1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "MCTargetDesc/PPCPredicates.h"
16 #include "PPCMachineFunctionInfo.h"
17 #include "PPCPerfectShuffle.h"
18 #include "PPCTargetMachine.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/CodeGen/CallingConvLower.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/SelectionDAG.h"
26 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
27 #include "llvm/IR/CallingConv.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetOptions.h"
39 static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40 CCValAssign::LocInfo &LocInfo,
41 ISD::ArgFlagsTy &ArgFlags,
43 static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
45 CCValAssign::LocInfo &LocInfo,
46 ISD::ArgFlagsTy &ArgFlags,
48 static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
50 CCValAssign::LocInfo &LocInfo,
51 ISD::ArgFlagsTy &ArgFlags,
54 static cl::opt<bool> DisablePPCPreinc("disable-ppc-preinc",
55 cl::desc("disable preincrement load/store generation on PPC"), cl::Hidden);
57 static cl::opt<bool> DisableILPPref("disable-ppc-ilp-pref",
58 cl::desc("disable setting the node scheduling preference to ILP on PPC"), cl::Hidden);
60 static cl::opt<bool> DisablePPCUnaligned("disable-ppc-unaligned",
61 cl::desc("disable unaligned load/store generation on PPC"), cl::Hidden);
63 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
64 if (TM.getSubtargetImpl()->isDarwin())
65 return new TargetLoweringObjectFileMachO();
67 return new TargetLoweringObjectFileELF();
70 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
71 : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
72 const PPCSubtarget *Subtarget = &TM.getSubtarget<PPCSubtarget>();
73 PPCRegInfo = TM.getRegisterInfo();
77 // Use _setjmp/_longjmp instead of setjmp/longjmp.
78 setUseUnderscoreSetJmp(true);
79 setUseUnderscoreLongJmp(true);
81 // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
82 // arguments are at least 4/8 bytes aligned.
83 bool isPPC64 = Subtarget->isPPC64();
84 setMinStackArgumentAlignment(isPPC64 ? 8:4);
86 // Set up the register classes.
87 addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
88 addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
89 addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
91 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
92 setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
93 setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
95 setTruncStoreAction(MVT::f64, MVT::f32, Expand);
97 // PowerPC has pre-inc load and store's.
98 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
99 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
100 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
101 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
102 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
103 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
104 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
105 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
106 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
107 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
109 // This is used in the ppcf128->int sequence. Note it has different semantics
110 // from FP_ROUND: that rounds to nearest, this rounds to zero.
111 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
113 // We do not currently implement these libm ops for PowerPC.
114 setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
115 setOperationAction(ISD::FCEIL, MVT::ppcf128, Expand);
116 setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
117 setOperationAction(ISD::FRINT, MVT::ppcf128, Expand);
118 setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
120 // PowerPC has no SREM/UREM instructions
121 setOperationAction(ISD::SREM, MVT::i32, Expand);
122 setOperationAction(ISD::UREM, MVT::i32, Expand);
123 setOperationAction(ISD::SREM, MVT::i64, Expand);
124 setOperationAction(ISD::UREM, MVT::i64, Expand);
126 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
127 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
128 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
129 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
130 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
131 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
132 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
133 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
134 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
136 // We don't support sin/cos/sqrt/fmod/pow
137 setOperationAction(ISD::FSIN , MVT::f64, Expand);
138 setOperationAction(ISD::FCOS , MVT::f64, Expand);
139 setOperationAction(ISD::FSINCOS, MVT::f64, Expand);
140 setOperationAction(ISD::FREM , MVT::f64, Expand);
141 setOperationAction(ISD::FPOW , MVT::f64, Expand);
142 setOperationAction(ISD::FMA , MVT::f64, Legal);
143 setOperationAction(ISD::FSIN , MVT::f32, Expand);
144 setOperationAction(ISD::FCOS , MVT::f32, Expand);
145 setOperationAction(ISD::FSINCOS, MVT::f32, Expand);
146 setOperationAction(ISD::FREM , MVT::f32, Expand);
147 setOperationAction(ISD::FPOW , MVT::f32, Expand);
148 setOperationAction(ISD::FMA , MVT::f32, Legal);
150 setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
152 // If we're enabling GP optimizations, use hardware square root
153 if (!Subtarget->hasFSQRT()) {
154 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
155 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
158 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
159 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
161 if (Subtarget->hasFPRND()) {
162 setOperationAction(ISD::FFLOOR, MVT::f64, Legal);
163 setOperationAction(ISD::FCEIL, MVT::f64, Legal);
164 setOperationAction(ISD::FTRUNC, MVT::f64, Legal);
166 setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
167 setOperationAction(ISD::FCEIL, MVT::f32, Legal);
168 setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
170 // frin does not implement "ties to even." Thus, this is safe only in
172 if (TM.Options.UnsafeFPMath) {
173 setOperationAction(ISD::FNEARBYINT, MVT::f64, Legal);
174 setOperationAction(ISD::FNEARBYINT, MVT::f32, Legal);
178 // PowerPC does not have BSWAP, CTPOP or CTTZ
179 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
180 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
181 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
182 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
183 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
184 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
185 setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
186 setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
188 if (Subtarget->hasPOPCNTD()) {
189 setOperationAction(ISD::CTPOP, MVT::i32 , Promote);
190 setOperationAction(ISD::CTPOP, MVT::i64 , Legal);
192 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
193 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
196 // PowerPC does not have ROTR
197 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
198 setOperationAction(ISD::ROTR, MVT::i64 , Expand);
200 // PowerPC does not have Select
201 setOperationAction(ISD::SELECT, MVT::i32, Expand);
202 setOperationAction(ISD::SELECT, MVT::i64, Expand);
203 setOperationAction(ISD::SELECT, MVT::f32, Expand);
204 setOperationAction(ISD::SELECT, MVT::f64, Expand);
206 // PowerPC wants to turn select_cc of FP into fsel when possible.
207 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
208 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
210 // PowerPC wants to optimize integer setcc a bit
211 setOperationAction(ISD::SETCC, MVT::i32, Custom);
213 // PowerPC does not have BRCOND which requires SetCC
214 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
216 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
218 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
219 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
221 // PowerPC does not have [U|S]INT_TO_FP
222 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
223 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
225 setOperationAction(ISD::BITCAST, MVT::f32, Expand);
226 setOperationAction(ISD::BITCAST, MVT::i32, Expand);
227 setOperationAction(ISD::BITCAST, MVT::i64, Expand);
228 setOperationAction(ISD::BITCAST, MVT::f64, Expand);
230 // We cannot sextinreg(i1). Expand to shifts.
231 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
233 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
234 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
235 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
236 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
238 // NOTE: EH_SJLJ_SETJMP/_LONGJMP supported here is NOT intended to support
239 // SjLj exception handling but a light-weight setjmp/longjmp replacement to
240 // support continuation, user-level threading, and etc.. As a result, no
241 // other SjLj exception interfaces are implemented and please don't build
242 // your own exception handling based on them.
243 // LLVM/Clang supports zero-cost DWARF exception handling.
244 setOperationAction(ISD::EH_SJLJ_SETJMP, MVT::i32, Custom);
245 setOperationAction(ISD::EH_SJLJ_LONGJMP, MVT::Other, Custom);
247 // We want to legalize GlobalAddress and ConstantPool nodes into the
248 // appropriate instructions to materialize the address.
249 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
250 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
251 setOperationAction(ISD::BlockAddress, MVT::i32, Custom);
252 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
253 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
254 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
255 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
256 setOperationAction(ISD::BlockAddress, MVT::i64, Custom);
257 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
258 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
261 setOperationAction(ISD::TRAP, MVT::Other, Legal);
263 // TRAMPOLINE is custom lowered.
264 setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
265 setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
267 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
268 setOperationAction(ISD::VASTART , MVT::Other, Custom);
270 if (Subtarget->isSVR4ABI()) {
272 // VAARG always uses double-word chunks, so promote anything smaller.
273 setOperationAction(ISD::VAARG, MVT::i1, Promote);
274 AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
275 setOperationAction(ISD::VAARG, MVT::i8, Promote);
276 AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
277 setOperationAction(ISD::VAARG, MVT::i16, Promote);
278 AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
279 setOperationAction(ISD::VAARG, MVT::i32, Promote);
280 AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
281 setOperationAction(ISD::VAARG, MVT::Other, Expand);
283 // VAARG is custom lowered with the 32-bit SVR4 ABI.
284 setOperationAction(ISD::VAARG, MVT::Other, Custom);
285 setOperationAction(ISD::VAARG, MVT::i64, Custom);
288 setOperationAction(ISD::VAARG, MVT::Other, Expand);
290 // Use the default implementation.
291 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
292 setOperationAction(ISD::VAEND , MVT::Other, Expand);
293 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
294 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
295 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
296 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
298 // We want to custom lower some of our intrinsics.
299 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
301 // Comparisons that require checking two conditions.
302 setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
303 setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
304 setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
305 setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
306 setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
307 setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
308 setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
309 setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
310 setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
311 setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
312 setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
313 setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
315 if (Subtarget->has64BitSupport()) {
316 // They also have instructions for converting between i64 and fp.
317 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
318 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
319 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
320 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
321 // This is just the low 32 bits of a (signed) fp->i64 conversion.
322 // We cannot do this with Promote because i64 is not a legal type.
323 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
325 // FIXME: disable this lowered code. This generates 64-bit register values,
326 // and we don't model the fact that the top part is clobbered by calls. We
327 // need to flag these together so that the value isn't live across a call.
328 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
330 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
331 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
334 if (Subtarget->use64BitRegs()) {
335 // 64-bit PowerPC implementations can support i64 types directly
336 addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
337 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
338 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
339 // 64-bit PowerPC wants to expand i128 shifts itself.
340 setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
341 setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
342 setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
344 // 32-bit PowerPC wants to expand i64 shifts itself.
345 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
346 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
347 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
350 if (Subtarget->hasAltivec()) {
351 // First set operation action for all vector types to expand. Then we
352 // will selectively turn on ones that can be effectively codegen'd.
353 for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
354 i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
355 MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
357 // add/sub are legal for all supported vector VT's.
358 setOperationAction(ISD::ADD , VT, Legal);
359 setOperationAction(ISD::SUB , VT, Legal);
361 // We promote all shuffles to v16i8.
362 setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
363 AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
365 // We promote all non-typed operations to v4i32.
366 setOperationAction(ISD::AND , VT, Promote);
367 AddPromotedToType (ISD::AND , VT, MVT::v4i32);
368 setOperationAction(ISD::OR , VT, Promote);
369 AddPromotedToType (ISD::OR , VT, MVT::v4i32);
370 setOperationAction(ISD::XOR , VT, Promote);
371 AddPromotedToType (ISD::XOR , VT, MVT::v4i32);
372 setOperationAction(ISD::LOAD , VT, Promote);
373 AddPromotedToType (ISD::LOAD , VT, MVT::v4i32);
374 setOperationAction(ISD::SELECT, VT, Promote);
375 AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
376 setOperationAction(ISD::STORE, VT, Promote);
377 AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
379 // No other operations are legal.
380 setOperationAction(ISD::MUL , VT, Expand);
381 setOperationAction(ISD::SDIV, VT, Expand);
382 setOperationAction(ISD::SREM, VT, Expand);
383 setOperationAction(ISD::UDIV, VT, Expand);
384 setOperationAction(ISD::UREM, VT, Expand);
385 setOperationAction(ISD::FDIV, VT, Expand);
386 setOperationAction(ISD::FNEG, VT, Expand);
387 setOperationAction(ISD::FSQRT, VT, Expand);
388 setOperationAction(ISD::FLOG, VT, Expand);
389 setOperationAction(ISD::FLOG10, VT, Expand);
390 setOperationAction(ISD::FLOG2, VT, Expand);
391 setOperationAction(ISD::FEXP, VT, Expand);
392 setOperationAction(ISD::FEXP2, VT, Expand);
393 setOperationAction(ISD::FSIN, VT, Expand);
394 setOperationAction(ISD::FCOS, VT, Expand);
395 setOperationAction(ISD::FABS, VT, Expand);
396 setOperationAction(ISD::FPOWI, VT, Expand);
397 setOperationAction(ISD::FFLOOR, VT, Expand);
398 setOperationAction(ISD::FCEIL, VT, Expand);
399 setOperationAction(ISD::FTRUNC, VT, Expand);
400 setOperationAction(ISD::FRINT, VT, Expand);
401 setOperationAction(ISD::FNEARBYINT, VT, Expand);
402 setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
403 setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
404 setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
405 setOperationAction(ISD::UMUL_LOHI, VT, Expand);
406 setOperationAction(ISD::SMUL_LOHI, VT, Expand);
407 setOperationAction(ISD::UDIVREM, VT, Expand);
408 setOperationAction(ISD::SDIVREM, VT, Expand);
409 setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
410 setOperationAction(ISD::FPOW, VT, Expand);
411 setOperationAction(ISD::CTPOP, VT, Expand);
412 setOperationAction(ISD::CTLZ, VT, Expand);
413 setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
414 setOperationAction(ISD::CTTZ, VT, Expand);
415 setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
416 setOperationAction(ISD::VSELECT, VT, Expand);
417 setOperationAction(ISD::SIGN_EXTEND_INREG, VT, Expand);
419 for (unsigned j = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
420 j <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++j) {
421 MVT::SimpleValueType InnerVT = (MVT::SimpleValueType)j;
422 setTruncStoreAction(VT, InnerVT, Expand);
424 setLoadExtAction(ISD::SEXTLOAD, VT, Expand);
425 setLoadExtAction(ISD::ZEXTLOAD, VT, Expand);
426 setLoadExtAction(ISD::EXTLOAD, VT, Expand);
429 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
430 // with merges, splats, etc.
431 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
433 setOperationAction(ISD::AND , MVT::v4i32, Legal);
434 setOperationAction(ISD::OR , MVT::v4i32, Legal);
435 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
436 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
437 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
438 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
439 setOperationAction(ISD::FP_TO_SINT, MVT::v4i32, Legal);
440 setOperationAction(ISD::FP_TO_UINT, MVT::v4i32, Legal);
441 setOperationAction(ISD::SINT_TO_FP, MVT::v4i32, Legal);
442 setOperationAction(ISD::UINT_TO_FP, MVT::v4i32, Legal);
443 setOperationAction(ISD::FFLOOR, MVT::v4f32, Legal);
444 setOperationAction(ISD::FCEIL, MVT::v4f32, Legal);
445 setOperationAction(ISD::FTRUNC, MVT::v4f32, Legal);
446 setOperationAction(ISD::FNEARBYINT, MVT::v4f32, Legal);
448 addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
449 addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
450 addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
451 addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
453 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
454 setOperationAction(ISD::FMA, MVT::v4f32, Legal);
455 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
456 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
457 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
459 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
460 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
462 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
463 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
464 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
465 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
467 // Altivec does not contain unordered floating-point compare instructions
468 setCondCodeAction(ISD::SETUO, MVT::v4f32, Expand);
469 setCondCodeAction(ISD::SETUEQ, MVT::v4f32, Expand);
470 setCondCodeAction(ISD::SETUGT, MVT::v4f32, Expand);
471 setCondCodeAction(ISD::SETUGE, MVT::v4f32, Expand);
472 setCondCodeAction(ISD::SETULT, MVT::v4f32, Expand);
473 setCondCodeAction(ISD::SETULE, MVT::v4f32, Expand);
476 if (Subtarget->has64BitSupport()) {
477 setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
478 setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Legal);
481 setOperationAction(ISD::ATOMIC_LOAD, MVT::i32, Expand);
482 setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
483 setOperationAction(ISD::ATOMIC_LOAD, MVT::i64, Expand);
484 setOperationAction(ISD::ATOMIC_STORE, MVT::i64, Expand);
486 setBooleanContents(ZeroOrOneBooleanContent);
487 setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
490 setStackPointerRegisterToSaveRestore(PPC::X1);
491 setExceptionPointerRegister(PPC::X3);
492 setExceptionSelectorRegister(PPC::X4);
494 setStackPointerRegisterToSaveRestore(PPC::R1);
495 setExceptionPointerRegister(PPC::R3);
496 setExceptionSelectorRegister(PPC::R4);
499 // We have target-specific dag combine patterns for the following nodes:
500 setTargetDAGCombine(ISD::SINT_TO_FP);
501 setTargetDAGCombine(ISD::STORE);
502 setTargetDAGCombine(ISD::BR_CC);
503 setTargetDAGCombine(ISD::BSWAP);
505 // Darwin long double math library functions have $LDBL128 appended.
506 if (Subtarget->isDarwin()) {
507 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
508 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
509 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
510 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
511 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
512 setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
513 setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
514 setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
515 setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
516 setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
519 setMinFunctionAlignment(2);
520 if (PPCSubTarget.isDarwin())
521 setPrefFunctionAlignment(4);
523 if (isPPC64 && Subtarget->isJITCodeModel())
524 // Temporary workaround for the inability of PPC64 JIT to handle jump
526 setSupportJumpTables(false);
528 setInsertFencesForAtomic(true);
530 setSchedulingPreference(Sched::Hybrid);
532 computeRegisterProperties();
534 // The Freescale cores does better with aggressive inlining of memcpy and
535 // friends. Gcc uses same threshold of 128 bytes (= 32 word stores).
536 if (Subtarget->getDarwinDirective() == PPC::DIR_E500mc ||
537 Subtarget->getDarwinDirective() == PPC::DIR_E5500) {
538 MaxStoresPerMemset = 32;
539 MaxStoresPerMemsetOptSize = 16;
540 MaxStoresPerMemcpy = 32;
541 MaxStoresPerMemcpyOptSize = 8;
542 MaxStoresPerMemmove = 32;
543 MaxStoresPerMemmoveOptSize = 8;
545 setPrefFunctionAlignment(4);
546 BenefitFromCodePlacementOpt = true;
550 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
551 /// function arguments in the caller parameter area.
552 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
553 const TargetMachine &TM = getTargetMachine();
554 // Darwin passes everything on 4 byte boundary.
555 if (TM.getSubtarget<PPCSubtarget>().isDarwin())
558 // 16byte and wider vectors are passed on 16byte boundary.
559 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
560 if (VTy->getBitWidth() >= 128)
563 // The rest is 8 on PPC64 and 4 on PPC32 boundary.
564 if (PPCSubTarget.isPPC64())
570 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
573 case PPCISD::FSEL: return "PPCISD::FSEL";
574 case PPCISD::FCFID: return "PPCISD::FCFID";
575 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
576 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
577 case PPCISD::STFIWX: return "PPCISD::STFIWX";
578 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
579 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
580 case PPCISD::VPERM: return "PPCISD::VPERM";
581 case PPCISD::Hi: return "PPCISD::Hi";
582 case PPCISD::Lo: return "PPCISD::Lo";
583 case PPCISD::TOC_ENTRY: return "PPCISD::TOC_ENTRY";
584 case PPCISD::TOC_RESTORE: return "PPCISD::TOC_RESTORE";
585 case PPCISD::LOAD: return "PPCISD::LOAD";
586 case PPCISD::LOAD_TOC: return "PPCISD::LOAD_TOC";
587 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
588 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
589 case PPCISD::SRL: return "PPCISD::SRL";
590 case PPCISD::SRA: return "PPCISD::SRA";
591 case PPCISD::SHL: return "PPCISD::SHL";
592 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
593 case PPCISD::STD_32: return "PPCISD::STD_32";
594 case PPCISD::CALL: return "PPCISD::CALL";
595 case PPCISD::CALL_NOP: return "PPCISD::CALL_NOP";
596 case PPCISD::MTCTR: return "PPCISD::MTCTR";
597 case PPCISD::BCTRL: return "PPCISD::BCTRL";
598 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
599 case PPCISD::EH_SJLJ_SETJMP: return "PPCISD::EH_SJLJ_SETJMP";
600 case PPCISD::EH_SJLJ_LONGJMP: return "PPCISD::EH_SJLJ_LONGJMP";
601 case PPCISD::MFCR: return "PPCISD::MFCR";
602 case PPCISD::VCMP: return "PPCISD::VCMP";
603 case PPCISD::VCMPo: return "PPCISD::VCMPo";
604 case PPCISD::LBRX: return "PPCISD::LBRX";
605 case PPCISD::STBRX: return "PPCISD::STBRX";
606 case PPCISD::LARX: return "PPCISD::LARX";
607 case PPCISD::STCX: return "PPCISD::STCX";
608 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
609 case PPCISD::MFFS: return "PPCISD::MFFS";
610 case PPCISD::FADDRTZ: return "PPCISD::FADDRTZ";
611 case PPCISD::TC_RETURN: return "PPCISD::TC_RETURN";
612 case PPCISD::CR6SET: return "PPCISD::CR6SET";
613 case PPCISD::CR6UNSET: return "PPCISD::CR6UNSET";
614 case PPCISD::ADDIS_TOC_HA: return "PPCISD::ADDIS_TOC_HA";
615 case PPCISD::LD_TOC_L: return "PPCISD::LD_TOC_L";
616 case PPCISD::ADDI_TOC_L: return "PPCISD::ADDI_TOC_L";
617 case PPCISD::ADDIS_GOT_TPREL_HA: return "PPCISD::ADDIS_GOT_TPREL_HA";
618 case PPCISD::LD_GOT_TPREL_L: return "PPCISD::LD_GOT_TPREL_L";
619 case PPCISD::ADD_TLS: return "PPCISD::ADD_TLS";
620 case PPCISD::ADDIS_TLSGD_HA: return "PPCISD::ADDIS_TLSGD_HA";
621 case PPCISD::ADDI_TLSGD_L: return "PPCISD::ADDI_TLSGD_L";
622 case PPCISD::GET_TLS_ADDR: return "PPCISD::GET_TLS_ADDR";
623 case PPCISD::ADDIS_TLSLD_HA: return "PPCISD::ADDIS_TLSLD_HA";
624 case PPCISD::ADDI_TLSLD_L: return "PPCISD::ADDI_TLSLD_L";
625 case PPCISD::GET_TLSLD_ADDR: return "PPCISD::GET_TLSLD_ADDR";
626 case PPCISD::ADDIS_DTPREL_HA: return "PPCISD::ADDIS_DTPREL_HA";
627 case PPCISD::ADDI_DTPREL_L: return "PPCISD::ADDI_DTPREL_L";
628 case PPCISD::VADD_SPLAT: return "PPCISD::VADD_SPLAT";
632 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
635 return VT.changeVectorElementTypeToInteger();
638 //===----------------------------------------------------------------------===//
639 // Node matching predicates, for use by the tblgen matching code.
640 //===----------------------------------------------------------------------===//
642 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
643 static bool isFloatingPointZero(SDValue Op) {
644 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
645 return CFP->getValueAPF().isZero();
646 else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
647 // Maybe this has already been legalized into the constant pool?
648 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
649 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
650 return CFP->getValueAPF().isZero();
655 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
656 /// true if Op is undef or if it matches the specified value.
657 static bool isConstantOrUndef(int Op, int Val) {
658 return Op < 0 || Op == Val;
661 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
662 /// VPKUHUM instruction.
663 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
665 for (unsigned i = 0; i != 16; ++i)
666 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1))
669 for (unsigned i = 0; i != 8; ++i)
670 if (!isConstantOrUndef(N->getMaskElt(i), i*2+1) ||
671 !isConstantOrUndef(N->getMaskElt(i+8), i*2+1))
677 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
678 /// VPKUWUM instruction.
679 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
681 for (unsigned i = 0; i != 16; i += 2)
682 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
683 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3))
686 for (unsigned i = 0; i != 8; i += 2)
687 if (!isConstantOrUndef(N->getMaskElt(i ), i*2+2) ||
688 !isConstantOrUndef(N->getMaskElt(i+1), i*2+3) ||
689 !isConstantOrUndef(N->getMaskElt(i+8), i*2+2) ||
690 !isConstantOrUndef(N->getMaskElt(i+9), i*2+3))
696 /// isVMerge - Common function, used to match vmrg* shuffles.
698 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
699 unsigned LHSStart, unsigned RHSStart) {
700 assert(N->getValueType(0) == MVT::v16i8 &&
701 "PPC only supports shuffles by bytes!");
702 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
703 "Unsupported merge size!");
705 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
706 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
707 if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
708 LHSStart+j+i*UnitSize) ||
709 !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
710 RHSStart+j+i*UnitSize))
716 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
717 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
718 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
721 return isVMerge(N, UnitSize, 8, 24);
722 return isVMerge(N, UnitSize, 8, 8);
725 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
726 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
727 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
730 return isVMerge(N, UnitSize, 0, 16);
731 return isVMerge(N, UnitSize, 0, 0);
735 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
736 /// amount, otherwise return -1.
737 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
738 assert(N->getValueType(0) == MVT::v16i8 &&
739 "PPC only supports shuffles by bytes!");
741 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
743 // Find the first non-undef value in the shuffle mask.
745 for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
748 if (i == 16) return -1; // all undef.
750 // Otherwise, check to see if the rest of the elements are consecutively
751 // numbered from this value.
752 unsigned ShiftAmt = SVOp->getMaskElt(i);
753 if (ShiftAmt < i) return -1;
757 // Check the rest of the elements to see if they are consecutive.
758 for (++i; i != 16; ++i)
759 if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
762 // Check the rest of the elements to see if they are consecutive.
763 for (++i; i != 16; ++i)
764 if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
770 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
771 /// specifies a splat of a single element that is suitable for input to
772 /// VSPLTB/VSPLTH/VSPLTW.
773 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
774 assert(N->getValueType(0) == MVT::v16i8 &&
775 (EltSize == 1 || EltSize == 2 || EltSize == 4));
777 // This is a splat operation if each element of the permute is the same, and
778 // if the value doesn't reference the second vector.
779 unsigned ElementBase = N->getMaskElt(0);
781 // FIXME: Handle UNDEF elements too!
782 if (ElementBase >= 16)
785 // Check that the indices are consecutive, in the case of a multi-byte element
786 // splatted with a v16i8 mask.
787 for (unsigned i = 1; i != EltSize; ++i)
788 if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
791 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
792 if (N->getMaskElt(i) < 0) continue;
793 for (unsigned j = 0; j != EltSize; ++j)
794 if (N->getMaskElt(i+j) != N->getMaskElt(j))
800 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
802 bool PPC::isAllNegativeZeroVector(SDNode *N) {
803 BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
805 APInt APVal, APUndef;
809 if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
810 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
811 return CFP->getValueAPF().isNegZero();
816 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
817 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
818 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
819 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
820 assert(isSplatShuffleMask(SVOp, EltSize));
821 return SVOp->getMaskElt(0) / EltSize;
824 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
825 /// by using a vspltis[bhw] instruction of the specified element size, return
826 /// the constant being splatted. The ByteSize field indicates the number of
827 /// bytes of each element [124] -> [bhw].
828 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
831 // If ByteSize of the splat is bigger than the element size of the
832 // build_vector, then we have a case where we are checking for a splat where
833 // multiple elements of the buildvector are folded together into a single
834 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
835 unsigned EltSize = 16/N->getNumOperands();
836 if (EltSize < ByteSize) {
837 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
838 SDValue UniquedVals[4];
839 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
841 // See if all of the elements in the buildvector agree across.
842 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
843 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
844 // If the element isn't a constant, bail fully out.
845 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
848 if (UniquedVals[i&(Multiple-1)].getNode() == 0)
849 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
850 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
851 return SDValue(); // no match.
854 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
855 // either constant or undef values that are identical for each chunk. See
856 // if these chunks can form into a larger vspltis*.
858 // Check to see if all of the leading entries are either 0 or -1. If
859 // neither, then this won't fit into the immediate field.
860 bool LeadingZero = true;
861 bool LeadingOnes = true;
862 for (unsigned i = 0; i != Multiple-1; ++i) {
863 if (UniquedVals[i].getNode() == 0) continue; // Must have been undefs.
865 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
866 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
868 // Finally, check the least significant entry.
870 if (UniquedVals[Multiple-1].getNode() == 0)
871 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
872 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
874 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
877 if (UniquedVals[Multiple-1].getNode() == 0)
878 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
879 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
880 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
881 return DAG.getTargetConstant(Val, MVT::i32);
887 // Check to see if this buildvec has a single non-undef value in its elements.
888 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
889 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
890 if (OpVal.getNode() == 0)
891 OpVal = N->getOperand(i);
892 else if (OpVal != N->getOperand(i))
896 if (OpVal.getNode() == 0) return SDValue(); // All UNDEF: use implicit def.
898 unsigned ValSizeInBytes = EltSize;
900 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
901 Value = CN->getZExtValue();
902 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
903 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
904 Value = FloatToBits(CN->getValueAPF().convertToFloat());
907 // If the splat value is larger than the element value, then we can never do
908 // this splat. The only case that we could fit the replicated bits into our
909 // immediate field for would be zero, and we prefer to use vxor for it.
910 if (ValSizeInBytes < ByteSize) return SDValue();
912 // If the element value is larger than the splat value, cut it in half and
913 // check to see if the two halves are equal. Continue doing this until we
914 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
915 while (ValSizeInBytes > ByteSize) {
916 ValSizeInBytes >>= 1;
918 // If the top half equals the bottom half, we're still ok.
919 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
920 (Value & ((1 << (8*ValSizeInBytes))-1)))
924 // Properly sign extend the value.
925 int MaskVal = SignExtend32(Value, ByteSize * 8);
927 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
928 if (MaskVal == 0) return SDValue();
930 // Finally, if this value fits in a 5 bit sext field, return it
931 if (SignExtend32<5>(MaskVal) == MaskVal)
932 return DAG.getTargetConstant(MaskVal, MVT::i32);
936 //===----------------------------------------------------------------------===//
937 // Addressing Mode Selection
938 //===----------------------------------------------------------------------===//
940 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
941 /// or 64-bit immediate, and if the value can be accurately represented as a
942 /// sign extension from a 16-bit value. If so, this returns true and the
944 static bool isIntS16Immediate(SDNode *N, short &Imm) {
945 if (N->getOpcode() != ISD::Constant)
948 Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
949 if (N->getValueType(0) == MVT::i32)
950 return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
952 return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
954 static bool isIntS16Immediate(SDValue Op, short &Imm) {
955 return isIntS16Immediate(Op.getNode(), Imm);
959 /// SelectAddressRegReg - Given the specified addressed, check to see if it
960 /// can be represented as an indexed [r+r] operation. Returns false if it
961 /// can be more efficiently represented with [r+imm].
962 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
964 SelectionDAG &DAG) const {
966 if (N.getOpcode() == ISD::ADD) {
967 if (isIntS16Immediate(N.getOperand(1), imm))
969 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
972 Base = N.getOperand(0);
973 Index = N.getOperand(1);
975 } else if (N.getOpcode() == ISD::OR) {
976 if (isIntS16Immediate(N.getOperand(1), imm))
977 return false; // r+i can fold it if we can.
979 // If this is an or of disjoint bitfields, we can codegen this as an add
980 // (for better address arithmetic) if the LHS and RHS of the OR are provably
982 APInt LHSKnownZero, LHSKnownOne;
983 APInt RHSKnownZero, RHSKnownOne;
984 DAG.ComputeMaskedBits(N.getOperand(0),
985 LHSKnownZero, LHSKnownOne);
987 if (LHSKnownZero.getBoolValue()) {
988 DAG.ComputeMaskedBits(N.getOperand(1),
989 RHSKnownZero, RHSKnownOne);
990 // If all of the bits are known zero on the LHS or RHS, the add won't
992 if (~(LHSKnownZero | RHSKnownZero) == 0) {
993 Base = N.getOperand(0);
994 Index = N.getOperand(1);
1003 /// Returns true if the address N can be represented by a base register plus
1004 /// a signed 16-bit displacement [r+imm], and if it is not better
1005 /// represented as reg+reg.
1006 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
1008 SelectionDAG &DAG) const {
1009 // FIXME dl should come from parent load or store, not from address
1010 DebugLoc dl = N.getDebugLoc();
1011 // If this can be more profitably realized as r+r, fail.
1012 if (SelectAddressRegReg(N, Disp, Base, DAG))
1015 if (N.getOpcode() == ISD::ADD) {
1017 if (isIntS16Immediate(N.getOperand(1), imm)) {
1018 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1019 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1020 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1022 Base = N.getOperand(0);
1024 return true; // [r+i]
1025 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1026 // Match LOAD (ADD (X, Lo(G))).
1027 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1028 && "Cannot handle constant offsets yet!");
1029 Disp = N.getOperand(1).getOperand(0); // The global address.
1030 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1031 Disp.getOpcode() == ISD::TargetGlobalTLSAddress ||
1032 Disp.getOpcode() == ISD::TargetConstantPool ||
1033 Disp.getOpcode() == ISD::TargetJumpTable);
1034 Base = N.getOperand(0);
1035 return true; // [&g+r]
1037 } else if (N.getOpcode() == ISD::OR) {
1039 if (isIntS16Immediate(N.getOperand(1), imm)) {
1040 // If this is an or of disjoint bitfields, we can codegen this as an add
1041 // (for better address arithmetic) if the LHS and RHS of the OR are
1042 // provably disjoint.
1043 APInt LHSKnownZero, LHSKnownOne;
1044 DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1046 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1047 // If all of the bits are known zero on the LHS or RHS, the add won't
1049 Base = N.getOperand(0);
1050 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
1054 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1055 // Loading from a constant address.
1057 // If this address fits entirely in a 16-bit sext immediate field, codegen
1060 if (isIntS16Immediate(CN, Imm)) {
1061 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
1062 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1063 CN->getValueType(0));
1067 // Handle 32-bit sext immediates with LIS + addr mode.
1068 if (CN->getValueType(0) == MVT::i32 ||
1069 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1070 int Addr = (int)CN->getZExtValue();
1072 // Otherwise, break this down into an LIS + disp.
1073 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
1075 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
1076 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1077 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
1082 Disp = DAG.getTargetConstant(0, getPointerTy());
1083 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1084 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1087 return true; // [r+0]
1090 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
1091 /// represented as an indexed [r+r] operation.
1092 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
1094 SelectionDAG &DAG) const {
1095 // Check to see if we can easily represent this as an [r+r] address. This
1096 // will fail if it thinks that the address is more profitably represented as
1097 // reg+imm, e.g. where imm = 0.
1098 if (SelectAddressRegReg(N, Base, Index, DAG))
1101 // If the operand is an addition, always emit this as [r+r], since this is
1102 // better (for code size, and execution, as the memop does the add for free)
1103 // than emitting an explicit add.
1104 if (N.getOpcode() == ISD::ADD) {
1105 Base = N.getOperand(0);
1106 Index = N.getOperand(1);
1110 // Otherwise, do it the hard way, using R0 as the base register.
1111 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1117 /// SelectAddressRegImmShift - Returns true if the address N can be
1118 /// represented by a base register plus a signed 14-bit displacement
1119 /// [r+imm*4]. Suitable for use by STD and friends.
1120 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
1122 SelectionDAG &DAG) const {
1123 // FIXME dl should come from the parent load or store, not the address
1124 DebugLoc dl = N.getDebugLoc();
1125 // If this can be more profitably realized as r+r, fail.
1126 if (SelectAddressRegReg(N, Disp, Base, DAG))
1129 if (N.getOpcode() == ISD::ADD) {
1131 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1132 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1133 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1134 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1136 Base = N.getOperand(0);
1138 return true; // [r+i]
1139 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1140 // Match LOAD (ADD (X, Lo(G))).
1141 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1142 && "Cannot handle constant offsets yet!");
1143 Disp = N.getOperand(1).getOperand(0); // The global address.
1144 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1145 Disp.getOpcode() == ISD::TargetConstantPool ||
1146 Disp.getOpcode() == ISD::TargetJumpTable);
1147 Base = N.getOperand(0);
1148 return true; // [&g+r]
1150 } else if (N.getOpcode() == ISD::OR) {
1152 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1153 // If this is an or of disjoint bitfields, we can codegen this as an add
1154 // (for better address arithmetic) if the LHS and RHS of the OR are
1155 // provably disjoint.
1156 APInt LHSKnownZero, LHSKnownOne;
1157 DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1158 if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1159 // If all of the bits are known zero on the LHS or RHS, the add won't
1161 Base = N.getOperand(0);
1162 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1166 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1167 // Loading from a constant address. Verify low two bits are clear.
1168 if ((CN->getZExtValue() & 3) == 0) {
1169 // If this address fits entirely in a 14-bit sext immediate field, codegen
1172 if (isIntS16Immediate(CN, Imm)) {
1173 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1174 Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::ZERO8 : PPC::ZERO,
1175 CN->getValueType(0));
1179 // Fold the low-part of 32-bit absolute addresses into addr mode.
1180 if (CN->getValueType(0) == MVT::i32 ||
1181 (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1182 int Addr = (int)CN->getZExtValue();
1184 // Otherwise, break this down into an LIS + disp.
1185 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1186 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1187 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1188 Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1194 Disp = DAG.getTargetConstant(0, getPointerTy());
1195 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1196 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1199 return true; // [r+0]
1203 /// getPreIndexedAddressParts - returns true by value, base pointer and
1204 /// offset pointer and addressing mode by reference if the node's address
1205 /// can be legally represented as pre-indexed load / store address.
1206 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1208 ISD::MemIndexedMode &AM,
1209 SelectionDAG &DAG) const {
1210 if (DisablePPCPreinc) return false;
1216 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1217 Ptr = LD->getBasePtr();
1218 VT = LD->getMemoryVT();
1219 Alignment = LD->getAlignment();
1220 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1221 Ptr = ST->getBasePtr();
1222 VT = ST->getMemoryVT();
1223 Alignment = ST->getAlignment();
1228 // PowerPC doesn't have preinc load/store instructions for vectors.
1232 if (SelectAddressRegReg(Ptr, Base, Offset, DAG)) {
1234 // Common code will reject creating a pre-inc form if the base pointer
1235 // is a frame index, or if N is a store and the base pointer is either
1236 // the same as or a predecessor of the value being stored. Check for
1237 // those situations here, and try with swapped Base/Offset instead.
1240 if (isa<FrameIndexSDNode>(Base) || isa<RegisterSDNode>(Base))
1243 SDValue Val = cast<StoreSDNode>(N)->getValue();
1244 if (Val == Base || Base.getNode()->isPredecessorOf(Val.getNode()))
1249 std::swap(Base, Offset);
1255 // LDU/STU use reg+imm*4, others use reg+imm.
1256 if (VT != MVT::i64) {
1258 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1261 // LDU/STU need an address with at least 4-byte alignment.
1266 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1270 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1271 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
1272 // sext i32 to i64 when addr mode is r+i.
1273 if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1274 LD->getExtensionType() == ISD::SEXTLOAD &&
1275 isa<ConstantSDNode>(Offset))
1283 //===----------------------------------------------------------------------===//
1284 // LowerOperation implementation
1285 //===----------------------------------------------------------------------===//
1287 /// GetLabelAccessInfo - Return true if we should reference labels using a
1288 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1289 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1290 unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1291 HiOpFlags = PPCII::MO_HA16;
1292 LoOpFlags = PPCII::MO_LO16;
1294 // Don't use the pic base if not in PIC relocation model. Or if we are on a
1295 // non-darwin platform. We don't support PIC on other platforms yet.
1296 bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1297 TM.getSubtarget<PPCSubtarget>().isDarwin();
1299 HiOpFlags |= PPCII::MO_PIC_FLAG;
1300 LoOpFlags |= PPCII::MO_PIC_FLAG;
1303 // If this is a reference to a global value that requires a non-lazy-ptr, make
1304 // sure that instruction lowering adds it.
1305 if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1306 HiOpFlags |= PPCII::MO_NLP_FLAG;
1307 LoOpFlags |= PPCII::MO_NLP_FLAG;
1309 if (GV->hasHiddenVisibility()) {
1310 HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1311 LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1318 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1319 SelectionDAG &DAG) {
1320 EVT PtrVT = HiPart.getValueType();
1321 SDValue Zero = DAG.getConstant(0, PtrVT);
1322 DebugLoc DL = HiPart.getDebugLoc();
1324 SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1325 SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1327 // With PIC, the first instruction is actually "GR+hi(&G)".
1329 Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1330 DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1332 // Generate non-pic code that has direct accesses to the constant pool.
1333 // The address of the global is just (hi(&g)+lo(&g)).
1334 return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1337 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1338 SelectionDAG &DAG) const {
1339 EVT PtrVT = Op.getValueType();
1340 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1341 const Constant *C = CP->getConstVal();
1343 // 64-bit SVR4 ABI code is always position-independent.
1344 // The actual address of the GlobalValue is stored in the TOC.
1345 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1346 SDValue GA = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0);
1347 return DAG.getNode(PPCISD::TOC_ENTRY, CP->getDebugLoc(), MVT::i64, GA,
1348 DAG.getRegister(PPC::X2, MVT::i64));
1351 unsigned MOHiFlag, MOLoFlag;
1352 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1354 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1356 DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1357 return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1360 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1361 EVT PtrVT = Op.getValueType();
1362 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1364 // 64-bit SVR4 ABI code is always position-independent.
1365 // The actual address of the GlobalValue is stored in the TOC.
1366 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1367 SDValue GA = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1368 return DAG.getNode(PPCISD::TOC_ENTRY, JT->getDebugLoc(), MVT::i64, GA,
1369 DAG.getRegister(PPC::X2, MVT::i64));
1372 unsigned MOHiFlag, MOLoFlag;
1373 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1374 SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1375 SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1376 return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1379 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1380 SelectionDAG &DAG) const {
1381 EVT PtrVT = Op.getValueType();
1383 const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1385 unsigned MOHiFlag, MOLoFlag;
1386 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1387 SDValue TgtBAHi = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOHiFlag);
1388 SDValue TgtBALo = DAG.getTargetBlockAddress(BA, PtrVT, 0, MOLoFlag);
1389 return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1392 SDValue PPCTargetLowering::LowerGlobalTLSAddress(SDValue Op,
1393 SelectionDAG &DAG) const {
1395 GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(Op);
1396 DebugLoc dl = GA->getDebugLoc();
1397 const GlobalValue *GV = GA->getGlobal();
1398 EVT PtrVT = getPointerTy();
1399 bool is64bit = PPCSubTarget.isPPC64();
1401 TLSModel::Model Model = getTargetMachine().getTLSModel(GV);
1403 if (Model == TLSModel::LocalExec) {
1404 SDValue TGAHi = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1405 PPCII::MO_TPREL16_HA);
1406 SDValue TGALo = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0,
1407 PPCII::MO_TPREL16_LO);
1408 SDValue TLSReg = DAG.getRegister(is64bit ? PPC::X13 : PPC::R2,
1409 is64bit ? MVT::i64 : MVT::i32);
1410 SDValue Hi = DAG.getNode(PPCISD::Hi, dl, PtrVT, TGAHi, TLSReg);
1411 return DAG.getNode(PPCISD::Lo, dl, PtrVT, TGALo, Hi);
1415 llvm_unreachable("only local-exec is currently supported for ppc32");
1417 if (Model == TLSModel::InitialExec) {
1418 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1419 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1420 SDValue TPOffsetHi = DAG.getNode(PPCISD::ADDIS_GOT_TPREL_HA, dl,
1421 PtrVT, GOTReg, TGA);
1422 SDValue TPOffset = DAG.getNode(PPCISD::LD_GOT_TPREL_L, dl,
1423 PtrVT, TGA, TPOffsetHi);
1424 return DAG.getNode(PPCISD::ADD_TLS, dl, PtrVT, TPOffset, TGA);
1427 if (Model == TLSModel::GeneralDynamic) {
1428 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1429 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1430 SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSGD_HA, dl, PtrVT,
1432 SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSGD_L, dl, PtrVT,
1435 // We need a chain node, and don't have one handy. The underlying
1436 // call has no side effects, so using the function entry node
1438 SDValue Chain = DAG.getEntryNode();
1439 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1440 SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1441 SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLS_ADDR, dl,
1442 PtrVT, ParmReg, TGA);
1443 // The return value from GET_TLS_ADDR really is in X3 already, but
1444 // some hacks are needed here to tie everything together. The extra
1445 // copies dissolve during subsequent transforms.
1446 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1447 return DAG.getCopyFromReg(Chain, dl, PPC::X3, PtrVT);
1450 if (Model == TLSModel::LocalDynamic) {
1451 SDValue TGA = DAG.getTargetGlobalAddress(GV, dl, PtrVT, 0, 0);
1452 SDValue GOTReg = DAG.getRegister(PPC::X2, MVT::i64);
1453 SDValue GOTEntryHi = DAG.getNode(PPCISD::ADDIS_TLSLD_HA, dl, PtrVT,
1455 SDValue GOTEntry = DAG.getNode(PPCISD::ADDI_TLSLD_L, dl, PtrVT,
1458 // We need a chain node, and don't have one handy. The underlying
1459 // call has no side effects, so using the function entry node
1461 SDValue Chain = DAG.getEntryNode();
1462 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, GOTEntry);
1463 SDValue ParmReg = DAG.getRegister(PPC::X3, MVT::i64);
1464 SDValue TLSAddr = DAG.getNode(PPCISD::GET_TLSLD_ADDR, dl,
1465 PtrVT, ParmReg, TGA);
1466 // The return value from GET_TLSLD_ADDR really is in X3 already, but
1467 // some hacks are needed here to tie everything together. The extra
1468 // copies dissolve during subsequent transforms.
1469 Chain = DAG.getCopyToReg(Chain, dl, PPC::X3, TLSAddr);
1470 SDValue DtvOffsetHi = DAG.getNode(PPCISD::ADDIS_DTPREL_HA, dl, PtrVT,
1471 Chain, ParmReg, TGA);
1472 return DAG.getNode(PPCISD::ADDI_DTPREL_L, dl, PtrVT, DtvOffsetHi, TGA);
1475 llvm_unreachable("Unknown TLS model!");
1478 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1479 SelectionDAG &DAG) const {
1480 EVT PtrVT = Op.getValueType();
1481 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1482 DebugLoc DL = GSDN->getDebugLoc();
1483 const GlobalValue *GV = GSDN->getGlobal();
1485 // 64-bit SVR4 ABI code is always position-independent.
1486 // The actual address of the GlobalValue is stored in the TOC.
1487 if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1488 SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1489 return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1490 DAG.getRegister(PPC::X2, MVT::i64));
1493 unsigned MOHiFlag, MOLoFlag;
1494 bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1497 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1499 DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1501 SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1503 // If the global reference is actually to a non-lazy-pointer, we have to do an
1504 // extra load to get the address of the global.
1505 if (MOHiFlag & PPCII::MO_NLP_FLAG)
1506 Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1507 false, false, false, 0);
1511 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1512 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1513 DebugLoc dl = Op.getDebugLoc();
1515 // If we're comparing for equality to zero, expose the fact that this is
1516 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1517 // fold the new nodes.
1518 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1519 if (C->isNullValue() && CC == ISD::SETEQ) {
1520 EVT VT = Op.getOperand(0).getValueType();
1521 SDValue Zext = Op.getOperand(0);
1522 if (VT.bitsLT(MVT::i32)) {
1524 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1526 unsigned Log2b = Log2_32(VT.getSizeInBits());
1527 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1528 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1529 DAG.getConstant(Log2b, MVT::i32));
1530 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1532 // Leave comparisons against 0 and -1 alone for now, since they're usually
1533 // optimized. FIXME: revisit this when we can custom lower all setcc
1535 if (C->isAllOnesValue() || C->isNullValue())
1539 // If we have an integer seteq/setne, turn it into a compare against zero
1540 // by xor'ing the rhs with the lhs, which is faster than setting a
1541 // condition register, reading it back out, and masking the correct bit. The
1542 // normal approach here uses sub to do this instead of xor. Using xor exposes
1543 // the result to other bit-twiddling opportunities.
1544 EVT LHSVT = Op.getOperand(0).getValueType();
1545 if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1546 EVT VT = Op.getValueType();
1547 SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1549 return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1554 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1555 const PPCSubtarget &Subtarget) const {
1556 SDNode *Node = Op.getNode();
1557 EVT VT = Node->getValueType(0);
1558 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1559 SDValue InChain = Node->getOperand(0);
1560 SDValue VAListPtr = Node->getOperand(1);
1561 const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1562 DebugLoc dl = Node->getDebugLoc();
1564 assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1567 SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1568 VAListPtr, MachinePointerInfo(SV), MVT::i8,
1570 InChain = GprIndex.getValue(1);
1572 if (VT == MVT::i64) {
1573 // Check if GprIndex is even
1574 SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1575 DAG.getConstant(1, MVT::i32));
1576 SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1577 DAG.getConstant(0, MVT::i32), ISD::SETNE);
1578 SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1579 DAG.getConstant(1, MVT::i32));
1580 // Align GprIndex to be even if it isn't
1581 GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1585 // fpr index is 1 byte after gpr
1586 SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1587 DAG.getConstant(1, MVT::i32));
1590 SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1591 FprPtr, MachinePointerInfo(SV), MVT::i8,
1593 InChain = FprIndex.getValue(1);
1595 SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1596 DAG.getConstant(8, MVT::i32));
1598 SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1599 DAG.getConstant(4, MVT::i32));
1602 SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1603 MachinePointerInfo(), false, false,
1605 InChain = OverflowArea.getValue(1);
1607 SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1608 MachinePointerInfo(), false, false,
1610 InChain = RegSaveArea.getValue(1);
1612 // select overflow_area if index > 8
1613 SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1614 DAG.getConstant(8, MVT::i32), ISD::SETLT);
1616 // adjustment constant gpr_index * 4/8
1617 SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1618 VT.isInteger() ? GprIndex : FprIndex,
1619 DAG.getConstant(VT.isInteger() ? 4 : 8,
1622 // OurReg = RegSaveArea + RegConstant
1623 SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1626 // Floating types are 32 bytes into RegSaveArea
1627 if (VT.isFloatingPoint())
1628 OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1629 DAG.getConstant(32, MVT::i32));
1631 // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1632 SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1633 VT.isInteger() ? GprIndex : FprIndex,
1634 DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1637 InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1638 VT.isInteger() ? VAListPtr : FprPtr,
1639 MachinePointerInfo(SV),
1640 MVT::i8, false, false, 0);
1642 // determine if we should load from reg_save_area or overflow_area
1643 SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1645 // increase overflow_area by 4/8 if gpr/fpr > 8
1646 SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1647 DAG.getConstant(VT.isInteger() ? 4 : 8,
1650 OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1653 InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1655 MachinePointerInfo(),
1656 MVT::i32, false, false, 0);
1658 return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(),
1659 false, false, false, 0);
1662 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1663 SelectionDAG &DAG) const {
1664 return Op.getOperand(0);
1667 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1668 SelectionDAG &DAG) const {
1669 SDValue Chain = Op.getOperand(0);
1670 SDValue Trmp = Op.getOperand(1); // trampoline
1671 SDValue FPtr = Op.getOperand(2); // nested function
1672 SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1673 DebugLoc dl = Op.getDebugLoc();
1675 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1676 bool isPPC64 = (PtrVT == MVT::i64);
1678 DAG.getTargetLoweringInfo().getDataLayout()->getIntPtrType(
1681 TargetLowering::ArgListTy Args;
1682 TargetLowering::ArgListEntry Entry;
1684 Entry.Ty = IntPtrTy;
1685 Entry.Node = Trmp; Args.push_back(Entry);
1687 // TrampSize == (isPPC64 ? 48 : 40);
1688 Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1689 isPPC64 ? MVT::i64 : MVT::i32);
1690 Args.push_back(Entry);
1692 Entry.Node = FPtr; Args.push_back(Entry);
1693 Entry.Node = Nest; Args.push_back(Entry);
1695 // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1696 TargetLowering::CallLoweringInfo CLI(Chain,
1697 Type::getVoidTy(*DAG.getContext()),
1698 false, false, false, false, 0,
1700 /*isTailCall=*/false,
1701 /*doesNotRet=*/false,
1702 /*isReturnValueUsed=*/true,
1703 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1705 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
1707 return CallResult.second;
1710 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1711 const PPCSubtarget &Subtarget) const {
1712 MachineFunction &MF = DAG.getMachineFunction();
1713 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1715 DebugLoc dl = Op.getDebugLoc();
1717 if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1718 // vastart just stores the address of the VarArgsFrameIndex slot into the
1719 // memory location argument.
1720 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1721 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1722 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1723 return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1724 MachinePointerInfo(SV),
1728 // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1729 // We suppose the given va_list is already allocated.
1732 // char gpr; /* index into the array of 8 GPRs
1733 // * stored in the register save area
1734 // * gpr=0 corresponds to r3,
1735 // * gpr=1 to r4, etc.
1737 // char fpr; /* index into the array of 8 FPRs
1738 // * stored in the register save area
1739 // * fpr=0 corresponds to f1,
1740 // * fpr=1 to f2, etc.
1742 // char *overflow_arg_area;
1743 // /* location on stack that holds
1744 // * the next overflow argument
1746 // char *reg_save_area;
1747 // /* where r3:r10 and f1:f8 (if saved)
1753 SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1754 SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1757 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1759 SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1761 SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1764 uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1765 SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1767 uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1768 SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1770 uint64_t FPROffset = 1;
1771 SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1773 const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1775 // Store first byte : number of int regs
1776 SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1778 MachinePointerInfo(SV),
1779 MVT::i8, false, false, 0);
1780 uint64_t nextOffset = FPROffset;
1781 SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1784 // Store second byte : number of float regs
1785 SDValue secondStore =
1786 DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1787 MachinePointerInfo(SV, nextOffset), MVT::i8,
1789 nextOffset += StackOffset;
1790 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1792 // Store second word : arguments given on stack
1793 SDValue thirdStore =
1794 DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1795 MachinePointerInfo(SV, nextOffset),
1797 nextOffset += FrameOffset;
1798 nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1800 // Store third word : arguments given in registers
1801 return DAG.getStore(thirdStore, dl, FR, nextPtr,
1802 MachinePointerInfo(SV, nextOffset),
1807 #include "PPCGenCallingConv.inc"
1809 static bool CC_PPC32_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1810 CCValAssign::LocInfo &LocInfo,
1811 ISD::ArgFlagsTy &ArgFlags,
1816 static bool CC_PPC32_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1818 CCValAssign::LocInfo &LocInfo,
1819 ISD::ArgFlagsTy &ArgFlags,
1821 static const uint16_t ArgRegs[] = {
1822 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1823 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1825 const unsigned NumArgRegs = array_lengthof(ArgRegs);
1827 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1829 // Skip one register if the first unallocated register has an even register
1830 // number and there are still argument registers available which have not been
1831 // allocated yet. RegNum is actually an index into ArgRegs, which means we
1832 // need to skip a register if RegNum is odd.
1833 if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1834 State.AllocateReg(ArgRegs[RegNum]);
1837 // Always return false here, as this function only makes sure that the first
1838 // unallocated register has an odd register number and does not actually
1839 // allocate a register for the current argument.
1843 static bool CC_PPC32_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1845 CCValAssign::LocInfo &LocInfo,
1846 ISD::ArgFlagsTy &ArgFlags,
1848 static const uint16_t ArgRegs[] = {
1849 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1853 const unsigned NumArgRegs = array_lengthof(ArgRegs);
1855 unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1857 // If there is only one Floating-point register left we need to put both f64
1858 // values of a split ppc_fp128 value on the stack.
1859 if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1860 State.AllocateReg(ArgRegs[RegNum]);
1863 // Always return false here, as this function only makes sure that the two f64
1864 // values a ppc_fp128 value is split into are both passed in registers or both
1865 // passed on the stack and does not actually allocate a register for the
1866 // current argument.
1870 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1872 static const uint16_t *GetFPR() {
1873 static const uint16_t FPR[] = {
1874 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1875 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1881 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
1883 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1884 unsigned PtrByteSize) {
1885 unsigned ArgSize = ArgVT.getSizeInBits()/8;
1886 if (Flags.isByVal())
1887 ArgSize = Flags.getByValSize();
1888 ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1894 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1895 CallingConv::ID CallConv, bool isVarArg,
1896 const SmallVectorImpl<ISD::InputArg>
1898 DebugLoc dl, SelectionDAG &DAG,
1899 SmallVectorImpl<SDValue> &InVals)
1901 if (PPCSubTarget.isSVR4ABI()) {
1902 if (PPCSubTarget.isPPC64())
1903 return LowerFormalArguments_64SVR4(Chain, CallConv, isVarArg, Ins,
1906 return LowerFormalArguments_32SVR4(Chain, CallConv, isVarArg, Ins,
1909 return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1915 PPCTargetLowering::LowerFormalArguments_32SVR4(
1917 CallingConv::ID CallConv, bool isVarArg,
1918 const SmallVectorImpl<ISD::InputArg>
1920 DebugLoc dl, SelectionDAG &DAG,
1921 SmallVectorImpl<SDValue> &InVals) const {
1923 // 32-bit SVR4 ABI Stack Frame Layout:
1924 // +-----------------------------------+
1925 // +--> | Back chain |
1926 // | +-----------------------------------+
1927 // | | Floating-point register save area |
1928 // | +-----------------------------------+
1929 // | | General register save area |
1930 // | +-----------------------------------+
1931 // | | CR save word |
1932 // | +-----------------------------------+
1933 // | | VRSAVE save word |
1934 // | +-----------------------------------+
1935 // | | Alignment padding |
1936 // | +-----------------------------------+
1937 // | | Vector register save area |
1938 // | +-----------------------------------+
1939 // | | Local variable space |
1940 // | +-----------------------------------+
1941 // | | Parameter list area |
1942 // | +-----------------------------------+
1943 // | | LR save word |
1944 // | +-----------------------------------+
1945 // SP--> +--- | Back chain |
1946 // +-----------------------------------+
1949 // System V Application Binary Interface PowerPC Processor Supplement
1950 // AltiVec Technology Programming Interface Manual
1952 MachineFunction &MF = DAG.getMachineFunction();
1953 MachineFrameInfo *MFI = MF.getFrameInfo();
1954 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1956 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1957 // Potential tail calls could cause overwriting of argument stack slots.
1958 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1959 (CallConv == CallingConv::Fast));
1960 unsigned PtrByteSize = 4;
1962 // Assign locations to all of the incoming arguments.
1963 SmallVector<CCValAssign, 16> ArgLocs;
1964 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1965 getTargetMachine(), ArgLocs, *DAG.getContext());
1967 // Reserve space for the linkage area on the stack.
1968 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1970 CCInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4);
1972 for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1973 CCValAssign &VA = ArgLocs[i];
1975 // Arguments stored in registers.
1976 if (VA.isRegLoc()) {
1977 const TargetRegisterClass *RC;
1978 EVT ValVT = VA.getValVT();
1980 switch (ValVT.getSimpleVT().SimpleTy) {
1982 llvm_unreachable("ValVT not supported by formal arguments Lowering");
1984 RC = &PPC::GPRCRegClass;
1987 RC = &PPC::F4RCRegClass;
1990 RC = &PPC::F8RCRegClass;
1996 RC = &PPC::VRRCRegClass;
2000 // Transform the arguments stored in physical registers into virtual ones.
2001 unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
2002 SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
2004 InVals.push_back(ArgValue);
2006 // Argument stored in memory.
2007 assert(VA.isMemLoc());
2009 unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
2010 int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
2013 // Create load nodes to retrieve arguments from the stack.
2014 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2015 InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
2016 MachinePointerInfo(),
2017 false, false, false, 0));
2021 // Assign locations to all of the incoming aggregate by value arguments.
2022 // Aggregates passed by value are stored in the local variable space of the
2023 // caller's stack frame, right above the parameter list area.
2024 SmallVector<CCValAssign, 16> ByValArgLocs;
2025 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2026 getTargetMachine(), ByValArgLocs, *DAG.getContext());
2028 // Reserve stack space for the allocations in CCInfo.
2029 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2031 CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC32_SVR4_ByVal);
2033 // Area that is at least reserved in the caller of this function.
2034 unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
2036 // Set the size that is at least reserved in caller of this function. Tail
2037 // call optimized function's reserved stack space needs to be aligned so that
2038 // taking the difference between two stack areas will result in an aligned
2040 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2043 std::max(MinReservedArea,
2044 PPCFrameLowering::getMinCallFrameSize(false, false));
2046 unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2047 getStackAlignment();
2048 unsigned AlignMask = TargetAlign-1;
2049 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2051 FI->setMinReservedArea(MinReservedArea);
2053 SmallVector<SDValue, 8> MemOps;
2055 // If the function takes variable number of arguments, make a frame index for
2056 // the start of the first vararg value... for expansion of llvm.va_start.
2058 static const uint16_t GPArgRegs[] = {
2059 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2060 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2062 const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
2064 static const uint16_t FPArgRegs[] = {
2065 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
2068 const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
2070 FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
2072 FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
2075 // Make room for NumGPArgRegs and NumFPArgRegs.
2076 int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
2077 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
2079 FuncInfo->setVarArgsStackOffset(
2080 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2081 CCInfo.getNextStackOffset(), true));
2083 FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
2084 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2086 // The fixed integer arguments of a variadic function are stored to the
2087 // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
2088 // the result of va_next.
2089 for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
2090 // Get an existing live-in vreg, or add a new one.
2091 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
2093 VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
2095 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2096 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2097 MachinePointerInfo(), false, false, 0);
2098 MemOps.push_back(Store);
2099 // Increment the address by four for the next argument to store
2100 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2101 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2104 // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
2106 // The double arguments are stored to the VarArgsFrameIndex
2108 for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
2109 // Get an existing live-in vreg, or add a new one.
2110 unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
2112 VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
2114 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
2115 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2116 MachinePointerInfo(), false, false, 0);
2117 MemOps.push_back(Store);
2118 // Increment the address by eight for the next argument to store
2119 SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
2121 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2125 if (!MemOps.empty())
2126 Chain = DAG.getNode(ISD::TokenFactor, dl,
2127 MVT::Other, &MemOps[0], MemOps.size());
2132 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2133 // value to MVT::i64 and then truncate to the correct register size.
2135 PPCTargetLowering::extendArgForPPC64(ISD::ArgFlagsTy Flags, EVT ObjectVT,
2136 SelectionDAG &DAG, SDValue ArgVal,
2137 DebugLoc dl) const {
2139 ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2140 DAG.getValueType(ObjectVT));
2141 else if (Flags.isZExt())
2142 ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2143 DAG.getValueType(ObjectVT));
2145 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2148 // Set the size that is at least reserved in caller of this function. Tail
2149 // call optimized functions' reserved stack space needs to be aligned so that
2150 // taking the difference between two stack areas will result in an aligned
2153 PPCTargetLowering::setMinReservedArea(MachineFunction &MF, SelectionDAG &DAG,
2154 unsigned nAltivecParamsAtEnd,
2155 unsigned MinReservedArea,
2156 bool isPPC64) const {
2157 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2158 // Add the Altivec parameters at the end, if needed.
2159 if (nAltivecParamsAtEnd) {
2160 MinReservedArea = ((MinReservedArea+15)/16)*16;
2161 MinReservedArea += 16*nAltivecParamsAtEnd;
2164 std::max(MinReservedArea,
2165 PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2166 unsigned TargetAlign
2167 = DAG.getMachineFunction().getTarget().getFrameLowering()->
2168 getStackAlignment();
2169 unsigned AlignMask = TargetAlign-1;
2170 MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2171 FI->setMinReservedArea(MinReservedArea);
2175 PPCTargetLowering::LowerFormalArguments_64SVR4(
2177 CallingConv::ID CallConv, bool isVarArg,
2178 const SmallVectorImpl<ISD::InputArg>
2180 DebugLoc dl, SelectionDAG &DAG,
2181 SmallVectorImpl<SDValue> &InVals) const {
2182 // TODO: add description of PPC stack frame format, or at least some docs.
2184 MachineFunction &MF = DAG.getMachineFunction();
2185 MachineFrameInfo *MFI = MF.getFrameInfo();
2186 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2188 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2189 // Potential tail calls could cause overwriting of argument stack slots.
2190 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2191 (CallConv == CallingConv::Fast));
2192 unsigned PtrByteSize = 8;
2194 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
2195 // Area that is at least reserved in caller of this function.
2196 unsigned MinReservedArea = ArgOffset;
2198 static const uint16_t GPR[] = {
2199 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2200 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2203 static const uint16_t *FPR = GetFPR();
2205 static const uint16_t VR[] = {
2206 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2207 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2210 const unsigned Num_GPR_Regs = array_lengthof(GPR);
2211 const unsigned Num_FPR_Regs = 13;
2212 const unsigned Num_VR_Regs = array_lengthof(VR);
2214 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2216 // Add DAG nodes to load the arguments or copy them out of registers. On
2217 // entry to a function on PPC, the arguments start after the linkage area,
2218 // although the first ones are often in registers.
2220 SmallVector<SDValue, 8> MemOps;
2221 unsigned nAltivecParamsAtEnd = 0;
2222 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2223 unsigned CurArgIdx = 0;
2224 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
2226 bool needsLoad = false;
2227 EVT ObjectVT = Ins[ArgNo].VT;
2228 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2229 unsigned ArgSize = ObjSize;
2230 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2231 std::advance(FuncArg, Ins[ArgNo].OrigArgIndex - CurArgIdx);
2232 CurArgIdx = Ins[ArgNo].OrigArgIndex;
2234 unsigned CurArgOffset = ArgOffset;
2236 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2237 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2238 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2240 MinReservedArea = ((MinReservedArea+15)/16)*16;
2241 MinReservedArea += CalculateStackSlotSize(ObjectVT,
2245 nAltivecParamsAtEnd++;
2247 // Calculate min reserved area.
2248 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2252 // FIXME the codegen can be much improved in some cases.
2253 // We do not have to keep everything in memory.
2254 if (Flags.isByVal()) {
2255 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2256 ObjSize = Flags.getByValSize();
2257 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2258 // Empty aggregate parameters do not take up registers. Examples:
2262 // etc. However, we have to provide a place-holder in InVals, so
2263 // pretend we have an 8-byte item at the current address for that
2266 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2267 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2268 InVals.push_back(FIN);
2271 // All aggregates smaller than 8 bytes must be passed right-justified.
2272 if (ObjSize < PtrByteSize)
2273 CurArgOffset = CurArgOffset + (PtrByteSize - ObjSize);
2274 // The value of the object is its address.
2275 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2276 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2277 InVals.push_back(FIN);
2280 if (GPR_idx != Num_GPR_Regs) {
2281 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2282 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2285 if (ObjSize==1 || ObjSize==2 || ObjSize==4) {
2286 EVT ObjType = (ObjSize == 1 ? MVT::i8 :
2287 (ObjSize == 2 ? MVT::i16 : MVT::i32));
2288 Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2289 MachinePointerInfo(FuncArg, CurArgOffset),
2290 ObjType, false, false, 0);
2292 // For sizes that don't fit a truncating store (3, 5, 6, 7),
2293 // store the whole register as-is to the parameter save area
2294 // slot. The address of the parameter was already calculated
2295 // above (InVals.push_back(FIN)) to be the right-justified
2296 // offset within the slot. For this store, we need a new
2297 // frame index that points at the beginning of the slot.
2298 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2299 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2300 Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2301 MachinePointerInfo(FuncArg, ArgOffset),
2305 MemOps.push_back(Store);
2308 // Whether we copied from a register or not, advance the offset
2309 // into the parameter save area by a full doubleword.
2310 ArgOffset += PtrByteSize;
2314 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2315 // Store whatever pieces of the object are in registers
2316 // to memory. ArgOffset will be the address of the beginning
2318 if (GPR_idx != Num_GPR_Regs) {
2320 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2321 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2322 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2323 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2324 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2325 MachinePointerInfo(FuncArg, ArgOffset),
2327 MemOps.push_back(Store);
2329 ArgOffset += PtrByteSize;
2331 ArgOffset += ArgSize - j;
2338 switch (ObjectVT.getSimpleVT().SimpleTy) {
2339 default: llvm_unreachable("Unhandled argument type!");
2342 if (GPR_idx != Num_GPR_Regs) {
2343 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2344 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2346 if (ObjectVT == MVT::i32)
2347 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2348 // value to MVT::i64 and then truncate to the correct register size.
2349 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2354 ArgSize = PtrByteSize;
2361 // Every 8 bytes of argument space consumes one of the GPRs available for
2362 // argument passing.
2363 if (GPR_idx != Num_GPR_Regs) {
2366 if (FPR_idx != Num_FPR_Regs) {
2369 if (ObjectVT == MVT::f32)
2370 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2372 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2374 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2378 ArgSize = PtrByteSize;
2387 // Note that vector arguments in registers don't reserve stack space,
2388 // except in varargs functions.
2389 if (VR_idx != Num_VR_Regs) {
2390 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2391 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2393 while ((ArgOffset % 16) != 0) {
2394 ArgOffset += PtrByteSize;
2395 if (GPR_idx != Num_GPR_Regs)
2399 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2403 // Vectors are aligned.
2404 ArgOffset = ((ArgOffset+15)/16)*16;
2405 CurArgOffset = ArgOffset;
2412 // We need to load the argument to a virtual register if we determined
2413 // above that we ran out of physical registers of the appropriate type.
2415 int FI = MFI->CreateFixedObject(ObjSize,
2416 CurArgOffset + (ArgSize - ObjSize),
2418 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2419 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2420 false, false, false, 0);
2423 InVals.push_back(ArgVal);
2426 // Set the size that is at least reserved in caller of this function. Tail
2427 // call optimized functions' reserved stack space needs to be aligned so that
2428 // taking the difference between two stack areas will result in an aligned
2430 setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, true);
2432 // If the function takes variable number of arguments, make a frame index for
2433 // the start of the first vararg value... for expansion of llvm.va_start.
2435 int Depth = ArgOffset;
2437 FuncInfo->setVarArgsFrameIndex(
2438 MFI->CreateFixedObject(PtrByteSize, Depth, true));
2439 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2441 // If this function is vararg, store any remaining integer argument regs
2442 // to their spots on the stack so that they may be loaded by deferencing the
2443 // result of va_next.
2444 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2445 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2446 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2447 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2448 MachinePointerInfo(), false, false, 0);
2449 MemOps.push_back(Store);
2450 // Increment the address by four for the next argument to store
2451 SDValue PtrOff = DAG.getConstant(PtrByteSize, PtrVT);
2452 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2456 if (!MemOps.empty())
2457 Chain = DAG.getNode(ISD::TokenFactor, dl,
2458 MVT::Other, &MemOps[0], MemOps.size());
2464 PPCTargetLowering::LowerFormalArguments_Darwin(
2466 CallingConv::ID CallConv, bool isVarArg,
2467 const SmallVectorImpl<ISD::InputArg>
2469 DebugLoc dl, SelectionDAG &DAG,
2470 SmallVectorImpl<SDValue> &InVals) const {
2471 // TODO: add description of PPC stack frame format, or at least some docs.
2473 MachineFunction &MF = DAG.getMachineFunction();
2474 MachineFrameInfo *MFI = MF.getFrameInfo();
2475 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
2477 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2478 bool isPPC64 = PtrVT == MVT::i64;
2479 // Potential tail calls could cause overwriting of argument stack slots.
2480 bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
2481 (CallConv == CallingConv::Fast));
2482 unsigned PtrByteSize = isPPC64 ? 8 : 4;
2484 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
2485 // Area that is at least reserved in caller of this function.
2486 unsigned MinReservedArea = ArgOffset;
2488 static const uint16_t GPR_32[] = { // 32-bit registers.
2489 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
2490 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
2492 static const uint16_t GPR_64[] = { // 64-bit registers.
2493 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
2494 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
2497 static const uint16_t *FPR = GetFPR();
2499 static const uint16_t VR[] = {
2500 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
2501 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
2504 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
2505 const unsigned Num_FPR_Regs = 13;
2506 const unsigned Num_VR_Regs = array_lengthof( VR);
2508 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
2510 const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
2512 // In 32-bit non-varargs functions, the stack space for vectors is after the
2513 // stack space for non-vectors. We do not use this space unless we have
2514 // too many vectors to fit in registers, something that only occurs in
2515 // constructed examples:), but we have to walk the arglist to figure
2516 // that out...for the pathological case, compute VecArgOffset as the
2517 // start of the vector parameter area. Computing VecArgOffset is the
2518 // entire point of the following loop.
2519 unsigned VecArgOffset = ArgOffset;
2520 if (!isVarArg && !isPPC64) {
2521 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
2523 EVT ObjectVT = Ins[ArgNo].VT;
2524 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2526 if (Flags.isByVal()) {
2527 // ObjSize is the true size, ArgSize rounded up to multiple of regs.
2528 unsigned ObjSize = Flags.getByValSize();
2530 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2531 VecArgOffset += ArgSize;
2535 switch(ObjectVT.getSimpleVT().SimpleTy) {
2536 default: llvm_unreachable("Unhandled argument type!");
2541 case MVT::i64: // PPC64
2543 // FIXME: We are guaranteed to be !isPPC64 at this point.
2544 // Does MVT::i64 apply?
2551 // Nothing to do, we're only looking at Nonvector args here.
2556 // We've found where the vector parameter area in memory is. Skip the
2557 // first 12 parameters; these don't use that memory.
2558 VecArgOffset = ((VecArgOffset+15)/16)*16;
2559 VecArgOffset += 12*16;
2561 // Add DAG nodes to load the arguments or copy them out of registers. On
2562 // entry to a function on PPC, the arguments start after the linkage area,
2563 // although the first ones are often in registers.
2565 SmallVector<SDValue, 8> MemOps;
2566 unsigned nAltivecParamsAtEnd = 0;
2567 // FIXME: FuncArg and Ins[ArgNo] must reference the same argument.
2568 // When passing anonymous aggregates, this is currently not true.
2569 // See LowerFormalArguments_64SVR4 for a fix.
2570 Function::const_arg_iterator FuncArg = MF.getFunction()->arg_begin();
2571 for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo, ++FuncArg) {
2573 bool needsLoad = false;
2574 EVT ObjectVT = Ins[ArgNo].VT;
2575 unsigned ObjSize = ObjectVT.getSizeInBits()/8;
2576 unsigned ArgSize = ObjSize;
2577 ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
2579 unsigned CurArgOffset = ArgOffset;
2581 // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
2582 if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
2583 ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
2584 if (isVarArg || isPPC64) {
2585 MinReservedArea = ((MinReservedArea+15)/16)*16;
2586 MinReservedArea += CalculateStackSlotSize(ObjectVT,
2589 } else nAltivecParamsAtEnd++;
2591 // Calculate min reserved area.
2592 MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
2596 // FIXME the codegen can be much improved in some cases.
2597 // We do not have to keep everything in memory.
2598 if (Flags.isByVal()) {
2599 // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2600 ObjSize = Flags.getByValSize();
2601 ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2602 // Objects of size 1 and 2 are right justified, everything else is
2603 // left justified. This means the memory address is adjusted forwards.
2604 if (ObjSize==1 || ObjSize==2) {
2605 CurArgOffset = CurArgOffset + (4 - ObjSize);
2607 // The value of the object is its address.
2608 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2609 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2610 InVals.push_back(FIN);
2611 if (ObjSize==1 || ObjSize==2) {
2612 if (GPR_idx != Num_GPR_Regs) {
2615 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2617 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2618 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2619 EVT ObjType = ObjSize == 1 ? MVT::i8 : MVT::i16;
2620 SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2621 MachinePointerInfo(FuncArg,
2623 ObjType, false, false, 0);
2624 MemOps.push_back(Store);
2628 ArgOffset += PtrByteSize;
2632 for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2633 // Store whatever pieces of the object are in registers
2634 // to memory. ArgOffset will be the address of the beginning
2636 if (GPR_idx != Num_GPR_Regs) {
2639 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2641 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2642 int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2643 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2644 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2645 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2646 MachinePointerInfo(FuncArg, ArgOffset),
2648 MemOps.push_back(Store);
2650 ArgOffset += PtrByteSize;
2652 ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2659 switch (ObjectVT.getSimpleVT().SimpleTy) {
2660 default: llvm_unreachable("Unhandled argument type!");
2663 if (GPR_idx != Num_GPR_Regs) {
2664 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2665 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2669 ArgSize = PtrByteSize;
2671 // All int arguments reserve stack space in the Darwin ABI.
2672 ArgOffset += PtrByteSize;
2676 case MVT::i64: // PPC64
2677 if (GPR_idx != Num_GPR_Regs) {
2678 unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2679 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2681 if (ObjectVT == MVT::i32)
2682 // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2683 // value to MVT::i64 and then truncate to the correct register size.
2684 ArgVal = extendArgForPPC64(Flags, ObjectVT, DAG, ArgVal, dl);
2689 ArgSize = PtrByteSize;
2691 // All int arguments reserve stack space in the Darwin ABI.
2697 // Every 4 bytes of argument space consumes one of the GPRs available for
2698 // argument passing.
2699 if (GPR_idx != Num_GPR_Regs) {
2701 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2704 if (FPR_idx != Num_FPR_Regs) {
2707 if (ObjectVT == MVT::f32)
2708 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2710 VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2712 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2718 // All FP arguments reserve stack space in the Darwin ABI.
2719 ArgOffset += isPPC64 ? 8 : ObjSize;
2725 // Note that vector arguments in registers don't reserve stack space,
2726 // except in varargs functions.
2727 if (VR_idx != Num_VR_Regs) {
2728 unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2729 ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2731 while ((ArgOffset % 16) != 0) {
2732 ArgOffset += PtrByteSize;
2733 if (GPR_idx != Num_GPR_Regs)
2737 GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2741 if (!isVarArg && !isPPC64) {
2742 // Vectors go after all the nonvectors.
2743 CurArgOffset = VecArgOffset;
2746 // Vectors are aligned.
2747 ArgOffset = ((ArgOffset+15)/16)*16;
2748 CurArgOffset = ArgOffset;
2756 // We need to load the argument to a virtual register if we determined above
2757 // that we ran out of physical registers of the appropriate type.
2759 int FI = MFI->CreateFixedObject(ObjSize,
2760 CurArgOffset + (ArgSize - ObjSize),
2762 SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2763 ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2764 false, false, false, 0);
2767 InVals.push_back(ArgVal);
2770 // Set the size that is at least reserved in caller of this function. Tail
2771 // call optimized functions' reserved stack space needs to be aligned so that
2772 // taking the difference between two stack areas will result in an aligned
2774 setMinReservedArea(MF, DAG, nAltivecParamsAtEnd, MinReservedArea, isPPC64);
2776 // If the function takes variable number of arguments, make a frame index for
2777 // the start of the first vararg value... for expansion of llvm.va_start.
2779 int Depth = ArgOffset;
2781 FuncInfo->setVarArgsFrameIndex(
2782 MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2784 SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2786 // If this function is vararg, store any remaining integer argument regs
2787 // to their spots on the stack so that they may be loaded by deferencing the
2788 // result of va_next.
2789 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2793 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2795 VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2797 SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2798 SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2799 MachinePointerInfo(), false, false, 0);
2800 MemOps.push_back(Store);
2801 // Increment the address by four for the next argument to store
2802 SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2803 FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2807 if (!MemOps.empty())
2808 Chain = DAG.getNode(ISD::TokenFactor, dl,
2809 MVT::Other, &MemOps[0], MemOps.size());
2814 /// CalculateParameterAndLinkageAreaSize - Get the size of the parameter plus
2815 /// linkage area for the Darwin ABI, or the 64-bit SVR4 ABI.
2817 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2821 const SmallVectorImpl<ISD::OutputArg>
2823 const SmallVectorImpl<SDValue> &OutVals,
2824 unsigned &nAltivecParamsAtEnd) {
2825 // Count how many bytes are to be pushed on the stack, including the linkage
2826 // area, and parameter passing area. We start with 24/48 bytes, which is
2827 // prereserved space for [SP][CR][LR][3 x unused].
2828 unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2829 unsigned NumOps = Outs.size();
2830 unsigned PtrByteSize = isPPC64 ? 8 : 4;
2832 // Add up all the space actually used.
2833 // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2834 // they all go in registers, but we must reserve stack space for them for
2835 // possible use by the caller. In varargs or 64-bit calls, parameters are
2836 // assigned stack space in order, with padding so Altivec parameters are
2838 nAltivecParamsAtEnd = 0;
2839 for (unsigned i = 0; i != NumOps; ++i) {
2840 ISD::ArgFlagsTy Flags = Outs[i].Flags;
2841 EVT ArgVT = Outs[i].VT;
2842 // Varargs Altivec parameters are padded to a 16 byte boundary.
2843 if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2844 ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2845 if (!isVarArg && !isPPC64) {
2846 // Non-varargs Altivec parameters go after all the non-Altivec
2847 // parameters; handle those later so we know how much padding we need.
2848 nAltivecParamsAtEnd++;
2851 // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2852 NumBytes = ((NumBytes+15)/16)*16;
2854 NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2857 // Allow for Altivec parameters at the end, if needed.
2858 if (nAltivecParamsAtEnd) {
2859 NumBytes = ((NumBytes+15)/16)*16;
2860 NumBytes += 16*nAltivecParamsAtEnd;
2863 // The prolog code of the callee may store up to 8 GPR argument registers to
2864 // the stack, allowing va_start to index over them in memory if its varargs.
2865 // Because we cannot tell if this is needed on the caller side, we have to
2866 // conservatively assume that it is needed. As such, make sure we have at
2867 // least enough stack space for the caller to store the 8 GPRs.
2868 NumBytes = std::max(NumBytes,
2869 PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2871 // Tail call needs the stack to be aligned.
2872 if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2873 unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2874 getFrameLowering()->getStackAlignment();
2875 unsigned AlignMask = TargetAlign-1;
2876 NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2882 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2883 /// adjusted to accommodate the arguments for the tailcall.
2884 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2885 unsigned ParamSize) {
2887 if (!isTailCall) return 0;
2889 PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2890 unsigned CallerMinReservedArea = FI->getMinReservedArea();
2891 int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2892 // Remember only if the new adjustement is bigger.
2893 if (SPDiff < FI->getTailCallSPDelta())
2894 FI->setTailCallSPDelta(SPDiff);
2899 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2900 /// for tail call optimization. Targets which want to do tail call
2901 /// optimization should implement this function.
2903 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2904 CallingConv::ID CalleeCC,
2906 const SmallVectorImpl<ISD::InputArg> &Ins,
2907 SelectionDAG& DAG) const {
2908 if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2911 // Variable argument functions are not supported.
2915 MachineFunction &MF = DAG.getMachineFunction();
2916 CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2917 if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2918 // Functions containing by val parameters are not supported.
2919 for (unsigned i = 0; i != Ins.size(); i++) {
2920 ISD::ArgFlagsTy Flags = Ins[i].Flags;
2921 if (Flags.isByVal()) return false;
2924 // Non PIC/GOT tail calls are supported.
2925 if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2928 // At the moment we can only do local tail calls (in same module, hidden
2929 // or protected) if we are generating PIC.
2930 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2931 return G->getGlobal()->hasHiddenVisibility()
2932 || G->getGlobal()->hasProtectedVisibility();
2938 /// isCallCompatibleAddress - Return the immediate to use if the specified
2939 /// 32-bit value is representable in the immediate field of a BxA instruction.
2940 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2941 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2944 int Addr = C->getZExtValue();
2945 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
2946 SignExtend32<26>(Addr) != Addr)
2947 return 0; // Top 6 bits have to be sext of immediate.
2949 return DAG.getConstant((int)C->getZExtValue() >> 2,
2950 DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2955 struct TailCallArgumentInfo {
2960 TailCallArgumentInfo() : FrameIdx(0) {}
2965 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2967 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2969 const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2970 SmallVector<SDValue, 8> &MemOpChains,
2972 for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2973 SDValue Arg = TailCallArgs[i].Arg;
2974 SDValue FIN = TailCallArgs[i].FrameIdxOp;
2975 int FI = TailCallArgs[i].FrameIdx;
2976 // Store relative to framepointer.
2977 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2978 MachinePointerInfo::getFixedStack(FI),
2983 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2984 /// the appropriate stack slot for the tail call optimized function call.
2985 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2986 MachineFunction &MF,
2995 // Calculate the new stack slot for the return address.
2996 int SlotSize = isPPC64 ? 8 : 4;
2997 int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2999 int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
3000 NewRetAddrLoc, true);
3001 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3002 SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
3003 Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
3004 MachinePointerInfo::getFixedStack(NewRetAddr),
3007 // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
3008 // slot as the FP is never overwritten.
3011 SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
3012 int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
3014 SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
3015 Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
3016 MachinePointerInfo::getFixedStack(NewFPIdx),
3023 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
3024 /// the position of the argument.
3026 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
3027 SDValue Arg, int SPDiff, unsigned ArgOffset,
3028 SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
3029 int Offset = ArgOffset + SPDiff;
3030 uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
3031 int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
3032 EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
3033 SDValue FIN = DAG.getFrameIndex(FI, VT);
3034 TailCallArgumentInfo Info;
3036 Info.FrameIdxOp = FIN;
3038 TailCallArguments.push_back(Info);
3041 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
3042 /// stack slot. Returns the chain as result and the loaded frame pointers in
3043 /// LROpOut/FPOpout. Used when tail calling.
3044 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
3050 DebugLoc dl) const {
3052 // Load the LR and FP stack slot for later adjusting.
3053 EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
3054 LROpOut = getReturnAddrFrameIndex(DAG);
3055 LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
3056 false, false, false, 0);
3057 Chain = SDValue(LROpOut.getNode(), 1);
3059 // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
3060 // slot as the FP is never overwritten.
3062 FPOpOut = getFramePointerFrameIndex(DAG);
3063 FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
3064 false, false, false, 0);
3065 Chain = SDValue(FPOpOut.getNode(), 1);
3071 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
3072 /// by "Src" to address "Dst" of size "Size". Alignment information is
3073 /// specified by the specific parameter attribute. The copy will be passed as
3074 /// a byval function parameter.
3075 /// Sometimes what we are copying is the end of a larger object, the part that
3076 /// does not fit in registers.
3078 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
3079 ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
3081 SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
3082 return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
3083 false, false, MachinePointerInfo(0),
3084 MachinePointerInfo(0));
3087 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
3090 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
3091 SDValue Arg, SDValue PtrOff, int SPDiff,
3092 unsigned ArgOffset, bool isPPC64, bool isTailCall,
3093 bool isVector, SmallVector<SDValue, 8> &MemOpChains,
3094 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
3096 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3101 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3103 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3104 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3105 DAG.getConstant(ArgOffset, PtrVT));
3107 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3108 MachinePointerInfo(), false, false, 0));
3109 // Calculate and remember argument location.
3110 } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
3115 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
3116 DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
3117 SDValue LROp, SDValue FPOp, bool isDarwinABI,
3118 SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
3119 MachineFunction &MF = DAG.getMachineFunction();
3121 // Emit a sequence of copyto/copyfrom virtual registers for arguments that
3122 // might overwrite each other in case of tail call optimization.
3123 SmallVector<SDValue, 8> MemOpChains2;
3124 // Do not flag preceding copytoreg stuff together with the following stuff.
3126 StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
3128 if (!MemOpChains2.empty())
3129 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3130 &MemOpChains2[0], MemOpChains2.size());
3132 // Store the return address to the appropriate stack slot.
3133 Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
3134 isPPC64, isDarwinABI, dl);
3136 // Emit callseq_end just before tailcall node.
3137 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3138 DAG.getIntPtrConstant(0, true), InFlag);
3139 InFlag = Chain.getValue(1);
3143 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
3144 SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
3145 SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
3146 SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
3147 const PPCSubtarget &PPCSubTarget) {
3149 bool isPPC64 = PPCSubTarget.isPPC64();
3150 bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
3152 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3153 NodeTys.push_back(MVT::Other); // Returns a chain
3154 NodeTys.push_back(MVT::Glue); // Returns a flag for retval copy to use.
3156 unsigned CallOpc = PPCISD::CALL;
3158 bool needIndirectCall = true;
3159 if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
3160 // If this is an absolute destination address, use the munged value.
3161 Callee = SDValue(Dest, 0);
3162 needIndirectCall = false;
3165 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
3166 // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
3167 // Use indirect calls for ALL functions calls in JIT mode, since the
3168 // far-call stubs may be outside relocation limits for a BL instruction.
3169 if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
3170 unsigned OpFlags = 0;
3171 if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3172 (PPCSubTarget.getTargetTriple().isMacOSX() &&
3173 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
3174 (G->getGlobal()->isDeclaration() ||
3175 G->getGlobal()->isWeakForLinker())) {
3176 // PC-relative references to external symbols should go through $stub,
3177 // unless we're building with the leopard linker or later, which
3178 // automatically synthesizes these stubs.
3179 OpFlags = PPCII::MO_DARWIN_STUB;
3182 // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
3183 // every direct call is) turn it into a TargetGlobalAddress /
3184 // TargetExternalSymbol node so that legalize doesn't hack it.
3185 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
3186 Callee.getValueType(),
3188 needIndirectCall = false;
3192 if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
3193 unsigned char OpFlags = 0;
3195 if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
3196 (PPCSubTarget.getTargetTriple().isMacOSX() &&
3197 PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
3198 // PC-relative references to external symbols should go through $stub,
3199 // unless we're building with the leopard linker or later, which
3200 // automatically synthesizes these stubs.
3201 OpFlags = PPCII::MO_DARWIN_STUB;
3204 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
3206 needIndirectCall = false;
3209 if (needIndirectCall) {
3210 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
3211 // to do the call, we can't use PPCISD::CALL.
3212 SDValue MTCTROps[] = {Chain, Callee, InFlag};
3214 if (isSVR4ABI && isPPC64) {
3215 // Function pointers in the 64-bit SVR4 ABI do not point to the function
3216 // entry point, but to the function descriptor (the function entry point
3217 // address is part of the function descriptor though).
3218 // The function descriptor is a three doubleword structure with the
3219 // following fields: function entry point, TOC base address and
3220 // environment pointer.
3221 // Thus for a call through a function pointer, the following actions need
3223 // 1. Save the TOC of the caller in the TOC save area of its stack
3224 // frame (this is done in LowerCall_Darwin() or LowerCall_64SVR4()).
3225 // 2. Load the address of the function entry point from the function
3227 // 3. Load the TOC of the callee from the function descriptor into r2.
3228 // 4. Load the environment pointer from the function descriptor into
3230 // 5. Branch to the function entry point address.
3231 // 6. On return of the callee, the TOC of the caller needs to be
3232 // restored (this is done in FinishCall()).
3234 // All those operations are flagged together to ensure that no other
3235 // operations can be scheduled in between. E.g. without flagging the
3236 // operations together, a TOC access in the caller could be scheduled
3237 // between the load of the callee TOC and the branch to the callee, which
3238 // results in the TOC access going through the TOC of the callee instead
3239 // of going through the TOC of the caller, which leads to incorrect code.
3241 // Load the address of the function entry point from the function
3243 SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
3244 SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
3245 InFlag.getNode() ? 3 : 2);
3246 Chain = LoadFuncPtr.getValue(1);
3247 InFlag = LoadFuncPtr.getValue(2);
3249 // Load environment pointer into r11.
3250 // Offset of the environment pointer within the function descriptor.
3251 SDValue PtrOff = DAG.getIntPtrConstant(16);
3253 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
3254 SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
3256 Chain = LoadEnvPtr.getValue(1);
3257 InFlag = LoadEnvPtr.getValue(2);
3259 SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
3261 Chain = EnvVal.getValue(0);
3262 InFlag = EnvVal.getValue(1);
3264 // Load TOC of the callee into r2. We are using a target-specific load
3265 // with r2 hard coded, because the result of a target-independent load
3266 // would never go directly into r2, since r2 is a reserved register (which
3267 // prevents the register allocator from allocating it), resulting in an
3268 // additional register being allocated and an unnecessary move instruction
3270 VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3271 SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
3273 Chain = LoadTOCPtr.getValue(0);
3274 InFlag = LoadTOCPtr.getValue(1);
3276 MTCTROps[0] = Chain;
3277 MTCTROps[1] = LoadFuncPtr;
3278 MTCTROps[2] = InFlag;
3281 Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
3282 2 + (InFlag.getNode() != 0));
3283 InFlag = Chain.getValue(1);
3286 NodeTys.push_back(MVT::Other);
3287 NodeTys.push_back(MVT::Glue);
3288 Ops.push_back(Chain);
3289 CallOpc = PPCISD::BCTRL;
3291 // Add use of X11 (holding environment pointer)
3292 if (isSVR4ABI && isPPC64)
3293 Ops.push_back(DAG.getRegister(PPC::X11, PtrVT));
3294 // Add CTR register as callee so a bctr can be emitted later.
3296 Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
3299 // If this is a direct call, pass the chain and the callee.
3300 if (Callee.getNode()) {
3301 Ops.push_back(Chain);
3302 Ops.push_back(Callee);
3304 // If this is a tail call add stack pointer delta.
3306 Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
3308 // Add argument registers to the end of the list so that they are known live
3310 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
3311 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
3312 RegsToPass[i].second.getValueType()));
3318 bool isLocalCall(const SDValue &Callee)
3320 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
3321 return !G->getGlobal()->isDeclaration() &&
3322 !G->getGlobal()->isWeakForLinker();
3327 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
3328 CallingConv::ID CallConv, bool isVarArg,
3329 const SmallVectorImpl<ISD::InputArg> &Ins,
3330 DebugLoc dl, SelectionDAG &DAG,
3331 SmallVectorImpl<SDValue> &InVals) const {
3333 SmallVector<CCValAssign, 16> RVLocs;
3334 CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3335 getTargetMachine(), RVLocs, *DAG.getContext());
3336 CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
3338 // Copy all of the result registers out of their specified physreg.
3339 for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
3340 CCValAssign &VA = RVLocs[i];
3341 assert(VA.isRegLoc() && "Can only return in registers!");
3343 SDValue Val = DAG.getCopyFromReg(Chain, dl,
3344 VA.getLocReg(), VA.getLocVT(), InFlag);
3345 Chain = Val.getValue(1);
3346 InFlag = Val.getValue(2);
3348 switch (VA.getLocInfo()) {
3349 default: llvm_unreachable("Unknown loc info!");
3350 case CCValAssign::Full: break;
3351 case CCValAssign::AExt:
3352 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3354 case CCValAssign::ZExt:
3355 Val = DAG.getNode(ISD::AssertZext, dl, VA.getLocVT(), Val,
3356 DAG.getValueType(VA.getValVT()));
3357 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3359 case CCValAssign::SExt:
3360 Val = DAG.getNode(ISD::AssertSext, dl, VA.getLocVT(), Val,
3361 DAG.getValueType(VA.getValVT()));
3362 Val = DAG.getNode(ISD::TRUNCATE, dl, VA.getValVT(), Val);
3366 InVals.push_back(Val);
3373 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
3374 bool isTailCall, bool isVarArg,
3376 SmallVector<std::pair<unsigned, SDValue>, 8>
3378 SDValue InFlag, SDValue Chain,
3380 int SPDiff, unsigned NumBytes,
3381 const SmallVectorImpl<ISD::InputArg> &Ins,
3382 SmallVectorImpl<SDValue> &InVals) const {
3383 std::vector<EVT> NodeTys;
3384 SmallVector<SDValue, 8> Ops;
3385 unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
3386 isTailCall, RegsToPass, Ops, NodeTys,
3389 // Add implicit use of CR bit 6 for 32-bit SVR4 vararg calls
3390 if (isVarArg && PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
3391 Ops.push_back(DAG.getRegister(PPC::CR1EQ, MVT::i32));
3393 // When performing tail call optimization the callee pops its arguments off
3394 // the stack. Account for this here so these bytes can be pushed back on in
3395 // PPCFrameLowering::eliminateCallFramePseudoInstr.
3396 int BytesCalleePops =
3397 (CallConv == CallingConv::Fast &&
3398 getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
3400 // Add a register mask operand representing the call-preserved registers.
3401 const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
3402 const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
3403 assert(Mask && "Missing call preserved mask for calling convention");
3404 Ops.push_back(DAG.getRegisterMask(Mask));
3406 if (InFlag.getNode())
3407 Ops.push_back(InFlag);
3411 assert(((Callee.getOpcode() == ISD::Register &&
3412 cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
3413 Callee.getOpcode() == ISD::TargetExternalSymbol ||
3414 Callee.getOpcode() == ISD::TargetGlobalAddress ||
3415 isa<ConstantSDNode>(Callee)) &&
3416 "Expecting an global address, external symbol, absolute value or register");
3418 return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
3421 // Add a NOP immediately after the branch instruction when using the 64-bit
3422 // SVR4 ABI. At link time, if caller and callee are in a different module and
3423 // thus have a different TOC, the call will be replaced with a call to a stub
3424 // function which saves the current TOC, loads the TOC of the callee and
3425 // branches to the callee. The NOP will be replaced with a load instruction
3426 // which restores the TOC of the caller from the TOC save slot of the current
3427 // stack frame. If caller and callee belong to the same module (and have the
3428 // same TOC), the NOP will remain unchanged.
3430 bool needsTOCRestore = false;
3431 if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
3432 if (CallOpc == PPCISD::BCTRL) {
3433 // This is a call through a function pointer.
3434 // Restore the caller TOC from the save area into R2.
3435 // See PrepareCall() for more information about calls through function
3436 // pointers in the 64-bit SVR4 ABI.
3437 // We are using a target-specific load with r2 hard coded, because the
3438 // result of a target-independent load would never go directly into r2,
3439 // since r2 is a reserved register (which prevents the register allocator
3440 // from allocating it), resulting in an additional register being
3441 // allocated and an unnecessary move instruction being generated.
3442 needsTOCRestore = true;
3443 } else if ((CallOpc == PPCISD::CALL) && !isLocalCall(Callee)) {
3444 // Otherwise insert NOP for non-local calls.
3445 CallOpc = PPCISD::CALL_NOP;
3449 Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
3450 InFlag = Chain.getValue(1);
3452 if (needsTOCRestore) {
3453 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3454 Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
3455 InFlag = Chain.getValue(1);
3458 Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
3459 DAG.getIntPtrConstant(BytesCalleePops, true),
3462 InFlag = Chain.getValue(1);
3464 return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
3465 Ins, dl, DAG, InVals);
3469 PPCTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI,
3470 SmallVectorImpl<SDValue> &InVals) const {
3471 SelectionDAG &DAG = CLI.DAG;
3472 DebugLoc &dl = CLI.DL;
3473 SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs;
3474 SmallVector<SDValue, 32> &OutVals = CLI.OutVals;
3475 SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins;
3476 SDValue Chain = CLI.Chain;
3477 SDValue Callee = CLI.Callee;
3478 bool &isTailCall = CLI.IsTailCall;
3479 CallingConv::ID CallConv = CLI.CallConv;
3480 bool isVarArg = CLI.IsVarArg;
3483 isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
3486 if (PPCSubTarget.isSVR4ABI()) {
3487 if (PPCSubTarget.isPPC64())
3488 return LowerCall_64SVR4(Chain, Callee, CallConv, isVarArg,
3489 isTailCall, Outs, OutVals, Ins,
3492 return LowerCall_32SVR4(Chain, Callee, CallConv, isVarArg,
3493 isTailCall, Outs, OutVals, Ins,
3497 return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
3498 isTailCall, Outs, OutVals, Ins,
3503 PPCTargetLowering::LowerCall_32SVR4(SDValue Chain, SDValue Callee,
3504 CallingConv::ID CallConv, bool isVarArg,
3506 const SmallVectorImpl<ISD::OutputArg> &Outs,
3507 const SmallVectorImpl<SDValue> &OutVals,
3508 const SmallVectorImpl<ISD::InputArg> &Ins,
3509 DebugLoc dl, SelectionDAG &DAG,
3510 SmallVectorImpl<SDValue> &InVals) const {
3511 // See PPCTargetLowering::LowerFormalArguments_32SVR4() for a description
3512 // of the 32-bit SVR4 ABI stack frame layout.
3514 assert((CallConv == CallingConv::C ||
3515 CallConv == CallingConv::Fast) && "Unknown calling convention!");
3517 unsigned PtrByteSize = 4;
3519 MachineFunction &MF = DAG.getMachineFunction();
3521 // Mark this function as potentially containing a function that contains a
3522 // tail call. As a consequence the frame pointer will be used for dynamicalloc
3523 // and restoring the callers stack pointer in this functions epilog. This is
3524 // done because by tail calling the called function might overwrite the value
3525 // in this function's (MF) stack pointer stack slot 0(SP).
3526 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3527 CallConv == CallingConv::Fast)
3528 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3530 // Count how many bytes are to be pushed on the stack, including the linkage
3531 // area, parameter list area and the part of the local variable space which
3532 // contains copies of aggregates which are passed by value.
3534 // Assign locations to all of the outgoing arguments.
3535 SmallVector<CCValAssign, 16> ArgLocs;
3536 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3537 getTargetMachine(), ArgLocs, *DAG.getContext());
3539 // Reserve space for the linkage area on the stack.
3540 CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
3543 // Handle fixed and variable vector arguments differently.
3544 // Fixed vector arguments go into registers as long as registers are
3545 // available. Variable vector arguments always go into memory.
3546 unsigned NumArgs = Outs.size();
3548 for (unsigned i = 0; i != NumArgs; ++i) {
3549 MVT ArgVT = Outs[i].VT;
3550 ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
3553 if (Outs[i].IsFixed) {
3554 Result = CC_PPC32_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
3557 Result = CC_PPC32_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
3563 errs() << "Call operand #" << i << " has unhandled type "
3564 << EVT(ArgVT).getEVTString() << "\n";
3566 llvm_unreachable(0);
3570 // All arguments are treated the same.
3571 CCInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4);
3574 // Assign locations to all of the outgoing aggregate by value arguments.
3575 SmallVector<CCValAssign, 16> ByValArgLocs;
3576 CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3577 getTargetMachine(), ByValArgLocs, *DAG.getContext());
3579 // Reserve stack space for the allocations in CCInfo.
3580 CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
3582 CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC32_SVR4_ByVal);
3584 // Size of the linkage area, parameter list area and the part of the local
3585 // space variable where copies of aggregates which are passed by value are
3587 unsigned NumBytes = CCByValInfo.getNextStackOffset();
3589 // Calculate by how many bytes the stack has to be adjusted in case of tail
3590 // call optimization.
3591 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3593 // Adjust the stack pointer for the new arguments...
3594 // These operations are automatically eliminated by the prolog/epilog pass
3595 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3596 SDValue CallSeqStart = Chain;
3598 // Load the return address and frame pointer so it can be moved somewhere else
3601 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
3604 // Set up a copy of the stack pointer for use loading and storing any
3605 // arguments that may not fit in the registers available for argument
3607 SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3609 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3610 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3611 SmallVector<SDValue, 8> MemOpChains;
3613 bool seenFloatArg = false;
3614 // Walk the register/memloc assignments, inserting copies/loads.
3615 for (unsigned i = 0, j = 0, e = ArgLocs.size();
3618 CCValAssign &VA = ArgLocs[i];
3619 SDValue Arg = OutVals[i];
3620 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3622 if (Flags.isByVal()) {
3623 // Argument is an aggregate which is passed by value, thus we need to
3624 // create a copy of it in the local variable space of the current stack
3625 // frame (which is the stack frame of the caller) and pass the address of
3626 // this copy to the callee.
3627 assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3628 CCValAssign &ByValVA = ByValArgLocs[j++];
3629 assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3631 // Memory reserved in the local variable space of the callers stack frame.
3632 unsigned LocMemOffset = ByValVA.getLocMemOffset();
3634 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3635 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3637 // Create a copy of the argument in the local area of the current
3639 SDValue MemcpyCall =
3640 CreateCopyOfByValArgument(Arg, PtrOff,
3641 CallSeqStart.getNode()->getOperand(0),
3644 // This must go outside the CALLSEQ_START..END.
3645 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3646 CallSeqStart.getNode()->getOperand(1));
3647 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3648 NewCallSeqStart.getNode());
3649 Chain = CallSeqStart = NewCallSeqStart;
3651 // Pass the address of the aggregate copy on the stack either in a
3652 // physical register or in the parameter list area of the current stack
3653 // frame to the callee.
3657 if (VA.isRegLoc()) {
3658 seenFloatArg |= VA.getLocVT().isFloatingPoint();
3659 // Put argument in a physical register.
3660 RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3662 // Put argument in the parameter list area of the current stack frame.
3663 assert(VA.isMemLoc());
3664 unsigned LocMemOffset = VA.getLocMemOffset();
3667 SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3668 PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3670 MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3671 MachinePointerInfo(),
3674 // Calculate and remember argument location.
3675 CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3681 if (!MemOpChains.empty())
3682 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3683 &MemOpChains[0], MemOpChains.size());
3685 // Build a sequence of copy-to-reg nodes chained together with token chain
3686 // and flag operands which copy the outgoing args into the appropriate regs.
3688 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3689 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3690 RegsToPass[i].second, InFlag);
3691 InFlag = Chain.getValue(1);
3694 // Set CR bit 6 to true if this is a vararg call with floating args passed in
3697 SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
3698 SDValue Ops[] = { Chain, InFlag };
3700 Chain = DAG.getNode(seenFloatArg ? PPCISD::CR6SET : PPCISD::CR6UNSET,
3701 dl, VTs, Ops, InFlag.getNode() ? 2 : 1);
3703 InFlag = Chain.getValue(1);
3707 PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3708 false, TailCallArguments);
3710 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3711 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3715 // Copy an argument into memory, being careful to do this outside the
3716 // call sequence for the call to which the argument belongs.
3718 PPCTargetLowering::createMemcpyOutsideCallSeq(SDValue Arg, SDValue PtrOff,
3719 SDValue CallSeqStart,
3720 ISD::ArgFlagsTy Flags,
3722 DebugLoc dl) const {
3723 SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3724 CallSeqStart.getNode()->getOperand(0),
3726 // The MEMCPY must go outside the CALLSEQ_START..END.
3727 SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3728 CallSeqStart.getNode()->getOperand(1));
3729 DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3730 NewCallSeqStart.getNode());
3731 return NewCallSeqStart;
3735 PPCTargetLowering::LowerCall_64SVR4(SDValue Chain, SDValue Callee,
3736 CallingConv::ID CallConv, bool isVarArg,
3738 const SmallVectorImpl<ISD::OutputArg> &Outs,
3739 const SmallVectorImpl<SDValue> &OutVals,
3740 const SmallVectorImpl<ISD::InputArg> &Ins,
3741 DebugLoc dl, SelectionDAG &DAG,
3742 SmallVectorImpl<SDValue> &InVals) const {
3744 unsigned NumOps = Outs.size();
3746 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3747 unsigned PtrByteSize = 8;
3749 MachineFunction &MF = DAG.getMachineFunction();
3751 // Mark this function as potentially containing a function that contains a
3752 // tail call. As a consequence the frame pointer will be used for dynamicalloc
3753 // and restoring the callers stack pointer in this functions epilog. This is
3754 // done because by tail calling the called function might overwrite the value
3755 // in this function's (MF) stack pointer stack slot 0(SP).
3756 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3757 CallConv == CallingConv::Fast)
3758 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3760 unsigned nAltivecParamsAtEnd = 0;
3762 // Count how many bytes are to be pushed on the stack, including the linkage
3763 // area, and parameter passing area. We start with at least 48 bytes, which
3764 // is reserved space for [SP][CR][LR][3 x unused].
3765 // NOTE: For PPC64, nAltivecParamsAtEnd always remains zero as a result
3768 CalculateParameterAndLinkageAreaSize(DAG, true, isVarArg, CallConv,
3769 Outs, OutVals, nAltivecParamsAtEnd);
3771 // Calculate by how many bytes the stack has to be adjusted in case of tail
3772 // call optimization.
3773 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3775 // To protect arguments on the stack from being clobbered in a tail call,
3776 // force all the loads to happen before doing any other lowering.
3778 Chain = DAG.getStackArgumentTokenFactor(Chain);
3780 // Adjust the stack pointer for the new arguments...
3781 // These operations are automatically eliminated by the prolog/epilog pass
3782 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3783 SDValue CallSeqStart = Chain;
3785 // Load the return address and frame pointer so it can be move somewhere else
3788 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3791 // Set up a copy of the stack pointer for use loading and storing any
3792 // arguments that may not fit in the registers available for argument
3794 SDValue StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3796 // Figure out which arguments are going to go in registers, and which in
3797 // memory. Also, if this is a vararg function, floating point operations
3798 // must be stored to our stack, and loaded into integer regs as well, if
3799 // any integer regs are available for argument passing.
3800 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(true, true);
3801 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3803 static const uint16_t GPR[] = {
3804 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3805 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3807 static const uint16_t *FPR = GetFPR();
3809 static const uint16_t VR[] = {
3810 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3811 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3813 const unsigned NumGPRs = array_lengthof(GPR);
3814 const unsigned NumFPRs = 13;
3815 const unsigned NumVRs = array_lengthof(VR);
3817 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3818 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3820 SmallVector<SDValue, 8> MemOpChains;
3821 for (unsigned i = 0; i != NumOps; ++i) {
3822 SDValue Arg = OutVals[i];
3823 ISD::ArgFlagsTy Flags = Outs[i].Flags;
3825 // PtrOff will be used to store the current argument to the stack if a
3826 // register cannot be found for it.
3829 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3831 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3833 // Promote integers to 64-bit values.
3834 if (Arg.getValueType() == MVT::i32) {
3835 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3836 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3837 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3840 // FIXME memcpy is used way more than necessary. Correctness first.
3841 // Note: "by value" is code for passing a structure by value, not
3843 if (Flags.isByVal()) {
3844 // Note: Size includes alignment padding, so
3845 // struct x { short a; char b; }
3846 // will have Size = 4. With #pragma pack(1), it will have Size = 3.
3847 // These are the proper values we need for right-justifying the
3848 // aggregate in a parameter register.
3849 unsigned Size = Flags.getByValSize();
3851 // An empty aggregate parameter takes up no storage and no
3856 // All aggregates smaller than 8 bytes must be passed right-justified.
3857 if (Size==1 || Size==2 || Size==4) {
3858 EVT VT = (Size==1) ? MVT::i8 : ((Size==2) ? MVT::i16 : MVT::i32);
3859 if (GPR_idx != NumGPRs) {
3860 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3861 MachinePointerInfo(), VT,
3863 MemOpChains.push_back(Load.getValue(1));
3864 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3866 ArgOffset += PtrByteSize;
3871 if (GPR_idx == NumGPRs && Size < 8) {
3872 SDValue Const = DAG.getConstant(PtrByteSize - Size,
3873 PtrOff.getValueType());
3874 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3875 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3878 ArgOffset += PtrByteSize;
3881 // Copy entire object into memory. There are cases where gcc-generated
3882 // code assumes it is there, even if it could be put entirely into
3883 // registers. (This is not what the doc says.)
3885 // FIXME: The above statement is likely due to a misunderstanding of the
3886 // documents. All arguments must be copied into the parameter area BY
3887 // THE CALLEE in the event that the callee takes the address of any
3888 // formal argument. That has not yet been implemented. However, it is
3889 // reasonable to use the stack area as a staging area for the register
3892 // Skip this for small aggregates, as we will use the same slot for a
3893 // right-justified copy, below.
3895 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
3899 // When a register is available, pass a small aggregate right-justified.
3900 if (Size < 8 && GPR_idx != NumGPRs) {
3901 // The easiest way to get this right-justified in a register
3902 // is to copy the structure into the rightmost portion of a
3903 // local variable slot, then load the whole slot into the
3905 // FIXME: The memcpy seems to produce pretty awful code for
3906 // small aggregates, particularly for packed ones.
3907 // FIXME: It would be preferable to use the slot in the
3908 // parameter save area instead of a new local variable.
3909 SDValue Const = DAG.getConstant(8 - Size, PtrOff.getValueType());
3910 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3911 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
3915 // Load the slot into the register.
3916 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, PtrOff,
3917 MachinePointerInfo(),
3918 false, false, false, 0);
3919 MemOpChains.push_back(Load.getValue(1));
3920 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3922 // Done with this argument.
3923 ArgOffset += PtrByteSize;
3927 // For aggregates larger than PtrByteSize, copy the pieces of the
3928 // object that fit into registers from the parameter save area.
3929 for (unsigned j=0; j<Size; j+=PtrByteSize) {
3930 SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3931 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3932 if (GPR_idx != NumGPRs) {
3933 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3934 MachinePointerInfo(),
3935 false, false, false, 0);
3936 MemOpChains.push_back(Load.getValue(1));
3937 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3938 ArgOffset += PtrByteSize;
3940 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3947 switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3948 default: llvm_unreachable("Unexpected ValueType for argument!");
3951 if (GPR_idx != NumGPRs) {
3952 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3954 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3955 true, isTailCall, false, MemOpChains,
3956 TailCallArguments, dl);
3958 ArgOffset += PtrByteSize;
3962 if (FPR_idx != NumFPRs) {
3963 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3966 // A single float or an aggregate containing only a single float
3967 // must be passed right-justified in the stack doubleword, and
3968 // in the GPR, if one is available.
3970 if (Arg.getValueType().getSimpleVT().SimpleTy == MVT::f32) {
3971 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3972 StoreOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3976 SDValue Store = DAG.getStore(Chain, dl, Arg, StoreOff,
3977 MachinePointerInfo(), false, false, 0);
3978 MemOpChains.push_back(Store);
3980 // Float varargs are always shadowed in available integer registers
3981 if (GPR_idx != NumGPRs) {
3982 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3983 MachinePointerInfo(), false, false,
3985 MemOpChains.push_back(Load.getValue(1));
3986 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3988 } else if (GPR_idx != NumGPRs)
3989 // If we have any FPRs remaining, we may also have GPRs remaining.
3992 // Single-precision floating-point values are mapped to the
3993 // second (rightmost) word of the stack doubleword.
3994 if (Arg.getValueType() == MVT::f32) {
3995 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3996 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3999 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4000 true, isTailCall, false, MemOpChains,
4001 TailCallArguments, dl);
4010 // These go aligned on the stack, or in the corresponding R registers
4011 // when within range. The Darwin PPC ABI doc claims they also go in
4012 // V registers; in fact gcc does this only for arguments that are
4013 // prototyped, not for those that match the ... We do it for all
4014 // arguments, seems to work.
4015 while (ArgOffset % 16 !=0) {
4016 ArgOffset += PtrByteSize;
4017 if (GPR_idx != NumGPRs)
4020 // We could elide this store in the case where the object fits
4021 // entirely in R registers. Maybe later.
4022 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4023 DAG.getConstant(ArgOffset, PtrVT));
4024 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4025 MachinePointerInfo(), false, false, 0);
4026 MemOpChains.push_back(Store);
4027 if (VR_idx != NumVRs) {
4028 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4029 MachinePointerInfo(),
4030 false, false, false, 0);
4031 MemOpChains.push_back(Load.getValue(1));
4032 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4035 for (unsigned i=0; i<16; i+=PtrByteSize) {
4036 if (GPR_idx == NumGPRs)
4038 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4039 DAG.getConstant(i, PtrVT));
4040 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4041 false, false, false, 0);
4042 MemOpChains.push_back(Load.getValue(1));
4043 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4048 // Non-varargs Altivec params generally go in registers, but have
4049 // stack space allocated at the end.
4050 if (VR_idx != NumVRs) {
4051 // Doesn't have GPR space allocated.
4052 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4054 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4055 true, isTailCall, true, MemOpChains,
4056 TailCallArguments, dl);
4063 if (!MemOpChains.empty())
4064 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4065 &MemOpChains[0], MemOpChains.size());
4067 // Check if this is an indirect call (MTCTR/BCTRL).
4068 // See PrepareCall() for more information about calls through function
4069 // pointers in the 64-bit SVR4 ABI.
4071 !dyn_cast<GlobalAddressSDNode>(Callee) &&
4072 !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4073 !isBLACompatibleAddress(Callee, DAG)) {
4074 // Load r2 into a virtual register and store it to the TOC save area.
4075 SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
4076 // TOC save area offset.
4077 SDValue PtrOff = DAG.getIntPtrConstant(40);
4078 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4079 Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
4081 // R12 must contain the address of an indirect callee. This does not
4082 // mean the MTCTR instruction must use R12; it's easier to model this
4083 // as an extra parameter, so do that.
4084 RegsToPass.push_back(std::make_pair((unsigned)PPC::X12, Callee));
4087 // Build a sequence of copy-to-reg nodes chained together with token chain
4088 // and flag operands which copy the outgoing args into the appropriate regs.
4090 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4091 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4092 RegsToPass[i].second, InFlag);
4093 InFlag = Chain.getValue(1);
4097 PrepareTailCall(DAG, InFlag, Chain, dl, true, SPDiff, NumBytes, LROp,
4098 FPOp, true, TailCallArguments);
4100 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4101 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4106 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
4107 CallingConv::ID CallConv, bool isVarArg,
4109 const SmallVectorImpl<ISD::OutputArg> &Outs,
4110 const SmallVectorImpl<SDValue> &OutVals,
4111 const SmallVectorImpl<ISD::InputArg> &Ins,
4112 DebugLoc dl, SelectionDAG &DAG,
4113 SmallVectorImpl<SDValue> &InVals) const {
4115 unsigned NumOps = Outs.size();
4117 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4118 bool isPPC64 = PtrVT == MVT::i64;
4119 unsigned PtrByteSize = isPPC64 ? 8 : 4;
4121 MachineFunction &MF = DAG.getMachineFunction();
4123 // Mark this function as potentially containing a function that contains a
4124 // tail call. As a consequence the frame pointer will be used for dynamicalloc
4125 // and restoring the callers stack pointer in this functions epilog. This is
4126 // done because by tail calling the called function might overwrite the value
4127 // in this function's (MF) stack pointer stack slot 0(SP).
4128 if (getTargetMachine().Options.GuaranteedTailCallOpt &&
4129 CallConv == CallingConv::Fast)
4130 MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
4132 unsigned nAltivecParamsAtEnd = 0;
4134 // Count how many bytes are to be pushed on the stack, including the linkage
4135 // area, and parameter passing area. We start with 24/48 bytes, which is
4136 // prereserved space for [SP][CR][LR][3 x unused].
4138 CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
4140 nAltivecParamsAtEnd);
4142 // Calculate by how many bytes the stack has to be adjusted in case of tail
4143 // call optimization.
4144 int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
4146 // To protect arguments on the stack from being clobbered in a tail call,
4147 // force all the loads to happen before doing any other lowering.
4149 Chain = DAG.getStackArgumentTokenFactor(Chain);
4151 // Adjust the stack pointer for the new arguments...
4152 // These operations are automatically eliminated by the prolog/epilog pass
4153 Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
4154 SDValue CallSeqStart = Chain;
4156 // Load the return address and frame pointer so it can be move somewhere else
4159 Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
4162 // Set up a copy of the stack pointer for use loading and storing any
4163 // arguments that may not fit in the registers available for argument
4167 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
4169 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
4171 // Figure out which arguments are going to go in registers, and which in
4172 // memory. Also, if this is a vararg function, floating point operations
4173 // must be stored to our stack, and loaded into integer regs as well, if
4174 // any integer regs are available for argument passing.
4175 unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
4176 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
4178 static const uint16_t GPR_32[] = { // 32-bit registers.
4179 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
4180 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
4182 static const uint16_t GPR_64[] = { // 64-bit registers.
4183 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
4184 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
4186 static const uint16_t *FPR = GetFPR();
4188 static const uint16_t VR[] = {
4189 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
4190 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
4192 const unsigned NumGPRs = array_lengthof(GPR_32);
4193 const unsigned NumFPRs = 13;
4194 const unsigned NumVRs = array_lengthof(VR);
4196 const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
4198 SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
4199 SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
4201 SmallVector<SDValue, 8> MemOpChains;
4202 for (unsigned i = 0; i != NumOps; ++i) {
4203 SDValue Arg = OutVals[i];
4204 ISD::ArgFlagsTy Flags = Outs[i].Flags;
4206 // PtrOff will be used to store the current argument to the stack if a
4207 // register cannot be found for it.
4210 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
4212 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
4214 // On PPC64, promote integers to 64-bit values.
4215 if (isPPC64 && Arg.getValueType() == MVT::i32) {
4216 // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
4217 unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
4218 Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
4221 // FIXME memcpy is used way more than necessary. Correctness first.
4222 // Note: "by value" is code for passing a structure by value, not
4224 if (Flags.isByVal()) {
4225 unsigned Size = Flags.getByValSize();
4226 // Very small objects are passed right-justified. Everything else is
4227 // passed left-justified.
4228 if (Size==1 || Size==2) {
4229 EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
4230 if (GPR_idx != NumGPRs) {
4231 SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
4232 MachinePointerInfo(), VT,
4234 MemOpChains.push_back(Load.getValue(1));
4235 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4237 ArgOffset += PtrByteSize;
4239 SDValue Const = DAG.getConstant(PtrByteSize - Size,
4240 PtrOff.getValueType());
4241 SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
4242 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, AddPtr,
4245 ArgOffset += PtrByteSize;
4249 // Copy entire object into memory. There are cases where gcc-generated
4250 // code assumes it is there, even if it could be put entirely into
4251 // registers. (This is not what the doc says.)
4252 Chain = CallSeqStart = createMemcpyOutsideCallSeq(Arg, PtrOff,
4256 // For small aggregates (Darwin only) and aggregates >= PtrByteSize,
4257 // copy the pieces of the object that fit into registers from the
4258 // parameter save area.
4259 for (unsigned j=0; j<Size; j+=PtrByteSize) {
4260 SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
4261 SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
4262 if (GPR_idx != NumGPRs) {
4263 SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
4264 MachinePointerInfo(),
4265 false, false, false, 0);
4266 MemOpChains.push_back(Load.getValue(1));
4267 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4268 ArgOffset += PtrByteSize;
4270 ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
4277 switch (Arg.getValueType().getSimpleVT().SimpleTy) {
4278 default: llvm_unreachable("Unexpected ValueType for argument!");
4281 if (GPR_idx != NumGPRs) {
4282 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
4284 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4285 isPPC64, isTailCall, false, MemOpChains,
4286 TailCallArguments, dl);
4288 ArgOffset += PtrByteSize;
4292 if (FPR_idx != NumFPRs) {
4293 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
4296 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4297 MachinePointerInfo(), false, false, 0);
4298 MemOpChains.push_back(Store);
4300 // Float varargs are always shadowed in available integer registers
4301 if (GPR_idx != NumGPRs) {
4302 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4303 MachinePointerInfo(), false, false,
4305 MemOpChains.push_back(Load.getValue(1));
4306 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4308 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
4309 SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
4310 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
4311 SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
4312 MachinePointerInfo(),
4313 false, false, false, 0);
4314 MemOpChains.push_back(Load.getValue(1));
4315 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4318 // If we have any FPRs remaining, we may also have GPRs remaining.
4319 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
4321 if (GPR_idx != NumGPRs)
4323 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
4324 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
4328 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4329 isPPC64, isTailCall, false, MemOpChains,
4330 TailCallArguments, dl);
4334 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
4341 // These go aligned on the stack, or in the corresponding R registers
4342 // when within range. The Darwin PPC ABI doc claims they also go in
4343 // V registers; in fact gcc does this only for arguments that are
4344 // prototyped, not for those that match the ... We do it for all
4345 // arguments, seems to work.
4346 while (ArgOffset % 16 !=0) {
4347 ArgOffset += PtrByteSize;
4348 if (GPR_idx != NumGPRs)
4351 // We could elide this store in the case where the object fits
4352 // entirely in R registers. Maybe later.
4353 PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
4354 DAG.getConstant(ArgOffset, PtrVT));
4355 SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
4356 MachinePointerInfo(), false, false, 0);
4357 MemOpChains.push_back(Store);
4358 if (VR_idx != NumVRs) {
4359 SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
4360 MachinePointerInfo(),
4361 false, false, false, 0);
4362 MemOpChains.push_back(Load.getValue(1));
4363 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
4366 for (unsigned i=0; i<16; i+=PtrByteSize) {
4367 if (GPR_idx == NumGPRs)
4369 SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
4370 DAG.getConstant(i, PtrVT));
4371 SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
4372 false, false, false, 0);
4373 MemOpChains.push_back(Load.getValue(1));
4374 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
4379 // Non-varargs Altivec params generally go in registers, but have
4380 // stack space allocated at the end.
4381 if (VR_idx != NumVRs) {
4382 // Doesn't have GPR space allocated.
4383 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
4384 } else if (nAltivecParamsAtEnd==0) {
4385 // We are emitting Altivec params in order.
4386 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4387 isPPC64, isTailCall, true, MemOpChains,
4388 TailCallArguments, dl);
4394 // If all Altivec parameters fit in registers, as they usually do,
4395 // they get stack space following the non-Altivec parameters. We
4396 // don't track this here because nobody below needs it.
4397 // If there are more Altivec parameters than fit in registers emit
4399 if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
4401 // Offset is aligned; skip 1st 12 params which go in V registers.
4402 ArgOffset = ((ArgOffset+15)/16)*16;
4404 for (unsigned i = 0; i != NumOps; ++i) {
4405 SDValue Arg = OutVals[i];
4406 EVT ArgType = Outs[i].VT;
4407 if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
4408 ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
4411 // We are emitting Altivec params in order.
4412 LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
4413 isPPC64, isTailCall, true, MemOpChains,
4414 TailCallArguments, dl);
4421 if (!MemOpChains.empty())
4422 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4423 &MemOpChains[0], MemOpChains.size());
4425 // On Darwin, R12 must contain the address of an indirect callee. This does
4426 // not mean the MTCTR instruction must use R12; it's easier to model this as
4427 // an extra parameter, so do that.
4429 !dyn_cast<GlobalAddressSDNode>(Callee) &&
4430 !dyn_cast<ExternalSymbolSDNode>(Callee) &&
4431 !isBLACompatibleAddress(Callee, DAG))
4432 RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
4433 PPC::R12), Callee));
4435 // Build a sequence of copy-to-reg nodes chained together with token chain
4436 // and flag operands which copy the outgoing args into the appropriate regs.
4438 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
4439 Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
4440 RegsToPass[i].second, InFlag);
4441 InFlag = Chain.getValue(1);
4445 PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
4446 FPOp, true, TailCallArguments);
4448 return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
4449 RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
4454 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
4455 MachineFunction &MF, bool isVarArg,
4456 const SmallVectorImpl<ISD::OutputArg> &Outs,
4457 LLVMContext &Context) const {
4458 SmallVector<CCValAssign, 16> RVLocs;
4459 CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
4461 return CCInfo.CheckReturn(Outs, RetCC_PPC);
4465 PPCTargetLowering::LowerReturn(SDValue Chain,
4466 CallingConv::ID CallConv, bool isVarArg,
4467 const SmallVectorImpl<ISD::OutputArg> &Outs,
4468 const SmallVectorImpl<SDValue> &OutVals,
4469 DebugLoc dl, SelectionDAG &DAG) const {
4471 SmallVector<CCValAssign, 16> RVLocs;
4472 CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
4473 getTargetMachine(), RVLocs, *DAG.getContext());
4474 CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
4477 SmallVector<SDValue, 4> RetOps(1, Chain);
4479 // Copy the result values into the output registers.
4480 for (unsigned i = 0; i != RVLocs.size(); ++i) {
4481 CCValAssign &VA = RVLocs[i];
4482 assert(VA.isRegLoc() && "Can only return in registers!");
4484 SDValue Arg = OutVals[i];
4486 switch (VA.getLocInfo()) {
4487 default: llvm_unreachable("Unknown loc info!");
4488 case CCValAssign::Full: break;
4489 case CCValAssign::AExt:
4490 Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg);
4492 case CCValAssign::ZExt:
4493 Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg);
4495 case CCValAssign::SExt:
4496 Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg);
4500 Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), Arg, Flag);
4501 Flag = Chain.getValue(1);
4502 RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT()));
4505 RetOps[0] = Chain; // Update chain.
4507 // Add the flag if we have it.
4509 RetOps.push_back(Flag);
4511 return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other,
4512 &RetOps[0], RetOps.size());
4515 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
4516 const PPCSubtarget &Subtarget) const {
4517 // When we pop the dynamic allocation we need to restore the SP link.
4518 DebugLoc dl = Op.getDebugLoc();
4520 // Get the corect type for pointers.
4521 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4523 // Construct the stack pointer operand.
4524 bool isPPC64 = Subtarget.isPPC64();
4525 unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
4526 SDValue StackPtr = DAG.getRegister(SP, PtrVT);
4528 // Get the operands for the STACKRESTORE.
4529 SDValue Chain = Op.getOperand(0);
4530 SDValue SaveSP = Op.getOperand(1);
4532 // Load the old link SP.
4533 SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
4534 MachinePointerInfo(),
4535 false, false, false, 0);
4537 // Restore the stack pointer.
4538 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
4540 // Store the old link SP.
4541 return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
4548 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
4549 MachineFunction &MF = DAG.getMachineFunction();
4550 bool isPPC64 = PPCSubTarget.isPPC64();
4551 bool isDarwinABI = PPCSubTarget.isDarwinABI();
4552 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4554 // Get current frame pointer save index. The users of this index will be
4555 // primarily DYNALLOC instructions.
4556 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4557 int RASI = FI->getReturnAddrSaveIndex();
4559 // If the frame pointer save index hasn't been defined yet.
4561 // Find out what the fix offset of the frame pointer save area.
4562 int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
4563 // Allocate the frame index for frame pointer save area.
4564 RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
4566 FI->setReturnAddrSaveIndex(RASI);
4568 return DAG.getFrameIndex(RASI, PtrVT);
4572 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
4573 MachineFunction &MF = DAG.getMachineFunction();
4574 bool isPPC64 = PPCSubTarget.isPPC64();
4575 bool isDarwinABI = PPCSubTarget.isDarwinABI();
4576 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4578 // Get current frame pointer save index. The users of this index will be
4579 // primarily DYNALLOC instructions.
4580 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
4581 int FPSI = FI->getFramePointerSaveIndex();
4583 // If the frame pointer save index hasn't been defined yet.
4585 // Find out what the fix offset of the frame pointer save area.
4586 int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
4589 // Allocate the frame index for frame pointer save area.
4590 FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
4592 FI->setFramePointerSaveIndex(FPSI);
4594 return DAG.getFrameIndex(FPSI, PtrVT);
4597 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
4599 const PPCSubtarget &Subtarget) const {
4601 SDValue Chain = Op.getOperand(0);
4602 SDValue Size = Op.getOperand(1);
4603 DebugLoc dl = Op.getDebugLoc();
4605 // Get the corect type for pointers.
4606 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4608 SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
4609 DAG.getConstant(0, PtrVT), Size);
4610 // Construct a node for the frame pointer save index.
4611 SDValue FPSIdx = getFramePointerFrameIndex(DAG);
4612 // Build a DYNALLOC node.
4613 SDValue Ops[3] = { Chain, NegSize, FPSIdx };
4614 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
4615 return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
4618 SDValue PPCTargetLowering::lowerEH_SJLJ_SETJMP(SDValue Op,
4619 SelectionDAG &DAG) const {
4620 DebugLoc DL = Op.getDebugLoc();
4621 return DAG.getNode(PPCISD::EH_SJLJ_SETJMP, DL,
4622 DAG.getVTList(MVT::i32, MVT::Other),
4623 Op.getOperand(0), Op.getOperand(1));
4626 SDValue PPCTargetLowering::lowerEH_SJLJ_LONGJMP(SDValue Op,
4627 SelectionDAG &DAG) const {
4628 DebugLoc DL = Op.getDebugLoc();
4629 return DAG.getNode(PPCISD::EH_SJLJ_LONGJMP, DL, MVT::Other,
4630 Op.getOperand(0), Op.getOperand(1));
4633 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
4635 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
4636 // Not FP? Not a fsel.
4637 if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
4638 !Op.getOperand(2).getValueType().isFloatingPoint())
4641 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
4643 // Cannot handle SETEQ/SETNE.
4644 if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
4646 EVT ResVT = Op.getValueType();
4647 EVT CmpVT = Op.getOperand(0).getValueType();
4648 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4649 SDValue TV = Op.getOperand(2), FV = Op.getOperand(3);
4650 DebugLoc dl = Op.getDebugLoc();
4652 // If the RHS of the comparison is a 0.0, we don't need to do the
4653 // subtraction at all.
4654 if (isFloatingPointZero(RHS))
4656 default: break; // SETUO etc aren't handled by fsel.
4659 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
4662 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
4663 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4664 return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
4667 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
4670 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
4671 LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
4672 return DAG.getNode(PPCISD::FSEL, dl, ResVT,
4673 DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
4678 default: break; // SETUO etc aren't handled by fsel.
4681 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4682 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
4683 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4684 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4687 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
4688 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
4689 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4690 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4693 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4694 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
4695 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4696 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
4699 Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
4700 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
4701 Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
4702 return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
4707 // FIXME: Split this code up when LegalizeDAGTypes lands.
4708 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
4709 DebugLoc dl) const {
4710 assert(Op.getOperand(0).getValueType().isFloatingPoint());
4711 SDValue Src = Op.getOperand(0);
4712 if (Src.getValueType() == MVT::f32)
4713 Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
4716 switch (Op.getValueType().getSimpleVT().SimpleTy) {
4717 default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
4719 Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
4724 Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
4728 // Convert the FP value to an int value through memory.
4729 SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
4731 // Emit a store to the stack slot.
4732 SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
4733 MachinePointerInfo(), false, false, 0);
4735 // Result is a load from the stack slot. If loading 4 bytes, make sure to
4737 if (Op.getValueType() == MVT::i32)
4738 FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
4739 DAG.getConstant(4, FIPtr.getValueType()));
4740 return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
4741 false, false, false, 0);
4744 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
4745 SelectionDAG &DAG) const {
4746 DebugLoc dl = Op.getDebugLoc();
4747 // Don't handle ppc_fp128 here; let it be lowered to a libcall.
4748 if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
4751 if (Op.getOperand(0).getValueType() == MVT::i64) {
4752 SDValue SINT = Op.getOperand(0);
4753 // When converting to single-precision, we actually need to convert
4754 // to double-precision first and then round to single-precision.
4755 // To avoid double-rounding effects during that operation, we have
4756 // to prepare the input operand. Bits that might be truncated when
4757 // converting to double-precision are replaced by a bit that won't
4758 // be lost at this stage, but is below the single-precision rounding
4761 // However, if -enable-unsafe-fp-math is in effect, accept double
4762 // rounding to avoid the extra overhead.
4763 if (Op.getValueType() == MVT::f32 &&
4764 !DAG.getTarget().Options.UnsafeFPMath) {
4766 // Twiddle input to make sure the low 11 bits are zero. (If this
4767 // is the case, we are guaranteed the value will fit into the 53 bit
4768 // mantissa of an IEEE double-precision value without rounding.)
4769 // If any of those low 11 bits were not zero originally, make sure
4770 // bit 12 (value 2048) is set instead, so that the final rounding
4771 // to single-precision gets the correct result.
4772 SDValue Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4773 SINT, DAG.getConstant(2047, MVT::i64));
4774 Round = DAG.getNode(ISD::ADD, dl, MVT::i64,
4775 Round, DAG.getConstant(2047, MVT::i64));
4776 Round = DAG.getNode(ISD::OR, dl, MVT::i64, Round, SINT);
4777 Round = DAG.getNode(ISD::AND, dl, MVT::i64,
4778 Round, DAG.getConstant(-2048, MVT::i64));
4780 // However, we cannot use that value unconditionally: if the magnitude
4781 // of the input value is small, the bit-twiddling we did above might
4782 // end up visibly changing the output. Fortunately, in that case, we
4783 // don't need to twiddle bits since the original input will convert
4784 // exactly to double-precision floating-point already. Therefore,
4785 // construct a conditional to use the original value if the top 11
4786 // bits are all sign-bit copies, and use the rounded value computed
4788 SDValue Cond = DAG.getNode(ISD::SRA, dl, MVT::i64,
4789 SINT, DAG.getConstant(53, MVT::i32));
4790 Cond = DAG.getNode(ISD::ADD, dl, MVT::i64,
4791 Cond, DAG.getConstant(1, MVT::i64));
4792 Cond = DAG.getSetCC(dl, MVT::i32,
4793 Cond, DAG.getConstant(1, MVT::i64), ISD::SETUGT);
4795 SINT = DAG.getNode(ISD::SELECT, dl, MVT::i64, Cond, Round, SINT);
4797 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, SINT);
4798 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
4799 if (Op.getValueType() == MVT::f32)
4800 FP = DAG.getNode(ISD::FP_ROUND, dl,
4801 MVT::f32, FP, DAG.getIntPtrConstant(0));
4805 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
4806 "Unhandled SINT_TO_FP type in custom expander!");
4807 // Since we only generate this in 64-bit mode, we can take advantage of
4808 // 64-bit registers. In particular, sign extend the input value into the
4809 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
4810 // then lfd it and fcfid it.
4811 MachineFunction &MF = DAG.getMachineFunction();
4812 MachineFrameInfo *FrameInfo = MF.getFrameInfo();
4813 int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
4814 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4815 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4817 SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
4820 // STD the extended value into the stack slot.
4821 MachineMemOperand *MMO =
4822 MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
4823 MachineMemOperand::MOStore, 8, 8);
4824 SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
4826 DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
4827 Ops, 4, MVT::i64, MMO);
4828 // Load the value as a double.
4829 SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
4830 false, false, false, 0);
4832 // FCFID it and return it.
4833 SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
4834 if (Op.getValueType() == MVT::f32)
4835 FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
4839 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
4840 SelectionDAG &DAG) const {
4841 DebugLoc dl = Op.getDebugLoc();
4843 The rounding mode is in bits 30:31 of FPSR, and has the following
4850 FLT_ROUNDS, on the other hand, expects the following:
4857 To perform the conversion, we do:
4858 ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
4861 MachineFunction &MF = DAG.getMachineFunction();
4862 EVT VT = Op.getValueType();
4863 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
4864 SDValue MFFSreg, InFlag;
4866 // Save FP Control Word to register
4868 MVT::f64, // return register
4869 MVT::Glue // unused in this context
4871 SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4873 // Save FP register to stack slot
4874 int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
4875 SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
4876 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
4877 StackSlot, MachinePointerInfo(), false, false,0);
4879 // Load FP Control Word from low 32 bits of stack slot.
4880 SDValue Four = DAG.getConstant(4, PtrVT);
4881 SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
4882 SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
4883 false, false, false, 0);
4885 // Transform as necessary
4887 DAG.getNode(ISD::AND, dl, MVT::i32,
4888 CWD, DAG.getConstant(3, MVT::i32));
4890 DAG.getNode(ISD::SRL, dl, MVT::i32,
4891 DAG.getNode(ISD::AND, dl, MVT::i32,
4892 DAG.getNode(ISD::XOR, dl, MVT::i32,
4893 CWD, DAG.getConstant(3, MVT::i32)),
4894 DAG.getConstant(3, MVT::i32)),
4895 DAG.getConstant(1, MVT::i32));
4898 DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
4900 return DAG.getNode((VT.getSizeInBits() < 16 ?
4901 ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
4904 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4905 EVT VT = Op.getValueType();
4906 unsigned BitWidth = VT.getSizeInBits();
4907 DebugLoc dl = Op.getDebugLoc();
4908 assert(Op.getNumOperands() == 3 &&
4909 VT == Op.getOperand(1).getValueType() &&
4912 // Expand into a bunch of logical ops. Note that these ops
4913 // depend on the PPC behavior for oversized shift amounts.
4914 SDValue Lo = Op.getOperand(0);
4915 SDValue Hi = Op.getOperand(1);
4916 SDValue Amt = Op.getOperand(2);
4917 EVT AmtVT = Amt.getValueType();
4919 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4920 DAG.getConstant(BitWidth, AmtVT), Amt);
4921 SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
4922 SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
4923 SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
4924 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4925 DAG.getConstant(-BitWidth, AmtVT));
4926 SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
4927 SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4928 SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
4929 SDValue OutOps[] = { OutLo, OutHi };
4930 return DAG.getMergeValues(OutOps, 2, dl);
4933 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
4934 EVT VT = Op.getValueType();
4935 DebugLoc dl = Op.getDebugLoc();
4936 unsigned BitWidth = VT.getSizeInBits();
4937 assert(Op.getNumOperands() == 3 &&
4938 VT == Op.getOperand(1).getValueType() &&
4941 // Expand into a bunch of logical ops. Note that these ops
4942 // depend on the PPC behavior for oversized shift amounts.
4943 SDValue Lo = Op.getOperand(0);
4944 SDValue Hi = Op.getOperand(1);
4945 SDValue Amt = Op.getOperand(2);
4946 EVT AmtVT = Amt.getValueType();
4948 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4949 DAG.getConstant(BitWidth, AmtVT), Amt);
4950 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4951 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4952 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4953 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4954 DAG.getConstant(-BitWidth, AmtVT));
4955 SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
4956 SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
4957 SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
4958 SDValue OutOps[] = { OutLo, OutHi };
4959 return DAG.getMergeValues(OutOps, 2, dl);
4962 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
4963 DebugLoc dl = Op.getDebugLoc();
4964 EVT VT = Op.getValueType();
4965 unsigned BitWidth = VT.getSizeInBits();
4966 assert(Op.getNumOperands() == 3 &&
4967 VT == Op.getOperand(1).getValueType() &&
4970 // Expand into a bunch of logical ops, followed by a select_cc.
4971 SDValue Lo = Op.getOperand(0);
4972 SDValue Hi = Op.getOperand(1);
4973 SDValue Amt = Op.getOperand(2);
4974 EVT AmtVT = Amt.getValueType();
4976 SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
4977 DAG.getConstant(BitWidth, AmtVT), Amt);
4978 SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
4979 SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
4980 SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
4981 SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
4982 DAG.getConstant(-BitWidth, AmtVT));
4983 SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
4984 SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
4985 SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
4986 Tmp4, Tmp6, ISD::SETLE);
4987 SDValue OutOps[] = { OutLo, OutHi };
4988 return DAG.getMergeValues(OutOps, 2, dl);
4991 //===----------------------------------------------------------------------===//
4992 // Vector related lowering.
4995 /// BuildSplatI - Build a canonical splati of Val with an element size of
4996 /// SplatSize. Cast the result to VT.
4997 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
4998 SelectionDAG &DAG, DebugLoc dl) {
4999 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
5001 static const EVT VTys[] = { // canonical VT to use for each size.
5002 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
5005 EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
5007 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
5011 EVT CanonicalVT = VTys[SplatSize-1];
5013 // Build a canonical splat for this value.
5014 SDValue Elt = DAG.getConstant(Val, MVT::i32);
5015 SmallVector<SDValue, 8> Ops;
5016 Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
5017 SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
5018 &Ops[0], Ops.size());
5019 return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
5022 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
5023 /// specified intrinsic ID.
5024 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
5025 SelectionDAG &DAG, DebugLoc dl,
5026 EVT DestVT = MVT::Other) {
5027 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
5028 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5029 DAG.getConstant(IID, MVT::i32), LHS, RHS);
5032 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
5033 /// specified intrinsic ID.
5034 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
5035 SDValue Op2, SelectionDAG &DAG,
5036 DebugLoc dl, EVT DestVT = MVT::Other) {
5037 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
5038 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
5039 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
5043 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
5044 /// amount. The result has the specified value type.
5045 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
5046 EVT VT, SelectionDAG &DAG, DebugLoc dl) {
5047 // Force LHS/RHS to be the right type.
5048 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
5049 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
5052 for (unsigned i = 0; i != 16; ++i)
5054 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
5055 return DAG.getNode(ISD::BITCAST, dl, VT, T);
5058 // If this is a case we can't handle, return null and let the default
5059 // expansion code take care of it. If we CAN select this case, and if it
5060 // selects to a single instruction, return Op. Otherwise, if we can codegen
5061 // this case more efficiently than a constant pool load, lower it to the
5062 // sequence of ops that should be used.
5063 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
5064 SelectionDAG &DAG) const {
5065 DebugLoc dl = Op.getDebugLoc();
5066 BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
5067 assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
5069 // Check if this is a splat of a constant value.
5070 APInt APSplatBits, APSplatUndef;
5071 unsigned SplatBitSize;
5073 if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
5074 HasAnyUndefs, 0, true) || SplatBitSize > 32)
5077 unsigned SplatBits = APSplatBits.getZExtValue();
5078 unsigned SplatUndef = APSplatUndef.getZExtValue();
5079 unsigned SplatSize = SplatBitSize / 8;
5081 // First, handle single instruction cases.
5084 if (SplatBits == 0) {
5085 // Canonicalize all zero vectors to be v4i32.
5086 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
5087 SDValue Z = DAG.getConstant(0, MVT::i32);
5088 Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
5089 Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
5094 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
5095 int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
5097 if (SextVal >= -16 && SextVal <= 15)
5098 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
5101 // Two instruction sequences.
5103 // If this value is in the range [-32,30] and is even, use:
5104 // VSPLTI[bhw](val/2) + VSPLTI[bhw](val/2)
5105 // If this value is in the range [17,31] and is odd, use:
5106 // VSPLTI[bhw](val-16) - VSPLTI[bhw](-16)
5107 // If this value is in the range [-31,-17] and is odd, use:
5108 // VSPLTI[bhw](val+16) + VSPLTI[bhw](-16)
5109 // Note the last two are three-instruction sequences.
5110 if (SextVal >= -32 && SextVal <= 31) {
5111 // To avoid having these optimizations undone by constant folding,
5112 // we convert to a pseudo that will be expanded later into one of
5114 SDValue Elt = DAG.getConstant(SextVal, MVT::i32);
5115 EVT VT = Op.getValueType();
5116 int Size = VT == MVT::v16i8 ? 1 : (VT == MVT::v8i16 ? 2 : 4);
5117 SDValue EltSize = DAG.getConstant(Size, MVT::i32);
5118 return DAG.getNode(PPCISD::VADD_SPLAT, dl, VT, Elt, EltSize);
5121 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
5122 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
5124 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
5125 // Make -1 and vspltisw -1:
5126 SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
5128 // Make the VSLW intrinsic, computing 0x8000_0000.
5129 SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
5132 // xor by OnesV to invert it.
5133 Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
5134 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5137 // Check to see if this is a wide variety of vsplti*, binop self cases.
5138 static const signed char SplatCsts[] = {
5139 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
5140 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
5143 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
5144 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
5145 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
5146 int i = SplatCsts[idx];
5148 // Figure out what shift amount will be used by altivec if shifted by i in
5150 unsigned TypeShiftAmt = i & (SplatBitSize-1);
5152 // vsplti + shl self.
5153 if (SextVal == (int)((unsigned)i << TypeShiftAmt)) {
5154 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5155 static const unsigned IIDs[] = { // Intrinsic to use for each size.
5156 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
5157 Intrinsic::ppc_altivec_vslw
5159 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5160 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5163 // vsplti + srl self.
5164 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5165 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5166 static const unsigned IIDs[] = { // Intrinsic to use for each size.
5167 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
5168 Intrinsic::ppc_altivec_vsrw
5170 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5171 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5174 // vsplti + sra self.
5175 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
5176 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5177 static const unsigned IIDs[] = { // Intrinsic to use for each size.
5178 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
5179 Intrinsic::ppc_altivec_vsraw
5181 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5182 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5185 // vsplti + rol self.
5186 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
5187 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
5188 SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
5189 static const unsigned IIDs[] = { // Intrinsic to use for each size.
5190 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
5191 Intrinsic::ppc_altivec_vrlw
5193 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
5194 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
5197 // t = vsplti c, result = vsldoi t, t, 1
5198 if (SextVal == (int)(((unsigned)i << 8) | (i < 0 ? 0xFF : 0))) {
5199 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5200 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
5202 // t = vsplti c, result = vsldoi t, t, 2
5203 if (SextVal == (int)(((unsigned)i << 16) | (i < 0 ? 0xFFFF : 0))) {
5204 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5205 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
5207 // t = vsplti c, result = vsldoi t, t, 3
5208 if (SextVal == (int)(((unsigned)i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
5209 SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
5210 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
5217 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
5218 /// the specified operations to build the shuffle.
5219 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
5220 SDValue RHS, SelectionDAG &DAG,
5222 unsigned OpNum = (PFEntry >> 26) & 0x0F;
5223 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
5224 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
5227 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
5239 if (OpNum == OP_COPY) {
5240 if (LHSID == (1*9+2)*9+3) return LHS;
5241 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
5245 SDValue OpLHS, OpRHS;
5246 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
5247 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
5251 default: llvm_unreachable("Unknown i32 permute!");
5253 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
5254 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
5255 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
5256 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
5259 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
5260 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
5261 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
5262 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
5265 for (unsigned i = 0; i != 16; ++i)
5266 ShufIdxs[i] = (i&3)+0;
5269 for (unsigned i = 0; i != 16; ++i)
5270 ShufIdxs[i] = (i&3)+4;
5273 for (unsigned i = 0; i != 16; ++i)
5274 ShufIdxs[i] = (i&3)+8;
5277 for (unsigned i = 0; i != 16; ++i)
5278 ShufIdxs[i] = (i&3)+12;
5281 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
5283 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
5285 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
5287 EVT VT = OpLHS.getValueType();
5288 OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
5289 OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
5290 SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
5291 return DAG.getNode(ISD::BITCAST, dl, VT, T);
5294 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
5295 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
5296 /// return the code it can be lowered into. Worst case, it can always be
5297 /// lowered into a vperm.
5298 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
5299 SelectionDAG &DAG) const {
5300 DebugLoc dl = Op.getDebugLoc();
5301 SDValue V1 = Op.getOperand(0);
5302 SDValue V2 = Op.getOperand(1);
5303 ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
5304 EVT VT = Op.getValueType();
5306 // Cases that are handled by instructions that take permute immediates
5307 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
5308 // selected by the instruction selector.
5309 if (V2.getOpcode() == ISD::UNDEF) {
5310 if (PPC::isSplatShuffleMask(SVOp, 1) ||
5311 PPC::isSplatShuffleMask(SVOp, 2) ||
5312 PPC::isSplatShuffleMask(SVOp, 4) ||
5313 PPC::isVPKUWUMShuffleMask(SVOp, true) ||
5314 PPC::isVPKUHUMShuffleMask(SVOp, true) ||
5315 PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
5316 PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
5317 PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
5318 PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
5319 PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
5320 PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
5321 PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
5326 // Altivec has a variety of "shuffle immediates" that take two vector inputs
5327 // and produce a fixed permutation. If any of these match, do not lower to
5329 if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
5330 PPC::isVPKUHUMShuffleMask(SVOp, false) ||
5331 PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
5332 PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
5333 PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
5334 PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
5335 PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
5336 PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
5337 PPC::isVMRGHShuffleMask(SVOp, 4, false))
5340 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
5341 // perfect shuffle table to emit an optimal matching sequence.
5342 ArrayRef<int> PermMask = SVOp->getMask();
5344 unsigned PFIndexes[4];
5345 bool isFourElementShuffle = true;
5346 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
5347 unsigned EltNo = 8; // Start out undef.
5348 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
5349 if (PermMask[i*4+j] < 0)
5350 continue; // Undef, ignore it.
5352 unsigned ByteSource = PermMask[i*4+j];
5353 if ((ByteSource & 3) != j) {
5354 isFourElementShuffle = false;
5359 EltNo = ByteSource/4;
5360 } else if (EltNo != ByteSource/4) {
5361 isFourElementShuffle = false;
5365 PFIndexes[i] = EltNo;
5368 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
5369 // perfect shuffle vector to determine if it is cost effective to do this as
5370 // discrete instructions, or whether we should use a vperm.
5371 if (isFourElementShuffle) {
5372 // Compute the index in the perfect shuffle table.
5373 unsigned PFTableIndex =
5374 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
5376 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
5377 unsigned Cost = (PFEntry >> 30);
5379 // Determining when to avoid vperm is tricky. Many things affect the cost
5380 // of vperm, particularly how many times the perm mask needs to be computed.
5381 // For example, if the perm mask can be hoisted out of a loop or is already
5382 // used (perhaps because there are multiple permutes with the same shuffle
5383 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
5384 // the loop requires an extra register.
5386 // As a compromise, we only emit discrete instructions if the shuffle can be
5387 // generated in 3 or fewer operations. When we have loop information
5388 // available, if this block is within a loop, we should avoid using vperm
5389 // for 3-operation perms and use a constant pool load instead.
5391 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
5394 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
5395 // vector that will get spilled to the constant pool.
5396 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
5398 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
5399 // that it is in input element units, not in bytes. Convert now.
5400 EVT EltVT = V1.getValueType().getVectorElementType();
5401 unsigned BytesPerElement = EltVT.getSizeInBits()/8;
5403 SmallVector<SDValue, 16> ResultMask;
5404 for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
5405 unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
5407 for (unsigned j = 0; j != BytesPerElement; ++j)
5408 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
5412 SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
5413 &ResultMask[0], ResultMask.size());
5414 return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
5417 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
5418 /// altivec comparison. If it is, return true and fill in Opc/isDot with
5419 /// information about the intrinsic.
5420 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
5422 unsigned IntrinsicID =
5423 cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
5426 switch (IntrinsicID) {
5427 default: return false;
5428 // Comparison predicates.
5429 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
5430 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
5431 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
5432 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
5433 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
5434 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
5435 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
5436 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
5437 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
5438 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
5439 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
5440 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
5441 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
5443 // Normal Comparisons.
5444 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
5445 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
5446 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
5447 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
5448 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
5449 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
5450 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
5451 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
5452 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
5453 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
5454 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
5455 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
5456 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
5461 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
5462 /// lower, do it, otherwise return null.
5463 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
5464 SelectionDAG &DAG) const {
5465 // If this is a lowered altivec predicate compare, CompareOpc is set to the
5466 // opcode number of the comparison.
5467 DebugLoc dl = Op.getDebugLoc();
5470 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
5471 return SDValue(); // Don't custom lower most intrinsics.
5473 // If this is a non-dot comparison, make the VCMP node and we are done.
5475 SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
5476 Op.getOperand(1), Op.getOperand(2),
5477 DAG.getConstant(CompareOpc, MVT::i32));
5478 return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
5481 // Create the PPCISD altivec 'dot' comparison node.
5483 Op.getOperand(2), // LHS
5484 Op.getOperand(3), // RHS
5485 DAG.getConstant(CompareOpc, MVT::i32)
5487 EVT VTs[] = { Op.getOperand(2).getValueType(), MVT::Glue };
5488 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5490 // Now that we have the comparison, emit a copy from the CR to a GPR.
5491 // This is flagged to the above dot comparison.
5492 SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
5493 DAG.getRegister(PPC::CR6, MVT::i32),
5494 CompNode.getValue(1));
5496 // Unpack the result based on how the target uses it.
5497 unsigned BitNo; // Bit # of CR6.
5498 bool InvertBit; // Invert result?
5499 switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
5500 default: // Can't happen, don't crash on invalid number though.
5501 case 0: // Return the value of the EQ bit of CR6.
5502 BitNo = 0; InvertBit = false;
5504 case 1: // Return the inverted value of the EQ bit of CR6.
5505 BitNo = 0; InvertBit = true;
5507 case 2: // Return the value of the LT bit of CR6.
5508 BitNo = 2; InvertBit = false;
5510 case 3: // Return the inverted value of the LT bit of CR6.
5511 BitNo = 2; InvertBit = true;
5515 // Shift the bit into the low position.
5516 Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
5517 DAG.getConstant(8-(3-BitNo), MVT::i32));
5519 Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
5520 DAG.getConstant(1, MVT::i32));
5522 // If we are supposed to, toggle the bit.
5524 Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
5525 DAG.getConstant(1, MVT::i32));
5529 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
5530 SelectionDAG &DAG) const {
5531 DebugLoc dl = Op.getDebugLoc();
5532 // Create a stack slot that is 16-byte aligned.
5533 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
5534 int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
5535 EVT PtrVT = getPointerTy();
5536 SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
5538 // Store the input value into Value#0 of the stack slot.
5539 SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
5540 Op.getOperand(0), FIdx, MachinePointerInfo(),
5543 return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
5544 false, false, false, 0);
5547 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
5548 DebugLoc dl = Op.getDebugLoc();
5549 if (Op.getValueType() == MVT::v4i32) {
5550 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5552 SDValue Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG, dl);
5553 SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
5555 SDValue RHSSwap = // = vrlw RHS, 16
5556 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
5558 // Shrinkify inputs to v8i16.
5559 LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
5560 RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
5561 RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
5563 // Low parts multiplied together, generating 32-bit results (we ignore the
5565 SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
5566 LHS, RHS, DAG, dl, MVT::v4i32);
5568 SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
5569 LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
5570 // Shift the high parts up 16 bits.
5571 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
5573 return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
5574 } else if (Op.getValueType() == MVT::v8i16) {
5575 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5577 SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
5579 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
5580 LHS, RHS, Zero, DAG, dl);
5581 } else if (Op.getValueType() == MVT::v16i8) {
5582 SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
5584 // Multiply the even 8-bit parts, producing 16-bit sums.
5585 SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
5586 LHS, RHS, DAG, dl, MVT::v8i16);
5587 EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
5589 // Multiply the odd 8-bit parts, producing 16-bit sums.
5590 SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
5591 LHS, RHS, DAG, dl, MVT::v8i16);
5592 OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
5594 // Merge the results together.
5596 for (unsigned i = 0; i != 8; ++i) {
5598 Ops[i*2+1] = 2*i+1+16;
5600 return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
5602 llvm_unreachable("Unknown mul to lower!");
5606 /// LowerOperation - Provide custom lowering hooks for some operations.
5608 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
5609 switch (Op.getOpcode()) {
5610 default: llvm_unreachable("Wasn't expecting to be able to lower this!");
5611 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
5612 case ISD::BlockAddress: return LowerBlockAddress(Op, DAG);
5613 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
5614 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
5615 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
5616 case ISD::SETCC: return LowerSETCC(Op, DAG);
5617 case ISD::INIT_TRAMPOLINE: return LowerINIT_TRAMPOLINE(Op, DAG);
5618 case ISD::ADJUST_TRAMPOLINE: return LowerADJUST_TRAMPOLINE(Op, DAG);
5620 return LowerVASTART(Op, DAG, PPCSubTarget);
5623 return LowerVAARG(Op, DAG, PPCSubTarget);
5625 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
5626 case ISD::DYNAMIC_STACKALLOC:
5627 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
5629 case ISD::EH_SJLJ_SETJMP: return lowerEH_SJLJ_SETJMP(Op, DAG);
5630 case ISD::EH_SJLJ_LONGJMP: return lowerEH_SJLJ_LONGJMP(Op, DAG);
5632 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
5633 case ISD::FP_TO_UINT:
5634 case ISD::FP_TO_SINT: return LowerFP_TO_INT(Op, DAG,
5636 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
5637 case ISD::FLT_ROUNDS_: return LowerFLT_ROUNDS_(Op, DAG);
5639 // Lower 64-bit shifts.
5640 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
5641 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
5642 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
5644 // Vector-related lowering.
5645 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
5646 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
5647 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
5648 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
5649 case ISD::MUL: return LowerMUL(Op, DAG);
5651 // Frame & Return address.
5652 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
5653 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
5657 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
5658 SmallVectorImpl<SDValue>&Results,
5659 SelectionDAG &DAG) const {
5660 const TargetMachine &TM = getTargetMachine();
5661 DebugLoc dl = N->getDebugLoc();
5662 switch (N->getOpcode()) {
5664 llvm_unreachable("Do not know how to custom type legalize this operation!");
5666 if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
5667 || TM.getSubtarget<PPCSubtarget>().isPPC64())
5670 EVT VT = N->getValueType(0);
5672 if (VT == MVT::i64) {
5673 SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
5675 Results.push_back(NewNode);
5676 Results.push_back(NewNode.getValue(1));
5680 case ISD::FP_ROUND_INREG: {
5681 assert(N->getValueType(0) == MVT::ppcf128);
5682 assert(N->getOperand(0).getValueType() == MVT::ppcf128);
5683 SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5684 MVT::f64, N->getOperand(0),
5685 DAG.getIntPtrConstant(0));
5686 SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
5687 MVT::f64, N->getOperand(0),
5688 DAG.getIntPtrConstant(1));
5690 // Add the two halves of the long double in round-to-zero mode.
5691 SDValue FPreg = DAG.getNode(PPCISD::FADDRTZ, dl, MVT::f64, Lo, Hi);
5693 // We know the low half is about to be thrown away, so just use something
5695 Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
5699 case ISD::FP_TO_SINT:
5700 Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
5706 //===----------------------------------------------------------------------===//
5707 // Other Lowering Code
5708 //===----------------------------------------------------------------------===//
5711 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
5712 bool is64bit, unsigned BinOpcode) const {
5713 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5714 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5716 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5717 MachineFunction *F = BB->getParent();
5718 MachineFunction::iterator It = BB;
5721 unsigned dest = MI->getOperand(0).getReg();
5722 unsigned ptrA = MI->getOperand(1).getReg();
5723 unsigned ptrB = MI->getOperand(2).getReg();
5724 unsigned incr = MI->getOperand(3).getReg();
5725 DebugLoc dl = MI->getDebugLoc();
5727 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5728 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5729 F->insert(It, loopMBB);
5730 F->insert(It, exitMBB);
5731 exitMBB->splice(exitMBB->begin(), BB,
5732 llvm::next(MachineBasicBlock::iterator(MI)),
5734 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5736 MachineRegisterInfo &RegInfo = F->getRegInfo();
5737 unsigned TmpReg = (!BinOpcode) ? incr :
5738 RegInfo.createVirtualRegister(
5739 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5740 (const TargetRegisterClass *) &PPC::GPRCRegClass);
5744 // fallthrough --> loopMBB
5745 BB->addSuccessor(loopMBB);
5748 // l[wd]arx dest, ptr
5749 // add r0, dest, incr
5750 // st[wd]cx. r0, ptr
5752 // fallthrough --> exitMBB
5754 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5755 .addReg(ptrA).addReg(ptrB);
5757 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
5758 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5759 .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
5760 BuildMI(BB, dl, TII->get(PPC::BCC))
5761 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5762 BB->addSuccessor(loopMBB);
5763 BB->addSuccessor(exitMBB);
5772 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
5773 MachineBasicBlock *BB,
5774 bool is8bit, // operation
5775 unsigned BinOpcode) const {
5776 // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
5777 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5778 // In 64 bit mode we have to use 64 bits for addresses, even though the
5779 // lwarx/stwcx are 32 bits. With the 32-bit atomics we can use address
5780 // registers without caring whether they're 32 or 64, but here we're
5781 // doing actual arithmetic on the addresses.
5782 bool is64bit = PPCSubTarget.isPPC64();
5783 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
5785 const BasicBlock *LLVM_BB = BB->getBasicBlock();
5786 MachineFunction *F = BB->getParent();
5787 MachineFunction::iterator It = BB;
5790 unsigned dest = MI->getOperand(0).getReg();
5791 unsigned ptrA = MI->getOperand(1).getReg();
5792 unsigned ptrB = MI->getOperand(2).getReg();
5793 unsigned incr = MI->getOperand(3).getReg();
5794 DebugLoc dl = MI->getDebugLoc();
5796 MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
5797 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5798 F->insert(It, loopMBB);
5799 F->insert(It, exitMBB);
5800 exitMBB->splice(exitMBB->begin(), BB,
5801 llvm::next(MachineBasicBlock::iterator(MI)),
5803 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5805 MachineRegisterInfo &RegInfo = F->getRegInfo();
5806 const TargetRegisterClass *RC =
5807 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5808 (const TargetRegisterClass *) &PPC::GPRCRegClass;
5809 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5810 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5811 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5812 unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
5813 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5814 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5815 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5816 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5817 unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
5818 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5819 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5821 unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
5825 // fallthrough --> loopMBB
5826 BB->addSuccessor(loopMBB);
5828 // The 4-byte load must be aligned, while a char or short may be
5829 // anywhere in the word. Hence all this nasty bookkeeping code.
5830 // add ptr1, ptrA, ptrB [copy if ptrA==0]
5831 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5832 // xori shift, shift1, 24 [16]
5833 // rlwinm ptr, ptr1, 0, 0, 29
5834 // slw incr2, incr, shift
5835 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5836 // slw mask, mask2, shift
5838 // lwarx tmpDest, ptr
5839 // add tmp, tmpDest, incr2
5840 // andc tmp2, tmpDest, mask
5841 // and tmp3, tmp, mask
5842 // or tmp4, tmp3, tmp2
5845 // fallthrough --> exitMBB
5846 // srw dest, tmpDest, shift
5847 if (ptrA != ZeroReg) {
5848 Ptr1Reg = RegInfo.createVirtualRegister(RC);
5849 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5850 .addReg(ptrA).addReg(ptrB);
5854 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5855 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5856 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5857 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5859 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5860 .addReg(Ptr1Reg).addImm(0).addImm(61);
5862 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5863 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5864 BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
5865 .addReg(incr).addReg(ShiftReg);
5867 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5869 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5870 BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
5872 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5873 .addReg(Mask2Reg).addReg(ShiftReg);
5876 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5877 .addReg(ZeroReg).addReg(PtrReg);
5879 BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
5880 .addReg(Incr2Reg).addReg(TmpDestReg);
5881 BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
5882 .addReg(TmpDestReg).addReg(MaskReg);
5883 BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
5884 .addReg(TmpReg).addReg(MaskReg);
5885 BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
5886 .addReg(Tmp3Reg).addReg(Tmp2Reg);
5887 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5888 .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
5889 BuildMI(BB, dl, TII->get(PPC::BCC))
5890 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
5891 BB->addSuccessor(loopMBB);
5892 BB->addSuccessor(exitMBB);
5897 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
5902 llvm::MachineBasicBlock*
5903 PPCTargetLowering::emitEHSjLjSetJmp(MachineInstr *MI,
5904 MachineBasicBlock *MBB) const {
5905 DebugLoc DL = MI->getDebugLoc();
5906 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
5908 MachineFunction *MF = MBB->getParent();
5909 MachineRegisterInfo &MRI = MF->getRegInfo();
5911 const BasicBlock *BB = MBB->getBasicBlock();
5912 MachineFunction::iterator I = MBB;
5916 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
5917 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
5919 unsigned DstReg = MI->getOperand(0).getReg();
5920 const TargetRegisterClass *RC = MRI.getRegClass(DstReg);
5921 assert(RC->hasType(MVT::i32) && "Invalid destination!");
5922 unsigned mainDstReg = MRI.createVirtualRegister(RC);
5923 unsigned restoreDstReg = MRI.createVirtualRegister(RC);
5925 MVT PVT = getPointerTy();
5926 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
5927 "Invalid Pointer Size!");
5928 // For v = setjmp(buf), we generate
5931 // SjLjSetup mainMBB
5937 // buf[LabelOffset] = LR
5941 // v = phi(main, restore)
5944 MachineBasicBlock *thisMBB = MBB;
5945 MachineBasicBlock *mainMBB = MF->CreateMachineBasicBlock(BB);
5946 MachineBasicBlock *sinkMBB = MF->CreateMachineBasicBlock(BB);
5947 MF->insert(I, mainMBB);
5948 MF->insert(I, sinkMBB);
5950 MachineInstrBuilder MIB;
5952 // Transfer the remainder of BB and its successor edges to sinkMBB.
5953 sinkMBB->splice(sinkMBB->begin(), MBB,
5954 llvm::next(MachineBasicBlock::iterator(MI)), MBB->end());
5955 sinkMBB->transferSuccessorsAndUpdatePHIs(MBB);
5957 // Note that the structure of the jmp_buf used here is not compatible
5958 // with that used by libc, and is not designed to be. Specifically, it
5959 // stores only those 'reserved' registers that LLVM does not otherwise
5960 // understand how to spill. Also, by convention, by the time this
5961 // intrinsic is called, Clang has already stored the frame address in the
5962 // first slot of the buffer and stack address in the third. Following the
5963 // X86 target code, we'll store the jump address in the second slot. We also
5964 // need to save the TOC pointer (R2) to handle jumps between shared
5965 // libraries, and that will be stored in the fourth slot. The thread
5966 // identifier (R13) is not affected.
5969 const int64_t LabelOffset = 1 * PVT.getStoreSize();
5970 const int64_t TOCOffset = 3 * PVT.getStoreSize();
5972 // Prepare IP either in reg.
5973 const TargetRegisterClass *PtrRC = getRegClassFor(PVT);
5974 unsigned LabelReg = MRI.createVirtualRegister(PtrRC);
5975 unsigned BufReg = MI->getOperand(1).getReg();
5977 if (PPCSubTarget.isPPC64() && PPCSubTarget.isSVR4ABI()) {
5978 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::STD))
5980 .addImm(TOCOffset / 4)
5983 MIB.setMemRefs(MMOBegin, MMOEnd);
5987 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::BCL)).addMBB(mainMBB);
5988 MIB.addRegMask(PPCRegInfo->getNoPreservedMask());
5990 BuildMI(*thisMBB, MI, DL, TII->get(PPC::LI), restoreDstReg).addImm(1);
5992 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::EH_SjLj_Setup))
5994 MIB = BuildMI(*thisMBB, MI, DL, TII->get(PPC::B)).addMBB(sinkMBB);
5996 thisMBB->addSuccessor(mainMBB, /* weight */ 0);
5997 thisMBB->addSuccessor(sinkMBB, /* weight */ 1);
6001 MIB = BuildMI(mainMBB, DL,
6002 TII->get(PPCSubTarget.isPPC64() ? PPC::MFLR8 : PPC::MFLR), LabelReg);
6005 if (PPCSubTarget.isPPC64()) {
6006 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STD))
6008 .addImm(LabelOffset / 4)
6011 MIB = BuildMI(mainMBB, DL, TII->get(PPC::STW))
6013 .addImm(LabelOffset)
6017 MIB.setMemRefs(MMOBegin, MMOEnd);
6019 BuildMI(mainMBB, DL, TII->get(PPC::LI), mainDstReg).addImm(0);
6020 mainMBB->addSuccessor(sinkMBB);
6023 BuildMI(*sinkMBB, sinkMBB->begin(), DL,
6024 TII->get(PPC::PHI), DstReg)
6025 .addReg(mainDstReg).addMBB(mainMBB)
6026 .addReg(restoreDstReg).addMBB(thisMBB);
6028 MI->eraseFromParent();
6033 PPCTargetLowering::emitEHSjLjLongJmp(MachineInstr *MI,
6034 MachineBasicBlock *MBB) const {
6035 DebugLoc DL = MI->getDebugLoc();
6036 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6038 MachineFunction *MF = MBB->getParent();
6039 MachineRegisterInfo &MRI = MF->getRegInfo();
6042 MachineInstr::mmo_iterator MMOBegin = MI->memoperands_begin();
6043 MachineInstr::mmo_iterator MMOEnd = MI->memoperands_end();
6045 MVT PVT = getPointerTy();
6046 assert((PVT == MVT::i64 || PVT == MVT::i32) &&
6047 "Invalid Pointer Size!");
6049 const TargetRegisterClass *RC =
6050 (PVT == MVT::i64) ? &PPC::G8RCRegClass : &PPC::GPRCRegClass;
6051 unsigned Tmp = MRI.createVirtualRegister(RC);
6052 // Since FP is only updated here but NOT referenced, it's treated as GPR.
6053 unsigned FP = (PVT == MVT::i64) ? PPC::X31 : PPC::R31;
6054 unsigned SP = (PVT == MVT::i64) ? PPC::X1 : PPC::R1;
6056 MachineInstrBuilder MIB;
6058 const int64_t LabelOffset = 1 * PVT.getStoreSize();
6059 const int64_t SPOffset = 2 * PVT.getStoreSize();
6060 const int64_t TOCOffset = 3 * PVT.getStoreSize();
6062 unsigned BufReg = MI->getOperand(0).getReg();
6064 // Reload FP (the jumped-to function may not have had a
6065 // frame pointer, and if so, then its r31 will be restored
6067 if (PVT == MVT::i64) {
6068 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), FP)
6072 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), FP)
6076 MIB.setMemRefs(MMOBegin, MMOEnd);
6079 if (PVT == MVT::i64) {
6080 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), Tmp)
6081 .addImm(LabelOffset / 4)
6084 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), Tmp)
6085 .addImm(LabelOffset)
6088 MIB.setMemRefs(MMOBegin, MMOEnd);
6091 if (PVT == MVT::i64) {
6092 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), SP)
6093 .addImm(SPOffset / 4)
6096 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LWZ), SP)
6100 MIB.setMemRefs(MMOBegin, MMOEnd);
6102 // FIXME: When we also support base pointers, that register must also be
6106 if (PVT == MVT::i64 && PPCSubTarget.isSVR4ABI()) {
6107 MIB = BuildMI(*MBB, MI, DL, TII->get(PPC::LD), PPC::X2)
6108 .addImm(TOCOffset / 4)
6111 MIB.setMemRefs(MMOBegin, MMOEnd);
6115 BuildMI(*MBB, MI, DL,
6116 TII->get(PVT == MVT::i64 ? PPC::MTCTR8 : PPC::MTCTR)).addReg(Tmp);
6117 BuildMI(*MBB, MI, DL, TII->get(PVT == MVT::i64 ? PPC::BCTR8 : PPC::BCTR));
6119 MI->eraseFromParent();
6124 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
6125 MachineBasicBlock *BB) const {
6126 if (MI->getOpcode() == PPC::EH_SjLj_SetJmp32 ||
6127 MI->getOpcode() == PPC::EH_SjLj_SetJmp64) {
6128 return emitEHSjLjSetJmp(MI, BB);
6129 } else if (MI->getOpcode() == PPC::EH_SjLj_LongJmp32 ||
6130 MI->getOpcode() == PPC::EH_SjLj_LongJmp64) {
6131 return emitEHSjLjLongJmp(MI, BB);
6134 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
6136 // To "insert" these instructions we actually have to insert their
6137 // control-flow patterns.
6138 const BasicBlock *LLVM_BB = BB->getBasicBlock();
6139 MachineFunction::iterator It = BB;
6142 MachineFunction *F = BB->getParent();
6144 if (PPCSubTarget.hasISEL() && (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6145 MI->getOpcode() == PPC::SELECT_CC_I8)) {
6146 unsigned OpCode = MI->getOpcode() == PPC::SELECT_CC_I8 ?
6147 PPC::ISEL8 : PPC::ISEL;
6148 unsigned SelectPred = MI->getOperand(4).getImm();
6149 DebugLoc dl = MI->getDebugLoc();
6153 switch (SelectPred) {
6154 default: llvm_unreachable("invalid predicate for isel");
6155 case PPC::PRED_EQ: SubIdx = PPC::sub_eq; SwapOps = false; break;
6156 case PPC::PRED_NE: SubIdx = PPC::sub_eq; SwapOps = true; break;
6157 case PPC::PRED_LT: SubIdx = PPC::sub_lt; SwapOps = false; break;
6158 case PPC::PRED_GE: SubIdx = PPC::sub_lt; SwapOps = true; break;
6159 case PPC::PRED_GT: SubIdx = PPC::sub_gt; SwapOps = false; break;
6160 case PPC::PRED_LE: SubIdx = PPC::sub_gt; SwapOps = true; break;
6161 case PPC::PRED_UN: SubIdx = PPC::sub_un; SwapOps = false; break;
6162 case PPC::PRED_NU: SubIdx = PPC::sub_un; SwapOps = true; break;
6165 BuildMI(*BB, MI, dl, TII->get(OpCode), MI->getOperand(0).getReg())
6166 .addReg(MI->getOperand(SwapOps? 3 : 2).getReg())
6167 .addReg(MI->getOperand(SwapOps? 2 : 3).getReg())
6168 .addReg(MI->getOperand(1).getReg(), 0, SubIdx);
6169 } else if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
6170 MI->getOpcode() == PPC::SELECT_CC_I8 ||
6171 MI->getOpcode() == PPC::SELECT_CC_F4 ||
6172 MI->getOpcode() == PPC::SELECT_CC_F8 ||
6173 MI->getOpcode() == PPC::SELECT_CC_VRRC) {
6176 // The incoming instruction knows the destination vreg to set, the
6177 // condition code register to branch on, the true/false values to
6178 // select between, and a branch opcode to use.
6183 // cmpTY ccX, r1, r2
6185 // fallthrough --> copy0MBB
6186 MachineBasicBlock *thisMBB = BB;
6187 MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
6188 MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
6189 unsigned SelectPred = MI->getOperand(4).getImm();
6190 DebugLoc dl = MI->getDebugLoc();
6191 F->insert(It, copy0MBB);
6192 F->insert(It, sinkMBB);
6194 // Transfer the remainder of BB and its successor edges to sinkMBB.
6195 sinkMBB->splice(sinkMBB->begin(), BB,
6196 llvm::next(MachineBasicBlock::iterator(MI)),
6198 sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
6200 // Next, add the true and fallthrough blocks as its successors.
6201 BB->addSuccessor(copy0MBB);
6202 BB->addSuccessor(sinkMBB);
6204 BuildMI(BB, dl, TII->get(PPC::BCC))
6205 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
6208 // %FalseValue = ...
6209 // # fallthrough to sinkMBB
6212 // Update machine-CFG edges
6213 BB->addSuccessor(sinkMBB);
6216 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
6219 BuildMI(*BB, BB->begin(), dl,
6220 TII->get(PPC::PHI), MI->getOperand(0).getReg())
6221 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
6222 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
6224 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
6225 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
6226 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
6227 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
6228 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
6229 BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
6230 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
6231 BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
6233 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
6234 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
6235 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
6236 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
6237 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
6238 BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
6239 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
6240 BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
6242 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
6243 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
6244 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
6245 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
6246 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
6247 BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
6248 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
6249 BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
6251 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
6252 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
6253 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
6254 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
6255 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
6256 BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
6257 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
6258 BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
6260 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
6261 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
6262 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
6263 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
6264 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
6265 BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
6266 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
6267 BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
6269 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
6270 BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
6271 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
6272 BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
6273 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
6274 BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
6275 else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
6276 BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
6278 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
6279 BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
6280 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
6281 BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
6282 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
6283 BB = EmitAtomicBinary(MI, BB, false, 0);
6284 else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
6285 BB = EmitAtomicBinary(MI, BB, true, 0);
6287 else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
6288 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
6289 bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
6291 unsigned dest = MI->getOperand(0).getReg();
6292 unsigned ptrA = MI->getOperand(1).getReg();
6293 unsigned ptrB = MI->getOperand(2).getReg();
6294 unsigned oldval = MI->getOperand(3).getReg();
6295 unsigned newval = MI->getOperand(4).getReg();
6296 DebugLoc dl = MI->getDebugLoc();
6298 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6299 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6300 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6301 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6302 F->insert(It, loop1MBB);
6303 F->insert(It, loop2MBB);
6304 F->insert(It, midMBB);
6305 F->insert(It, exitMBB);
6306 exitMBB->splice(exitMBB->begin(), BB,
6307 llvm::next(MachineBasicBlock::iterator(MI)),
6309 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6313 // fallthrough --> loopMBB
6314 BB->addSuccessor(loop1MBB);
6317 // l[wd]arx dest, ptr
6318 // cmp[wd] dest, oldval
6321 // st[wd]cx. newval, ptr
6325 // st[wd]cx. dest, ptr
6328 BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
6329 .addReg(ptrA).addReg(ptrB);
6330 BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
6331 .addReg(oldval).addReg(dest);
6332 BuildMI(BB, dl, TII->get(PPC::BCC))
6333 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6334 BB->addSuccessor(loop2MBB);
6335 BB->addSuccessor(midMBB);
6338 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6339 .addReg(newval).addReg(ptrA).addReg(ptrB);
6340 BuildMI(BB, dl, TII->get(PPC::BCC))
6341 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6342 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6343 BB->addSuccessor(loop1MBB);
6344 BB->addSuccessor(exitMBB);
6347 BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
6348 .addReg(dest).addReg(ptrA).addReg(ptrB);
6349 BB->addSuccessor(exitMBB);
6354 } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
6355 MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
6356 // We must use 64-bit registers for addresses when targeting 64-bit,
6357 // since we're actually doing arithmetic on them. Other registers
6359 bool is64bit = PPCSubTarget.isPPC64();
6360 bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
6362 unsigned dest = MI->getOperand(0).getReg();
6363 unsigned ptrA = MI->getOperand(1).getReg();
6364 unsigned ptrB = MI->getOperand(2).getReg();
6365 unsigned oldval = MI->getOperand(3).getReg();
6366 unsigned newval = MI->getOperand(4).getReg();
6367 DebugLoc dl = MI->getDebugLoc();
6369 MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
6370 MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
6371 MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
6372 MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
6373 F->insert(It, loop1MBB);
6374 F->insert(It, loop2MBB);
6375 F->insert(It, midMBB);
6376 F->insert(It, exitMBB);
6377 exitMBB->splice(exitMBB->begin(), BB,
6378 llvm::next(MachineBasicBlock::iterator(MI)),
6380 exitMBB->transferSuccessorsAndUpdatePHIs(BB);
6382 MachineRegisterInfo &RegInfo = F->getRegInfo();
6383 const TargetRegisterClass *RC =
6384 is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
6385 (const TargetRegisterClass *) &PPC::GPRCRegClass;
6386 unsigned PtrReg = RegInfo.createVirtualRegister(RC);
6387 unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
6388 unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
6389 unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
6390 unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
6391 unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
6392 unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
6393 unsigned MaskReg = RegInfo.createVirtualRegister(RC);
6394 unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
6395 unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
6396 unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
6397 unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
6398 unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
6400 unsigned TmpReg = RegInfo.createVirtualRegister(RC);
6401 unsigned ZeroReg = is64bit ? PPC::ZERO8 : PPC::ZERO;
6404 // fallthrough --> loopMBB
6405 BB->addSuccessor(loop1MBB);
6407 // The 4-byte load must be aligned, while a char or short may be
6408 // anywhere in the word. Hence all this nasty bookkeeping code.
6409 // add ptr1, ptrA, ptrB [copy if ptrA==0]
6410 // rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
6411 // xori shift, shift1, 24 [16]
6412 // rlwinm ptr, ptr1, 0, 0, 29
6413 // slw newval2, newval, shift
6414 // slw oldval2, oldval,shift
6415 // li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
6416 // slw mask, mask2, shift
6417 // and newval3, newval2, mask
6418 // and oldval3, oldval2, mask
6420 // lwarx tmpDest, ptr
6421 // and tmp, tmpDest, mask
6422 // cmpw tmp, oldval3
6425 // andc tmp2, tmpDest, mask
6426 // or tmp4, tmp2, newval3
6431 // stwcx. tmpDest, ptr
6433 // srw dest, tmpDest, shift
6434 if (ptrA != ZeroReg) {
6435 Ptr1Reg = RegInfo.createVirtualRegister(RC);
6436 BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
6437 .addReg(ptrA).addReg(ptrB);
6441 BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
6442 .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
6443 BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
6444 .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
6446 BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
6447 .addReg(Ptr1Reg).addImm(0).addImm(61);
6449 BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
6450 .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
6451 BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
6452 .addReg(newval).addReg(ShiftReg);
6453 BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
6454 .addReg(oldval).addReg(ShiftReg);
6456 BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
6458 BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
6459 BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
6460 .addReg(Mask3Reg).addImm(65535);
6462 BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
6463 .addReg(Mask2Reg).addReg(ShiftReg);
6464 BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
6465 .addReg(NewVal2Reg).addReg(MaskReg);
6466 BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
6467 .addReg(OldVal2Reg).addReg(MaskReg);
6470 BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
6471 .addReg(ZeroReg).addReg(PtrReg);
6472 BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
6473 .addReg(TmpDestReg).addReg(MaskReg);
6474 BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
6475 .addReg(TmpReg).addReg(OldVal3Reg);
6476 BuildMI(BB, dl, TII->get(PPC::BCC))
6477 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
6478 BB->addSuccessor(loop2MBB);
6479 BB->addSuccessor(midMBB);
6482 BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
6483 .addReg(TmpDestReg).addReg(MaskReg);
6484 BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
6485 .addReg(Tmp2Reg).addReg(NewVal3Reg);
6486 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
6487 .addReg(ZeroReg).addReg(PtrReg);
6488 BuildMI(BB, dl, TII->get(PPC::BCC))
6489 .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
6490 BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
6491 BB->addSuccessor(loop1MBB);
6492 BB->addSuccessor(exitMBB);
6495 BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
6496 .addReg(ZeroReg).addReg(PtrReg);
6497 BB->addSuccessor(exitMBB);
6502 BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
6504 } else if (MI->getOpcode() == PPC::FADDrtz) {
6505 // This pseudo performs an FADD with rounding mode temporarily forced
6506 // to round-to-zero. We emit this via custom inserter since the FPSCR
6507 // is not modeled at the SelectionDAG level.
6508 unsigned Dest = MI->getOperand(0).getReg();
6509 unsigned Src1 = MI->getOperand(1).getReg();
6510 unsigned Src2 = MI->getOperand(2).getReg();
6511 DebugLoc dl = MI->getDebugLoc();
6513 MachineRegisterInfo &RegInfo = F->getRegInfo();
6514 unsigned MFFSReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
6516 // Save FPSCR value.
6517 BuildMI(*BB, MI, dl, TII->get(PPC::MFFS), MFFSReg);
6519 // Set rounding mode to round-to-zero.
6520 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB1)).addImm(31);
6521 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSB0)).addImm(30);
6523 // Perform addition.
6524 BuildMI(*BB, MI, dl, TII->get(PPC::FADD), Dest).addReg(Src1).addReg(Src2);
6526 // Restore FPSCR value.
6527 BuildMI(*BB, MI, dl, TII->get(PPC::MTFSF)).addImm(1).addReg(MFFSReg);
6529 llvm_unreachable("Unexpected instr type to insert");
6532 MI->eraseFromParent(); // The pseudo instruction is gone now.
6536 //===----------------------------------------------------------------------===//
6537 // Target Optimization Hooks
6538 //===----------------------------------------------------------------------===//
6540 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
6541 DAGCombinerInfo &DCI) const {
6542 const TargetMachine &TM = getTargetMachine();
6543 SelectionDAG &DAG = DCI.DAG;
6544 DebugLoc dl = N->getDebugLoc();
6545 switch (N->getOpcode()) {
6548 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6549 if (C->isNullValue()) // 0 << V -> 0.
6550 return N->getOperand(0);
6554 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6555 if (C->isNullValue()) // 0 >>u V -> 0.
6556 return N->getOperand(0);
6560 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
6561 if (C->isNullValue() || // 0 >>s V -> 0.
6562 C->isAllOnesValue()) // -1 >>s V -> -1.
6563 return N->getOperand(0);
6567 case ISD::SINT_TO_FP:
6568 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
6569 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
6570 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
6571 // We allow the src/dst to be either f32/f64, but the intermediate
6572 // type must be i64.
6573 if (N->getOperand(0).getValueType() == MVT::i64 &&
6574 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
6575 SDValue Val = N->getOperand(0).getOperand(0);
6576 if (Val.getValueType() == MVT::f32) {
6577 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6578 DCI.AddToWorklist(Val.getNode());
6581 Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
6582 DCI.AddToWorklist(Val.getNode());
6583 Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
6584 DCI.AddToWorklist(Val.getNode());
6585 if (N->getValueType(0) == MVT::f32) {
6586 Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
6587 DAG.getIntPtrConstant(0));
6588 DCI.AddToWorklist(Val.getNode());
6591 } else if (N->getOperand(0).getValueType() == MVT::i32) {
6592 // If the intermediate type is i32, we can avoid the load/store here
6599 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
6600 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
6601 !cast<StoreSDNode>(N)->isTruncatingStore() &&
6602 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
6603 N->getOperand(1).getValueType() == MVT::i32 &&
6604 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
6605 SDValue Val = N->getOperand(1).getOperand(0);
6606 if (Val.getValueType() == MVT::f32) {
6607 Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
6608 DCI.AddToWorklist(Val.getNode());
6610 Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
6611 DCI.AddToWorklist(Val.getNode());
6613 Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
6614 N->getOperand(2), N->getOperand(3));
6615 DCI.AddToWorklist(Val.getNode());
6619 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
6620 if (cast<StoreSDNode>(N)->isUnindexed() &&
6621 N->getOperand(1).getOpcode() == ISD::BSWAP &&
6622 N->getOperand(1).getNode()->hasOneUse() &&
6623 (N->getOperand(1).getValueType() == MVT::i32 ||
6624 N->getOperand(1).getValueType() == MVT::i16 ||
6625 (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
6626 TM.getSubtarget<PPCSubtarget>().isPPC64() &&
6627 N->getOperand(1).getValueType() == MVT::i64))) {
6628 SDValue BSwapOp = N->getOperand(1).getOperand(0);
6629 // Do an any-extend to 32-bits if this is a half-word input.
6630 if (BSwapOp.getValueType() == MVT::i16)
6631 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
6634 N->getOperand(0), BSwapOp, N->getOperand(2),
6635 DAG.getValueType(N->getOperand(1).getValueType())
6638 DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
6639 Ops, array_lengthof(Ops),
6640 cast<StoreSDNode>(N)->getMemoryVT(),
6641 cast<StoreSDNode>(N)->getMemOperand());
6645 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
6646 if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
6647 N->getOperand(0).hasOneUse() &&
6648 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16 ||
6649 (TM.getSubtarget<PPCSubtarget>().hasLDBRX() &&
6650 TM.getSubtarget<PPCSubtarget>().isPPC64() &&
6651 N->getValueType(0) == MVT::i64))) {
6652 SDValue Load = N->getOperand(0);
6653 LoadSDNode *LD = cast<LoadSDNode>(Load);
6654 // Create the byte-swapping load.
6656 LD->getChain(), // Chain
6657 LD->getBasePtr(), // Ptr
6658 DAG.getValueType(N->getValueType(0)) // VT
6661 DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
6662 DAG.getVTList(N->getValueType(0) == MVT::i64 ?
6663 MVT::i64 : MVT::i32, MVT::Other),
6664 Ops, 3, LD->getMemoryVT(), LD->getMemOperand());
6666 // If this is an i16 load, insert the truncate.
6667 SDValue ResVal = BSLoad;
6668 if (N->getValueType(0) == MVT::i16)
6669 ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
6671 // First, combine the bswap away. This makes the value produced by the
6673 DCI.CombineTo(N, ResVal);
6675 // Next, combine the load away, we give it a bogus result value but a real
6676 // chain result. The result value is dead because the bswap is dead.
6677 DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
6679 // Return N so it doesn't get rechecked!
6680 return SDValue(N, 0);
6684 case PPCISD::VCMP: {
6685 // If a VCMPo node already exists with exactly the same operands as this
6686 // node, use its result instead of this node (VCMPo computes both a CR6 and
6687 // a normal output).
6689 if (!N->getOperand(0).hasOneUse() &&
6690 !N->getOperand(1).hasOneUse() &&
6691 !N->getOperand(2).hasOneUse()) {
6693 // Scan all of the users of the LHS, looking for VCMPo's that match.
6694 SDNode *VCMPoNode = 0;
6696 SDNode *LHSN = N->getOperand(0).getNode();
6697 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
6699 if (UI->getOpcode() == PPCISD::VCMPo &&
6700 UI->getOperand(1) == N->getOperand(1) &&
6701 UI->getOperand(2) == N->getOperand(2) &&
6702 UI->getOperand(0) == N->getOperand(0)) {
6707 // If there is no VCMPo node, or if the flag value has a single use, don't
6709 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
6712 // Look at the (necessarily single) use of the flag value. If it has a
6713 // chain, this transformation is more complex. Note that multiple things
6714 // could use the value result, which we should ignore.
6715 SDNode *FlagUser = 0;
6716 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
6717 FlagUser == 0; ++UI) {
6718 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
6720 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
6721 if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
6728 // If the user is a MFCR instruction, we know this is safe. Otherwise we
6729 // give up for right now.
6730 if (FlagUser->getOpcode() == PPCISD::MFCR)
6731 return SDValue(VCMPoNode, 0);
6736 // If this is a branch on an altivec predicate comparison, lower this so
6737 // that we don't have to do a MFCR: instead, branch directly on CR6. This
6738 // lowering is done pre-legalize, because the legalizer lowers the predicate
6739 // compare down to code that is difficult to reassemble.
6740 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
6741 SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
6745 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
6746 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
6747 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
6748 assert(isDot && "Can't compare against a vector result!");
6750 // If this is a comparison against something other than 0/1, then we know
6751 // that the condition is never/always true.
6752 unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
6753 if (Val != 0 && Val != 1) {
6754 if (CC == ISD::SETEQ) // Cond never true, remove branch.
6755 return N->getOperand(0);
6756 // Always !=, turn it into an unconditional branch.
6757 return DAG.getNode(ISD::BR, dl, MVT::Other,
6758 N->getOperand(0), N->getOperand(4));
6761 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
6763 // Create the PPCISD altivec 'dot' comparison node.
6765 LHS.getOperand(2), // LHS of compare
6766 LHS.getOperand(3), // RHS of compare
6767 DAG.getConstant(CompareOpc, MVT::i32)
6769 EVT VTs[] = { LHS.getOperand(2).getValueType(), MVT::Glue };
6770 SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
6772 // Unpack the result based on how the target uses it.
6773 PPC::Predicate CompOpc;
6774 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
6775 default: // Can't happen, don't crash on invalid number though.
6776 case 0: // Branch on the value of the EQ bit of CR6.
6777 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
6779 case 1: // Branch on the inverted value of the EQ bit of CR6.
6780 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
6782 case 2: // Branch on the value of the LT bit of CR6.
6783 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
6785 case 3: // Branch on the inverted value of the LT bit of CR6.
6786 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
6790 return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
6791 DAG.getConstant(CompOpc, MVT::i32),
6792 DAG.getRegister(PPC::CR6, MVT::i32),
6793 N->getOperand(4), CompNode.getValue(1));
6802 //===----------------------------------------------------------------------===//
6803 // Inline Assembly Support
6804 //===----------------------------------------------------------------------===//
6806 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
6809 const SelectionDAG &DAG,
6810 unsigned Depth) const {
6811 KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
6812 switch (Op.getOpcode()) {
6814 case PPCISD::LBRX: {
6815 // lhbrx is known to have the top bits cleared out.
6816 if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
6817 KnownZero = 0xFFFF0000;
6820 case ISD::INTRINSIC_WO_CHAIN: {
6821 switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
6823 case Intrinsic::ppc_altivec_vcmpbfp_p:
6824 case Intrinsic::ppc_altivec_vcmpeqfp_p:
6825 case Intrinsic::ppc_altivec_vcmpequb_p:
6826 case Intrinsic::ppc_altivec_vcmpequh_p:
6827 case Intrinsic::ppc_altivec_vcmpequw_p:
6828 case Intrinsic::ppc_altivec_vcmpgefp_p:
6829 case Intrinsic::ppc_altivec_vcmpgtfp_p:
6830 case Intrinsic::ppc_altivec_vcmpgtsb_p:
6831 case Intrinsic::ppc_altivec_vcmpgtsh_p:
6832 case Intrinsic::ppc_altivec_vcmpgtsw_p:
6833 case Intrinsic::ppc_altivec_vcmpgtub_p:
6834 case Intrinsic::ppc_altivec_vcmpgtuh_p:
6835 case Intrinsic::ppc_altivec_vcmpgtuw_p:
6836 KnownZero = ~1U; // All bits but the low one are known to be zero.
6844 /// getConstraintType - Given a constraint, return the type of
6845 /// constraint it is for this target.
6846 PPCTargetLowering::ConstraintType
6847 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
6848 if (Constraint.size() == 1) {
6849 switch (Constraint[0]) {
6856 return C_RegisterClass;
6858 // FIXME: While Z does indicate a memory constraint, it specifically
6859 // indicates an r+r address (used in conjunction with the 'y' modifier
6860 // in the replacement string). Currently, we're forcing the base
6861 // register to be r0 in the asm printer (which is interpreted as zero)
6862 // and forming the complete address in the second register. This is
6867 return TargetLowering::getConstraintType(Constraint);
6870 /// Examine constraint type and operand type and determine a weight value.
6871 /// This object must already have been set up with the operand type
6872 /// and the current alternative constraint selected.
6873 TargetLowering::ConstraintWeight
6874 PPCTargetLowering::getSingleConstraintMatchWeight(
6875 AsmOperandInfo &info, const char *constraint) const {
6876 ConstraintWeight weight = CW_Invalid;
6877 Value *CallOperandVal = info.CallOperandVal;
6878 // If we don't have a value, we can't do a match,
6879 // but allow it at the lowest weight.
6880 if (CallOperandVal == NULL)
6882 Type *type = CallOperandVal->getType();
6883 // Look at the constraint type.
6884 switch (*constraint) {
6886 weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
6889 if (type->isIntegerTy())
6890 weight = CW_Register;
6893 if (type->isFloatTy())
6894 weight = CW_Register;
6897 if (type->isDoubleTy())
6898 weight = CW_Register;
6901 if (type->isVectorTy())
6902 weight = CW_Register;
6905 weight = CW_Register;
6914 std::pair<unsigned, const TargetRegisterClass*>
6915 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
6917 if (Constraint.size() == 1) {
6918 // GCC RS6000 Constraint Letters
6919 switch (Constraint[0]) {
6921 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
6922 return std::make_pair(0U, &PPC::G8RC_NOX0RegClass);
6923 return std::make_pair(0U, &PPC::GPRC_NOR0RegClass);
6925 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
6926 return std::make_pair(0U, &PPC::G8RCRegClass);
6927 return std::make_pair(0U, &PPC::GPRCRegClass);
6929 if (VT == MVT::f32 || VT == MVT::i32)
6930 return std::make_pair(0U, &PPC::F4RCRegClass);
6931 if (VT == MVT::f64 || VT == MVT::i64)
6932 return std::make_pair(0U, &PPC::F8RCRegClass);
6935 return std::make_pair(0U, &PPC::VRRCRegClass);
6937 return std::make_pair(0U, &PPC::CRRCRegClass);
6941 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
6945 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
6946 /// vector. If it is invalid, don't add anything to Ops.
6947 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
6948 std::string &Constraint,
6949 std::vector<SDValue>&Ops,
6950 SelectionDAG &DAG) const {
6951 SDValue Result(0,0);
6953 // Only support length 1 constraints.
6954 if (Constraint.length() > 1) return;
6956 char Letter = Constraint[0];
6967 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
6968 if (!CST) return; // Must be an immediate to match.
6969 unsigned Value = CST->getZExtValue();
6971 default: llvm_unreachable("Unknown constraint letter!");
6972 case 'I': // "I" is a signed 16-bit constant.
6973 if ((short)Value == (int)Value)
6974 Result = DAG.getTargetConstant(Value, Op.getValueType());
6976 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
6977 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
6978 if ((short)Value == 0)
6979 Result = DAG.getTargetConstant(Value, Op.getValueType());
6981 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
6982 if ((Value >> 16) == 0)
6983 Result = DAG.getTargetConstant(Value, Op.getValueType());
6985 case 'M': // "M" is a constant that is greater than 31.
6987 Result = DAG.getTargetConstant(Value, Op.getValueType());
6989 case 'N': // "N" is a positive constant that is an exact power of two.
6990 if ((int)Value > 0 && isPowerOf2_32(Value))
6991 Result = DAG.getTargetConstant(Value, Op.getValueType());
6993 case 'O': // "O" is the constant zero.
6995 Result = DAG.getTargetConstant(Value, Op.getValueType());
6997 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
6998 if ((short)-Value == (int)-Value)
6999 Result = DAG.getTargetConstant(Value, Op.getValueType());
7006 if (Result.getNode()) {
7007 Ops.push_back(Result);
7011 // Handle standard constraint letters.
7012 TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
7015 // isLegalAddressingMode - Return true if the addressing mode represented
7016 // by AM is legal for this target, for a load/store of the specified type.
7017 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
7019 // FIXME: PPC does not allow r+i addressing modes for vectors!
7021 // PPC allows a sign-extended 16-bit immediate field.
7022 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
7025 // No global is ever allowed as a base.
7029 // PPC only support r+r,
7031 case 0: // "r+i" or just "i", depending on HasBaseReg.
7034 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
7036 // Otherwise we have r+r or r+i.
7039 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
7041 // Allow 2*r as r+r.
7044 // No other scales are supported.
7051 /// isLegalAddressImmediate - Return true if the integer value can be used
7052 /// as the offset of the target addressing mode for load / store of the
7054 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
7055 // PPC allows a sign-extended 16-bit immediate field.
7056 return (V > -(1 << 16) && V < (1 << 16)-1);
7059 bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
7063 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
7064 SelectionDAG &DAG) const {
7065 MachineFunction &MF = DAG.getMachineFunction();
7066 MachineFrameInfo *MFI = MF.getFrameInfo();
7067 MFI->setReturnAddressIsTaken(true);
7069 DebugLoc dl = Op.getDebugLoc();
7070 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7072 // Make sure the function does not optimize away the store of the RA to
7074 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
7075 FuncInfo->setLRStoreRequired();
7076 bool isPPC64 = PPCSubTarget.isPPC64();
7077 bool isDarwinABI = PPCSubTarget.isDarwinABI();
7080 SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
7083 DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
7084 isPPC64? MVT::i64 : MVT::i32);
7085 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7086 DAG.getNode(ISD::ADD, dl, getPointerTy(),
7088 MachinePointerInfo(), false, false, false, 0);
7091 // Just load the return address off the stack.
7092 SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
7093 return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
7094 RetAddrFI, MachinePointerInfo(), false, false, false, 0);
7097 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
7098 SelectionDAG &DAG) const {
7099 DebugLoc dl = Op.getDebugLoc();
7100 unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
7102 EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
7103 bool isPPC64 = PtrVT == MVT::i64;
7105 MachineFunction &MF = DAG.getMachineFunction();
7106 MachineFrameInfo *MFI = MF.getFrameInfo();
7107 MFI->setFrameAddressIsTaken(true);
7109 // Naked functions never have a frame pointer, and so we use r1. For all
7110 // other functions, this decision must be delayed until during PEI.
7112 if (MF.getFunction()->getAttributes().hasAttribute(
7113 AttributeSet::FunctionIndex, Attribute::Naked))
7114 FrameReg = isPPC64 ? PPC::X1 : PPC::R1;
7116 FrameReg = isPPC64 ? PPC::FP8 : PPC::FP;
7118 SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
7121 FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
7122 FrameAddr, MachinePointerInfo(), false, false,
7128 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
7129 // The PowerPC target isn't yet aware of offsets.
7133 /// getOptimalMemOpType - Returns the target specific optimal type for load
7134 /// and store operations as a result of memset, memcpy, and memmove
7135 /// lowering. If DstAlign is zero that means it's safe to destination
7136 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
7137 /// means there isn't a need to check it against alignment requirement,
7138 /// probably because the source does not need to be loaded. If 'IsMemset' is
7139 /// true, that means it's expanding a memset. If 'ZeroMemset' is true, that
7140 /// means it's a memset of zero. 'MemcpyStrSrc' indicates whether the memcpy
7141 /// source is constant so it does not need to be loaded.
7142 /// It returns EVT::Other if the type should be determined using generic
7143 /// target-independent logic.
7144 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
7145 unsigned DstAlign, unsigned SrcAlign,
7146 bool IsMemset, bool ZeroMemset,
7148 MachineFunction &MF) const {
7149 if (this->PPCSubTarget.isPPC64()) {
7156 bool PPCTargetLowering::allowsUnalignedMemoryAccesses(EVT VT,
7158 if (DisablePPCUnaligned)
7161 // PowerPC supports unaligned memory access for simple non-vector types.
7162 // Although accessing unaligned addresses is not as efficient as accessing
7163 // aligned addresses, it is generally more efficient than manual expansion,
7164 // and generally only traps for software emulation when crossing page
7170 if (VT.getSimpleVT().isVector())
7173 if (VT == MVT::ppcf128)
7182 /// isFMAFasterThanMulAndAdd - Return true if an FMA operation is faster than
7183 /// a pair of mul and add instructions. fmuladd intrinsics will be expanded to
7184 /// FMAs when this method returns true (and FMAs are legal), otherwise fmuladd
7185 /// is expanded to mul + add.
7186 bool PPCTargetLowering::isFMAFasterThanMulAndAdd(EVT VT) const {
7190 switch (VT.getSimpleVT().SimpleTy) {
7202 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
7204 return TargetLowering::getSchedulingPreference(N);