1 //===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the interfaces that Hexagon uses to lower LLVM code
11 // into a selection DAG.
13 //===----------------------------------------------------------------------===//
15 #include "HexagonISelLowering.h"
16 #include "HexagonMachineFunctionInfo.h"
17 #include "HexagonSubtarget.h"
18 #include "HexagonTargetMachine.h"
19 #include "HexagonTargetObjectFile.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineJumpTableInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/SelectionDAGISel.h"
27 #include "llvm/CodeGen/ValueTypes.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalAlias.h"
32 #include "llvm/IR/GlobalVariable.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/Support/CommandLine.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/raw_ostream.h"
42 #define DEBUG_TYPE "hexagon-lowering"
45 EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden,
46 cl::desc("Control jump table emission on Hexagon target"));
49 class HexagonCCState : public CCState {
50 int NumNamedVarArgParams;
53 HexagonCCState(CallingConv::ID CC, bool isVarArg, MachineFunction &MF,
54 SmallVectorImpl<CCValAssign> &locs, LLVMContext &C,
55 int NumNamedVarArgParams)
56 : CCState(CC, isVarArg, MF, locs, C),
57 NumNamedVarArgParams(NumNamedVarArgParams) {}
59 int getNumNamedVarArgParams() const { return NumNamedVarArgParams; }
63 // Implement calling convention for Hexagon.
65 CC_Hexagon(unsigned ValNo, MVT ValVT,
66 MVT LocVT, CCValAssign::LocInfo LocInfo,
67 ISD::ArgFlagsTy ArgFlags, CCState &State);
70 CC_Hexagon32(unsigned ValNo, MVT ValVT,
71 MVT LocVT, CCValAssign::LocInfo LocInfo,
72 ISD::ArgFlagsTy ArgFlags, CCState &State);
75 CC_Hexagon64(unsigned ValNo, MVT ValVT,
76 MVT LocVT, CCValAssign::LocInfo LocInfo,
77 ISD::ArgFlagsTy ArgFlags, CCState &State);
80 RetCC_Hexagon(unsigned ValNo, MVT ValVT,
81 MVT LocVT, CCValAssign::LocInfo LocInfo,
82 ISD::ArgFlagsTy ArgFlags, CCState &State);
85 RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
86 MVT LocVT, CCValAssign::LocInfo LocInfo,
87 ISD::ArgFlagsTy ArgFlags, CCState &State);
90 RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
91 MVT LocVT, CCValAssign::LocInfo LocInfo,
92 ISD::ArgFlagsTy ArgFlags, CCState &State);
95 CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT,
96 MVT LocVT, CCValAssign::LocInfo LocInfo,
97 ISD::ArgFlagsTy ArgFlags, CCState &State) {
98 HexagonCCState &HState = static_cast<HexagonCCState &>(State);
100 // NumNamedVarArgParams can not be zero for a VarArg function.
101 assert((HState.getNumNamedVarArgParams() > 0) &&
102 "NumNamedVarArgParams is not bigger than zero.");
104 if ((int)ValNo < HState.getNumNamedVarArgParams()) {
105 // Deal with named arguments.
106 return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State);
109 // Deal with un-named arguments.
111 if (ArgFlags.isByVal()) {
112 // If pass-by-value, the size allocated on stack is decided
113 // by ArgFlags.getByValSize(), not by the size of LocVT.
114 assert ((ArgFlags.getByValSize() > 8) &&
115 "ByValSize must be bigger than 8 bytes");
116 ofst = State.AllocateStack(ArgFlags.getByValSize(), 4);
117 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
120 if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
123 if (ArgFlags.isSExt())
124 LocInfo = CCValAssign::SExt;
125 else if (ArgFlags.isZExt())
126 LocInfo = CCValAssign::ZExt;
128 LocInfo = CCValAssign::AExt;
130 if (LocVT == MVT::i32 || LocVT == MVT::f32) {
131 ofst = State.AllocateStack(4, 4);
132 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
135 if (LocVT == MVT::i64 || LocVT == MVT::f64) {
136 ofst = State.AllocateStack(8, 8);
137 State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo));
140 llvm_unreachable(nullptr);
145 CC_Hexagon (unsigned ValNo, MVT ValVT,
146 MVT LocVT, CCValAssign::LocInfo LocInfo,
147 ISD::ArgFlagsTy ArgFlags, CCState &State) {
149 if (ArgFlags.isByVal()) {
151 assert ((ArgFlags.getByValSize() > 8) &&
152 "ByValSize must be bigger than 8 bytes");
153 unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 4);
154 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
158 if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) {
161 if (ArgFlags.isSExt())
162 LocInfo = CCValAssign::SExt;
163 else if (ArgFlags.isZExt())
164 LocInfo = CCValAssign::ZExt;
166 LocInfo = CCValAssign::AExt;
169 if (LocVT == MVT::i32 || LocVT == MVT::f32) {
170 if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
174 if (LocVT == MVT::i64 || LocVT == MVT::f64) {
175 if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
179 return true; // CC didn't match.
183 static bool CC_Hexagon32(unsigned ValNo, MVT ValVT,
184 MVT LocVT, CCValAssign::LocInfo LocInfo,
185 ISD::ArgFlagsTy ArgFlags, CCState &State) {
187 static const MCPhysReg RegList[] = {
188 Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4,
191 if (unsigned Reg = State.AllocateReg(RegList, 6)) {
192 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
196 unsigned Offset = State.AllocateStack(4, 4);
197 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
201 static bool CC_Hexagon64(unsigned ValNo, MVT ValVT,
202 MVT LocVT, CCValAssign::LocInfo LocInfo,
203 ISD::ArgFlagsTy ArgFlags, CCState &State) {
205 if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
206 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
210 static const MCPhysReg RegList1[] = {
211 Hexagon::D1, Hexagon::D2
213 static const MCPhysReg RegList2[] = {
214 Hexagon::R1, Hexagon::R3
216 if (unsigned Reg = State.AllocateReg(RegList1, RegList2, 2)) {
217 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
221 unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2);
222 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
226 static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT,
227 MVT LocVT, CCValAssign::LocInfo LocInfo,
228 ISD::ArgFlagsTy ArgFlags, CCState &State) {
231 if (LocVT == MVT::i1 ||
236 if (ArgFlags.isSExt())
237 LocInfo = CCValAssign::SExt;
238 else if (ArgFlags.isZExt())
239 LocInfo = CCValAssign::ZExt;
241 LocInfo = CCValAssign::AExt;
244 if (LocVT == MVT::i32 || LocVT == MVT::f32) {
245 if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
249 if (LocVT == MVT::i64 || LocVT == MVT::f64) {
250 if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State))
254 return true; // CC didn't match.
257 static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT,
258 MVT LocVT, CCValAssign::LocInfo LocInfo,
259 ISD::ArgFlagsTy ArgFlags, CCState &State) {
261 if (LocVT == MVT::i32 || LocVT == MVT::f32) {
262 if (unsigned Reg = State.AllocateReg(Hexagon::R0)) {
263 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
268 unsigned Offset = State.AllocateStack(4, 4);
269 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
273 static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT,
274 MVT LocVT, CCValAssign::LocInfo LocInfo,
275 ISD::ArgFlagsTy ArgFlags, CCState &State) {
276 if (LocVT == MVT::i64 || LocVT == MVT::f64) {
277 if (unsigned Reg = State.AllocateReg(Hexagon::D0)) {
278 State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo));
283 unsigned Offset = State.AllocateStack(8, 8);
284 State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
289 HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG)
294 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
295 /// by "Src" to address "Dst" of size "Size". Alignment information is
296 /// specified by the specific parameter attribute. The copy will be passed as
297 /// a byval function parameter. Sometimes what we are copying is the end of a
298 /// larger object, the part that does not fit in registers.
300 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
301 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
304 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
305 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
306 /*isVolatile=*/false, /*AlwaysInline=*/false,
307 MachinePointerInfo(), MachinePointerInfo());
311 // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is
312 // passed by value, the function prototype is modified to return void and
313 // the value is stored in memory pointed by a pointer passed by caller.
315 HexagonTargetLowering::LowerReturn(SDValue Chain,
316 CallingConv::ID CallConv, bool isVarArg,
317 const SmallVectorImpl<ISD::OutputArg> &Outs,
318 const SmallVectorImpl<SDValue> &OutVals,
319 SDLoc dl, SelectionDAG &DAG) const {
321 // CCValAssign - represent the assignment of the return value to locations.
322 SmallVector<CCValAssign, 16> RVLocs;
324 // CCState - Info about the registers and stack slot.
325 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
328 // Analyze return values of ISD::RET
329 CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon);
332 SmallVector<SDValue, 4> RetOps(1, Chain);
334 // Copy the result values into the output registers.
335 for (unsigned i = 0; i != RVLocs.size(); ++i) {
336 CCValAssign &VA = RVLocs[i];
338 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag);
340 // Guarantee that all emitted copies are stuck together with flags.
341 Flag = Chain.getValue(1);
342 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
345 RetOps[0] = Chain; // Update chain.
347 // Add the flag if we have it.
349 RetOps.push_back(Flag);
351 return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, RetOps);
357 /// LowerCallResult - Lower the result values of an ISD::CALL into the
358 /// appropriate copies out of appropriate physical registers. This assumes that
359 /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call
360 /// being lowered. Returns a SDNode with the same number of values as the
363 HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
364 CallingConv::ID CallConv, bool isVarArg,
366 SmallVectorImpl<ISD::InputArg> &Ins,
367 SDLoc dl, SelectionDAG &DAG,
368 SmallVectorImpl<SDValue> &InVals,
369 const SmallVectorImpl<SDValue> &OutVals,
370 SDValue Callee) const {
372 // Assign locations to each value returned by this call.
373 SmallVector<CCValAssign, 16> RVLocs;
375 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), RVLocs,
378 CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon);
380 // Copy all of the result registers out of their specified physreg.
381 for (unsigned i = 0; i != RVLocs.size(); ++i) {
382 Chain = DAG.getCopyFromReg(Chain, dl,
383 RVLocs[i].getLocReg(),
384 RVLocs[i].getValVT(), InFlag).getValue(1);
385 InFlag = Chain.getValue(2);
386 InVals.push_back(Chain.getValue(0));
392 /// LowerCall - Functions arguments are copied from virtual regs to
393 /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted.
395 HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
396 SmallVectorImpl<SDValue> &InVals) const {
397 SelectionDAG &DAG = CLI.DAG;
399 SmallVectorImpl<ISD::OutputArg> &Outs = CLI.Outs;
400 SmallVectorImpl<SDValue> &OutVals = CLI.OutVals;
401 SmallVectorImpl<ISD::InputArg> &Ins = CLI.Ins;
402 SDValue Chain = CLI.Chain;
403 SDValue Callee = CLI.Callee;
404 bool &isTailCall = CLI.IsTailCall;
405 CallingConv::ID CallConv = CLI.CallConv;
406 bool isVarArg = CLI.IsVarArg;
407 bool doesNotReturn = CLI.DoesNotReturn;
409 bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet();
411 // Check for varargs.
412 int NumNamedVarArgParams = -1;
413 if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee))
415 const Function* CalleeFn = nullptr;
416 Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, MVT::i32);
417 if ((CalleeFn = dyn_cast<Function>(GA->getGlobal())))
419 // If a function has zero args and is a vararg function, that's
420 // disallowed so it must be an undeclared function. Do not assume
421 // varargs if the callee is undefined.
422 if (CalleeFn->isVarArg() &&
423 CalleeFn->getFunctionType()->getNumParams() != 0) {
424 NumNamedVarArgParams = CalleeFn->getFunctionType()->getNumParams();
429 // Analyze operands of the call, assigning locations to each operand.
430 SmallVector<CCValAssign, 16> ArgLocs;
431 HexagonCCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
432 *DAG.getContext(), NumNamedVarArgParams);
434 if (NumNamedVarArgParams > 0)
435 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg);
437 CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon);
441 bool StructAttrFlag =
442 DAG.getMachineFunction().getFunction()->hasStructRetAttr();
443 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv,
444 isVarArg, IsStructRet,
446 Outs, OutVals, Ins, DAG);
447 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i){
448 CCValAssign &VA = ArgLocs[i];
455 DEBUG(dbgs () << "Eligible for Tail Call\n");
458 "Argument must be passed on stack. Not eligible for Tail Call\n");
461 // Get a count of how many bytes are to be pushed on the stack.
462 unsigned NumBytes = CCInfo.getNextStackOffset();
463 SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass;
464 SmallVector<SDValue, 8> MemOpChains;
466 const HexagonRegisterInfo *QRI = Subtarget->getRegisterInfo();
468 DAG.getCopyFromReg(Chain, dl, QRI->getStackRegister(), getPointerTy());
470 // Walk the register/memloc assignments, inserting copies/loads.
471 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
472 CCValAssign &VA = ArgLocs[i];
473 SDValue Arg = OutVals[i];
474 ISD::ArgFlagsTy Flags = Outs[i].Flags;
476 // Promote the value if needed.
477 switch (VA.getLocInfo()) {
479 // Loc info must be one of Full, SExt, ZExt, or AExt.
480 llvm_unreachable("Unknown loc info!");
481 case CCValAssign::Full:
483 case CCValAssign::SExt:
484 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
486 case CCValAssign::ZExt:
487 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
489 case CCValAssign::AExt:
490 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
495 unsigned LocMemOffset = VA.getLocMemOffset();
496 SDValue PtrOff = DAG.getConstant(LocMemOffset, StackPtr.getValueType());
497 PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff);
499 if (Flags.isByVal()) {
500 // The argument is a struct passed by value. According to LLVM, "Arg"
502 MemOpChains.push_back(CreateCopyOfByValArgument(Arg, PtrOff, Chain,
505 // The argument is not passed by value. "Arg" is a buildin type. It is
507 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
508 MachinePointerInfo(),false, false,
514 // Arguments that can be passed on register must be kept at RegsToPass
517 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
521 // Transform all store nodes into one single node because all store
522 // nodes are independent of each other.
523 if (!MemOpChains.empty()) {
524 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOpChains);
528 Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes,
529 getPointerTy(), true),
532 // Build a sequence of copy-to-reg nodes chained together with token
533 // chain and flag operands which copy the outgoing args into registers.
534 // The InFlag in necessary since all emitted instructions must be
538 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
539 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
540 RegsToPass[i].second, InFlag);
541 InFlag = Chain.getValue(1);
545 // For tail calls lower the arguments to the 'real' stack slot.
547 // Force all the incoming stack arguments to be loaded from the stack
548 // before any new outgoing arguments are stored to the stack, because the
549 // outgoing stack slots may alias the incoming argument stack slots, and
550 // the alias isn't otherwise explicit. This is slightly more conservative
551 // than necessary, because it means that each store effectively depends
552 // on every argument instead of just those arguments it would clobber.
554 // Do not flag preceding copytoreg stuff together with the following stuff.
556 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
557 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
558 RegsToPass[i].second, InFlag);
559 InFlag = Chain.getValue(1);
564 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
565 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
566 // node so that legalize doesn't hack it.
567 if (flag_aligned_memcpy) {
568 const char *MemcpyName =
569 "__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes";
571 DAG.getTargetExternalSymbol(MemcpyName, getPointerTy());
572 flag_aligned_memcpy = false;
573 } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
574 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy());
575 } else if (ExternalSymbolSDNode *S =
576 dyn_cast<ExternalSymbolSDNode>(Callee)) {
577 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy());
580 // Returns a chain & a flag for retval copy to use.
581 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
582 SmallVector<SDValue, 8> Ops;
583 Ops.push_back(Chain);
584 Ops.push_back(Callee);
586 // Add argument registers to the end of the list so that they are
587 // known live into the call.
588 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
589 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
590 RegsToPass[i].second.getValueType()));
593 if (InFlag.getNode()) {
594 Ops.push_back(InFlag);
598 return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, Ops);
600 int OpCode = doesNotReturn ? HexagonISD::CALLv3nr : HexagonISD::CALLv3;
601 Chain = DAG.getNode(OpCode, dl, NodeTys, Ops);
602 InFlag = Chain.getValue(1);
604 // Create the CALLSEQ_END node.
605 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
606 DAG.getIntPtrConstant(0, true), InFlag, dl);
607 InFlag = Chain.getValue(1);
609 // Handle result values, copying them out of physregs into vregs that we
611 return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG,
612 InVals, OutVals, Callee);
615 static bool getIndexedAddressParts(SDNode *Ptr, EVT VT,
616 bool isSEXTLoad, SDValue &Base,
617 SDValue &Offset, bool &isInc,
619 if (Ptr->getOpcode() != ISD::ADD)
622 if (VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) {
623 isInc = (Ptr->getOpcode() == ISD::ADD);
624 Base = Ptr->getOperand(0);
625 Offset = Ptr->getOperand(1);
626 // Ensure that Offset is a constant.
627 return (isa<ConstantSDNode>(Offset));
633 // TODO: Put this function along with the other isS* functions in
634 // HexagonISelDAGToDAG.cpp into a common file. Or better still, use the
635 // functions defined in HexagonOperands.td.
636 static bool Is_PostInc_S4_Offset(SDNode * S, int ShiftAmount) {
637 ConstantSDNode *N = cast<ConstantSDNode>(S);
639 // immS4 predicate - True if the immediate fits in a 4-bit sign extended.
641 int64_t v = (int64_t)N->getSExtValue();
643 if (ShiftAmount > 0) {
645 v = v >> ShiftAmount;
647 return (v <= 7) && (v >= -8) && (m == 0);
650 /// getPostIndexedAddressParts - returns true by value, base pointer and
651 /// offset pointer and addressing mode by reference if this node can be
652 /// combined with a load / store to form a post-indexed load / store.
653 bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op,
656 ISD::MemIndexedMode &AM,
657 SelectionDAG &DAG) const
661 bool isSEXTLoad = false;
663 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
664 VT = LD->getMemoryVT();
665 isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD;
666 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
667 VT = ST->getMemoryVT();
668 if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) {
676 bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset,
678 // ShiftAmount = number of left-shifted bits in the Hexagon instruction.
679 int ShiftAmount = VT.getSizeInBits() / 16;
680 if (isLegal && Is_PostInc_S4_Offset(Offset.getNode(), ShiftAmount)) {
681 AM = isInc ? ISD::POST_INC : ISD::POST_DEC;
688 SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op,
689 SelectionDAG &DAG) const {
690 SDNode *Node = Op.getNode();
691 MachineFunction &MF = DAG.getMachineFunction();
692 HexagonMachineFunctionInfo *FuncInfo =
693 MF.getInfo<HexagonMachineFunctionInfo>();
694 switch (Node->getOpcode()) {
695 case ISD::INLINEASM: {
696 unsigned NumOps = Node->getNumOperands();
697 if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
698 --NumOps; // Ignore the flag operand.
700 for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
701 if (FuncInfo->hasClobberLR())
704 cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
705 unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
706 ++i; // Skip the ID value.
708 switch (InlineAsm::getKind(Flags)) {
709 default: llvm_unreachable("Bad flags!");
710 case InlineAsm::Kind_RegDef:
711 case InlineAsm::Kind_RegUse:
712 case InlineAsm::Kind_Imm:
713 case InlineAsm::Kind_Clobber:
714 case InlineAsm::Kind_Mem: {
715 for (; NumVals; --NumVals, ++i) {}
718 case InlineAsm::Kind_RegDefEarlyClobber: {
719 for (; NumVals; --NumVals, ++i) {
721 cast<RegisterSDNode>(Node->getOperand(i))->getReg();
724 const HexagonRegisterInfo *QRI = Subtarget->getRegisterInfo();
725 if (Reg == QRI->getRARegister()) {
726 FuncInfo->setHasClobberLR(true);
741 // Taken from the XCore backend.
743 SDValue HexagonTargetLowering::
744 LowerBR_JT(SDValue Op, SelectionDAG &DAG) const
746 SDValue Chain = Op.getOperand(0);
747 SDValue Table = Op.getOperand(1);
748 SDValue Index = Op.getOperand(2);
750 JumpTableSDNode *JT = cast<JumpTableSDNode>(Table);
751 unsigned JTI = JT->getIndex();
752 MachineFunction &MF = DAG.getMachineFunction();
753 const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo();
754 SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
756 // Mark all jump table targets as address taken.
757 const std::vector<MachineJumpTableEntry> &JTE = MJTI->getJumpTables();
758 const std::vector<MachineBasicBlock*> &JTBBs = JTE[JTI].MBBs;
759 for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) {
760 MachineBasicBlock *MBB = JTBBs[i];
761 MBB->setHasAddressTaken();
762 // This line is needed to set the hasAddressTaken flag on the BasicBlock
764 BlockAddress::get(const_cast<BasicBlock *>(MBB->getBasicBlock()));
767 SDValue JumpTableBase = DAG.getNode(HexagonISD::WrapperJT, dl,
768 getPointerTy(), TargetJT);
769 SDValue ShiftIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index,
770 DAG.getConstant(2, MVT::i32));
771 SDValue JTAddress = DAG.getNode(ISD::ADD, dl, MVT::i32, JumpTableBase,
773 SDValue LoadTarget = DAG.getLoad(MVT::i32, dl, Chain, JTAddress,
774 MachinePointerInfo(), false, false, false,
776 return DAG.getNode(HexagonISD::BR_JT, dl, MVT::Other, Chain, LoadTarget);
781 HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
782 SelectionDAG &DAG) const {
783 SDValue Chain = Op.getOperand(0);
784 SDValue Size = Op.getOperand(1);
787 unsigned SPReg = getStackPointerRegisterToSaveRestore();
789 // Get a reference to the stack pointer.
790 SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32);
792 // Subtract the dynamic size from the actual stack size to
793 // obtain the new stack size.
794 SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size);
797 // For Hexagon, the outgoing memory arguments area should be on top of the
798 // alloca area on the stack i.e., the outgoing memory arguments should be
799 // at a lower address than the alloca area. Move the alloca area down the
800 // stack by adding back the space reserved for outgoing arguments to SP
803 // We do not know what the size of the outgoing args is at this point.
804 // So, we add a pseudo instruction ADJDYNALLOC that will adjust the
805 // stack pointer. We patch this instruction with the correct, known
806 // offset in emitPrologue().
808 // Use a placeholder immediate (zero) for now. This will be patched up
809 // by emitPrologue().
810 SDValue ArgAdjust = DAG.getNode(HexagonISD::ADJDYNALLOC, dl,
813 DAG.getConstant(0, MVT::i32));
815 // The Sub result contains the new stack start address, so it
816 // must be placed in the stack pointer register.
817 const HexagonRegisterInfo *QRI = Subtarget->getRegisterInfo();
818 SDValue CopyChain = DAG.getCopyToReg(Chain, dl, QRI->getStackRegister(), Sub);
820 SDValue Ops[2] = { ArgAdjust, CopyChain };
821 return DAG.getMergeValues(Ops, dl);
825 HexagonTargetLowering::LowerFormalArguments(SDValue Chain,
826 CallingConv::ID CallConv,
829 SmallVectorImpl<ISD::InputArg> &Ins,
830 SDLoc dl, SelectionDAG &DAG,
831 SmallVectorImpl<SDValue> &InVals)
834 MachineFunction &MF = DAG.getMachineFunction();
835 MachineFrameInfo *MFI = MF.getFrameInfo();
836 MachineRegisterInfo &RegInfo = MF.getRegInfo();
837 HexagonMachineFunctionInfo *FuncInfo =
838 MF.getInfo<HexagonMachineFunctionInfo>();
841 // Assign locations to all of the incoming arguments.
842 SmallVector<CCValAssign, 16> ArgLocs;
843 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), ArgLocs,
846 CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon);
848 // For LLVM, in the case when returning a struct by value (>8byte),
849 // the first argument is a pointer that points to the location on caller's
850 // stack where the return value will be stored. For Hexagon, the location on
851 // caller's stack is passed only when the struct size is smaller than (and
852 // equal to) 8 bytes. If not, no address will be passed into callee and
853 // callee return the result direclty through R0/R1.
855 SmallVector<SDValue, 4> MemOps;
857 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
858 CCValAssign &VA = ArgLocs[i];
859 ISD::ArgFlagsTy Flags = Ins[i].Flags;
861 unsigned StackLocation;
864 if ( (VA.isRegLoc() && !Flags.isByVal())
865 || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) {
866 // Arguments passed in registers
867 // 1. int, long long, ptr args that get allocated in register.
868 // 2. Large struct that gets an register to put its address in.
869 EVT RegVT = VA.getLocVT();
870 if (RegVT == MVT::i8 || RegVT == MVT::i16 ||
871 RegVT == MVT::i32 || RegVT == MVT::f32) {
873 RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass);
874 RegInfo.addLiveIn(VA.getLocReg(), VReg);
875 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
876 } else if (RegVT == MVT::i64 || RegVT == MVT::f64) {
878 RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass);
879 RegInfo.addLiveIn(VA.getLocReg(), VReg);
880 InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT));
884 } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) {
885 assert (0 && "ByValSize must be bigger than 8 bytes");
888 assert(VA.isMemLoc());
890 if (Flags.isByVal()) {
891 // If it's a byval parameter, then we need to compute the
892 // "real" size, not the size of the pointer.
893 ObjSize = Flags.getByValSize();
895 ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3;
898 StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset();
899 // Create the frame index object for this incoming parameter...
900 FI = MFI->CreateFixedObject(ObjSize, StackLocation, true);
902 // Create the SelectionDAG nodes cordl, responding to a load
903 // from this parameter.
904 SDValue FIN = DAG.getFrameIndex(FI, MVT::i32);
906 if (Flags.isByVal()) {
907 // If it's a pass-by-value aggregate, then do not dereference the stack
908 // location. Instead, we should generate a reference to the stack
910 InVals.push_back(FIN);
912 InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN,
913 MachinePointerInfo(), false, false,
920 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, MemOps);
923 // This will point to the next argument passed via stack.
924 int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize,
926 CCInfo.getNextStackOffset(),
928 FuncInfo->setVarArgsFrameIndex(FrameIndex);
935 HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const {
936 // VASTART stores the address of the VarArgsFrameIndex slot into the
937 // memory location argument.
938 MachineFunction &MF = DAG.getMachineFunction();
939 HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>();
940 SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32);
941 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
942 return DAG.getStore(Op.getOperand(0), SDLoc(Op), Addr,
943 Op.getOperand(1), MachinePointerInfo(SV), false,
948 HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const {
949 EVT ValTy = Op.getValueType();
951 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
953 if (CP->isMachineConstantPoolEntry())
954 Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), ValTy,
957 Res = DAG.getTargetConstantPool(CP->getConstVal(), ValTy,
959 return DAG.getNode(HexagonISD::CONST32, dl, ValTy, Res);
963 HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const {
964 const TargetRegisterInfo *TRI = Subtarget->getRegisterInfo();
965 MachineFunction &MF = DAG.getMachineFunction();
966 MachineFrameInfo *MFI = MF.getFrameInfo();
967 MFI->setReturnAddressIsTaken(true);
969 if (verifyReturnAddressArgumentIsConstant(Op, DAG))
972 EVT VT = Op.getValueType();
974 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
976 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
977 SDValue Offset = DAG.getConstant(4, MVT::i32);
978 return DAG.getLoad(VT, dl, DAG.getEntryNode(),
979 DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset),
980 MachinePointerInfo(), false, false, false, 0);
983 // Return LR, which contains the return address. Mark it an implicit live-in.
984 unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32));
985 return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT);
989 HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const {
990 const HexagonRegisterInfo *TRI = Subtarget->getRegisterInfo();
991 MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
992 MFI->setFrameAddressIsTaken(true);
994 EVT VT = Op.getValueType();
996 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
997 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl,
998 TRI->getFrameRegister(), VT);
1000 FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr,
1001 MachinePointerInfo(),
1002 false, false, false, 0);
1006 SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op,
1007 SelectionDAG& DAG) const {
1009 return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0));
1013 SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op,
1014 SelectionDAG &DAG) const {
1016 const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal();
1017 int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset();
1019 Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset);
1021 const HexagonTargetObjectFile *TLOF =
1022 static_cast<const HexagonTargetObjectFile *>(
1023 getTargetMachine().getObjFileLowering());
1024 if (TLOF->IsGlobalInSmallSection(GV, getTargetMachine())) {
1025 return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), Result);
1028 return DAG.getNode(HexagonISD::CONST32, dl, getPointerTy(), Result);
1032 HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const {
1033 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1034 SDValue BA_SD = DAG.getTargetBlockAddress(BA, MVT::i32);
1036 return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), BA_SD);
1039 //===----------------------------------------------------------------------===//
1040 // TargetLowering Implementation
1041 //===----------------------------------------------------------------------===//
1043 HexagonTargetLowering::HexagonTargetLowering(const TargetMachine &TM,
1044 const HexagonSubtarget &STI)
1045 : TargetLowering(TM), Subtarget(&STI) {
1047 // Set up the register classes.
1048 addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass);
1049 addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass);
1051 if (Subtarget->hasV5TOps()) {
1052 addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass);
1053 addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass);
1056 addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass);
1058 computeRegisterProperties();
1061 setPrefLoopAlignment(4);
1063 // Limits for inline expansion of memcpy/memmove
1064 MaxStoresPerMemcpy = 6;
1065 MaxStoresPerMemmove = 6;
1068 // Library calls for unsupported operations
1071 setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf");
1072 setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf");
1074 setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti");
1075 setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti");
1077 setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti");
1078 setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti");
1080 setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3");
1081 setOperationAction(ISD::SDIV, MVT::i32, Expand);
1082 setLibcallName(RTLIB::SREM_I32, "__hexagon_umodsi3");
1083 setOperationAction(ISD::SREM, MVT::i32, Expand);
1085 setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3");
1086 setOperationAction(ISD::SDIV, MVT::i64, Expand);
1087 setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3");
1088 setOperationAction(ISD::SREM, MVT::i64, Expand);
1090 setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3");
1091 setOperationAction(ISD::UDIV, MVT::i32, Expand);
1093 setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3");
1094 setOperationAction(ISD::UDIV, MVT::i64, Expand);
1096 setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3");
1097 setOperationAction(ISD::UREM, MVT::i32, Expand);
1099 setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3");
1100 setOperationAction(ISD::UREM, MVT::i64, Expand);
1102 setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3");
1103 setOperationAction(ISD::FDIV, MVT::f32, Expand);
1105 setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3");
1106 setOperationAction(ISD::FDIV, MVT::f64, Expand);
1108 setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3");
1109 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1110 setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3");
1112 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
1113 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
1114 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1115 setOperationAction(ISD::FSIN, MVT::f64, Expand);
1117 if (Subtarget->hasV5TOps()) {
1118 // Hexagon V5 Support.
1119 setOperationAction(ISD::FADD, MVT::f32, Legal);
1120 setOperationAction(ISD::FADD, MVT::f64, Expand);
1121 setOperationAction(ISD::FSUB, MVT::f32, Legal);
1122 setOperationAction(ISD::FSUB, MVT::f64, Expand);
1123 setOperationAction(ISD::FMUL, MVT::f64, Expand);
1124 setOperationAction(ISD::FP_EXTEND, MVT::f32, Legal);
1125 setCondCodeAction(ISD::SETOEQ, MVT::f32, Legal);
1126 setCondCodeAction(ISD::SETOEQ, MVT::f64, Legal);
1127 setCondCodeAction(ISD::SETUEQ, MVT::f32, Legal);
1128 setCondCodeAction(ISD::SETUEQ, MVT::f64, Legal);
1130 setCondCodeAction(ISD::SETOGE, MVT::f32, Legal);
1131 setCondCodeAction(ISD::SETOGE, MVT::f64, Legal);
1132 setCondCodeAction(ISD::SETUGE, MVT::f32, Legal);
1133 setCondCodeAction(ISD::SETUGE, MVT::f64, Legal);
1135 setCondCodeAction(ISD::SETOGT, MVT::f32, Legal);
1136 setCondCodeAction(ISD::SETOGT, MVT::f64, Legal);
1137 setCondCodeAction(ISD::SETUGT, MVT::f32, Legal);
1138 setCondCodeAction(ISD::SETUGT, MVT::f64, Legal);
1140 setCondCodeAction(ISD::SETOLE, MVT::f32, Legal);
1141 setCondCodeAction(ISD::SETOLE, MVT::f64, Legal);
1142 setCondCodeAction(ISD::SETOLT, MVT::f32, Legal);
1143 setCondCodeAction(ISD::SETOLT, MVT::f64, Legal);
1145 setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
1146 setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
1148 setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote);
1149 setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote);
1150 setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote);
1151 setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote);
1153 setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote);
1154 setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote);
1155 setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote);
1156 setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote);
1158 setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote);
1159 setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote);
1160 setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote);
1161 setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote);
1163 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal);
1164 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal);
1165 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal);
1166 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal);
1168 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal);
1169 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal);
1170 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal);
1171 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal);
1173 setOperationAction(ISD::FABS, MVT::f32, Legal);
1174 setOperationAction(ISD::FABS, MVT::f64, Expand);
1176 setOperationAction(ISD::FNEG, MVT::f32, Legal);
1177 setOperationAction(ISD::FNEG, MVT::f64, Expand);
1180 // Expand fp<->uint.
1181 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Expand);
1182 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
1184 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
1185 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
1187 setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf");
1188 setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf");
1190 setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf");
1191 setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf");
1193 setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf");
1194 setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf");
1196 setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf");
1197 setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf");
1199 setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi");
1200 setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi");
1202 setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi");
1203 setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi");
1205 setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi");
1206 setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi");
1209 setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3");
1210 setOperationAction(ISD::FADD, MVT::f32, Expand);
1211 setOperationAction(ISD::FADD, MVT::f64, Expand);
1213 setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
1214 setOperationAction(ISD::FSUB, MVT::f32, Expand);
1215 setOperationAction(ISD::FSUB, MVT::f64, Expand);
1217 setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2");
1218 setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand);
1220 setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2");
1221 setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand);
1223 setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2");
1224 setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand);
1226 setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2");
1227 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
1229 setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2");
1230 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
1232 setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2");
1233 setCondCodeAction(ISD::SETOGT, MVT::f32, Expand);
1235 setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2");
1236 setCondCodeAction(ISD::SETOGT, MVT::f64, Expand);
1238 setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi");
1239 setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand);
1241 setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi");
1242 setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand);
1244 setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2");
1245 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
1247 setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2");
1248 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
1250 setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2");
1251 setCondCodeAction(ISD::SETOLT, MVT::f64, Expand);
1253 setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2");
1254 setCondCodeAction(ISD::SETOLT, MVT::f32, Expand);
1256 setOperationAction(ISD::FMUL, MVT::f64, Expand);
1258 setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3");
1259 setOperationAction(ISD::MUL, MVT::f32, Expand);
1261 setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2");
1262 setCondCodeAction(ISD::SETUNE, MVT::f64, Expand);
1264 setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2");
1266 setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3");
1267 setOperationAction(ISD::SUB, MVT::f64, Expand);
1269 setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3");
1270 setOperationAction(ISD::SUB, MVT::f32, Expand);
1272 setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2");
1273 setOperationAction(ISD::FP_ROUND, MVT::f64, Expand);
1275 setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2");
1276 setCondCodeAction(ISD::SETUO, MVT::f64, Expand);
1278 setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2");
1279 setCondCodeAction(ISD::SETO, MVT::f64, Expand);
1281 setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2");
1282 setCondCodeAction(ISD::SETO, MVT::f32, Expand);
1284 setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2");
1285 setCondCodeAction(ISD::SETUO, MVT::f32, Expand);
1287 setOperationAction(ISD::FABS, MVT::f32, Expand);
1288 setOperationAction(ISD::FABS, MVT::f64, Expand);
1289 setOperationAction(ISD::FNEG, MVT::f32, Expand);
1290 setOperationAction(ISD::FNEG, MVT::f64, Expand);
1293 setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3");
1294 setOperationAction(ISD::SREM, MVT::i32, Expand);
1296 setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal);
1297 setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal);
1298 setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal);
1299 setIndexedLoadAction(ISD::POST_INC, MVT::i64, Legal);
1301 setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal);
1302 setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal);
1303 setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal);
1304 setIndexedStoreAction(ISD::POST_INC, MVT::i64, Legal);
1306 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
1308 // Turn FP extload into load/fextend.
1309 for (MVT VT : MVT::fp_valuetypes())
1310 setLoadExtAction(ISD::EXTLOAD, VT, MVT::f32, Expand);
1311 // Hexagon has a i1 sign extending load.
1312 for (MVT VT : MVT::integer_valuetypes())
1313 setLoadExtAction(ISD::SEXTLOAD, VT, MVT::i1, Expand);
1314 // Turn FP truncstore into trunc + store.
1315 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
1317 // Custom legalize GlobalAddress nodes into CONST32.
1318 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
1319 setOperationAction(ISD::GlobalAddress, MVT::i8, Custom);
1320 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
1322 setOperationAction(ISD::TRUNCATE, MVT::i64, Expand);
1324 // Hexagon doesn't have sext_inreg, replace them with shl/sra.
1325 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
1327 // Hexagon has no REM or DIVREM operations.
1328 setOperationAction(ISD::UREM, MVT::i32, Expand);
1329 setOperationAction(ISD::SREM, MVT::i32, Expand);
1330 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
1331 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
1332 setOperationAction(ISD::SREM, MVT::i64, Expand);
1333 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
1334 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
1336 setOperationAction(ISD::BSWAP, MVT::i64, Expand);
1338 // Lower SELECT_CC to SETCC and SELECT.
1339 setOperationAction(ISD::SELECT_CC, MVT::i1, Expand);
1340 setOperationAction(ISD::SELECT_CC, MVT::i32, Expand);
1341 setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
1343 if (Subtarget->hasV5TOps()) {
1345 // We need to make the operation type of SELECT node to be Custom,
1346 // such that we don't go into the infinite loop of
1347 // select -> setcc -> select_cc -> select loop.
1348 setOperationAction(ISD::SELECT, MVT::f32, Custom);
1349 setOperationAction(ISD::SELECT, MVT::f64, Custom);
1351 setOperationAction(ISD::SELECT_CC, MVT::f32, Expand);
1352 setOperationAction(ISD::SELECT_CC, MVT::f64, Expand);
1356 // Hexagon has no select or setcc: expand to SELECT_CC.
1357 setOperationAction(ISD::SELECT, MVT::f32, Expand);
1358 setOperationAction(ISD::SELECT, MVT::f64, Expand);
1361 if (EmitJumpTables) {
1362 setOperationAction(ISD::BR_JT, MVT::Other, Custom);
1364 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
1366 // Increase jump tables cutover to 5, was 4.
1367 setMinimumJumpTableEntries(5);
1369 setOperationAction(ISD::BR_CC, MVT::f32, Expand);
1370 setOperationAction(ISD::BR_CC, MVT::f64, Expand);
1371 setOperationAction(ISD::BR_CC, MVT::i1, Expand);
1372 setOperationAction(ISD::BR_CC, MVT::i32, Expand);
1373 setOperationAction(ISD::BR_CC, MVT::i64, Expand);
1375 setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom);
1377 setOperationAction(ISD::FSIN, MVT::f64, Expand);
1378 setOperationAction(ISD::FCOS, MVT::f64, Expand);
1379 setOperationAction(ISD::FREM, MVT::f64, Expand);
1380 setOperationAction(ISD::FSIN, MVT::f32, Expand);
1381 setOperationAction(ISD::FCOS, MVT::f32, Expand);
1382 setOperationAction(ISD::FREM, MVT::f32, Expand);
1383 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
1384 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
1386 // In V4, we have double word add/sub with carry. The problem with
1387 // modelling this instruction is that it produces 2 results - Rdd and Px.
1388 // To model update of Px, we will have to use Defs[p0..p3] which will
1389 // cause any predicate live range to spill. So, we pretend we dont't
1390 // have these instructions.
1391 setOperationAction(ISD::ADDE, MVT::i8, Expand);
1392 setOperationAction(ISD::ADDE, MVT::i16, Expand);
1393 setOperationAction(ISD::ADDE, MVT::i32, Expand);
1394 setOperationAction(ISD::ADDE, MVT::i64, Expand);
1395 setOperationAction(ISD::SUBE, MVT::i8, Expand);
1396 setOperationAction(ISD::SUBE, MVT::i16, Expand);
1397 setOperationAction(ISD::SUBE, MVT::i32, Expand);
1398 setOperationAction(ISD::SUBE, MVT::i64, Expand);
1399 setOperationAction(ISD::ADDC, MVT::i8, Expand);
1400 setOperationAction(ISD::ADDC, MVT::i16, Expand);
1401 setOperationAction(ISD::ADDC, MVT::i32, Expand);
1402 setOperationAction(ISD::ADDC, MVT::i64, Expand);
1403 setOperationAction(ISD::SUBC, MVT::i8, Expand);
1404 setOperationAction(ISD::SUBC, MVT::i16, Expand);
1405 setOperationAction(ISD::SUBC, MVT::i32, Expand);
1406 setOperationAction(ISD::SUBC, MVT::i64, Expand);
1408 setOperationAction(ISD::CTPOP, MVT::i32, Expand);
1409 setOperationAction(ISD::CTPOP, MVT::i64, Expand);
1410 setOperationAction(ISD::CTTZ, MVT::i32, Expand);
1411 setOperationAction(ISD::CTTZ, MVT::i64, Expand);
1412 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
1413 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
1414 setOperationAction(ISD::CTLZ, MVT::i32, Expand);
1415 setOperationAction(ISD::CTLZ, MVT::i64, Expand);
1416 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
1417 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
1418 setOperationAction(ISD::ROTL, MVT::i32, Expand);
1419 setOperationAction(ISD::ROTR, MVT::i32, Expand);
1420 setOperationAction(ISD::BSWAP, MVT::i32, Expand);
1421 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
1422 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
1423 setOperationAction(ISD::FPOW, MVT::f64, Expand);
1424 setOperationAction(ISD::FPOW, MVT::f32, Expand);
1426 setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand);
1427 setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand);
1428 setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand);
1430 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
1431 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
1433 setOperationAction(ISD::MULHS, MVT::i64, Expand);
1434 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
1435 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
1437 setOperationAction(ISD::EH_RETURN, MVT::Other, Custom);
1439 if (Subtarget->isSubtargetV2()) {
1440 setExceptionPointerRegister(Hexagon::R20);
1441 setExceptionSelectorRegister(Hexagon::R21);
1443 setExceptionPointerRegister(Hexagon::R0);
1444 setExceptionSelectorRegister(Hexagon::R1);
1447 // VASTART needs to be custom lowered to use the VarArgsFrameIndex.
1448 setOperationAction(ISD::VASTART, MVT::Other, Custom);
1450 // Use the default implementation.
1451 setOperationAction(ISD::VAARG, MVT::Other, Expand);
1452 setOperationAction(ISD::VACOPY, MVT::Other, Expand);
1453 setOperationAction(ISD::VAEND, MVT::Other, Expand);
1454 setOperationAction(ISD::STACKSAVE, MVT::Other, Expand);
1455 setOperationAction(ISD::STACKRESTORE, MVT::Other, Expand);
1457 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32, Custom);
1458 setOperationAction(ISD::INLINEASM, MVT::Other, Custom);
1460 setMinFunctionAlignment(2);
1462 // Needed for DYNAMIC_STACKALLOC expansion.
1463 const HexagonRegisterInfo *QRI = Subtarget->getRegisterInfo();
1464 setStackPointerRegisterToSaveRestore(QRI->getStackRegister());
1465 setSchedulingPreference(Sched::VLIW);
1469 HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const {
1471 default: return nullptr;
1472 case HexagonISD::CONST32: return "HexagonISD::CONST32";
1473 case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP";
1474 case HexagonISD::CONST32_Int_Real: return "HexagonISD::CONST32_Int_Real";
1475 case HexagonISD::ADJDYNALLOC: return "HexagonISD::ADJDYNALLOC";
1476 case HexagonISD::CMPICC: return "HexagonISD::CMPICC";
1477 case HexagonISD::CMPFCC: return "HexagonISD::CMPFCC";
1478 case HexagonISD::BRICC: return "HexagonISD::BRICC";
1479 case HexagonISD::BRFCC: return "HexagonISD::BRFCC";
1480 case HexagonISD::SELECT_ICC: return "HexagonISD::SELECT_ICC";
1481 case HexagonISD::SELECT_FCC: return "HexagonISD::SELECT_FCC";
1482 case HexagonISD::Hi: return "HexagonISD::Hi";
1483 case HexagonISD::Lo: return "HexagonISD::Lo";
1484 case HexagonISD::FTOI: return "HexagonISD::FTOI";
1485 case HexagonISD::ITOF: return "HexagonISD::ITOF";
1486 case HexagonISD::CALLv3: return "HexagonISD::CALLv3";
1487 case HexagonISD::CALLv3nr: return "HexagonISD::CALLv3nr";
1488 case HexagonISD::CALLR: return "HexagonISD::CALLR";
1489 case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG";
1490 case HexagonISD::BR_JT: return "HexagonISD::BR_JT";
1491 case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN";
1492 case HexagonISD::EH_RETURN: return "HexagonISD::EH_RETURN";
1497 HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const {
1498 EVT MTy1 = EVT::getEVT(Ty1);
1499 EVT MTy2 = EVT::getEVT(Ty2);
1500 if (!MTy1.isSimple() || !MTy2.isSimple()) {
1503 return ((MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32));
1506 bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const {
1507 if (!VT1.isSimple() || !VT2.isSimple()) {
1510 return ((VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32));
1514 HexagonTargetLowering::allowTruncateForTailCall(Type *Ty1, Type *Ty2) const {
1515 // Assuming the caller does not have either a signext or zeroext modifier, and
1516 // only one value is accepted, any reasonable truncation is allowed.
1517 if (!Ty1->isIntegerTy() || !Ty2->isIntegerTy())
1520 // FIXME: in principle up to 64-bit could be made safe, but it would be very
1521 // fragile at the moment: any support for multiple value returns would be
1522 // liable to disallow tail calls involving i64 -> iN truncation in many cases.
1523 return Ty1->getPrimitiveSizeInBits() <= 32;
1527 HexagonTargetLowering::LowerEH_RETURN(SDValue Op, SelectionDAG &DAG) const {
1528 SDValue Chain = Op.getOperand(0);
1529 SDValue Offset = Op.getOperand(1);
1530 SDValue Handler = Op.getOperand(2);
1533 // Mark function as containing a call to EH_RETURN.
1534 HexagonMachineFunctionInfo *FuncInfo =
1535 DAG.getMachineFunction().getInfo<HexagonMachineFunctionInfo>();
1536 FuncInfo->setHasEHReturn();
1538 unsigned OffsetReg = Hexagon::R28;
1540 SDValue StoreAddr = DAG.getNode(ISD::ADD, dl, getPointerTy(),
1541 DAG.getRegister(Hexagon::R30, getPointerTy()),
1542 DAG.getIntPtrConstant(4));
1543 Chain = DAG.getStore(Chain, dl, Handler, StoreAddr, MachinePointerInfo(),
1545 Chain = DAG.getCopyToReg(Chain, dl, OffsetReg, Offset);
1547 // Not needed we already use it as explict input to EH_RETURN.
1548 // MF.getRegInfo().addLiveOut(OffsetReg);
1550 return DAG.getNode(HexagonISD::EH_RETURN, dl, MVT::Other, Chain);
1554 HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
1555 switch (Op.getOpcode()) {
1556 default: llvm_unreachable("Should not custom lower this!");
1557 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
1558 case ISD::EH_RETURN: return LowerEH_RETURN(Op, DAG);
1559 // Frame & Return address. Currently unimplemented.
1560 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
1561 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
1562 case ISD::GlobalTLSAddress:
1563 llvm_unreachable("TLS not implemented for Hexagon.");
1564 case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG);
1565 case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG);
1566 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
1567 case ISD::VASTART: return LowerVASTART(Op, DAG);
1568 case ISD::BR_JT: return LowerBR_JT(Op, DAG);
1570 case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG);
1571 case ISD::SELECT: return Op;
1572 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1573 case ISD::INLINEASM: return LowerINLINEASM(Op, DAG);
1580 //===----------------------------------------------------------------------===//
1581 // Hexagon Scheduler Hooks
1582 //===----------------------------------------------------------------------===//
1584 HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
1585 MachineBasicBlock *BB)
1587 switch (MI->getOpcode()) {
1588 case Hexagon::ADJDYNALLOC: {
1589 MachineFunction *MF = BB->getParent();
1590 HexagonMachineFunctionInfo *FuncInfo =
1591 MF->getInfo<HexagonMachineFunctionInfo>();
1592 FuncInfo->addAllocaAdjustInst(MI);
1595 default: llvm_unreachable("Unexpected instr type to insert");
1599 //===----------------------------------------------------------------------===//
1600 // Inline Assembly Support
1601 //===----------------------------------------------------------------------===//
1603 std::pair<unsigned, const TargetRegisterClass*>
1604 HexagonTargetLowering::getRegForInlineAsmConstraint(const
1605 std::string &Constraint,
1607 if (Constraint.size() == 1) {
1608 switch (Constraint[0]) {
1610 switch (VT.SimpleTy) {
1612 llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type");
1617 return std::make_pair(0U, &Hexagon::IntRegsRegClass);
1620 return std::make_pair(0U, &Hexagon::DoubleRegsRegClass);
1623 llvm_unreachable("Unknown asm register class");
1627 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
1630 /// isFPImmLegal - Returns true if the target can instruction select the
1631 /// specified FP immediate natively. If false, the legalizer will
1632 /// materialize the FP immediate as a load from a constant pool.
1633 bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
1634 return Subtarget->hasV5TOps();
1637 /// isLegalAddressingMode - Return true if the addressing mode represented by
1638 /// AM is legal for this target, for a load/store of the specified type.
1639 bool HexagonTargetLowering::isLegalAddressingMode(const AddrMode &AM,
1641 // Allows a signed-extended 11-bit immediate field.
1642 if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) {
1646 // No global is ever allowed as a base.
1651 int Scale = AM.Scale;
1652 if (Scale < 0) Scale = -Scale;
1654 case 0: // No scale reg, "r+i", "r", or just "i".
1656 default: // No scaled addressing mode.
1662 /// isLegalICmpImmediate - Return true if the specified immediate is legal
1663 /// icmp immediate, that is the target has icmp instructions which can compare
1664 /// a register against the immediate without having to materialize the
1665 /// immediate into a register.
1666 bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const {
1667 return Imm >= -512 && Imm <= 511;
1670 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
1671 /// for tail call optimization. Targets which want to do tail call
1672 /// optimization should implement this function.
1673 bool HexagonTargetLowering::IsEligibleForTailCallOptimization(
1675 CallingConv::ID CalleeCC,
1677 bool isCalleeStructRet,
1678 bool isCallerStructRet,
1679 const SmallVectorImpl<ISD::OutputArg> &Outs,
1680 const SmallVectorImpl<SDValue> &OutVals,
1681 const SmallVectorImpl<ISD::InputArg> &Ins,
1682 SelectionDAG& DAG) const {
1683 const Function *CallerF = DAG.getMachineFunction().getFunction();
1684 CallingConv::ID CallerCC = CallerF->getCallingConv();
1685 bool CCMatch = CallerCC == CalleeCC;
1687 // ***************************************************************************
1688 // Look for obvious safe cases to perform tail call optimization that do not
1689 // require ABI changes.
1690 // ***************************************************************************
1692 // If this is a tail call via a function pointer, then don't do it!
1693 if (!(dyn_cast<GlobalAddressSDNode>(Callee))
1694 && !(dyn_cast<ExternalSymbolSDNode>(Callee))) {
1698 // Do not optimize if the calling conventions do not match.
1702 // Do not tail call optimize vararg calls.
1706 // Also avoid tail call optimization if either caller or callee uses struct
1707 // return semantics.
1708 if (isCalleeStructRet || isCallerStructRet)
1711 // In addition to the cases above, we also disable Tail Call Optimization if
1712 // the calling convention code that at least one outgoing argument needs to
1713 // go on the stack. We cannot check that here because at this point that
1714 // information is not available.
1718 // Return true when the given node fits in a positive half word.
1719 bool llvm::isPositiveHalfWord(SDNode *N) {
1720 ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
1721 if (CN && CN->getSExtValue() > 0 && isInt<16>(CN->getSExtValue()))
1724 switch (N->getOpcode()) {
1727 case ISD::SIGN_EXTEND_INREG: