MC: Clean up MCExpr naming. NFC.
[oota-llvm.git] / lib / Target / Hexagon / HexagonCFGOptimizer.cpp
1 //===-- HexagonCFGOptimizer.cpp - CFG optimizations -----------------------===//
2 //                     The LLVM Compiler Infrastructure
3 //
4 // This file is distributed under the University of Illinois Open Source
5 // License. See LICENSE.TXT for details.
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "Hexagon.h"
10 #include "HexagonMachineFunctionInfo.h"
11 #include "HexagonSubtarget.h"
12 #include "HexagonTargetMachine.h"
13 #include "llvm/CodeGen/MachineDominators.h"
14 #include "llvm/CodeGen/MachineFunctionPass.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/CodeGen/MachineLoopInfo.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/Passes.h"
19 #include "llvm/Support/Compiler.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Target/TargetMachine.h"
24 #include "llvm/Target/TargetRegisterInfo.h"
25
26 using namespace llvm;
27
28 #define DEBUG_TYPE "hexagon_cfg"
29
30 namespace llvm {
31   void initializeHexagonCFGOptimizerPass(PassRegistry&);
32 }
33
34
35 namespace {
36
37 class HexagonCFGOptimizer : public MachineFunctionPass {
38
39 private:
40   void InvertAndChangeJumpTarget(MachineInstr*, MachineBasicBlock*);
41
42  public:
43   static char ID;
44   HexagonCFGOptimizer() : MachineFunctionPass(ID) {
45     initializeHexagonCFGOptimizerPass(*PassRegistry::getPassRegistry());
46   }
47
48   const char *getPassName() const override {
49     return "Hexagon CFG Optimizer";
50   }
51   bool runOnMachineFunction(MachineFunction &Fn) override;
52 };
53
54
55 char HexagonCFGOptimizer::ID = 0;
56
57 static bool IsConditionalBranch(int Opc) {
58   return (Opc == Hexagon::J2_jumpt) || (Opc == Hexagon::J2_jumpf)
59     || (Opc == Hexagon::J2_jumptnewpt) || (Opc == Hexagon::J2_jumpfnewpt);
60 }
61
62
63 static bool IsUnconditionalJump(int Opc) {
64   return (Opc == Hexagon::J2_jump);
65 }
66
67
68 void
69 HexagonCFGOptimizer::InvertAndChangeJumpTarget(MachineInstr* MI,
70                                                MachineBasicBlock* NewTarget) {
71   const TargetInstrInfo *TII =
72       MI->getParent()->getParent()->getSubtarget().getInstrInfo();
73   int NewOpcode = 0;
74   switch(MI->getOpcode()) {
75   case Hexagon::J2_jumpt:
76     NewOpcode = Hexagon::J2_jumpf;
77     break;
78
79   case Hexagon::J2_jumpf:
80     NewOpcode = Hexagon::J2_jumpt;
81     break;
82
83   case Hexagon::J2_jumptnewpt:
84     NewOpcode = Hexagon::J2_jumpfnewpt;
85     break;
86
87   case Hexagon::J2_jumpfnewpt:
88     NewOpcode = Hexagon::J2_jumptnewpt;
89     break;
90
91   default:
92     llvm_unreachable("Cannot handle this case");
93   }
94
95   MI->setDesc(TII->get(NewOpcode));
96   MI->getOperand(1).setMBB(NewTarget);
97 }
98
99
100 bool HexagonCFGOptimizer::runOnMachineFunction(MachineFunction &Fn) {
101   // Loop over all of the basic blocks.
102   for (MachineFunction::iterator MBBb = Fn.begin(), MBBe = Fn.end();
103        MBBb != MBBe; ++MBBb) {
104     MachineBasicBlock* MBB = MBBb;
105
106     // Traverse the basic block.
107     MachineBasicBlock::iterator MII = MBB->getFirstTerminator();
108     if (MII != MBB->end()) {
109       MachineInstr *MI = MII;
110       int Opc = MI->getOpcode();
111       if (IsConditionalBranch(Opc)) {
112
113         //
114         // (Case 1) Transform the code if the following condition occurs:
115         //   BB1: if (p0) jump BB3
116         //   ...falls-through to BB2 ...
117         //   BB2: jump BB4
118         //   ...next block in layout is BB3...
119         //   BB3: ...
120         //
121         //  Transform this to:
122         //  BB1: if (!p0) jump BB4
123         //  Remove BB2
124         //  BB3: ...
125         //
126         // (Case 2) A variation occurs when BB3 contains a JMP to BB4:
127         //   BB1: if (p0) jump BB3
128         //   ...falls-through to BB2 ...
129         //   BB2: jump BB4
130         //   ...other basic blocks ...
131         //   BB4:
132         //   ...not a fall-thru
133         //   BB3: ...
134         //     jump BB4
135         //
136         // Transform this to:
137         //   BB1: if (!p0) jump BB4
138         //   Remove BB2
139         //   BB3: ...
140         //   BB4: ...
141         //
142         unsigned NumSuccs = MBB->succ_size();
143         MachineBasicBlock::succ_iterator SI = MBB->succ_begin();
144         MachineBasicBlock* FirstSucc = *SI;
145         MachineBasicBlock* SecondSucc = *(++SI);
146         MachineBasicBlock* LayoutSucc = nullptr;
147         MachineBasicBlock* JumpAroundTarget = nullptr;
148
149         if (MBB->isLayoutSuccessor(FirstSucc)) {
150           LayoutSucc = FirstSucc;
151           JumpAroundTarget = SecondSucc;
152         } else if (MBB->isLayoutSuccessor(SecondSucc)) {
153           LayoutSucc = SecondSucc;
154           JumpAroundTarget = FirstSucc;
155         } else {
156           // Odd case...cannot handle.
157         }
158
159         // The target of the unconditional branch must be JumpAroundTarget.
160         // TODO: If not, we should not invert the unconditional branch.
161         MachineBasicBlock* CondBranchTarget = nullptr;
162         if ((MI->getOpcode() == Hexagon::J2_jumpt) ||
163             (MI->getOpcode() == Hexagon::J2_jumpf)) {
164           CondBranchTarget = MI->getOperand(1).getMBB();
165         }
166
167         if (!LayoutSucc || (CondBranchTarget != JumpAroundTarget)) {
168           continue;
169         }
170
171         if ((NumSuccs == 2) && LayoutSucc && (LayoutSucc->pred_size() == 1)) {
172
173           // Ensure that BB2 has one instruction -- an unconditional jump.
174           if ((LayoutSucc->size() == 1) &&
175               IsUnconditionalJump(LayoutSucc->front().getOpcode())) {
176             MachineBasicBlock* UncondTarget =
177               LayoutSucc->front().getOperand(0).getMBB();
178             // Check if the layout successor of BB2 is BB3.
179             bool case1 = LayoutSucc->isLayoutSuccessor(JumpAroundTarget);
180             bool case2 = JumpAroundTarget->isSuccessor(UncondTarget) &&
181               JumpAroundTarget->size() >= 1 &&
182               IsUnconditionalJump(JumpAroundTarget->back().getOpcode()) &&
183               JumpAroundTarget->pred_size() == 1 &&
184               JumpAroundTarget->succ_size() == 1;
185
186             if (case1 || case2) {
187               InvertAndChangeJumpTarget(MI, UncondTarget);
188               MBB->removeSuccessor(JumpAroundTarget);
189               MBB->addSuccessor(UncondTarget);
190
191               // Remove the unconditional branch in LayoutSucc.
192               LayoutSucc->erase(LayoutSucc->begin());
193               LayoutSucc->removeSuccessor(UncondTarget);
194               LayoutSucc->addSuccessor(JumpAroundTarget);
195
196               // This code performs the conversion for case 2, which moves
197               // the block to the fall-thru case (BB3 in the code above).
198               if (case2 && !case1) {
199                 JumpAroundTarget->moveAfter(LayoutSucc);
200                 // only move a block if it doesn't have a fall-thru. otherwise
201                 // the CFG will be incorrect.
202                 if (!UncondTarget->canFallThrough()) {
203                   UncondTarget->moveAfter(JumpAroundTarget);
204                 }
205               }
206
207               //
208               // Correct live-in information. Is used by post-RA scheduler
209               // The live-in to LayoutSucc is now all values live-in to
210               // JumpAroundTarget.
211               //
212               std::vector<unsigned> OrigLiveIn(LayoutSucc->livein_begin(),
213                                                LayoutSucc->livein_end());
214               std::vector<unsigned> NewLiveIn(JumpAroundTarget->livein_begin(),
215                                               JumpAroundTarget->livein_end());
216               for (unsigned i = 0; i < OrigLiveIn.size(); ++i) {
217                 LayoutSucc->removeLiveIn(OrigLiveIn[i]);
218               }
219               for (unsigned i = 0; i < NewLiveIn.size(); ++i) {
220                 LayoutSucc->addLiveIn(NewLiveIn[i]);
221               }
222             }
223           }
224         }
225       }
226     }
227   }
228   return true;
229 }
230 }
231
232
233 //===----------------------------------------------------------------------===//
234 //                         Public Constructor Functions
235 //===----------------------------------------------------------------------===//
236
237 static void initializePassOnce(PassRegistry &Registry) {
238   PassInfo *PI = new PassInfo("Hexagon CFG Optimizer", "hexagon-cfg",
239                               &HexagonCFGOptimizer::ID, nullptr, false, false);
240   Registry.registerPass(*PI, true);
241 }
242
243 void llvm::initializeHexagonCFGOptimizerPass(PassRegistry &Registry) {
244   CALL_ONCE_INITIALIZATION(initializePassOnce)
245 }
246
247 FunctionPass *llvm::createHexagonCFGOptimizer() {
248   return new HexagonCFGOptimizer();
249 }