out the name...
1941 FunctionInnards << GetValueName(F) << '(';
1943 bool PrintedArg = false;
1944 if (!F->isDeclaration()) {
1945 if (!F->arg_empty()) {
1946 Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1949 // If this is a struct-return function, don't print the hidden
1950 // struct-return argument.
1951 if (isStructReturn) {
1952 assert(I != E && "Invalid struct return function!");
1957 std::string ArgName;
1958 for (; I != E; ++I) {
1959 if (PrintedArg) FunctionInnards << ", ";
1960 if (I->hasName() || !Prototype)
1961 ArgName = GetValueName(I);
1964 const Type *ArgTy = I->getType();
1965 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
1966 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1967 ByValParams.insert(I);
1969 printType(FunctionInnards, ArgTy,
1970 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt),
1977 // Loop over the arguments, printing them.
1978 FunctionType::param_iterator I = FT->param_begin(), E = FT->param_end();
1981 // If this is a struct-return function, don't print the hidden
1982 // struct-return argument.
1983 if (isStructReturn) {
1984 assert(I != E && "Invalid struct return function!");
1989 for (; I != E; ++I) {
1990 if (PrintedArg) FunctionInnards << ", ";
1991 const Type *ArgTy = *I;
1992 if (PAL.paramHasAttr(Idx, ParamAttr::ByVal)) {
1993 assert(isa<PointerType>(ArgTy));
1994 ArgTy = cast<PointerType>(ArgTy)->getElementType();
1996 printType(FunctionInnards, ArgTy,
1997 /*isSigned=*/PAL.paramHasAttr(Idx, ParamAttr::SExt));
2003 // Finish printing arguments... if this is a vararg function, print the ...,
2004 // unless there are no known types, in which case, we just emit ().
2006 if (FT->isVarArg() && PrintedArg) {
2007 if (PrintedArg) FunctionInnards << ", ";
2008 FunctionInnards << "..."; // Output varargs portion of signature!
2009 } else if (!FT->isVarArg() && !PrintedArg) {
2010 FunctionInnards << "void"; // ret() -> ret(void) in C.
2012 FunctionInnards << ')';
2014 // Get the return tpe for the function.
2016 if (!isStructReturn)
2017 RetTy = F->getReturnType();
2019 // If this is a struct-return function, print the struct-return type.
2020 RetTy = cast<PointerType>(FT->getParamType(0))->getElementType();
2023 // Print out the return type and the signature built above.
2024 printType(Out, RetTy,
2025 /*isSigned=*/PAL.paramHasAttr(0, ParamAttr::SExt),
2026 FunctionInnards.str());
2029 static inline bool isFPIntBitCast(const Instruction &I) {
2030 if (!isa<BitCastInst>(I))
2032 const Type *SrcTy = I.getOperand(0)->getType();
2033 const Type *DstTy = I.getType();
2034 return (SrcTy->isFloatingPoint() && DstTy->isInteger()) ||
2035 (DstTy->isFloatingPoint() && SrcTy->isInteger());
2038 void CWriter::printFunction(Function &F) {
2039 /// isStructReturn - Should this function actually return a struct by-value?
2040 bool isStructReturn = F.hasStructRetAttr();
2042 printFunctionSignature(&F, false);
2045 // If this is a struct return function, handle the result with magic.
2046 if (isStructReturn) {
2047 const Type *StructTy =
2048 cast<PointerType>(F.arg_begin()->getType())->getElementType();
2050 printType(Out, StructTy, false, "StructReturn");
2051 Out << "; /* Struct return temporary */\n";
2054 printType(Out, F.arg_begin()->getType(), false,
2055 GetValueName(F.arg_begin()));
2056 Out << " = &StructReturn;\n";
2059 bool PrintedVar = false;
2061 // print local variable information for the function
2062 for (inst_iterator I = inst_begin(&F), E = inst_end(&F); I != E; ++I) {
2063 if (const AllocaInst *AI = isDirectAlloca(&*I)) {
2065 printType(Out, AI->getAllocatedType(), false, GetValueName(AI));
2066 Out << "; /* Address-exposed local */\n";
2068 } else if (I->getType() != Type::VoidTy && !isInlinableInst(*I)) {
2070 printType(Out, I->getType(), false, GetValueName(&*I));
2073 if (isa<PHINode>(*I)) { // Print out PHI node temporaries as well...
2075 printType(Out, I->getType(), false,
2076 GetValueName(&*I)+"__PHI_TEMPORARY");
2081 // We need a temporary for the BitCast to use so it can pluck a value out
2082 // of a union to do the BitCast. This is separate from the need for a
2083 // variable to hold the result of the BitCast.
2084 if (isFPIntBitCast(*I)) {
2085 Out << " llvmBitCastUnion " << GetValueName(&*I)
2086 << "__BITCAST_TEMPORARY;\n";
2094 if (F.hasExternalLinkage() && F.getName() == "main")
2095 Out << " CODE_FOR_MAIN();\n";
2097 // print the basic blocks
2098 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
2099 if (Loop *L = LI->getLoopFor(BB)) {
2100 if (L->getHeader() == BB && L->getParentLoop() == 0)
2103 printBasicBlock(BB);
2110 void CWriter::printLoop(Loop *L) {
2111 Out << " do { /* Syntactic loop '" << L->getHeader()->getName()
2112 << "' to make GCC happy */\n";
2113 for (unsigned i = 0, e = L->getBlocks().size(); i != e; ++i) {
2114 BasicBlock *BB = L->getBlocks()[i];
2115 Loop *BBLoop = LI->getLoopFor(BB);
2117 printBasicBlock(BB);
2118 else if (BB == BBLoop->getHeader() && BBLoop->getParentLoop() == L)
2121 Out << " } while (1); /* end of syntactic loop '"
2122 << L->getHeader()->getName() << "' */\n";
2125 void CWriter::printBasicBlock(BasicBlock *BB) {
2127 // Don't print the label for the basic block if there are no uses, or if
2128 // the only terminator use is the predecessor basic block's terminator.
2129 // We have to scan the use list because PHI nodes use basic blocks too but
2130 // do not require a label to be generated.
2132 bool NeedsLabel = false;
2133 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2134 if (isGotoCodeNecessary(*PI, BB)) {
2139 if (NeedsLabel) Out << GetValueName(BB) << ":\n";
2141 // Output all of the instructions in the basic block...
2142 for (BasicBlock::iterator II = BB->begin(), E = --BB->end(); II != E;
2144 if (!isInlinableInst(*II) && !isDirectAlloca(II)) {
2145 if (II->getType() != Type::VoidTy && !isInlineAsm(*II))
2154 // Don't emit prefix or suffix for the terminator...
2155 visit(*BB->getTerminator());
2159 // Specific Instruction type classes... note that all of the casts are
2160 // necessary because we use the instruction classes as opaque types...
2162 void CWriter::visitReturnInst(ReturnInst &I) {
2163 // If this is a struct return function, return the temporary struct.
2164 bool isStructReturn = I.getParent()->getParent()->hasStructRetAttr();
2166 if (isStructReturn) {
2167 Out << " return StructReturn;\n";
2171 // Don't output a void return if this is the last basic block in the function
2172 if (I.getNumOperands() == 0 &&
2173 &*--I.getParent()->getParent()->end() == I.getParent() &&
2174 !I.getParent()->size() == 1) {
2178 if (I.getNumOperands() > 1) {
2181 printType(Out, I.getParent()->getParent()->getReturnType());
2182 Out << " llvm_cbe_mrv_temp = {\n";
2183 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
2185 writeOperand(I.getOperand(i));
2191 Out << " return llvm_cbe_mrv_temp;\n";
2197 if (I.getNumOperands()) {
2199 writeOperand(I.getOperand(0));
2204 void CWriter::visitSwitchInst(SwitchInst &SI) {
2207 writeOperand(SI.getOperand(0));
2208 Out << ") {\n default:\n";
2209 printPHICopiesForSuccessor (SI.getParent(), SI.getDefaultDest(), 2);
2210 printBranchToBlock(SI.getParent(), SI.getDefaultDest(), 2);
2212 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2) {
2214 writeOperand(SI.getOperand(i));
2216 BasicBlock *Succ = cast<BasicBlock>(SI.getOperand(i+1));
2217 printPHICopiesForSuccessor (SI.getParent(), Succ, 2);
2218 printBranchToBlock(SI.getParent(), Succ, 2);
2219 if (Function::iterator(Succ) == next(Function::iterator(SI.getParent())))
2225 void CWriter::visitUnreachableInst(UnreachableInst &I) {
2226 Out << " /*UNREACHABLE*/;\n";
2229 bool CWriter::isGotoCodeNecessary(BasicBlock *From, BasicBlock *To) {
2230 /// FIXME: This should be reenabled, but loop reordering safe!!
2233 if (next(Function::iterator(From)) != Function::iterator(To))
2234 return true; // Not the direct successor, we need a goto.
2236 //isa<SwitchInst>(From->getTerminator())
2238 if (LI->getLoopFor(From) != LI->getLoopFor(To))
2243 void CWriter::printPHICopiesForSuccessor (BasicBlock *CurBlock,
2244 BasicBlock *Successor,
2246 for (BasicBlock::iterator I = Successor->begin(); isa<PHINode>(I); ++I) {
2247 PHINode *PN = cast<PHINode>(I);
2248 // Now we have to do the printing.
2249 Value *IV = PN->getIncomingValueForBlock(CurBlock);
2250 if (!isa<UndefValue>(IV)) {
2251 Out << std::string(Indent, ' ');
2252 Out << " " << GetValueName(I) << "__PHI_TEMPORARY = ";
2254 Out << "; /* for PHI node */\n";
2259 void CWriter::printBranchToBlock(BasicBlock *CurBB, BasicBlock *Succ,
2261 if (isGotoCodeNecessary(CurBB, Succ)) {
2262 Out << std::string(Indent, ' ') << " goto ";
2268 // Branch instruction printing - Avoid printing out a branch to a basic block
2269 // that immediately succeeds the current one.
2271 void CWriter::visitBranchInst(BranchInst &I) {
2273 if (I.isConditional()) {
2274 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(0))) {
2276 writeOperand(I.getCondition());
2279 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 2);
2280 printBranchToBlock(I.getParent(), I.getSuccessor(0), 2);
2282 if (isGotoCodeNecessary(I.getParent(), I.getSuccessor(1))) {
2283 Out << " } else {\n";
2284 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2285 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2288 // First goto not necessary, assume second one is...
2290 writeOperand(I.getCondition());
2293 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(1), 2);
2294 printBranchToBlock(I.getParent(), I.getSuccessor(1), 2);
2299 printPHICopiesForSuccessor (I.getParent(), I.getSuccessor(0), 0);
2300 printBranchToBlock(I.getParent(), I.getSuccessor(0), 0);
2305 // PHI nodes get copied into temporary values at the end of predecessor basic
2306 // blocks. We now need to copy these temporary values into the REAL value for
2308 void CWriter::visitPHINode(PHINode &I) {
2310 Out << "__PHI_TEMPORARY";
2314 void CWriter::visitBinaryOperator(Instruction &I) {
2315 // binary instructions, shift instructions, setCond instructions.
2316 assert(!isa<PointerType>(I.getType()));
2318 // We must cast the results of binary operations which might be promoted.
2319 bool needsCast = false;
2320 if ((I.getType() == Type::Int8Ty) || (I.getType() == Type::Int16Ty)
2321 || (I.getType() == Type::FloatTy)) {
2324 printType(Out, I.getType(), false);
2328 // If this is a negation operation, print it out as such. For FP, we don't
2329 // want to print "-0.0 - X".
2330 if (BinaryOperator::isNeg(&I)) {
2332 writeOperand(BinaryOperator::getNegArgument(cast<BinaryOperator>(&I)));
2334 } else if (I.getOpcode() == Instruction::FRem) {
2335 // Output a call to fmod/fmodf instead of emitting a%b
2336 if (I.getType() == Type::FloatTy)
2338 else if (I.getType() == Type::DoubleTy)
2340 else // all 3 flavors of long double
2342 writeOperand(I.getOperand(0));
2344 writeOperand(I.getOperand(1));
2348 // Write out the cast of the instruction's value back to the proper type
2350 bool NeedsClosingParens = writeInstructionCast(I);
2352 // Certain instructions require the operand to be forced to a specific type
2353 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2354 // below for operand 1
2355 writeOperandWithCast(I.getOperand(0), I.getOpcode());
2357 switch (I.getOpcode()) {
2358 case Instruction::Add: Out << " + "; break;
2359 case Instruction::Sub: Out << " - "; break;
2360 case Instruction::Mul: Out << " * "; break;
2361 case Instruction::URem:
2362 case Instruction::SRem:
2363 case Instruction::FRem: Out << " % "; break;
2364 case Instruction::UDiv:
2365 case Instruction::SDiv:
2366 case Instruction::FDiv: Out << " / "; break;
2367 case Instruction::And: Out << " & "; break;
2368 case Instruction::Or: Out << " | "; break;
2369 case Instruction::Xor: Out << " ^ "; break;
2370 case Instruction::Shl : Out << " << "; break;
2371 case Instruction::LShr:
2372 case Instruction::AShr: Out << " >> "; break;
2373 default: cerr << "Invalid operator type!" << I; abort();
2376 writeOperandWithCast(I.getOperand(1), I.getOpcode());
2377 if (NeedsClosingParens)
2386 void CWriter::visitICmpInst(ICmpInst &I) {
2387 // We must cast the results of icmp which might be promoted.
2388 bool needsCast = false;
2390 // Write out the cast of the instruction's value back to the proper type
2392 bool NeedsClosingParens = writeInstructionCast(I);
2394 // Certain icmp predicate require the operand to be forced to a specific type
2395 // so we use writeOperandWithCast here instead of writeOperand. Similarly
2396 // below for operand 1
2397 writeOperandWithCast(I.getOperand(0), I);
2399 switch (I.getPredicate()) {
2400 case ICmpInst::ICMP_EQ: Out << " == "; break;
2401 case ICmpInst::ICMP_NE: Out << " != "; break;
2402 case ICmpInst::ICMP_ULE:
2403 case ICmpInst::ICMP_SLE: Out << " <= "; break;
2404 case ICmpInst::ICMP_UGE:
2405 case ICmpInst::ICMP_SGE: Out << " >= "; break;
2406 case ICmpInst::ICMP_ULT:
2407 case ICmpInst::ICMP_SLT: Out << " < "; break;
2408 case ICmpInst::ICMP_UGT:
2409 case ICmpInst::ICMP_SGT: Out << " > "; break;
2410 default: cerr << "Invalid icmp predicate!" << I; abort();
2413 writeOperandWithCast(I.getOperand(1), I);
2414 if (NeedsClosingParens)
2422 void CWriter::visitFCmpInst(FCmpInst &I) {
2423 if (I.getPredicate() == FCmpInst::FCMP_FALSE) {
2427 if (I.getPredicate() == FCmpInst::FCMP_TRUE) {
2433 switch (I.getPredicate()) {
2434 default: assert(0 && "Illegal FCmp predicate");
2435 case FCmpInst::FCMP_ORD: op = "ord"; break;
2436 case FCmpInst::FCMP_UNO: op = "uno"; break;
2437 case FCmpInst::FCMP_UEQ: op = "ueq"; break;
2438 case FCmpInst::FCMP_UNE: op = "une"; break;
2439 case FCmpInst::FCMP_ULT: op = "ult"; break;
2440 case FCmpInst::FCMP_ULE: op = "ule"; break;
2441 case FCmpInst::FCMP_UGT: op = "ugt"; break;
2442 case FCmpInst::FCMP_UGE: op = "uge"; break;
2443 case FCmpInst::FCMP_OEQ: op = "oeq"; break;
2444 case FCmpInst::FCMP_ONE: op = "one"; break;
2445 case FCmpInst::FCMP_OLT: op = "olt"; break;
2446 case FCmpInst::FCMP_OLE: op = "ole"; break;
2447 case FCmpInst::FCMP_OGT: op = "ogt"; break;
2448 case FCmpInst::FCMP_OGE: op = "oge"; break;
2451 Out << "llvm_fcmp_" << op << "(";
2452 // Write the first operand
2453 writeOperand(I.getOperand(0));
2455 // Write the second operand
2456 writeOperand(I.getOperand(1));
2460 static const char * getFloatBitCastField(const Type *Ty) {
2461 switch (Ty->getTypeID()) {
2462 default: assert(0 && "Invalid Type");
2463 case Type::FloatTyID: return "Float";
2464 case Type::DoubleTyID: return "Double";
2465 case Type::IntegerTyID: {
2466 unsigned NumBits = cast<IntegerType>(Ty)->getBitWidth();
2475 void CWriter::visitCastInst(CastInst &I) {
2476 const Type *DstTy = I.getType();
2477 const Type *SrcTy = I.getOperand(0)->getType();
2479 if (isFPIntBitCast(I)) {
2480 // These int<->float and long<->double casts need to be handled specially
2481 Out << GetValueName(&I) << "__BITCAST_TEMPORARY."
2482 << getFloatBitCastField(I.getOperand(0)->getType()) << " = ";
2483 writeOperand(I.getOperand(0));
2484 Out << ", " << GetValueName(&I) << "__BITCAST_TEMPORARY."
2485 << getFloatBitCastField(I.getType());
2487 printCast(I.getOpcode(), SrcTy, DstTy);
2488 if (I.getOpcode() == Instruction::SExt && SrcTy == Type::Int1Ty) {
2489 // Make sure we really get a sext from bool by subtracing the bool from 0
2492 writeOperand(I.getOperand(0));
2493 if (DstTy == Type::Int1Ty &&
2494 (I.getOpcode() == Instruction::Trunc ||
2495 I.getOpcode() == Instruction::FPToUI ||
2496 I.getOpcode() == Instruction::FPToSI ||
2497 I.getOpcode() == Instruction::PtrToInt)) {
2498 // Make sure we really get a trunc to bool by anding the operand with 1
2505 void CWriter::visitSelectInst(SelectInst &I) {
2507 writeOperand(I.getCondition());
2509 writeOperand(I.getTrueValue());
2511 writeOperand(I.getFalseValue());
2516 void CWriter::lowerIntrinsics(Function &F) {
2517 // This is used to keep track of intrinsics that get generated to a lowered
2518 // function. We must generate the prototypes before the function body which
2519 // will only be expanded on first use (by the loop below).
2520 std::vector<Function*> prototypesToGen;
2522 // Examine all the instructions in this function to find the intrinsics that
2523 // need to be lowered.
2524 for (Function::iterator BB = F.begin(), EE = F.end(); BB != EE; ++BB)
2525 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
2526 if (CallInst *CI = dyn_cast<CallInst>(I++))
2527 if (Function *F = CI->getCalledFunction())
2528 switch (F->getIntrinsicID()) {
2529 case Intrinsic::not_intrinsic:
2530 case Intrinsic::memory_barrier:
2531 case Intrinsic::vastart:
2532 case Intrinsic::vacopy:
2533 case Intrinsic::vaend:
2534 case Intrinsic::returnaddress:
2535 case Intrinsic::frameaddress:
2536 case Intrinsic::setjmp:
2537 case Intrinsic::longjmp:
2538 case Intrinsic::prefetch:
2539 case Intrinsic::dbg_stoppoint:
2540 case Intrinsic::powi:
2541 case Intrinsic::x86_sse_cmp_ss:
2542 case Intrinsic::x86_sse_cmp_ps:
2543 case Intrinsic::x86_sse2_cmp_sd:
2544 case Intrinsic::x86_sse2_cmp_pd:
2545 case Intrinsic::ppc_altivec_lvsl:
2546 // We directly implement these intrinsics
2549 // If this is an intrinsic that directly corresponds to a GCC
2550 // builtin, we handle it.
2551 const char *BuiltinName = "";
2552 #define GET_GCC_BUILTIN_NAME
2553 #include "llvm/Intrinsics.gen"
2554 #undef GET_GCC_BUILTIN_NAME
2555 // If we handle it, don't lower it.
2556 if (BuiltinName[0]) break;
2558 // All other intrinsic calls we must lower.
2559 Instruction *Before = 0;
2560 if (CI != &BB->front())
2561 Before = prior(BasicBlock::iterator(CI));
2563 IL->LowerIntrinsicCall(CI);
2564 if (Before) { // Move iterator to instruction after call
2569 // If the intrinsic got lowered to another call, and that call has
2570 // a definition then we need to make sure its prototype is emitted
2571 // before any calls to it.
2572 if (CallInst *Call = dyn_cast<CallInst>(I))
2573 if (Function *NewF = Call->getCalledFunction())
2574 if (!NewF->isDeclaration())
2575 prototypesToGen.push_back(NewF);
2580 // We may have collected some prototypes to emit in the loop above.
2581 // Emit them now, before the function that uses them is emitted. But,
2582 // be careful not to emit them twice.
2583 std::vector<Function*>::iterator I = prototypesToGen.begin();
2584 std::vector<Function*>::iterator E = prototypesToGen.end();
2585 for ( ; I != E; ++I) {
2586 if (intrinsicPrototypesAlreadyGenerated.insert(*I).second) {
2588 printFunctionSignature(*I, true);
2594 void CWriter::visitCallInst(CallInst &I) {
2595 //check if we have inline asm
2596 if (isInlineAsm(I)) {
2601 bool WroteCallee = false;
2603 // Handle intrinsic function calls first...
2604 if (Function *F = I.getCalledFunction())
2605 if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
2606 if (visitBuiltinCall(I, ID, WroteCallee))
2609 Value *Callee = I.getCalledValue();
2611 const PointerType *PTy = cast<PointerType>(Callee->getType());
2612 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
2614 // If this is a call to a struct-return function, assign to the first
2615 // parameter instead of passing it to the call.
2616 const PAListPtr &PAL = I.getParamAttrs();
2617 bool hasByVal = I.hasByValArgument();
2618 bool isStructRet = I.hasStructRetAttr();
2620 writeOperandDeref(I.getOperand(1));
2624 if (I.isTailCall()) Out << " /*tail*/ ";
2627 // If this is an indirect call to a struct return function, we need to cast
2628 // the pointer. Ditto for indirect calls with byval arguments.
2629 bool NeedsCast = (hasByVal || isStructRet) && !isa<Function>(Callee);
2631 // GCC is a real PITA. It does not permit codegening casts of functions to
2632 // function pointers if they are in a call (it generates a trap instruction
2633 // instead!). We work around this by inserting a cast to void* in between
2634 // the function and the function pointer cast. Unfortunately, we can't just
2635 // form the constant expression here, because the folder will immediately
2638 // Note finally, that this is completely unsafe. ANSI C does not guarantee
2639 // that void* and function pointers have the same size. :( To deal with this
2640 // in the common case, we handle casts where the number of arguments passed
2643 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Callee))
2645 if (Function *RF = dyn_cast<Function>(CE->getOperand(0))) {
2651 // Ok, just cast the pointer type.
2654 printStructReturnPointerFunctionType(Out, PAL,
2655 cast<PointerType>(I.getCalledValue()->getType()));
2657 printType(Out, I.getCalledValue()->getType(), false, "", true, PAL);
2659 printType(Out, I.getCalledValue()->getType());
2662 writeOperand(Callee);
2663 if (NeedsCast) Out << ')';
2668 unsigned NumDeclaredParams = FTy->getNumParams();
2670 CallSite::arg_iterator AI = I.op_begin()+1, AE = I.op_end();
2672 if (isStructRet) { // Skip struct return argument.
2677 bool PrintedArg = false;
2678 for (; AI != AE; ++AI, ++ArgNo) {
2679 if (PrintedArg) Out << ", ";
2680 if (ArgNo < NumDeclaredParams &&
2681 (*AI)->getType() != FTy->getParamType(ArgNo)) {
2683 printType(Out, FTy->getParamType(ArgNo),
2684 /*isSigned=*/PAL.paramHasAttr(ArgNo+1, ParamAttr::SExt));
2687 // Check if the argument is expected to be passed by value.
2688 if (I.paramHasAttr(ArgNo+1, ParamAttr::ByVal))
2689 writeOperandDeref(*AI);
2697 /// visitBuiltinCall - Handle the call to the specified builtin. Returns true
2698 /// if the entire call is handled, return false it it wasn't handled, and
2699 /// optionally set 'WroteCallee' if the callee has already been printed out.
2700 bool CWriter::visitBuiltinCall(CallInst &I, Intrinsic::ID ID,
2701 bool &WroteCallee) {
2704 // If this is an intrinsic that directly corresponds to a GCC
2705 // builtin, we emit it here.
2706 const char *BuiltinName = "";
2707 Function *F = I.getCalledFunction();
2708 #define GET_GCC_BUILTIN_NAME
2709 #include "llvm/Intrinsics.gen"
2710 #undef GET_GCC_BUILTIN_NAME
2711 assert(BuiltinName[0] && "Unknown LLVM intrinsic!");
2717 case Intrinsic::memory_barrier:
2718 Out << "__sync_synchronize()";
2720 case Intrinsic::vastart:
2723 Out << "va_start(*(va_list*)";
2724 writeOperand(I.getOperand(1));
2726 // Output the last argument to the enclosing function.
2727 if (I.getParent()->getParent()->arg_empty()) {
2728 cerr << "The C backend does not currently support zero "
2729 << "argument varargs functions, such as '"
2730 << I.getParent()->getParent()->getName() << "'!\n";
2733 writeOperand(--I.getParent()->getParent()->arg_end());
2736 case Intrinsic::vaend:
2737 if (!isa<ConstantPointerNull>(I.getOperand(1))) {
2738 Out << "0; va_end(*(va_list*)";
2739 writeOperand(I.getOperand(1));
2742 Out << "va_end(*(va_list*)0)";
2745 case Intrinsic::vacopy:
2747 Out << "va_copy(*(va_list*)";
2748 writeOperand(I.getOperand(1));
2749 Out << ", *(va_list*)";
2750 writeOperand(I.getOperand(2));
2753 case Intrinsic::returnaddress:
2754 Out << "__builtin_return_address(";
2755 writeOperand(I.getOperand(1));
2758 case Intrinsic::frameaddress:
2759 Out << "__builtin_frame_address(";
2760 writeOperand(I.getOperand(1));
2763 case Intrinsic::powi:
2764 Out << "__builtin_powi(";
2765 writeOperand(I.getOperand(1));
2767 writeOperand(I.getOperand(2));
2770 case Intrinsic::setjmp:
2771 Out << "setjmp(*(jmp_buf*)";
2772 writeOperand(I.getOperand(1));
2775 case Intrinsic::longjmp:
2776 Out << "longjmp(*(jmp_buf*)";
2777 writeOperand(I.getOperand(1));
2779 writeOperand(I.getOperand(2));
2782 case Intrinsic::prefetch:
2783 Out << "LLVM_PREFETCH((const void *)";
2784 writeOperand(I.getOperand(1));
2786 writeOperand(I.getOperand(2));
2788 writeOperand(I.getOperand(3));
2791 case Intrinsic::stacksave:
2792 // Emit this as: Val = 0; *((void**)&Val) = __builtin_stack_save()
2793 // to work around GCC bugs (see PR1809).
2794 Out << "0; *((void**)&" << GetValueName(&I)
2795 << ") = __builtin_stack_save()";
2797 case Intrinsic::dbg_stoppoint: {
2798 // If we use writeOperand directly we get a "u" suffix which is rejected
2800 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
2803 << " \"" << SPI.getDirectory()
2804 << SPI.getFileName() << "\"\n";
2807 case Intrinsic::x86_sse_cmp_ss:
2808 case Intrinsic::x86_sse_cmp_ps:
2809 case Intrinsic::x86_sse2_cmp_sd:
2810 case Intrinsic::x86_sse2_cmp_pd:
2812 printType(Out, I.getType());
2814 // Multiple GCC builtins multiplex onto this intrinsic.
2815 switch (cast<ConstantInt>(I.getOperand(3))->getZExtValue()) {
2816 default: assert(0 && "Invalid llvm.x86.sse.cmp!");
2817 case 0: Out << "__builtin_ia32_cmpeq"; break;
2818 case 1: Out << "__builtin_ia32_cmplt"; break;
2819 case 2: Out << "__builtin_ia32_cmple"; break;
2820 case 3: Out << "__builtin_ia32_cmpunord"; break;
2821 case 4: Out << "__builtin_ia32_cmpneq"; break;
2822 case 5: Out << "__builtin_ia32_cmpnlt"; break;
2823 case 6: Out << "__builtin_ia32_cmpnle"; break;
2824 case 7: Out << "__builtin_ia32_cmpord"; break;
2826 if (ID == Intrinsic::x86_sse_cmp_ps || ID == Intrinsic::x86_sse2_cmp_pd)
2830 if (ID == Intrinsic::x86_sse_cmp_ss || ID == Intrinsic::x86_sse_cmp_ps)
2836 writeOperand(I.getOperand(1));
2838 writeOperand(I.getOperand(2));
2841 case Intrinsic::ppc_altivec_lvsl:
2843 printType(Out, I.getType());
2845 Out << "__builtin_altivec_lvsl(0, (void*)";
2846 writeOperand(I.getOperand(1));
2852 //This converts the llvm constraint string to something gcc is expecting.
2853 //TODO: work out platform independent constraints and factor those out
2854 // of the per target tables
2855 // handle multiple constraint codes
2856 std::string CWriter::InterpretASMConstraint(InlineAsm::ConstraintInfo& c) {
2858 assert(c.Codes.size() == 1 && "Too many asm constraint codes to handle");
2860 const char *const *table = 0;
2862 //Grab the translation table from TargetAsmInfo if it exists
2865 const TargetMachineRegistry::entry* Match =
2866 TargetMachineRegistry::getClosestStaticTargetForModule(*TheModule, E);
2868 //Per platform Target Machines don't exist, so create it
2869 // this must be done only once
2870 const TargetMachine* TM = Match->CtorFn(*TheModule, "");
2871 TAsm = TM->getTargetAsmInfo();
2875 table = TAsm->getAsmCBE();
2877 //Search the translation table if it exists
2878 for (int i = 0; table && table[i]; i += 2)
2879 if (c.Codes[0] == table[i])
2882 //default is identity
2886 //TODO: import logic from AsmPrinter.cpp
2887 static std::string gccifyAsm(std::string asmstr) {
2888 for (std::string::size_type i = 0; i != asmstr.size(); ++i)
2889 if (asmstr[i] == '\n')
2890 asmstr.replace(i, 1, "\\n");
2891 else if (asmstr[i] == '\t')
2892 asmstr.replace(i, 1, "\\t");
2893 else if (asmstr[i] == '$') {
2894 if (asmstr[i + 1] == '{') {
2895 std::string::size_type a = asmstr.find_first_of(':', i + 1);
2896 std::string::size_type b = asmstr.find_first_of('}', i + 1);
2897 std::string n = "%" +
2898 asmstr.substr(a + 1, b - a - 1) +
2899 asmstr.substr(i + 2, a - i - 2);
2900 asmstr.replace(i, b - i + 1, n);
2903 asmstr.replace(i, 1, "%");
2905 else if (asmstr[i] == '%')//grr
2906 { asmstr.replace(i, 1, "%%"); ++i;}
2911 //TODO: assumptions about what consume arguments from the call are likely wrong
2912 // handle communitivity
2913 void CWriter::visitInlineAsm(CallInst &CI) {
2914 InlineAsm* as = cast<InlineAsm>(CI.getOperand(0));
2915 std::vector<InlineAsm::ConstraintInfo> Constraints = as->ParseConstraints();
2916 std::vector<std::pair<std::string, Value*> > Input;
2917 std::vector<std::pair<std::string, Value*> > Output;
2918 std::string Clobber;
2919 int count = CI.getType() == Type::VoidTy ? 1 : 0;
2920 for (std::vector<InlineAsm::ConstraintInfo>::iterator I = Constraints.begin(),
2921 E = Constraints.end(); I != E; ++I) {
2922 assert(I->Codes.size() == 1 && "Too many asm constraint codes to handle");
2924 InterpretASMConstraint(*I);
2927 assert(0 && "Unknown asm constraint");
2929 case InlineAsm::isInput: {
2931 Input.push_back(std::make_pair(c, count ? CI.getOperand(count) : &CI));
2932 ++count; //consume arg
2936 case InlineAsm::isOutput: {
2938 Output.push_back(std::make_pair("="+((I->isEarlyClobber ? "&" : "")+c),
2939 count ? CI.getOperand(count) : &CI));
2940 ++count; //consume arg
2944 case InlineAsm::isClobber: {
2946 Clobber += ",\"" + c + "\"";
2952 //fix up the asm string for gcc
2953 std::string asmstr = gccifyAsm(as->getAsmString());
2955 Out << "__asm__ volatile (\"" << asmstr << "\"\n";
2957 for (std::vector<std::pair<std::string, Value*> >::iterator I =Output.begin(),
2958 E = Output.end(); I != E; ++I) {
2959 Out << "\"" << I->first << "\"(";
2960 writeOperandRaw(I->second);
2966 for (std::vector<std::pair<std::string, Value*> >::iterator I = Input.begin(),
2967 E = Input.end(); I != E; ++I) {
2968 Out << "\"" << I->first << "\"(";
2969 writeOperandRaw(I->second);
2975 Out << "\n :" << Clobber.substr(1);
2979 void CWriter::visitMallocInst(MallocInst &I) {
2980 assert(0 && "lowerallocations pass didn't work!");
2983 void CWriter::visitAllocaInst(AllocaInst &I) {
2985 printType(Out, I.getType());
2986 Out << ") alloca(sizeof(";
2987 printType(Out, I.getType()->getElementType());
2989 if (I.isArrayAllocation()) {
2991 writeOperand(I.getOperand(0));
2996 void CWriter::visitFreeInst(FreeInst &I) {
2997 assert(0 && "lowerallocations pass didn't work!");
3000 void CWriter::printGEPExpression(Value *Ptr, gep_type_iterator I,
3001 gep_type_iterator E) {
3003 // If there are no indices, just print out the pointer.
3009 // Find out if the last index is into a vector. If so, we have to print this
3010 // specially. Since vectors can't have elements of indexable type, only the
3011 // last index could possibly be of a vector element.
3012 const VectorType *LastIndexIsVector = 0;
3014 for (gep_type_iterator TmpI = I; TmpI != E; ++TmpI)
3015 LastIndexIsVector = dyn_cast<VectorType>(*TmpI);
3020 // If the last index is into a vector, we can't print it as &a[i][j] because
3021 // we can't index into a vector with j in GCC. Instead, emit this as
3022 // (((float*)&a[i])+j)
3023 if (LastIndexIsVector) {
3025 printType(Out, PointerType::getUnqual(LastIndexIsVector->getElementType()));
3031 // If the first index is 0 (very typical) we can do a number of
3032 // simplifications to clean up the code.
3033 Value *FirstOp = I.getOperand();
3034 if (!isa<Constant>(FirstOp) || !cast<Constant>(FirstOp)->isNullValue()) {
3035 // First index isn't simple, print it the hard way.
3038 ++I; // Skip the zero index.
3040 // Okay, emit the first operand. If Ptr is something that is already address
3041 // exposed, like a global, avoid emitting (&foo)[0], just emit foo instead.
3042 if (isAddressExposed(Ptr)) {
3043 writeOperandInternal(Ptr);
3044 } else if (I != E && isa<StructType>(*I)) {
3045 // If we didn't already emit the first operand, see if we can print it as
3046 // P->f instead of "P[0].f"
3048 Out << "->field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3049 ++I; // eat the struct index as well.
3051 // Instead of emitting P[0][1], emit (*P)[1], which is more idiomatic.
3058 for (; I != E; ++I) {
3059 if (isa<StructType>(*I)) {
3060 Out << ".field" << cast<ConstantInt>(I.getOperand())->getZExtValue();
3061 } else if (!isa<VectorType>(*I)) {
3063 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3066 // If the last index is into a vector, then print it out as "+j)". This
3067 // works with the 'LastIndexIsVector' code above.
3068 if (isa<Constant>(I.getOperand()) &&
3069 cast<Constant>(I.getOperand())->isNullValue()) {
3070 Out << "))"; // avoid "+0".
3073 writeOperandWithCast(I.getOperand(), Instruction::GetElementPtr);
3081 void CWriter::writeMemoryAccess(Value *Operand, const Type *OperandType,
3082 bool IsVolatile, unsigned Alignment) {
3084 bool IsUnaligned = Alignment &&
3085 Alignment < TD->getABITypeAlignment(OperandType);
3089 if (IsVolatile || IsUnaligned) {
3092 Out << "struct __attribute__ ((packed, aligned(" << Alignment << "))) {";
3093 printType(Out, OperandType, false, IsUnaligned ? "data" : "volatile*");
3096 if (IsVolatile) Out << "volatile ";
3102 writeOperand(Operand);
3104 if (IsVolatile || IsUnaligned) {
3111 void CWriter::visitLoadInst(LoadInst &I) {
3112 writeMemoryAccess(I.getOperand(0), I.getType(), I.isVolatile(),
3117 void CWriter::visitStoreInst(StoreInst &I) {
3118 writeMemoryAccess(I.getPointerOperand(), I.getOperand(0)->getType(),
3119 I.isVolatile(), I.getAlignment());
3121 Value *Operand = I.getOperand(0);
3122 Constant *BitMask = 0;
3123 if (const IntegerType* ITy = dyn_cast<IntegerType>(Operand->getType()))
3124 if (!ITy->isPowerOf2ByteWidth())
3125 // We have a bit width that doesn't match an even power-of-2 byte
3126 // size. Consequently we must & the value with the type's bit mask
3127 BitMask = ConstantInt::get(ITy, ITy->getBitMask());
3130 writeOperand(Operand);
3133 printConstant(BitMask);
3138 void CWriter::visitGetElementPtrInst(GetElementPtrInst &I) {
3139 printGEPExpression(I.getPointerOperand(), gep_type_begin(I),
3143 void CWriter::visitVAArgInst(VAArgInst &I) {
3144 Out << "va_arg(*(va_list*)";
3145 writeOperand(I.getOperand(0));
3147 printType(Out, I.getType());
3151 void CWriter::visitInsertElementInst(InsertElementInst &I) {
3152 const Type *EltTy = I.getType()->getElementType();
3153 writeOperand(I.getOperand(0));
3156 printType(Out, PointerType::getUnqual(EltTy));
3157 Out << ")(&" << GetValueName(&I) << "))[";
3158 writeOperand(I.getOperand(2));
3160 writeOperand(I.getOperand(1));
3164 void CWriter::visitExtractElementInst(ExtractElementInst &I) {
3165 // We know that our operand is not inlined.
3168 cast<VectorType>(I.getOperand(0)->getType())->getElementType();
3169 printType(Out, PointerType::getUnqual(EltTy));
3170 Out << ")(&" << GetValueName(I.getOperand(0)) << "))[";
3171 writeOperand(I.getOperand(1));
3175 void CWriter::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
3177 printType(Out, SVI.getType());
3179 const VectorType *VT = SVI.getType();
3180 unsigned NumElts = VT->getNumElements();
3181 const Type *EltTy = VT->getElementType();
3183 for (unsigned i = 0; i != NumElts; ++i) {
3185 int SrcVal = SVI.getMaskValue(i);
3186 if ((unsigned)SrcVal >= NumElts*2) {
3187 Out << " 0/*undef*/ ";
3189 Value *Op = SVI.getOperand((unsigned)SrcVal >= NumElts);
3190 if (isa<Instruction>(Op)) {
3191 // Do an extractelement of this value from the appropriate input.
3193 printType(Out, PointerType::getUnqual(EltTy));
3194 Out << ")(&" << GetValueName(Op)
3195 << "))[" << (SrcVal & NumElts-1) << "]";
3196 } else if (isa<ConstantAggregateZero>(Op) || isa<UndefValue>(Op)) {
3199 printConstant(cast<ConstantVector>(Op)->getOperand(SrcVal & NumElts-1));
3206 void CWriter::visitGetResultInst(GetResultInst &GRI) {
3208 if (isa<UndefValue>(GRI.getOperand(0))) {
3210 printType(Out, GRI.getType());
3211 Out << ") 0/*UNDEF*/";
3213 Out << GetValueName(GRI.getOperand(0)) << ".field" << GRI.getIndex();
3218 //===----------------------------------------------------------------------===//
3219 // External Interface declaration
3220 //===----------------------------------------------------------------------===//
3222 bool CTargetMachine::addPassesToEmitWholeFile(PassManager &PM,
3224 CodeGenFileType FileType,
3226 if (FileType != TargetMachine::AssemblyFile) return true;
3228 PM.add(createGCLoweringPass());
3229 PM.add(createLowerAllocationsPass(true));
3230 PM.add(createLowerInvokePass());
3231 PM.add(createCFGSimplificationPass()); // clean up after lower invoke.
3232 PM.add(new CBackendNameAllUsedStructsAndMergeFunctions());
3233 PM.add(new CWriter(o));
3234 PM.add(createCollectorMetadataDeleter());