Add an MF argument to TRI::getPointerRegClass() and TII::getRegClass().
[oota-llvm.git] / lib / Target / PowerPC / PPCISelLowering.cpp
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPerfectShuffle.h"
17 #include "PPCTargetMachine.h"
18 #include "MCTargetDesc/PPCPredicates.h"
19 #include "llvm/CallingConv.h"
20 #include "llvm/Constants.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/Function.h"
23 #include "llvm/Intrinsics.h"
24 #include "llvm/ADT/STLExtras.h"
25 #include "llvm/CodeGen/CallingConvLower.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineInstrBuilder.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/SelectionDAG.h"
31 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetOptions.h"
37 using namespace llvm;
38
39 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
40                                      CCValAssign::LocInfo &LocInfo,
41                                      ISD::ArgFlagsTy &ArgFlags,
42                                      CCState &State);
43 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
44                                             MVT &LocVT,
45                                             CCValAssign::LocInfo &LocInfo,
46                                             ISD::ArgFlagsTy &ArgFlags,
47                                             CCState &State);
48 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
49                                               MVT &LocVT,
50                                               CCValAssign::LocInfo &LocInfo,
51                                               ISD::ArgFlagsTy &ArgFlags,
52                                               CCState &State);
53
54 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
55 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
56                                      cl::Hidden);
57
58 static TargetLoweringObjectFile *CreateTLOF(const PPCTargetMachine &TM) {
59   if (TM.getSubtargetImpl()->isDarwin())
60     return new TargetLoweringObjectFileMachO();
61
62   return new TargetLoweringObjectFileELF();
63 }
64
65 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
66   : TargetLowering(TM, CreateTLOF(TM)), PPCSubTarget(*TM.getSubtargetImpl()) {
67
68   setPow2DivIsCheap();
69
70   // Use _setjmp/_longjmp instead of setjmp/longjmp.
71   setUseUnderscoreSetJmp(true);
72   setUseUnderscoreLongJmp(true);
73
74   // On PPC32/64, arguments smaller than 4/8 bytes are extended, so all
75   // arguments are at least 4/8 bytes aligned.
76   setMinStackArgumentAlignment(TM.getSubtarget<PPCSubtarget>().isPPC64() ? 8:4);
77
78   // Set up the register classes.
79   addRegisterClass(MVT::i32, &PPC::GPRCRegClass);
80   addRegisterClass(MVT::f32, &PPC::F4RCRegClass);
81   addRegisterClass(MVT::f64, &PPC::F8RCRegClass);
82
83   // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
84   setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Promote);
85   setLoadExtAction(ISD::SEXTLOAD, MVT::i8, Expand);
86
87   setTruncStoreAction(MVT::f64, MVT::f32, Expand);
88
89   // PowerPC has pre-inc load and store's.
90   setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
91   setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
92   setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
93   setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
94   setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
95   setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
96   setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
97   setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
98   setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
99   setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
100
101   // This is used in the ppcf128->int sequence.  Note it has different semantics
102   // from FP_ROUND:  that rounds to nearest, this rounds to zero.
103   setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
104
105   // We do not currently implment this libm ops for PowerPC.
106   setOperationAction(ISD::FFLOOR, MVT::ppcf128, Expand);
107   setOperationAction(ISD::FCEIL,  MVT::ppcf128, Expand);
108   setOperationAction(ISD::FTRUNC, MVT::ppcf128, Expand);
109   setOperationAction(ISD::FRINT,  MVT::ppcf128, Expand);
110   setOperationAction(ISD::FNEARBYINT, MVT::ppcf128, Expand);
111
112   // PowerPC has no SREM/UREM instructions
113   setOperationAction(ISD::SREM, MVT::i32, Expand);
114   setOperationAction(ISD::UREM, MVT::i32, Expand);
115   setOperationAction(ISD::SREM, MVT::i64, Expand);
116   setOperationAction(ISD::UREM, MVT::i64, Expand);
117
118   // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
119   setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
120   setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
121   setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
122   setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
123   setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
124   setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
125   setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
126   setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
127
128   // We don't support sin/cos/sqrt/fmod/pow
129   setOperationAction(ISD::FSIN , MVT::f64, Expand);
130   setOperationAction(ISD::FCOS , MVT::f64, Expand);
131   setOperationAction(ISD::FREM , MVT::f64, Expand);
132   setOperationAction(ISD::FPOW , MVT::f64, Expand);
133   setOperationAction(ISD::FMA  , MVT::f64, Expand);
134   setOperationAction(ISD::FSIN , MVT::f32, Expand);
135   setOperationAction(ISD::FCOS , MVT::f32, Expand);
136   setOperationAction(ISD::FREM , MVT::f32, Expand);
137   setOperationAction(ISD::FPOW , MVT::f32, Expand);
138   setOperationAction(ISD::FMA  , MVT::f32, Expand);
139
140   setOperationAction(ISD::FLT_ROUNDS_, MVT::i32, Custom);
141
142   // If we're enabling GP optimizations, use hardware square root
143   if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
144     setOperationAction(ISD::FSQRT, MVT::f64, Expand);
145     setOperationAction(ISD::FSQRT, MVT::f32, Expand);
146   }
147
148   setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
149   setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
150
151   // PowerPC does not have BSWAP, CTPOP or CTTZ
152   setOperationAction(ISD::BSWAP, MVT::i32  , Expand);
153   setOperationAction(ISD::CTPOP, MVT::i32  , Expand);
154   setOperationAction(ISD::CTTZ , MVT::i32  , Expand);
155   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
156   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
157   setOperationAction(ISD::BSWAP, MVT::i64  , Expand);
158   setOperationAction(ISD::CTPOP, MVT::i64  , Expand);
159   setOperationAction(ISD::CTTZ , MVT::i64  , Expand);
160   setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand);
161   setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand);
162
163   // PowerPC does not have ROTR
164   setOperationAction(ISD::ROTR, MVT::i32   , Expand);
165   setOperationAction(ISD::ROTR, MVT::i64   , Expand);
166
167   // PowerPC does not have Select
168   setOperationAction(ISD::SELECT, MVT::i32, Expand);
169   setOperationAction(ISD::SELECT, MVT::i64, Expand);
170   setOperationAction(ISD::SELECT, MVT::f32, Expand);
171   setOperationAction(ISD::SELECT, MVT::f64, Expand);
172
173   // PowerPC wants to turn select_cc of FP into fsel when possible.
174   setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
175   setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
176
177   // PowerPC wants to optimize integer setcc a bit
178   setOperationAction(ISD::SETCC, MVT::i32, Custom);
179
180   // PowerPC does not have BRCOND which requires SetCC
181   setOperationAction(ISD::BRCOND, MVT::Other, Expand);
182
183   setOperationAction(ISD::BR_JT,  MVT::Other, Expand);
184
185   // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
186   setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
187
188   // PowerPC does not have [U|S]INT_TO_FP
189   setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
190   setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
191
192   setOperationAction(ISD::BITCAST, MVT::f32, Expand);
193   setOperationAction(ISD::BITCAST, MVT::i32, Expand);
194   setOperationAction(ISD::BITCAST, MVT::i64, Expand);
195   setOperationAction(ISD::BITCAST, MVT::f64, Expand);
196
197   // We cannot sextinreg(i1).  Expand to shifts.
198   setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
199
200   setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
201   setOperationAction(ISD::EHSELECTION,   MVT::i64, Expand);
202   setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
203   setOperationAction(ISD::EHSELECTION,   MVT::i32, Expand);
204
205
206   // We want to legalize GlobalAddress and ConstantPool nodes into the
207   // appropriate instructions to materialize the address.
208   setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
209   setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
210   setOperationAction(ISD::BlockAddress,  MVT::i32, Custom);
211   setOperationAction(ISD::ConstantPool,  MVT::i32, Custom);
212   setOperationAction(ISD::JumpTable,     MVT::i32, Custom);
213   setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
214   setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
215   setOperationAction(ISD::BlockAddress,  MVT::i64, Custom);
216   setOperationAction(ISD::ConstantPool,  MVT::i64, Custom);
217   setOperationAction(ISD::JumpTable,     MVT::i64, Custom);
218
219   // TRAP is legal.
220   setOperationAction(ISD::TRAP, MVT::Other, Legal);
221
222   // TRAMPOLINE is custom lowered.
223   setOperationAction(ISD::INIT_TRAMPOLINE, MVT::Other, Custom);
224   setOperationAction(ISD::ADJUST_TRAMPOLINE, MVT::Other, Custom);
225
226   // VASTART needs to be custom lowered to use the VarArgsFrameIndex
227   setOperationAction(ISD::VASTART           , MVT::Other, Custom);
228
229   if (TM.getSubtarget<PPCSubtarget>().isSVR4ABI()) {
230     if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
231       // VAARG always uses double-word chunks, so promote anything smaller.
232       setOperationAction(ISD::VAARG, MVT::i1, Promote);
233       AddPromotedToType (ISD::VAARG, MVT::i1, MVT::i64);
234       setOperationAction(ISD::VAARG, MVT::i8, Promote);
235       AddPromotedToType (ISD::VAARG, MVT::i8, MVT::i64);
236       setOperationAction(ISD::VAARG, MVT::i16, Promote);
237       AddPromotedToType (ISD::VAARG, MVT::i16, MVT::i64);
238       setOperationAction(ISD::VAARG, MVT::i32, Promote);
239       AddPromotedToType (ISD::VAARG, MVT::i32, MVT::i64);
240       setOperationAction(ISD::VAARG, MVT::Other, Expand);
241     } else {
242       // VAARG is custom lowered with the 32-bit SVR4 ABI.
243       setOperationAction(ISD::VAARG, MVT::Other, Custom);
244       setOperationAction(ISD::VAARG, MVT::i64, Custom);
245     }
246   } else
247     setOperationAction(ISD::VAARG, MVT::Other, Expand);
248
249   // Use the default implementation.
250   setOperationAction(ISD::VACOPY            , MVT::Other, Expand);
251   setOperationAction(ISD::VAEND             , MVT::Other, Expand);
252   setOperationAction(ISD::STACKSAVE         , MVT::Other, Expand);
253   setOperationAction(ISD::STACKRESTORE      , MVT::Other, Custom);
254   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32  , Custom);
255   setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64  , Custom);
256
257   // We want to custom lower some of our intrinsics.
258   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
259
260   // Comparisons that require checking two conditions.
261   setCondCodeAction(ISD::SETULT, MVT::f32, Expand);
262   setCondCodeAction(ISD::SETULT, MVT::f64, Expand);
263   setCondCodeAction(ISD::SETUGT, MVT::f32, Expand);
264   setCondCodeAction(ISD::SETUGT, MVT::f64, Expand);
265   setCondCodeAction(ISD::SETUEQ, MVT::f32, Expand);
266   setCondCodeAction(ISD::SETUEQ, MVT::f64, Expand);
267   setCondCodeAction(ISD::SETOGE, MVT::f32, Expand);
268   setCondCodeAction(ISD::SETOGE, MVT::f64, Expand);
269   setCondCodeAction(ISD::SETOLE, MVT::f32, Expand);
270   setCondCodeAction(ISD::SETOLE, MVT::f64, Expand);
271   setCondCodeAction(ISD::SETONE, MVT::f32, Expand);
272   setCondCodeAction(ISD::SETONE, MVT::f64, Expand);
273
274   if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
275     // They also have instructions for converting between i64 and fp.
276     setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
277     setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
278     setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
279     setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
280     // This is just the low 32 bits of a (signed) fp->i64 conversion.
281     // We cannot do this with Promote because i64 is not a legal type.
282     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Custom);
283
284     // FIXME: disable this lowered code.  This generates 64-bit register values,
285     // and we don't model the fact that the top part is clobbered by calls.  We
286     // need to flag these together so that the value isn't live across a call.
287     //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
288   } else {
289     // PowerPC does not have FP_TO_UINT on 32-bit implementations.
290     setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
291   }
292
293   if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
294     // 64-bit PowerPC implementations can support i64 types directly
295     addRegisterClass(MVT::i64, &PPC::G8RCRegClass);
296     // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
297     setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
298     // 64-bit PowerPC wants to expand i128 shifts itself.
299     setOperationAction(ISD::SHL_PARTS, MVT::i64, Custom);
300     setOperationAction(ISD::SRA_PARTS, MVT::i64, Custom);
301     setOperationAction(ISD::SRL_PARTS, MVT::i64, Custom);
302   } else {
303     // 32-bit PowerPC wants to expand i64 shifts itself.
304     setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
305     setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
306     setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
307   }
308
309   if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
310     // First set operation action for all vector types to expand. Then we
311     // will selectively turn on ones that can be effectively codegen'd.
312     for (unsigned i = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
313          i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
314       MVT::SimpleValueType VT = (MVT::SimpleValueType)i;
315
316       // add/sub are legal for all supported vector VT's.
317       setOperationAction(ISD::ADD , VT, Legal);
318       setOperationAction(ISD::SUB , VT, Legal);
319
320       // We promote all shuffles to v16i8.
321       setOperationAction(ISD::VECTOR_SHUFFLE, VT, Promote);
322       AddPromotedToType (ISD::VECTOR_SHUFFLE, VT, MVT::v16i8);
323
324       // We promote all non-typed operations to v4i32.
325       setOperationAction(ISD::AND   , VT, Promote);
326       AddPromotedToType (ISD::AND   , VT, MVT::v4i32);
327       setOperationAction(ISD::OR    , VT, Promote);
328       AddPromotedToType (ISD::OR    , VT, MVT::v4i32);
329       setOperationAction(ISD::XOR   , VT, Promote);
330       AddPromotedToType (ISD::XOR   , VT, MVT::v4i32);
331       setOperationAction(ISD::LOAD  , VT, Promote);
332       AddPromotedToType (ISD::LOAD  , VT, MVT::v4i32);
333       setOperationAction(ISD::SELECT, VT, Promote);
334       AddPromotedToType (ISD::SELECT, VT, MVT::v4i32);
335       setOperationAction(ISD::STORE, VT, Promote);
336       AddPromotedToType (ISD::STORE, VT, MVT::v4i32);
337
338       // No other operations are legal.
339       setOperationAction(ISD::MUL , VT, Expand);
340       setOperationAction(ISD::SDIV, VT, Expand);
341       setOperationAction(ISD::SREM, VT, Expand);
342       setOperationAction(ISD::UDIV, VT, Expand);
343       setOperationAction(ISD::UREM, VT, Expand);
344       setOperationAction(ISD::FDIV, VT, Expand);
345       setOperationAction(ISD::FNEG, VT, Expand);
346       setOperationAction(ISD::EXTRACT_VECTOR_ELT, VT, Expand);
347       setOperationAction(ISD::INSERT_VECTOR_ELT, VT, Expand);
348       setOperationAction(ISD::BUILD_VECTOR, VT, Expand);
349       setOperationAction(ISD::UMUL_LOHI, VT, Expand);
350       setOperationAction(ISD::SMUL_LOHI, VT, Expand);
351       setOperationAction(ISD::UDIVREM, VT, Expand);
352       setOperationAction(ISD::SDIVREM, VT, Expand);
353       setOperationAction(ISD::SCALAR_TO_VECTOR, VT, Expand);
354       setOperationAction(ISD::FPOW, VT, Expand);
355       setOperationAction(ISD::CTPOP, VT, Expand);
356       setOperationAction(ISD::CTLZ, VT, Expand);
357       setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
358       setOperationAction(ISD::CTTZ, VT, Expand);
359       setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
360     }
361
362     // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
363     // with merges, splats, etc.
364     setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
365
366     setOperationAction(ISD::AND   , MVT::v4i32, Legal);
367     setOperationAction(ISD::OR    , MVT::v4i32, Legal);
368     setOperationAction(ISD::XOR   , MVT::v4i32, Legal);
369     setOperationAction(ISD::LOAD  , MVT::v4i32, Legal);
370     setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
371     setOperationAction(ISD::STORE , MVT::v4i32, Legal);
372
373     addRegisterClass(MVT::v4f32, &PPC::VRRCRegClass);
374     addRegisterClass(MVT::v4i32, &PPC::VRRCRegClass);
375     addRegisterClass(MVT::v8i16, &PPC::VRRCRegClass);
376     addRegisterClass(MVT::v16i8, &PPC::VRRCRegClass);
377
378     setOperationAction(ISD::MUL, MVT::v4f32, Legal);
379     setOperationAction(ISD::MUL, MVT::v4i32, Custom);
380     setOperationAction(ISD::MUL, MVT::v8i16, Custom);
381     setOperationAction(ISD::MUL, MVT::v16i8, Custom);
382
383     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
384     setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
385
386     setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
387     setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
388     setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
389     setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
390   }
391
392   if (TM.getSubtarget<PPCSubtarget>().has64BitSupport())
393     setOperationAction(ISD::PREFETCH, MVT::Other, Legal);
394
395   setOperationAction(ISD::ATOMIC_LOAD,  MVT::i32, Expand);
396   setOperationAction(ISD::ATOMIC_STORE, MVT::i32, Expand);
397
398   setBooleanContents(ZeroOrOneBooleanContent);
399   setBooleanVectorContents(ZeroOrOneBooleanContent); // FIXME: Is this correct?
400
401   if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
402     setStackPointerRegisterToSaveRestore(PPC::X1);
403     setExceptionPointerRegister(PPC::X3);
404     setExceptionSelectorRegister(PPC::X4);
405   } else {
406     setStackPointerRegisterToSaveRestore(PPC::R1);
407     setExceptionPointerRegister(PPC::R3);
408     setExceptionSelectorRegister(PPC::R4);
409   }
410
411   // We have target-specific dag combine patterns for the following nodes:
412   setTargetDAGCombine(ISD::SINT_TO_FP);
413   setTargetDAGCombine(ISD::STORE);
414   setTargetDAGCombine(ISD::BR_CC);
415   setTargetDAGCombine(ISD::BSWAP);
416
417   // Darwin long double math library functions have $LDBL128 appended.
418   if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
419     setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
420     setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
421     setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
422     setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
423     setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
424     setLibcallName(RTLIB::LOG_PPCF128, "logl$LDBL128");
425     setLibcallName(RTLIB::LOG2_PPCF128, "log2l$LDBL128");
426     setLibcallName(RTLIB::LOG10_PPCF128, "log10l$LDBL128");
427     setLibcallName(RTLIB::EXP_PPCF128, "expl$LDBL128");
428     setLibcallName(RTLIB::EXP2_PPCF128, "exp2l$LDBL128");
429   }
430
431   setMinFunctionAlignment(2);
432   if (PPCSubTarget.isDarwin())
433     setPrefFunctionAlignment(4);
434
435   setInsertFencesForAtomic(true);
436
437   setSchedulingPreference(Sched::Hybrid);
438
439   computeRegisterProperties();
440 }
441
442 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
443 /// function arguments in the caller parameter area.
444 unsigned PPCTargetLowering::getByValTypeAlignment(Type *Ty) const {
445   const TargetMachine &TM = getTargetMachine();
446   // Darwin passes everything on 4 byte boundary.
447   if (TM.getSubtarget<PPCSubtarget>().isDarwin())
448     return 4;
449
450   // 16byte and wider vectors are passed on 16byte boundary.
451   if (VectorType *VTy = dyn_cast<VectorType>(Ty))
452     if (VTy->getBitWidth() >= 128)
453       return 16;
454
455   // The rest is 8 on PPC64 and 4 on PPC32 boundary.
456    if (PPCSubTarget.isPPC64())
457      return 8;
458
459   return 4;
460 }
461
462 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
463   switch (Opcode) {
464   default: return 0;
465   case PPCISD::FSEL:            return "PPCISD::FSEL";
466   case PPCISD::FCFID:           return "PPCISD::FCFID";
467   case PPCISD::FCTIDZ:          return "PPCISD::FCTIDZ";
468   case PPCISD::FCTIWZ:          return "PPCISD::FCTIWZ";
469   case PPCISD::STFIWX:          return "PPCISD::STFIWX";
470   case PPCISD::VMADDFP:         return "PPCISD::VMADDFP";
471   case PPCISD::VNMSUBFP:        return "PPCISD::VNMSUBFP";
472   case PPCISD::VPERM:           return "PPCISD::VPERM";
473   case PPCISD::Hi:              return "PPCISD::Hi";
474   case PPCISD::Lo:              return "PPCISD::Lo";
475   case PPCISD::TOC_ENTRY:       return "PPCISD::TOC_ENTRY";
476   case PPCISD::TOC_RESTORE:     return "PPCISD::TOC_RESTORE";
477   case PPCISD::LOAD:            return "PPCISD::LOAD";
478   case PPCISD::LOAD_TOC:        return "PPCISD::LOAD_TOC";
479   case PPCISD::DYNALLOC:        return "PPCISD::DYNALLOC";
480   case PPCISD::GlobalBaseReg:   return "PPCISD::GlobalBaseReg";
481   case PPCISD::SRL:             return "PPCISD::SRL";
482   case PPCISD::SRA:             return "PPCISD::SRA";
483   case PPCISD::SHL:             return "PPCISD::SHL";
484   case PPCISD::EXTSW_32:        return "PPCISD::EXTSW_32";
485   case PPCISD::STD_32:          return "PPCISD::STD_32";
486   case PPCISD::CALL_SVR4:       return "PPCISD::CALL_SVR4";
487   case PPCISD::CALL_NOP_SVR4:   return "PPCISD::CALL_NOP_SVR4";
488   case PPCISD::CALL_Darwin:     return "PPCISD::CALL_Darwin";
489   case PPCISD::NOP:             return "PPCISD::NOP";
490   case PPCISD::MTCTR:           return "PPCISD::MTCTR";
491   case PPCISD::BCTRL_Darwin:    return "PPCISD::BCTRL_Darwin";
492   case PPCISD::BCTRL_SVR4:      return "PPCISD::BCTRL_SVR4";
493   case PPCISD::RET_FLAG:        return "PPCISD::RET_FLAG";
494   case PPCISD::MFCR:            return "PPCISD::MFCR";
495   case PPCISD::VCMP:            return "PPCISD::VCMP";
496   case PPCISD::VCMPo:           return "PPCISD::VCMPo";
497   case PPCISD::LBRX:            return "PPCISD::LBRX";
498   case PPCISD::STBRX:           return "PPCISD::STBRX";
499   case PPCISD::LARX:            return "PPCISD::LARX";
500   case PPCISD::STCX:            return "PPCISD::STCX";
501   case PPCISD::COND_BRANCH:     return "PPCISD::COND_BRANCH";
502   case PPCISD::MFFS:            return "PPCISD::MFFS";
503   case PPCISD::MTFSB0:          return "PPCISD::MTFSB0";
504   case PPCISD::MTFSB1:          return "PPCISD::MTFSB1";
505   case PPCISD::FADDRTZ:         return "PPCISD::FADDRTZ";
506   case PPCISD::MTFSF:           return "PPCISD::MTFSF";
507   case PPCISD::TC_RETURN:       return "PPCISD::TC_RETURN";
508   }
509 }
510
511 EVT PPCTargetLowering::getSetCCResultType(EVT VT) const {
512   return MVT::i32;
513 }
514
515 //===----------------------------------------------------------------------===//
516 // Node matching predicates, for use by the tblgen matching code.
517 //===----------------------------------------------------------------------===//
518
519 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
520 static bool isFloatingPointZero(SDValue Op) {
521   if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
522     return CFP->getValueAPF().isZero();
523   else if (ISD::isEXTLoad(Op.getNode()) || ISD::isNON_EXTLoad(Op.getNode())) {
524     // Maybe this has already been legalized into the constant pool?
525     if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
526       if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
527         return CFP->getValueAPF().isZero();
528   }
529   return false;
530 }
531
532 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode.  Return
533 /// true if Op is undef or if it matches the specified value.
534 static bool isConstantOrUndef(int Op, int Val) {
535   return Op < 0 || Op == Val;
536 }
537
538 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
539 /// VPKUHUM instruction.
540 bool PPC::isVPKUHUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
541   if (!isUnary) {
542     for (unsigned i = 0; i != 16; ++i)
543       if (!isConstantOrUndef(N->getMaskElt(i),  i*2+1))
544         return false;
545   } else {
546     for (unsigned i = 0; i != 8; ++i)
547       if (!isConstantOrUndef(N->getMaskElt(i),    i*2+1) ||
548           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+1))
549         return false;
550   }
551   return true;
552 }
553
554 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
555 /// VPKUWUM instruction.
556 bool PPC::isVPKUWUMShuffleMask(ShuffleVectorSDNode *N, bool isUnary) {
557   if (!isUnary) {
558     for (unsigned i = 0; i != 16; i += 2)
559       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
560           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3))
561         return false;
562   } else {
563     for (unsigned i = 0; i != 8; i += 2)
564       if (!isConstantOrUndef(N->getMaskElt(i  ),  i*2+2) ||
565           !isConstantOrUndef(N->getMaskElt(i+1),  i*2+3) ||
566           !isConstantOrUndef(N->getMaskElt(i+8),  i*2+2) ||
567           !isConstantOrUndef(N->getMaskElt(i+9),  i*2+3))
568         return false;
569   }
570   return true;
571 }
572
573 /// isVMerge - Common function, used to match vmrg* shuffles.
574 ///
575 static bool isVMerge(ShuffleVectorSDNode *N, unsigned UnitSize,
576                      unsigned LHSStart, unsigned RHSStart) {
577   assert(N->getValueType(0) == MVT::v16i8 &&
578          "PPC only supports shuffles by bytes!");
579   assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
580          "Unsupported merge size!");
581
582   for (unsigned i = 0; i != 8/UnitSize; ++i)     // Step over units
583     for (unsigned j = 0; j != UnitSize; ++j) {   // Step over bytes within unit
584       if (!isConstantOrUndef(N->getMaskElt(i*UnitSize*2+j),
585                              LHSStart+j+i*UnitSize) ||
586           !isConstantOrUndef(N->getMaskElt(i*UnitSize*2+UnitSize+j),
587                              RHSStart+j+i*UnitSize))
588         return false;
589     }
590   return true;
591 }
592
593 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
594 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
595 bool PPC::isVMRGLShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
596                              bool isUnary) {
597   if (!isUnary)
598     return isVMerge(N, UnitSize, 8, 24);
599   return isVMerge(N, UnitSize, 8, 8);
600 }
601
602 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
603 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
604 bool PPC::isVMRGHShuffleMask(ShuffleVectorSDNode *N, unsigned UnitSize,
605                              bool isUnary) {
606   if (!isUnary)
607     return isVMerge(N, UnitSize, 0, 16);
608   return isVMerge(N, UnitSize, 0, 0);
609 }
610
611
612 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
613 /// amount, otherwise return -1.
614 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
615   assert(N->getValueType(0) == MVT::v16i8 &&
616          "PPC only supports shuffles by bytes!");
617
618   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
619
620   // Find the first non-undef value in the shuffle mask.
621   unsigned i;
622   for (i = 0; i != 16 && SVOp->getMaskElt(i) < 0; ++i)
623     /*search*/;
624
625   if (i == 16) return -1;  // all undef.
626
627   // Otherwise, check to see if the rest of the elements are consecutively
628   // numbered from this value.
629   unsigned ShiftAmt = SVOp->getMaskElt(i);
630   if (ShiftAmt < i) return -1;
631   ShiftAmt -= i;
632
633   if (!isUnary) {
634     // Check the rest of the elements to see if they are consecutive.
635     for (++i; i != 16; ++i)
636       if (!isConstantOrUndef(SVOp->getMaskElt(i), ShiftAmt+i))
637         return -1;
638   } else {
639     // Check the rest of the elements to see if they are consecutive.
640     for (++i; i != 16; ++i)
641       if (!isConstantOrUndef(SVOp->getMaskElt(i), (ShiftAmt+i) & 15))
642         return -1;
643   }
644   return ShiftAmt;
645 }
646
647 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
648 /// specifies a splat of a single element that is suitable for input to
649 /// VSPLTB/VSPLTH/VSPLTW.
650 bool PPC::isSplatShuffleMask(ShuffleVectorSDNode *N, unsigned EltSize) {
651   assert(N->getValueType(0) == MVT::v16i8 &&
652          (EltSize == 1 || EltSize == 2 || EltSize == 4));
653
654   // This is a splat operation if each element of the permute is the same, and
655   // if the value doesn't reference the second vector.
656   unsigned ElementBase = N->getMaskElt(0);
657
658   // FIXME: Handle UNDEF elements too!
659   if (ElementBase >= 16)
660     return false;
661
662   // Check that the indices are consecutive, in the case of a multi-byte element
663   // splatted with a v16i8 mask.
664   for (unsigned i = 1; i != EltSize; ++i)
665     if (N->getMaskElt(i) < 0 || N->getMaskElt(i) != (int)(i+ElementBase))
666       return false;
667
668   for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
669     if (N->getMaskElt(i) < 0) continue;
670     for (unsigned j = 0; j != EltSize; ++j)
671       if (N->getMaskElt(i+j) != N->getMaskElt(j))
672         return false;
673   }
674   return true;
675 }
676
677 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
678 /// are -0.0.
679 bool PPC::isAllNegativeZeroVector(SDNode *N) {
680   BuildVectorSDNode *BV = cast<BuildVectorSDNode>(N);
681
682   APInt APVal, APUndef;
683   unsigned BitSize;
684   bool HasAnyUndefs;
685
686   if (BV->isConstantSplat(APVal, APUndef, BitSize, HasAnyUndefs, 32, true))
687     if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N->getOperand(0)))
688       return CFP->getValueAPF().isNegZero();
689
690   return false;
691 }
692
693 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
694 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
695 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
696   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(N);
697   assert(isSplatShuffleMask(SVOp, EltSize));
698   return SVOp->getMaskElt(0) / EltSize;
699 }
700
701 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
702 /// by using a vspltis[bhw] instruction of the specified element size, return
703 /// the constant being splatted.  The ByteSize field indicates the number of
704 /// bytes of each element [124] -> [bhw].
705 SDValue PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
706   SDValue OpVal(0, 0);
707
708   // If ByteSize of the splat is bigger than the element size of the
709   // build_vector, then we have a case where we are checking for a splat where
710   // multiple elements of the buildvector are folded together into a single
711   // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
712   unsigned EltSize = 16/N->getNumOperands();
713   if (EltSize < ByteSize) {
714     unsigned Multiple = ByteSize/EltSize;   // Number of BV entries per spltval.
715     SDValue UniquedVals[4];
716     assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
717
718     // See if all of the elements in the buildvector agree across.
719     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
720       if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
721       // If the element isn't a constant, bail fully out.
722       if (!isa<ConstantSDNode>(N->getOperand(i))) return SDValue();
723
724
725       if (UniquedVals[i&(Multiple-1)].getNode() == 0)
726         UniquedVals[i&(Multiple-1)] = N->getOperand(i);
727       else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
728         return SDValue();  // no match.
729     }
730
731     // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
732     // either constant or undef values that are identical for each chunk.  See
733     // if these chunks can form into a larger vspltis*.
734
735     // Check to see if all of the leading entries are either 0 or -1.  If
736     // neither, then this won't fit into the immediate field.
737     bool LeadingZero = true;
738     bool LeadingOnes = true;
739     for (unsigned i = 0; i != Multiple-1; ++i) {
740       if (UniquedVals[i].getNode() == 0) continue;  // Must have been undefs.
741
742       LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
743       LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
744     }
745     // Finally, check the least significant entry.
746     if (LeadingZero) {
747       if (UniquedVals[Multiple-1].getNode() == 0)
748         return DAG.getTargetConstant(0, MVT::i32);  // 0,0,0,undef
749       int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getZExtValue();
750       if (Val < 16)
751         return DAG.getTargetConstant(Val, MVT::i32);  // 0,0,0,4 -> vspltisw(4)
752     }
753     if (LeadingOnes) {
754       if (UniquedVals[Multiple-1].getNode() == 0)
755         return DAG.getTargetConstant(~0U, MVT::i32);  // -1,-1,-1,undef
756       int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSExtValue();
757       if (Val >= -16)                            // -1,-1,-1,-2 -> vspltisw(-2)
758         return DAG.getTargetConstant(Val, MVT::i32);
759     }
760
761     return SDValue();
762   }
763
764   // Check to see if this buildvec has a single non-undef value in its elements.
765   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
766     if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
767     if (OpVal.getNode() == 0)
768       OpVal = N->getOperand(i);
769     else if (OpVal != N->getOperand(i))
770       return SDValue();
771   }
772
773   if (OpVal.getNode() == 0) return SDValue();  // All UNDEF: use implicit def.
774
775   unsigned ValSizeInBytes = EltSize;
776   uint64_t Value = 0;
777   if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
778     Value = CN->getZExtValue();
779   } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
780     assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
781     Value = FloatToBits(CN->getValueAPF().convertToFloat());
782   }
783
784   // If the splat value is larger than the element value, then we can never do
785   // this splat.  The only case that we could fit the replicated bits into our
786   // immediate field for would be zero, and we prefer to use vxor for it.
787   if (ValSizeInBytes < ByteSize) return SDValue();
788
789   // If the element value is larger than the splat value, cut it in half and
790   // check to see if the two halves are equal.  Continue doing this until we
791   // get to ByteSize.  This allows us to handle 0x01010101 as 0x01.
792   while (ValSizeInBytes > ByteSize) {
793     ValSizeInBytes >>= 1;
794
795     // If the top half equals the bottom half, we're still ok.
796     if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
797          (Value                        & ((1 << (8*ValSizeInBytes))-1)))
798       return SDValue();
799   }
800
801   // Properly sign extend the value.
802   int ShAmt = (4-ByteSize)*8;
803   int MaskVal = ((int)Value << ShAmt) >> ShAmt;
804
805   // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
806   if (MaskVal == 0) return SDValue();
807
808   // Finally, if this value fits in a 5 bit sext field, return it
809   if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
810     return DAG.getTargetConstant(MaskVal, MVT::i32);
811   return SDValue();
812 }
813
814 //===----------------------------------------------------------------------===//
815 //  Addressing Mode Selection
816 //===----------------------------------------------------------------------===//
817
818 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
819 /// or 64-bit immediate, and if the value can be accurately represented as a
820 /// sign extension from a 16-bit value.  If so, this returns true and the
821 /// immediate.
822 static bool isIntS16Immediate(SDNode *N, short &Imm) {
823   if (N->getOpcode() != ISD::Constant)
824     return false;
825
826   Imm = (short)cast<ConstantSDNode>(N)->getZExtValue();
827   if (N->getValueType(0) == MVT::i32)
828     return Imm == (int32_t)cast<ConstantSDNode>(N)->getZExtValue();
829   else
830     return Imm == (int64_t)cast<ConstantSDNode>(N)->getZExtValue();
831 }
832 static bool isIntS16Immediate(SDValue Op, short &Imm) {
833   return isIntS16Immediate(Op.getNode(), Imm);
834 }
835
836
837 /// SelectAddressRegReg - Given the specified addressed, check to see if it
838 /// can be represented as an indexed [r+r] operation.  Returns false if it
839 /// can be more efficiently represented with [r+imm].
840 bool PPCTargetLowering::SelectAddressRegReg(SDValue N, SDValue &Base,
841                                             SDValue &Index,
842                                             SelectionDAG &DAG) const {
843   short imm = 0;
844   if (N.getOpcode() == ISD::ADD) {
845     if (isIntS16Immediate(N.getOperand(1), imm))
846       return false;    // r+i
847     if (N.getOperand(1).getOpcode() == PPCISD::Lo)
848       return false;    // r+i
849
850     Base = N.getOperand(0);
851     Index = N.getOperand(1);
852     return true;
853   } else if (N.getOpcode() == ISD::OR) {
854     if (isIntS16Immediate(N.getOperand(1), imm))
855       return false;    // r+i can fold it if we can.
856
857     // If this is an or of disjoint bitfields, we can codegen this as an add
858     // (for better address arithmetic) if the LHS and RHS of the OR are provably
859     // disjoint.
860     APInt LHSKnownZero, LHSKnownOne;
861     APInt RHSKnownZero, RHSKnownOne;
862     DAG.ComputeMaskedBits(N.getOperand(0),
863                           LHSKnownZero, LHSKnownOne);
864
865     if (LHSKnownZero.getBoolValue()) {
866       DAG.ComputeMaskedBits(N.getOperand(1),
867                             RHSKnownZero, RHSKnownOne);
868       // If all of the bits are known zero on the LHS or RHS, the add won't
869       // carry.
870       if (~(LHSKnownZero | RHSKnownZero) == 0) {
871         Base = N.getOperand(0);
872         Index = N.getOperand(1);
873         return true;
874       }
875     }
876   }
877
878   return false;
879 }
880
881 /// Returns true if the address N can be represented by a base register plus
882 /// a signed 16-bit displacement [r+imm], and if it is not better
883 /// represented as reg+reg.
884 bool PPCTargetLowering::SelectAddressRegImm(SDValue N, SDValue &Disp,
885                                             SDValue &Base,
886                                             SelectionDAG &DAG) const {
887   // FIXME dl should come from parent load or store, not from address
888   DebugLoc dl = N.getDebugLoc();
889   // If this can be more profitably realized as r+r, fail.
890   if (SelectAddressRegReg(N, Disp, Base, DAG))
891     return false;
892
893   if (N.getOpcode() == ISD::ADD) {
894     short imm = 0;
895     if (isIntS16Immediate(N.getOperand(1), imm)) {
896       Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
897       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
898         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
899       } else {
900         Base = N.getOperand(0);
901       }
902       return true; // [r+i]
903     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
904       // Match LOAD (ADD (X, Lo(G))).
905       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
906              && "Cannot handle constant offsets yet!");
907       Disp = N.getOperand(1).getOperand(0);  // The global address.
908       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
909              Disp.getOpcode() == ISD::TargetConstantPool ||
910              Disp.getOpcode() == ISD::TargetJumpTable);
911       Base = N.getOperand(0);
912       return true;  // [&g+r]
913     }
914   } else if (N.getOpcode() == ISD::OR) {
915     short imm = 0;
916     if (isIntS16Immediate(N.getOperand(1), imm)) {
917       // If this is an or of disjoint bitfields, we can codegen this as an add
918       // (for better address arithmetic) if the LHS and RHS of the OR are
919       // provably disjoint.
920       APInt LHSKnownZero, LHSKnownOne;
921       DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
922
923       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
924         // If all of the bits are known zero on the LHS or RHS, the add won't
925         // carry.
926         Base = N.getOperand(0);
927         Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
928         return true;
929       }
930     }
931   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
932     // Loading from a constant address.
933
934     // If this address fits entirely in a 16-bit sext immediate field, codegen
935     // this as "d, 0"
936     short Imm;
937     if (isIntS16Immediate(CN, Imm)) {
938       Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
939       Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
940                              CN->getValueType(0));
941       return true;
942     }
943
944     // Handle 32-bit sext immediates with LIS + addr mode.
945     if (CN->getValueType(0) == MVT::i32 ||
946         (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
947       int Addr = (int)CN->getZExtValue();
948
949       // Otherwise, break this down into an LIS + disp.
950       Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
951
952       Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
953       unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
954       Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base), 0);
955       return true;
956     }
957   }
958
959   Disp = DAG.getTargetConstant(0, getPointerTy());
960   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
961     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
962   else
963     Base = N;
964   return true;      // [r+0]
965 }
966
967 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
968 /// represented as an indexed [r+r] operation.
969 bool PPCTargetLowering::SelectAddressRegRegOnly(SDValue N, SDValue &Base,
970                                                 SDValue &Index,
971                                                 SelectionDAG &DAG) const {
972   // Check to see if we can easily represent this as an [r+r] address.  This
973   // will fail if it thinks that the address is more profitably represented as
974   // reg+imm, e.g. where imm = 0.
975   if (SelectAddressRegReg(N, Base, Index, DAG))
976     return true;
977
978   // If the operand is an addition, always emit this as [r+r], since this is
979   // better (for code size, and execution, as the memop does the add for free)
980   // than emitting an explicit add.
981   if (N.getOpcode() == ISD::ADD) {
982     Base = N.getOperand(0);
983     Index = N.getOperand(1);
984     return true;
985   }
986
987   // Otherwise, do it the hard way, using R0 as the base register.
988   Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
989                          N.getValueType());
990   Index = N;
991   return true;
992 }
993
994 /// SelectAddressRegImmShift - Returns true if the address N can be
995 /// represented by a base register plus a signed 14-bit displacement
996 /// [r+imm*4].  Suitable for use by STD and friends.
997 bool PPCTargetLowering::SelectAddressRegImmShift(SDValue N, SDValue &Disp,
998                                                  SDValue &Base,
999                                                  SelectionDAG &DAG) const {
1000   // FIXME dl should come from the parent load or store, not the address
1001   DebugLoc dl = N.getDebugLoc();
1002   // If this can be more profitably realized as r+r, fail.
1003   if (SelectAddressRegReg(N, Disp, Base, DAG))
1004     return false;
1005
1006   if (N.getOpcode() == ISD::ADD) {
1007     short imm = 0;
1008     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1009       Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1010       if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
1011         Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1012       } else {
1013         Base = N.getOperand(0);
1014       }
1015       return true; // [r+i]
1016     } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
1017       // Match LOAD (ADD (X, Lo(G))).
1018       assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getZExtValue()
1019              && "Cannot handle constant offsets yet!");
1020       Disp = N.getOperand(1).getOperand(0);  // The global address.
1021       assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
1022              Disp.getOpcode() == ISD::TargetConstantPool ||
1023              Disp.getOpcode() == ISD::TargetJumpTable);
1024       Base = N.getOperand(0);
1025       return true;  // [&g+r]
1026     }
1027   } else if (N.getOpcode() == ISD::OR) {
1028     short imm = 0;
1029     if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
1030       // If this is an or of disjoint bitfields, we can codegen this as an add
1031       // (for better address arithmetic) if the LHS and RHS of the OR are
1032       // provably disjoint.
1033       APInt LHSKnownZero, LHSKnownOne;
1034       DAG.ComputeMaskedBits(N.getOperand(0), LHSKnownZero, LHSKnownOne);
1035       if ((LHSKnownZero.getZExtValue()|~(uint64_t)imm) == ~0ULL) {
1036         // If all of the bits are known zero on the LHS or RHS, the add won't
1037         // carry.
1038         Base = N.getOperand(0);
1039         Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
1040         return true;
1041       }
1042     }
1043   } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
1044     // Loading from a constant address.  Verify low two bits are clear.
1045     if ((CN->getZExtValue() & 3) == 0) {
1046       // If this address fits entirely in a 14-bit sext immediate field, codegen
1047       // this as "d, 0"
1048       short Imm;
1049       if (isIntS16Immediate(CN, Imm)) {
1050         Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
1051         Base = DAG.getRegister(PPCSubTarget.isPPC64() ? PPC::X0 : PPC::R0,
1052                                CN->getValueType(0));
1053         return true;
1054       }
1055
1056       // Fold the low-part of 32-bit absolute addresses into addr mode.
1057       if (CN->getValueType(0) == MVT::i32 ||
1058           (int64_t)CN->getZExtValue() == (int)CN->getZExtValue()) {
1059         int Addr = (int)CN->getZExtValue();
1060
1061         // Otherwise, break this down into an LIS + disp.
1062         Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
1063         Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
1064         unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
1065         Base = SDValue(DAG.getMachineNode(Opc, dl, CN->getValueType(0), Base),0);
1066         return true;
1067       }
1068     }
1069   }
1070
1071   Disp = DAG.getTargetConstant(0, getPointerTy());
1072   if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
1073     Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
1074   else
1075     Base = N;
1076   return true;      // [r+0]
1077 }
1078
1079
1080 /// getPreIndexedAddressParts - returns true by value, base pointer and
1081 /// offset pointer and addressing mode by reference if the node's address
1082 /// can be legally represented as pre-indexed load / store address.
1083 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDValue &Base,
1084                                                   SDValue &Offset,
1085                                                   ISD::MemIndexedMode &AM,
1086                                                   SelectionDAG &DAG) const {
1087   // Disabled by default for now.
1088   if (!EnablePPCPreinc) return false;
1089
1090   SDValue Ptr;
1091   EVT VT;
1092   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1093     Ptr = LD->getBasePtr();
1094     VT = LD->getMemoryVT();
1095
1096   } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
1097     Ptr = ST->getBasePtr();
1098     VT  = ST->getMemoryVT();
1099   } else
1100     return false;
1101
1102   // PowerPC doesn't have preinc load/store instructions for vectors.
1103   if (VT.isVector())
1104     return false;
1105
1106   // TODO: Check reg+reg first.
1107
1108   // LDU/STU use reg+imm*4, others use reg+imm.
1109   if (VT != MVT::i64) {
1110     // reg + imm
1111     if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
1112       return false;
1113   } else {
1114     // reg + imm * 4.
1115     if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
1116       return false;
1117   }
1118
1119   if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
1120     // PPC64 doesn't have lwau, but it does have lwaux.  Reject preinc load of
1121     // sext i32 to i64 when addr mode is r+i.
1122     if (LD->getValueType(0) == MVT::i64 && LD->getMemoryVT() == MVT::i32 &&
1123         LD->getExtensionType() == ISD::SEXTLOAD &&
1124         isa<ConstantSDNode>(Offset))
1125       return false;
1126   }
1127
1128   AM = ISD::PRE_INC;
1129   return true;
1130 }
1131
1132 //===----------------------------------------------------------------------===//
1133 //  LowerOperation implementation
1134 //===----------------------------------------------------------------------===//
1135
1136 /// GetLabelAccessInfo - Return true if we should reference labels using a
1137 /// PICBase, set the HiOpFlags and LoOpFlags to the target MO flags.
1138 static bool GetLabelAccessInfo(const TargetMachine &TM, unsigned &HiOpFlags,
1139                                unsigned &LoOpFlags, const GlobalValue *GV = 0) {
1140   HiOpFlags = PPCII::MO_HA16;
1141   LoOpFlags = PPCII::MO_LO16;
1142
1143   // Don't use the pic base if not in PIC relocation model.  Or if we are on a
1144   // non-darwin platform.  We don't support PIC on other platforms yet.
1145   bool isPIC = TM.getRelocationModel() == Reloc::PIC_ &&
1146                TM.getSubtarget<PPCSubtarget>().isDarwin();
1147   if (isPIC) {
1148     HiOpFlags |= PPCII::MO_PIC_FLAG;
1149     LoOpFlags |= PPCII::MO_PIC_FLAG;
1150   }
1151
1152   // If this is a reference to a global value that requires a non-lazy-ptr, make
1153   // sure that instruction lowering adds it.
1154   if (GV && TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV, TM)) {
1155     HiOpFlags |= PPCII::MO_NLP_FLAG;
1156     LoOpFlags |= PPCII::MO_NLP_FLAG;
1157
1158     if (GV->hasHiddenVisibility()) {
1159       HiOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1160       LoOpFlags |= PPCII::MO_NLP_HIDDEN_FLAG;
1161     }
1162   }
1163
1164   return isPIC;
1165 }
1166
1167 static SDValue LowerLabelRef(SDValue HiPart, SDValue LoPart, bool isPIC,
1168                              SelectionDAG &DAG) {
1169   EVT PtrVT = HiPart.getValueType();
1170   SDValue Zero = DAG.getConstant(0, PtrVT);
1171   DebugLoc DL = HiPart.getDebugLoc();
1172
1173   SDValue Hi = DAG.getNode(PPCISD::Hi, DL, PtrVT, HiPart, Zero);
1174   SDValue Lo = DAG.getNode(PPCISD::Lo, DL, PtrVT, LoPart, Zero);
1175
1176   // With PIC, the first instruction is actually "GR+hi(&G)".
1177   if (isPIC)
1178     Hi = DAG.getNode(ISD::ADD, DL, PtrVT,
1179                      DAG.getNode(PPCISD::GlobalBaseReg, DL, PtrVT), Hi);
1180
1181   // Generate non-pic code that has direct accesses to the constant pool.
1182   // The address of the global is just (hi(&g)+lo(&g)).
1183   return DAG.getNode(ISD::ADD, DL, PtrVT, Hi, Lo);
1184 }
1185
1186 SDValue PPCTargetLowering::LowerConstantPool(SDValue Op,
1187                                              SelectionDAG &DAG) const {
1188   EVT PtrVT = Op.getValueType();
1189   ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1190   const Constant *C = CP->getConstVal();
1191
1192   unsigned MOHiFlag, MOLoFlag;
1193   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1194   SDValue CPIHi =
1195     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOHiFlag);
1196   SDValue CPILo =
1197     DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment(), 0, MOLoFlag);
1198   return LowerLabelRef(CPIHi, CPILo, isPIC, DAG);
1199 }
1200
1201 SDValue PPCTargetLowering::LowerJumpTable(SDValue Op, SelectionDAG &DAG) const {
1202   EVT PtrVT = Op.getValueType();
1203   JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1204
1205   unsigned MOHiFlag, MOLoFlag;
1206   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1207   SDValue JTIHi = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOHiFlag);
1208   SDValue JTILo = DAG.getTargetJumpTable(JT->getIndex(), PtrVT, MOLoFlag);
1209   return LowerLabelRef(JTIHi, JTILo, isPIC, DAG);
1210 }
1211
1212 SDValue PPCTargetLowering::LowerBlockAddress(SDValue Op,
1213                                              SelectionDAG &DAG) const {
1214   EVT PtrVT = Op.getValueType();
1215
1216   const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress();
1217
1218   unsigned MOHiFlag, MOLoFlag;
1219   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag);
1220   SDValue TgtBAHi = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOHiFlag);
1221   SDValue TgtBALo = DAG.getBlockAddress(BA, PtrVT, /*isTarget=*/true, MOLoFlag);
1222   return LowerLabelRef(TgtBAHi, TgtBALo, isPIC, DAG);
1223 }
1224
1225 SDValue PPCTargetLowering::LowerGlobalAddress(SDValue Op,
1226                                               SelectionDAG &DAG) const {
1227   EVT PtrVT = Op.getValueType();
1228   GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1229   DebugLoc DL = GSDN->getDebugLoc();
1230   const GlobalValue *GV = GSDN->getGlobal();
1231
1232   // 64-bit SVR4 ABI code is always position-independent.
1233   // The actual address of the GlobalValue is stored in the TOC.
1234   if (PPCSubTarget.isSVR4ABI() && PPCSubTarget.isPPC64()) {
1235     SDValue GA = DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset());
1236     return DAG.getNode(PPCISD::TOC_ENTRY, DL, MVT::i64, GA,
1237                        DAG.getRegister(PPC::X2, MVT::i64));
1238   }
1239
1240   unsigned MOHiFlag, MOLoFlag;
1241   bool isPIC = GetLabelAccessInfo(DAG.getTarget(), MOHiFlag, MOLoFlag, GV);
1242
1243   SDValue GAHi =
1244     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOHiFlag);
1245   SDValue GALo =
1246     DAG.getTargetGlobalAddress(GV, DL, PtrVT, GSDN->getOffset(), MOLoFlag);
1247
1248   SDValue Ptr = LowerLabelRef(GAHi, GALo, isPIC, DAG);
1249
1250   // If the global reference is actually to a non-lazy-pointer, we have to do an
1251   // extra load to get the address of the global.
1252   if (MOHiFlag & PPCII::MO_NLP_FLAG)
1253     Ptr = DAG.getLoad(PtrVT, DL, DAG.getEntryNode(), Ptr, MachinePointerInfo(),
1254                       false, false, false, 0);
1255   return Ptr;
1256 }
1257
1258 SDValue PPCTargetLowering::LowerSETCC(SDValue Op, SelectionDAG &DAG) const {
1259   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1260   DebugLoc dl = Op.getDebugLoc();
1261
1262   // If we're comparing for equality to zero, expose the fact that this is
1263   // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1264   // fold the new nodes.
1265   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1266     if (C->isNullValue() && CC == ISD::SETEQ) {
1267       EVT VT = Op.getOperand(0).getValueType();
1268       SDValue Zext = Op.getOperand(0);
1269       if (VT.bitsLT(MVT::i32)) {
1270         VT = MVT::i32;
1271         Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
1272       }
1273       unsigned Log2b = Log2_32(VT.getSizeInBits());
1274       SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
1275       SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
1276                                 DAG.getConstant(Log2b, MVT::i32));
1277       return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
1278     }
1279     // Leave comparisons against 0 and -1 alone for now, since they're usually
1280     // optimized.  FIXME: revisit this when we can custom lower all setcc
1281     // optimizations.
1282     if (C->isAllOnesValue() || C->isNullValue())
1283       return SDValue();
1284   }
1285
1286   // If we have an integer seteq/setne, turn it into a compare against zero
1287   // by xor'ing the rhs with the lhs, which is faster than setting a
1288   // condition register, reading it back out, and masking the correct bit.  The
1289   // normal approach here uses sub to do this instead of xor.  Using xor exposes
1290   // the result to other bit-twiddling opportunities.
1291   EVT LHSVT = Op.getOperand(0).getValueType();
1292   if (LHSVT.isInteger() && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1293     EVT VT = Op.getValueType();
1294     SDValue Sub = DAG.getNode(ISD::XOR, dl, LHSVT, Op.getOperand(0),
1295                                 Op.getOperand(1));
1296     return DAG.getSetCC(dl, VT, Sub, DAG.getConstant(0, LHSVT), CC);
1297   }
1298   return SDValue();
1299 }
1300
1301 SDValue PPCTargetLowering::LowerVAARG(SDValue Op, SelectionDAG &DAG,
1302                                       const PPCSubtarget &Subtarget) const {
1303   SDNode *Node = Op.getNode();
1304   EVT VT = Node->getValueType(0);
1305   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1306   SDValue InChain = Node->getOperand(0);
1307   SDValue VAListPtr = Node->getOperand(1);
1308   const Value *SV = cast<SrcValueSDNode>(Node->getOperand(2))->getValue();
1309   DebugLoc dl = Node->getDebugLoc();
1310
1311   assert(!Subtarget.isPPC64() && "LowerVAARG is PPC32 only");
1312
1313   // gpr_index
1314   SDValue GprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1315                                     VAListPtr, MachinePointerInfo(SV), MVT::i8,
1316                                     false, false, 0);
1317   InChain = GprIndex.getValue(1);
1318
1319   if (VT == MVT::i64) {
1320     // Check if GprIndex is even
1321     SDValue GprAnd = DAG.getNode(ISD::AND, dl, MVT::i32, GprIndex,
1322                                  DAG.getConstant(1, MVT::i32));
1323     SDValue CC64 = DAG.getSetCC(dl, MVT::i32, GprAnd,
1324                                 DAG.getConstant(0, MVT::i32), ISD::SETNE);
1325     SDValue GprIndexPlusOne = DAG.getNode(ISD::ADD, dl, MVT::i32, GprIndex,
1326                                           DAG.getConstant(1, MVT::i32));
1327     // Align GprIndex to be even if it isn't
1328     GprIndex = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC64, GprIndexPlusOne,
1329                            GprIndex);
1330   }
1331
1332   // fpr index is 1 byte after gpr
1333   SDValue FprPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1334                                DAG.getConstant(1, MVT::i32));
1335
1336   // fpr
1337   SDValue FprIndex = DAG.getExtLoad(ISD::ZEXTLOAD, dl, MVT::i32, InChain,
1338                                     FprPtr, MachinePointerInfo(SV), MVT::i8,
1339                                     false, false, 0);
1340   InChain = FprIndex.getValue(1);
1341
1342   SDValue RegSaveAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1343                                        DAG.getConstant(8, MVT::i32));
1344
1345   SDValue OverflowAreaPtr = DAG.getNode(ISD::ADD, dl, PtrVT, VAListPtr,
1346                                         DAG.getConstant(4, MVT::i32));
1347
1348   // areas
1349   SDValue OverflowArea = DAG.getLoad(MVT::i32, dl, InChain, OverflowAreaPtr,
1350                                      MachinePointerInfo(), false, false,
1351                                      false, 0);
1352   InChain = OverflowArea.getValue(1);
1353
1354   SDValue RegSaveArea = DAG.getLoad(MVT::i32, dl, InChain, RegSaveAreaPtr,
1355                                     MachinePointerInfo(), false, false,
1356                                     false, 0);
1357   InChain = RegSaveArea.getValue(1);
1358
1359   // select overflow_area if index > 8
1360   SDValue CC = DAG.getSetCC(dl, MVT::i32, VT.isInteger() ? GprIndex : FprIndex,
1361                             DAG.getConstant(8, MVT::i32), ISD::SETLT);
1362
1363   // adjustment constant gpr_index * 4/8
1364   SDValue RegConstant = DAG.getNode(ISD::MUL, dl, MVT::i32,
1365                                     VT.isInteger() ? GprIndex : FprIndex,
1366                                     DAG.getConstant(VT.isInteger() ? 4 : 8,
1367                                                     MVT::i32));
1368
1369   // OurReg = RegSaveArea + RegConstant
1370   SDValue OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, RegSaveArea,
1371                                RegConstant);
1372
1373   // Floating types are 32 bytes into RegSaveArea
1374   if (VT.isFloatingPoint())
1375     OurReg = DAG.getNode(ISD::ADD, dl, PtrVT, OurReg,
1376                          DAG.getConstant(32, MVT::i32));
1377
1378   // increase {f,g}pr_index by 1 (or 2 if VT is i64)
1379   SDValue IndexPlus1 = DAG.getNode(ISD::ADD, dl, MVT::i32,
1380                                    VT.isInteger() ? GprIndex : FprIndex,
1381                                    DAG.getConstant(VT == MVT::i64 ? 2 : 1,
1382                                                    MVT::i32));
1383
1384   InChain = DAG.getTruncStore(InChain, dl, IndexPlus1,
1385                               VT.isInteger() ? VAListPtr : FprPtr,
1386                               MachinePointerInfo(SV),
1387                               MVT::i8, false, false, 0);
1388
1389   // determine if we should load from reg_save_area or overflow_area
1390   SDValue Result = DAG.getNode(ISD::SELECT, dl, PtrVT, CC, OurReg, OverflowArea);
1391
1392   // increase overflow_area by 4/8 if gpr/fpr > 8
1393   SDValue OverflowAreaPlusN = DAG.getNode(ISD::ADD, dl, PtrVT, OverflowArea,
1394                                           DAG.getConstant(VT.isInteger() ? 4 : 8,
1395                                           MVT::i32));
1396
1397   OverflowArea = DAG.getNode(ISD::SELECT, dl, MVT::i32, CC, OverflowArea,
1398                              OverflowAreaPlusN);
1399
1400   InChain = DAG.getTruncStore(InChain, dl, OverflowArea,
1401                               OverflowAreaPtr,
1402                               MachinePointerInfo(),
1403                               MVT::i32, false, false, 0);
1404
1405   return DAG.getLoad(VT, dl, InChain, Result, MachinePointerInfo(), 
1406                      false, false, false, 0);
1407 }
1408
1409 SDValue PPCTargetLowering::LowerADJUST_TRAMPOLINE(SDValue Op,
1410                                                   SelectionDAG &DAG) const {
1411   return Op.getOperand(0);
1412 }
1413
1414 SDValue PPCTargetLowering::LowerINIT_TRAMPOLINE(SDValue Op,
1415                                                 SelectionDAG &DAG) const {
1416   SDValue Chain = Op.getOperand(0);
1417   SDValue Trmp = Op.getOperand(1); // trampoline
1418   SDValue FPtr = Op.getOperand(2); // nested function
1419   SDValue Nest = Op.getOperand(3); // 'nest' parameter value
1420   DebugLoc dl = Op.getDebugLoc();
1421
1422   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1423   bool isPPC64 = (PtrVT == MVT::i64);
1424   Type *IntPtrTy =
1425     DAG.getTargetLoweringInfo().getTargetData()->getIntPtrType(
1426                                                              *DAG.getContext());
1427
1428   TargetLowering::ArgListTy Args;
1429   TargetLowering::ArgListEntry Entry;
1430
1431   Entry.Ty = IntPtrTy;
1432   Entry.Node = Trmp; Args.push_back(Entry);
1433
1434   // TrampSize == (isPPC64 ? 48 : 40);
1435   Entry.Node = DAG.getConstant(isPPC64 ? 48 : 40,
1436                                isPPC64 ? MVT::i64 : MVT::i32);
1437   Args.push_back(Entry);
1438
1439   Entry.Node = FPtr; Args.push_back(Entry);
1440   Entry.Node = Nest; Args.push_back(Entry);
1441
1442   // Lower to a call to __trampoline_setup(Trmp, TrampSize, FPtr, ctx_reg)
1443   std::pair<SDValue, SDValue> CallResult =
1444     LowerCallTo(Chain, Type::getVoidTy(*DAG.getContext()),
1445                 false, false, false, false, 0, CallingConv::C,
1446                 /*isTailCall=*/false,
1447                 /*doesNotRet=*/false, /*isReturnValueUsed=*/true,
1448                 DAG.getExternalSymbol("__trampoline_setup", PtrVT),
1449                 Args, DAG, dl);
1450
1451   return CallResult.second;
1452 }
1453
1454 SDValue PPCTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG,
1455                                         const PPCSubtarget &Subtarget) const {
1456   MachineFunction &MF = DAG.getMachineFunction();
1457   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1458
1459   DebugLoc dl = Op.getDebugLoc();
1460
1461   if (Subtarget.isDarwinABI() || Subtarget.isPPC64()) {
1462     // vastart just stores the address of the VarArgsFrameIndex slot into the
1463     // memory location argument.
1464     EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1465     SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1466     const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1467     return DAG.getStore(Op.getOperand(0), dl, FR, Op.getOperand(1),
1468                         MachinePointerInfo(SV),
1469                         false, false, 0);
1470   }
1471
1472   // For the 32-bit SVR4 ABI we follow the layout of the va_list struct.
1473   // We suppose the given va_list is already allocated.
1474   //
1475   // typedef struct {
1476   //  char gpr;     /* index into the array of 8 GPRs
1477   //                 * stored in the register save area
1478   //                 * gpr=0 corresponds to r3,
1479   //                 * gpr=1 to r4, etc.
1480   //                 */
1481   //  char fpr;     /* index into the array of 8 FPRs
1482   //                 * stored in the register save area
1483   //                 * fpr=0 corresponds to f1,
1484   //                 * fpr=1 to f2, etc.
1485   //                 */
1486   //  char *overflow_arg_area;
1487   //                /* location on stack that holds
1488   //                 * the next overflow argument
1489   //                 */
1490   //  char *reg_save_area;
1491   //               /* where r3:r10 and f1:f8 (if saved)
1492   //                * are stored
1493   //                */
1494   // } va_list[1];
1495
1496
1497   SDValue ArgGPR = DAG.getConstant(FuncInfo->getVarArgsNumGPR(), MVT::i32);
1498   SDValue ArgFPR = DAG.getConstant(FuncInfo->getVarArgsNumFPR(), MVT::i32);
1499
1500
1501   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1502
1503   SDValue StackOffsetFI = DAG.getFrameIndex(FuncInfo->getVarArgsStackOffset(),
1504                                             PtrVT);
1505   SDValue FR = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(),
1506                                  PtrVT);
1507
1508   uint64_t FrameOffset = PtrVT.getSizeInBits()/8;
1509   SDValue ConstFrameOffset = DAG.getConstant(FrameOffset, PtrVT);
1510
1511   uint64_t StackOffset = PtrVT.getSizeInBits()/8 - 1;
1512   SDValue ConstStackOffset = DAG.getConstant(StackOffset, PtrVT);
1513
1514   uint64_t FPROffset = 1;
1515   SDValue ConstFPROffset = DAG.getConstant(FPROffset, PtrVT);
1516
1517   const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue();
1518
1519   // Store first byte : number of int regs
1520   SDValue firstStore = DAG.getTruncStore(Op.getOperand(0), dl, ArgGPR,
1521                                          Op.getOperand(1),
1522                                          MachinePointerInfo(SV),
1523                                          MVT::i8, false, false, 0);
1524   uint64_t nextOffset = FPROffset;
1525   SDValue nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, Op.getOperand(1),
1526                                   ConstFPROffset);
1527
1528   // Store second byte : number of float regs
1529   SDValue secondStore =
1530     DAG.getTruncStore(firstStore, dl, ArgFPR, nextPtr,
1531                       MachinePointerInfo(SV, nextOffset), MVT::i8,
1532                       false, false, 0);
1533   nextOffset += StackOffset;
1534   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstStackOffset);
1535
1536   // Store second word : arguments given on stack
1537   SDValue thirdStore =
1538     DAG.getStore(secondStore, dl, StackOffsetFI, nextPtr,
1539                  MachinePointerInfo(SV, nextOffset),
1540                  false, false, 0);
1541   nextOffset += FrameOffset;
1542   nextPtr = DAG.getNode(ISD::ADD, dl, PtrVT, nextPtr, ConstFrameOffset);
1543
1544   // Store third word : arguments given in registers
1545   return DAG.getStore(thirdStore, dl, FR, nextPtr,
1546                       MachinePointerInfo(SV, nextOffset),
1547                       false, false, 0);
1548
1549 }
1550
1551 #include "PPCGenCallingConv.inc"
1552
1553 static bool CC_PPC_SVR4_Custom_Dummy(unsigned &ValNo, MVT &ValVT, MVT &LocVT,
1554                                      CCValAssign::LocInfo &LocInfo,
1555                                      ISD::ArgFlagsTy &ArgFlags,
1556                                      CCState &State) {
1557   return true;
1558 }
1559
1560 static bool CC_PPC_SVR4_Custom_AlignArgRegs(unsigned &ValNo, MVT &ValVT,
1561                                             MVT &LocVT,
1562                                             CCValAssign::LocInfo &LocInfo,
1563                                             ISD::ArgFlagsTy &ArgFlags,
1564                                             CCState &State) {
1565   static const uint16_t ArgRegs[] = {
1566     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1567     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1568   };
1569   const unsigned NumArgRegs = array_lengthof(ArgRegs);
1570
1571   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1572
1573   // Skip one register if the first unallocated register has an even register
1574   // number and there are still argument registers available which have not been
1575   // allocated yet. RegNum is actually an index into ArgRegs, which means we
1576   // need to skip a register if RegNum is odd.
1577   if (RegNum != NumArgRegs && RegNum % 2 == 1) {
1578     State.AllocateReg(ArgRegs[RegNum]);
1579   }
1580
1581   // Always return false here, as this function only makes sure that the first
1582   // unallocated register has an odd register number and does not actually
1583   // allocate a register for the current argument.
1584   return false;
1585 }
1586
1587 static bool CC_PPC_SVR4_Custom_AlignFPArgRegs(unsigned &ValNo, MVT &ValVT,
1588                                               MVT &LocVT,
1589                                               CCValAssign::LocInfo &LocInfo,
1590                                               ISD::ArgFlagsTy &ArgFlags,
1591                                               CCState &State) {
1592   static const uint16_t ArgRegs[] = {
1593     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1594     PPC::F8
1595   };
1596
1597   const unsigned NumArgRegs = array_lengthof(ArgRegs);
1598
1599   unsigned RegNum = State.getFirstUnallocated(ArgRegs, NumArgRegs);
1600
1601   // If there is only one Floating-point register left we need to put both f64
1602   // values of a split ppc_fp128 value on the stack.
1603   if (RegNum != NumArgRegs && ArgRegs[RegNum] == PPC::F8) {
1604     State.AllocateReg(ArgRegs[RegNum]);
1605   }
1606
1607   // Always return false here, as this function only makes sure that the two f64
1608   // values a ppc_fp128 value is split into are both passed in registers or both
1609   // passed on the stack and does not actually allocate a register for the
1610   // current argument.
1611   return false;
1612 }
1613
1614 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1615 /// on Darwin.
1616 static const uint16_t *GetFPR() {
1617   static const uint16_t FPR[] = {
1618     PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1619     PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1620   };
1621
1622   return FPR;
1623 }
1624
1625 /// CalculateStackSlotSize - Calculates the size reserved for this argument on
1626 /// the stack.
1627 static unsigned CalculateStackSlotSize(EVT ArgVT, ISD::ArgFlagsTy Flags,
1628                                        unsigned PtrByteSize) {
1629   unsigned ArgSize = ArgVT.getSizeInBits()/8;
1630   if (Flags.isByVal())
1631     ArgSize = Flags.getByValSize();
1632   ArgSize = ((ArgSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1633
1634   return ArgSize;
1635 }
1636
1637 SDValue
1638 PPCTargetLowering::LowerFormalArguments(SDValue Chain,
1639                                         CallingConv::ID CallConv, bool isVarArg,
1640                                         const SmallVectorImpl<ISD::InputArg>
1641                                           &Ins,
1642                                         DebugLoc dl, SelectionDAG &DAG,
1643                                         SmallVectorImpl<SDValue> &InVals)
1644                                           const {
1645   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64()) {
1646     return LowerFormalArguments_SVR4(Chain, CallConv, isVarArg, Ins,
1647                                      dl, DAG, InVals);
1648   } else {
1649     return LowerFormalArguments_Darwin(Chain, CallConv, isVarArg, Ins,
1650                                        dl, DAG, InVals);
1651   }
1652 }
1653
1654 SDValue
1655 PPCTargetLowering::LowerFormalArguments_SVR4(
1656                                       SDValue Chain,
1657                                       CallingConv::ID CallConv, bool isVarArg,
1658                                       const SmallVectorImpl<ISD::InputArg>
1659                                         &Ins,
1660                                       DebugLoc dl, SelectionDAG &DAG,
1661                                       SmallVectorImpl<SDValue> &InVals) const {
1662
1663   // 32-bit SVR4 ABI Stack Frame Layout:
1664   //              +-----------------------------------+
1665   //        +-->  |            Back chain             |
1666   //        |     +-----------------------------------+
1667   //        |     | Floating-point register save area |
1668   //        |     +-----------------------------------+
1669   //        |     |    General register save area     |
1670   //        |     +-----------------------------------+
1671   //        |     |          CR save word             |
1672   //        |     +-----------------------------------+
1673   //        |     |         VRSAVE save word          |
1674   //        |     +-----------------------------------+
1675   //        |     |         Alignment padding         |
1676   //        |     +-----------------------------------+
1677   //        |     |     Vector register save area     |
1678   //        |     +-----------------------------------+
1679   //        |     |       Local variable space        |
1680   //        |     +-----------------------------------+
1681   //        |     |        Parameter list area        |
1682   //        |     +-----------------------------------+
1683   //        |     |           LR save word            |
1684   //        |     +-----------------------------------+
1685   // SP-->  +---  |            Back chain             |
1686   //              +-----------------------------------+
1687   //
1688   // Specifications:
1689   //   System V Application Binary Interface PowerPC Processor Supplement
1690   //   AltiVec Technology Programming Interface Manual
1691
1692   MachineFunction &MF = DAG.getMachineFunction();
1693   MachineFrameInfo *MFI = MF.getFrameInfo();
1694   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1695
1696   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1697   // Potential tail calls could cause overwriting of argument stack slots.
1698   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1699                        (CallConv == CallingConv::Fast));
1700   unsigned PtrByteSize = 4;
1701
1702   // Assign locations to all of the incoming arguments.
1703   SmallVector<CCValAssign, 16> ArgLocs;
1704   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1705                  getTargetMachine(), ArgLocs, *DAG.getContext());
1706
1707   // Reserve space for the linkage area on the stack.
1708   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
1709
1710   CCInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4);
1711
1712   for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) {
1713     CCValAssign &VA = ArgLocs[i];
1714
1715     // Arguments stored in registers.
1716     if (VA.isRegLoc()) {
1717       const TargetRegisterClass *RC;
1718       EVT ValVT = VA.getValVT();
1719
1720       switch (ValVT.getSimpleVT().SimpleTy) {
1721         default:
1722           llvm_unreachable("ValVT not supported by formal arguments Lowering");
1723         case MVT::i32:
1724           RC = &PPC::GPRCRegClass;
1725           break;
1726         case MVT::f32:
1727           RC = &PPC::F4RCRegClass;
1728           break;
1729         case MVT::f64:
1730           RC = &PPC::F8RCRegClass;
1731           break;
1732         case MVT::v16i8:
1733         case MVT::v8i16:
1734         case MVT::v4i32:
1735         case MVT::v4f32:
1736           RC = &PPC::VRRCRegClass;
1737           break;
1738       }
1739
1740       // Transform the arguments stored in physical registers into virtual ones.
1741       unsigned Reg = MF.addLiveIn(VA.getLocReg(), RC);
1742       SDValue ArgValue = DAG.getCopyFromReg(Chain, dl, Reg, ValVT);
1743
1744       InVals.push_back(ArgValue);
1745     } else {
1746       // Argument stored in memory.
1747       assert(VA.isMemLoc());
1748
1749       unsigned ArgSize = VA.getLocVT().getSizeInBits() / 8;
1750       int FI = MFI->CreateFixedObject(ArgSize, VA.getLocMemOffset(),
1751                                       isImmutable);
1752
1753       // Create load nodes to retrieve arguments from the stack.
1754       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
1755       InVals.push_back(DAG.getLoad(VA.getValVT(), dl, Chain, FIN,
1756                                    MachinePointerInfo(),
1757                                    false, false, false, 0));
1758     }
1759   }
1760
1761   // Assign locations to all of the incoming aggregate by value arguments.
1762   // Aggregates passed by value are stored in the local variable space of the
1763   // caller's stack frame, right above the parameter list area.
1764   SmallVector<CCValAssign, 16> ByValArgLocs;
1765   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
1766                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
1767
1768   // Reserve stack space for the allocations in CCInfo.
1769   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
1770
1771   CCByValInfo.AnalyzeFormalArguments(Ins, CC_PPC_SVR4_ByVal);
1772
1773   // Area that is at least reserved in the caller of this function.
1774   unsigned MinReservedArea = CCByValInfo.getNextStackOffset();
1775
1776   // Set the size that is at least reserved in caller of this function.  Tail
1777   // call optimized function's reserved stack space needs to be aligned so that
1778   // taking the difference between two stack areas will result in an aligned
1779   // stack.
1780   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1781
1782   MinReservedArea =
1783     std::max(MinReservedArea,
1784              PPCFrameLowering::getMinCallFrameSize(false, false));
1785
1786   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
1787     getStackAlignment();
1788   unsigned AlignMask = TargetAlign-1;
1789   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
1790
1791   FI->setMinReservedArea(MinReservedArea);
1792
1793   SmallVector<SDValue, 8> MemOps;
1794
1795   // If the function takes variable number of arguments, make a frame index for
1796   // the start of the first vararg value... for expansion of llvm.va_start.
1797   if (isVarArg) {
1798     static const uint16_t GPArgRegs[] = {
1799       PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1800       PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1801     };
1802     const unsigned NumGPArgRegs = array_lengthof(GPArgRegs);
1803
1804     static const uint16_t FPArgRegs[] = {
1805       PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1806       PPC::F8
1807     };
1808     const unsigned NumFPArgRegs = array_lengthof(FPArgRegs);
1809
1810     FuncInfo->setVarArgsNumGPR(CCInfo.getFirstUnallocated(GPArgRegs,
1811                                                           NumGPArgRegs));
1812     FuncInfo->setVarArgsNumFPR(CCInfo.getFirstUnallocated(FPArgRegs,
1813                                                           NumFPArgRegs));
1814
1815     // Make room for NumGPArgRegs and NumFPArgRegs.
1816     int Depth = NumGPArgRegs * PtrVT.getSizeInBits()/8 +
1817                 NumFPArgRegs * EVT(MVT::f64).getSizeInBits()/8;
1818
1819     FuncInfo->setVarArgsStackOffset(
1820       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
1821                              CCInfo.getNextStackOffset(), true));
1822
1823     FuncInfo->setVarArgsFrameIndex(MFI->CreateStackObject(Depth, 8, false));
1824     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
1825
1826     // The fixed integer arguments of a variadic function are stored to the
1827     // VarArgsFrameIndex on the stack so that they may be loaded by deferencing
1828     // the result of va_next.
1829     for (unsigned GPRIndex = 0; GPRIndex != NumGPArgRegs; ++GPRIndex) {
1830       // Get an existing live-in vreg, or add a new one.
1831       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(GPArgRegs[GPRIndex]);
1832       if (!VReg)
1833         VReg = MF.addLiveIn(GPArgRegs[GPRIndex], &PPC::GPRCRegClass);
1834
1835       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
1836       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1837                                    MachinePointerInfo(), false, false, 0);
1838       MemOps.push_back(Store);
1839       // Increment the address by four for the next argument to store
1840       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
1841       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1842     }
1843
1844     // FIXME 32-bit SVR4: We only need to save FP argument registers if CR bit 6
1845     // is set.
1846     // The double arguments are stored to the VarArgsFrameIndex
1847     // on the stack.
1848     for (unsigned FPRIndex = 0; FPRIndex != NumFPArgRegs; ++FPRIndex) {
1849       // Get an existing live-in vreg, or add a new one.
1850       unsigned VReg = MF.getRegInfo().getLiveInVirtReg(FPArgRegs[FPRIndex]);
1851       if (!VReg)
1852         VReg = MF.addLiveIn(FPArgRegs[FPRIndex], &PPC::F8RCRegClass);
1853
1854       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, MVT::f64);
1855       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
1856                                    MachinePointerInfo(), false, false, 0);
1857       MemOps.push_back(Store);
1858       // Increment the address by eight for the next argument to store
1859       SDValue PtrOff = DAG.getConstant(EVT(MVT::f64).getSizeInBits()/8,
1860                                          PtrVT);
1861       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
1862     }
1863   }
1864
1865   if (!MemOps.empty())
1866     Chain = DAG.getNode(ISD::TokenFactor, dl,
1867                         MVT::Other, &MemOps[0], MemOps.size());
1868
1869   return Chain;
1870 }
1871
1872 SDValue
1873 PPCTargetLowering::LowerFormalArguments_Darwin(
1874                                       SDValue Chain,
1875                                       CallingConv::ID CallConv, bool isVarArg,
1876                                       const SmallVectorImpl<ISD::InputArg>
1877                                         &Ins,
1878                                       DebugLoc dl, SelectionDAG &DAG,
1879                                       SmallVectorImpl<SDValue> &InVals) const {
1880   // TODO: add description of PPC stack frame format, or at least some docs.
1881   //
1882   MachineFunction &MF = DAG.getMachineFunction();
1883   MachineFrameInfo *MFI = MF.getFrameInfo();
1884   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
1885
1886   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1887   bool isPPC64 = PtrVT == MVT::i64;
1888   // Potential tail calls could cause overwriting of argument stack slots.
1889   bool isImmutable = !(getTargetMachine().Options.GuaranteedTailCallOpt &&
1890                        (CallConv == CallingConv::Fast));
1891   unsigned PtrByteSize = isPPC64 ? 8 : 4;
1892
1893   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
1894   // Area that is at least reserved in caller of this function.
1895   unsigned MinReservedArea = ArgOffset;
1896
1897   static const uint16_t GPR_32[] = {           // 32-bit registers.
1898     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1899     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1900   };
1901   static const uint16_t GPR_64[] = {           // 64-bit registers.
1902     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1903     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1904   };
1905
1906   static const uint16_t *FPR = GetFPR();
1907
1908   static const uint16_t VR[] = {
1909     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1910     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1911   };
1912
1913   const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1914   const unsigned Num_FPR_Regs = 13;
1915   const unsigned Num_VR_Regs  = array_lengthof( VR);
1916
1917   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1918
1919   const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
1920
1921   // In 32-bit non-varargs functions, the stack space for vectors is after the
1922   // stack space for non-vectors.  We do not use this space unless we have
1923   // too many vectors to fit in registers, something that only occurs in
1924   // constructed examples:), but we have to walk the arglist to figure
1925   // that out...for the pathological case, compute VecArgOffset as the
1926   // start of the vector parameter area.  Computing VecArgOffset is the
1927   // entire point of the following loop.
1928   unsigned VecArgOffset = ArgOffset;
1929   if (!isVarArg && !isPPC64) {
1930     for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e;
1931          ++ArgNo) {
1932       EVT ObjectVT = Ins[ArgNo].VT;
1933       ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1934
1935       if (Flags.isByVal()) {
1936         // ObjSize is the true size, ArgSize rounded up to multiple of regs.
1937         unsigned ObjSize = Flags.getByValSize();
1938         unsigned ArgSize =
1939                 ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
1940         VecArgOffset += ArgSize;
1941         continue;
1942       }
1943
1944       switch(ObjectVT.getSimpleVT().SimpleTy) {
1945       default: llvm_unreachable("Unhandled argument type!");
1946       case MVT::i32:
1947       case MVT::f32:
1948         VecArgOffset += isPPC64 ? 8 : 4;
1949         break;
1950       case MVT::i64:  // PPC64
1951       case MVT::f64:
1952         VecArgOffset += 8;
1953         break;
1954       case MVT::v4f32:
1955       case MVT::v4i32:
1956       case MVT::v8i16:
1957       case MVT::v16i8:
1958         // Nothing to do, we're only looking at Nonvector args here.
1959         break;
1960       }
1961     }
1962   }
1963   // We've found where the vector parameter area in memory is.  Skip the
1964   // first 12 parameters; these don't use that memory.
1965   VecArgOffset = ((VecArgOffset+15)/16)*16;
1966   VecArgOffset += 12*16;
1967
1968   // Add DAG nodes to load the arguments or copy them out of registers.  On
1969   // entry to a function on PPC, the arguments start after the linkage area,
1970   // although the first ones are often in registers.
1971
1972   SmallVector<SDValue, 8> MemOps;
1973   unsigned nAltivecParamsAtEnd = 0;
1974   for (unsigned ArgNo = 0, e = Ins.size(); ArgNo != e; ++ArgNo) {
1975     SDValue ArgVal;
1976     bool needsLoad = false;
1977     EVT ObjectVT = Ins[ArgNo].VT;
1978     unsigned ObjSize = ObjectVT.getSizeInBits()/8;
1979     unsigned ArgSize = ObjSize;
1980     ISD::ArgFlagsTy Flags = Ins[ArgNo].Flags;
1981
1982     unsigned CurArgOffset = ArgOffset;
1983
1984     // Varargs or 64 bit Altivec parameters are padded to a 16 byte boundary.
1985     if (ObjectVT==MVT::v4f32 || ObjectVT==MVT::v4i32 ||
1986         ObjectVT==MVT::v8i16 || ObjectVT==MVT::v16i8) {
1987       if (isVarArg || isPPC64) {
1988         MinReservedArea = ((MinReservedArea+15)/16)*16;
1989         MinReservedArea += CalculateStackSlotSize(ObjectVT,
1990                                                   Flags,
1991                                                   PtrByteSize);
1992       } else  nAltivecParamsAtEnd++;
1993     } else
1994       // Calculate min reserved area.
1995       MinReservedArea += CalculateStackSlotSize(Ins[ArgNo].VT,
1996                                                 Flags,
1997                                                 PtrByteSize);
1998
1999     // FIXME the codegen can be much improved in some cases.
2000     // We do not have to keep everything in memory.
2001     if (Flags.isByVal()) {
2002       // ObjSize is the true size, ArgSize rounded up to multiple of registers.
2003       ObjSize = Flags.getByValSize();
2004       ArgSize = ((ObjSize + PtrByteSize - 1)/PtrByteSize) * PtrByteSize;
2005       // Objects of size 1 and 2 are right justified, everything else is
2006       // left justified.  This means the memory address is adjusted forwards.
2007       if (ObjSize==1 || ObjSize==2) {
2008         CurArgOffset = CurArgOffset + (4 - ObjSize);
2009       }
2010       // The value of the object is its address.
2011       int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset, true);
2012       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2013       InVals.push_back(FIN);
2014       if (ObjSize==1 || ObjSize==2) {
2015         if (GPR_idx != Num_GPR_Regs) {
2016           unsigned VReg;
2017           if (isPPC64)
2018             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2019           else
2020             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2021           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2022           SDValue Store = DAG.getTruncStore(Val.getValue(1), dl, Val, FIN,
2023                                             MachinePointerInfo(),
2024                                             ObjSize==1 ? MVT::i8 : MVT::i16,
2025                                             false, false, 0);
2026           MemOps.push_back(Store);
2027           ++GPR_idx;
2028         }
2029
2030         ArgOffset += PtrByteSize;
2031
2032         continue;
2033       }
2034       for (unsigned j = 0; j < ArgSize; j += PtrByteSize) {
2035         // Store whatever pieces of the object are in registers
2036         // to memory.  ArgVal will be address of the beginning of
2037         // the object.
2038         if (GPR_idx != Num_GPR_Regs) {
2039           unsigned VReg;
2040           if (isPPC64)
2041             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2042           else
2043             VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2044           int FI = MFI->CreateFixedObject(PtrByteSize, ArgOffset, true);
2045           SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2046           SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2047           SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2048                                        MachinePointerInfo(),
2049                                        false, false, 0);
2050           MemOps.push_back(Store);
2051           ++GPR_idx;
2052           ArgOffset += PtrByteSize;
2053         } else {
2054           ArgOffset += ArgSize - (ArgOffset-CurArgOffset);
2055           break;
2056         }
2057       }
2058       continue;
2059     }
2060
2061     switch (ObjectVT.getSimpleVT().SimpleTy) {
2062     default: llvm_unreachable("Unhandled argument type!");
2063     case MVT::i32:
2064       if (!isPPC64) {
2065         if (GPR_idx != Num_GPR_Regs) {
2066           unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2067           ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i32);
2068           ++GPR_idx;
2069         } else {
2070           needsLoad = true;
2071           ArgSize = PtrByteSize;
2072         }
2073         // All int arguments reserve stack space in the Darwin ABI.
2074         ArgOffset += PtrByteSize;
2075         break;
2076       }
2077       // FALLTHROUGH
2078     case MVT::i64:  // PPC64
2079       if (GPR_idx != Num_GPR_Regs) {
2080         unsigned VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2081         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, MVT::i64);
2082
2083         if (ObjectVT == MVT::i32) {
2084           // PPC64 passes i8, i16, and i32 values in i64 registers. Promote
2085           // value to MVT::i64 and then truncate to the correct register size.
2086           if (Flags.isSExt())
2087             ArgVal = DAG.getNode(ISD::AssertSext, dl, MVT::i64, ArgVal,
2088                                  DAG.getValueType(ObjectVT));
2089           else if (Flags.isZExt())
2090             ArgVal = DAG.getNode(ISD::AssertZext, dl, MVT::i64, ArgVal,
2091                                  DAG.getValueType(ObjectVT));
2092
2093           ArgVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, ArgVal);
2094         }
2095
2096         ++GPR_idx;
2097       } else {
2098         needsLoad = true;
2099         ArgSize = PtrByteSize;
2100       }
2101       // All int arguments reserve stack space in the Darwin ABI.
2102       ArgOffset += 8;
2103       break;
2104
2105     case MVT::f32:
2106     case MVT::f64:
2107       // Every 4 bytes of argument space consumes one of the GPRs available for
2108       // argument passing.
2109       if (GPR_idx != Num_GPR_Regs) {
2110         ++GPR_idx;
2111         if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
2112           ++GPR_idx;
2113       }
2114       if (FPR_idx != Num_FPR_Regs) {
2115         unsigned VReg;
2116
2117         if (ObjectVT == MVT::f32)
2118           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F4RCRegClass);
2119         else
2120           VReg = MF.addLiveIn(FPR[FPR_idx], &PPC::F8RCRegClass);
2121
2122         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2123         ++FPR_idx;
2124       } else {
2125         needsLoad = true;
2126       }
2127
2128       // All FP arguments reserve stack space in the Darwin ABI.
2129       ArgOffset += isPPC64 ? 8 : ObjSize;
2130       break;
2131     case MVT::v4f32:
2132     case MVT::v4i32:
2133     case MVT::v8i16:
2134     case MVT::v16i8:
2135       // Note that vector arguments in registers don't reserve stack space,
2136       // except in varargs functions.
2137       if (VR_idx != Num_VR_Regs) {
2138         unsigned VReg = MF.addLiveIn(VR[VR_idx], &PPC::VRRCRegClass);
2139         ArgVal = DAG.getCopyFromReg(Chain, dl, VReg, ObjectVT);
2140         if (isVarArg) {
2141           while ((ArgOffset % 16) != 0) {
2142             ArgOffset += PtrByteSize;
2143             if (GPR_idx != Num_GPR_Regs)
2144               GPR_idx++;
2145           }
2146           ArgOffset += 16;
2147           GPR_idx = std::min(GPR_idx+4, Num_GPR_Regs); // FIXME correct for ppc64?
2148         }
2149         ++VR_idx;
2150       } else {
2151         if (!isVarArg && !isPPC64) {
2152           // Vectors go after all the nonvectors.
2153           CurArgOffset = VecArgOffset;
2154           VecArgOffset += 16;
2155         } else {
2156           // Vectors are aligned.
2157           ArgOffset = ((ArgOffset+15)/16)*16;
2158           CurArgOffset = ArgOffset;
2159           ArgOffset += 16;
2160         }
2161         needsLoad = true;
2162       }
2163       break;
2164     }
2165
2166     // We need to load the argument to a virtual register if we determined above
2167     // that we ran out of physical registers of the appropriate type.
2168     if (needsLoad) {
2169       int FI = MFI->CreateFixedObject(ObjSize,
2170                                       CurArgOffset + (ArgSize - ObjSize),
2171                                       isImmutable);
2172       SDValue FIN = DAG.getFrameIndex(FI, PtrVT);
2173       ArgVal = DAG.getLoad(ObjectVT, dl, Chain, FIN, MachinePointerInfo(),
2174                            false, false, false, 0);
2175     }
2176
2177     InVals.push_back(ArgVal);
2178   }
2179
2180   // Set the size that is at least reserved in caller of this function.  Tail
2181   // call optimized function's reserved stack space needs to be aligned so that
2182   // taking the difference between two stack areas will result in an aligned
2183   // stack.
2184   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
2185   // Add the Altivec parameters at the end, if needed.
2186   if (nAltivecParamsAtEnd) {
2187     MinReservedArea = ((MinReservedArea+15)/16)*16;
2188     MinReservedArea += 16*nAltivecParamsAtEnd;
2189   }
2190   MinReservedArea =
2191     std::max(MinReservedArea,
2192              PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2193   unsigned TargetAlign = DAG.getMachineFunction().getTarget().getFrameLowering()->
2194     getStackAlignment();
2195   unsigned AlignMask = TargetAlign-1;
2196   MinReservedArea = (MinReservedArea + AlignMask) & ~AlignMask;
2197   FI->setMinReservedArea(MinReservedArea);
2198
2199   // If the function takes variable number of arguments, make a frame index for
2200   // the start of the first vararg value... for expansion of llvm.va_start.
2201   if (isVarArg) {
2202     int Depth = ArgOffset;
2203
2204     FuncInfo->setVarArgsFrameIndex(
2205       MFI->CreateFixedObject(PtrVT.getSizeInBits()/8,
2206                              Depth, true));
2207     SDValue FIN = DAG.getFrameIndex(FuncInfo->getVarArgsFrameIndex(), PtrVT);
2208
2209     // If this function is vararg, store any remaining integer argument regs
2210     // to their spots on the stack so that they may be loaded by deferencing the
2211     // result of va_next.
2212     for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
2213       unsigned VReg;
2214
2215       if (isPPC64)
2216         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::G8RCRegClass);
2217       else
2218         VReg = MF.addLiveIn(GPR[GPR_idx], &PPC::GPRCRegClass);
2219
2220       SDValue Val = DAG.getCopyFromReg(Chain, dl, VReg, PtrVT);
2221       SDValue Store = DAG.getStore(Val.getValue(1), dl, Val, FIN,
2222                                    MachinePointerInfo(), false, false, 0);
2223       MemOps.push_back(Store);
2224       // Increment the address by four for the next argument to store
2225       SDValue PtrOff = DAG.getConstant(PtrVT.getSizeInBits()/8, PtrVT);
2226       FIN = DAG.getNode(ISD::ADD, dl, PtrOff.getValueType(), FIN, PtrOff);
2227     }
2228   }
2229
2230   if (!MemOps.empty())
2231     Chain = DAG.getNode(ISD::TokenFactor, dl,
2232                         MVT::Other, &MemOps[0], MemOps.size());
2233
2234   return Chain;
2235 }
2236
2237 /// CalculateParameterAndLinkageAreaSize - Get the size of the paramter plus
2238 /// linkage area for the Darwin ABI.
2239 static unsigned
2240 CalculateParameterAndLinkageAreaSize(SelectionDAG &DAG,
2241                                      bool isPPC64,
2242                                      bool isVarArg,
2243                                      unsigned CC,
2244                                      const SmallVectorImpl<ISD::OutputArg>
2245                                        &Outs,
2246                                      const SmallVectorImpl<SDValue> &OutVals,
2247                                      unsigned &nAltivecParamsAtEnd) {
2248   // Count how many bytes are to be pushed on the stack, including the linkage
2249   // area, and parameter passing area.  We start with 24/48 bytes, which is
2250   // prereserved space for [SP][CR][LR][3 x unused].
2251   unsigned NumBytes = PPCFrameLowering::getLinkageSize(isPPC64, true);
2252   unsigned NumOps = Outs.size();
2253   unsigned PtrByteSize = isPPC64 ? 8 : 4;
2254
2255   // Add up all the space actually used.
2256   // In 32-bit non-varargs calls, Altivec parameters all go at the end; usually
2257   // they all go in registers, but we must reserve stack space for them for
2258   // possible use by the caller.  In varargs or 64-bit calls, parameters are
2259   // assigned stack space in order, with padding so Altivec parameters are
2260   // 16-byte aligned.
2261   nAltivecParamsAtEnd = 0;
2262   for (unsigned i = 0; i != NumOps; ++i) {
2263     ISD::ArgFlagsTy Flags = Outs[i].Flags;
2264     EVT ArgVT = Outs[i].VT;
2265     // Varargs Altivec parameters are padded to a 16 byte boundary.
2266     if (ArgVT==MVT::v4f32 || ArgVT==MVT::v4i32 ||
2267         ArgVT==MVT::v8i16 || ArgVT==MVT::v16i8) {
2268       if (!isVarArg && !isPPC64) {
2269         // Non-varargs Altivec parameters go after all the non-Altivec
2270         // parameters; handle those later so we know how much padding we need.
2271         nAltivecParamsAtEnd++;
2272         continue;
2273       }
2274       // Varargs and 64-bit Altivec parameters are padded to 16 byte boundary.
2275       NumBytes = ((NumBytes+15)/16)*16;
2276     }
2277     NumBytes += CalculateStackSlotSize(ArgVT, Flags, PtrByteSize);
2278   }
2279
2280    // Allow for Altivec parameters at the end, if needed.
2281   if (nAltivecParamsAtEnd) {
2282     NumBytes = ((NumBytes+15)/16)*16;
2283     NumBytes += 16*nAltivecParamsAtEnd;
2284   }
2285
2286   // The prolog code of the callee may store up to 8 GPR argument registers to
2287   // the stack, allowing va_start to index over them in memory if its varargs.
2288   // Because we cannot tell if this is needed on the caller side, we have to
2289   // conservatively assume that it is needed.  As such, make sure we have at
2290   // least enough stack space for the caller to store the 8 GPRs.
2291   NumBytes = std::max(NumBytes,
2292                       PPCFrameLowering::getMinCallFrameSize(isPPC64, true));
2293
2294   // Tail call needs the stack to be aligned.
2295   if (CC == CallingConv::Fast && DAG.getTarget().Options.GuaranteedTailCallOpt){
2296     unsigned TargetAlign = DAG.getMachineFunction().getTarget().
2297       getFrameLowering()->getStackAlignment();
2298     unsigned AlignMask = TargetAlign-1;
2299     NumBytes = (NumBytes + AlignMask) & ~AlignMask;
2300   }
2301
2302   return NumBytes;
2303 }
2304
2305 /// CalculateTailCallSPDiff - Get the amount the stack pointer has to be
2306 /// adjusted to accommodate the arguments for the tailcall.
2307 static int CalculateTailCallSPDiff(SelectionDAG& DAG, bool isTailCall,
2308                                    unsigned ParamSize) {
2309
2310   if (!isTailCall) return 0;
2311
2312   PPCFunctionInfo *FI = DAG.getMachineFunction().getInfo<PPCFunctionInfo>();
2313   unsigned CallerMinReservedArea = FI->getMinReservedArea();
2314   int SPDiff = (int)CallerMinReservedArea - (int)ParamSize;
2315   // Remember only if the new adjustement is bigger.
2316   if (SPDiff < FI->getTailCallSPDelta())
2317     FI->setTailCallSPDelta(SPDiff);
2318
2319   return SPDiff;
2320 }
2321
2322 /// IsEligibleForTailCallOptimization - Check whether the call is eligible
2323 /// for tail call optimization. Targets which want to do tail call
2324 /// optimization should implement this function.
2325 bool
2326 PPCTargetLowering::IsEligibleForTailCallOptimization(SDValue Callee,
2327                                                      CallingConv::ID CalleeCC,
2328                                                      bool isVarArg,
2329                                       const SmallVectorImpl<ISD::InputArg> &Ins,
2330                                                      SelectionDAG& DAG) const {
2331   if (!getTargetMachine().Options.GuaranteedTailCallOpt)
2332     return false;
2333
2334   // Variable argument functions are not supported.
2335   if (isVarArg)
2336     return false;
2337
2338   MachineFunction &MF = DAG.getMachineFunction();
2339   CallingConv::ID CallerCC = MF.getFunction()->getCallingConv();
2340   if (CalleeCC == CallingConv::Fast && CallerCC == CalleeCC) {
2341     // Functions containing by val parameters are not supported.
2342     for (unsigned i = 0; i != Ins.size(); i++) {
2343        ISD::ArgFlagsTy Flags = Ins[i].Flags;
2344        if (Flags.isByVal()) return false;
2345     }
2346
2347     // Non PIC/GOT  tail calls are supported.
2348     if (getTargetMachine().getRelocationModel() != Reloc::PIC_)
2349       return true;
2350
2351     // At the moment we can only do local tail calls (in same module, hidden
2352     // or protected) if we are generating PIC.
2353     if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2354       return G->getGlobal()->hasHiddenVisibility()
2355           || G->getGlobal()->hasProtectedVisibility();
2356   }
2357
2358   return false;
2359 }
2360
2361 /// isCallCompatibleAddress - Return the immediate to use if the specified
2362 /// 32-bit value is representable in the immediate field of a BxA instruction.
2363 static SDNode *isBLACompatibleAddress(SDValue Op, SelectionDAG &DAG) {
2364   ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
2365   if (!C) return 0;
2366
2367   int Addr = C->getZExtValue();
2368   if ((Addr & 3) != 0 ||  // Low 2 bits are implicitly zero.
2369       (Addr << 6 >> 6) != Addr)
2370     return 0;  // Top 6 bits have to be sext of immediate.
2371
2372   return DAG.getConstant((int)C->getZExtValue() >> 2,
2373                          DAG.getTargetLoweringInfo().getPointerTy()).getNode();
2374 }
2375
2376 namespace {
2377
2378 struct TailCallArgumentInfo {
2379   SDValue Arg;
2380   SDValue FrameIdxOp;
2381   int       FrameIdx;
2382
2383   TailCallArgumentInfo() : FrameIdx(0) {}
2384 };
2385
2386 }
2387
2388 /// StoreTailCallArgumentsToStackSlot - Stores arguments to their stack slot.
2389 static void
2390 StoreTailCallArgumentsToStackSlot(SelectionDAG &DAG,
2391                                            SDValue Chain,
2392                    const SmallVector<TailCallArgumentInfo, 8> &TailCallArgs,
2393                    SmallVector<SDValue, 8> &MemOpChains,
2394                    DebugLoc dl) {
2395   for (unsigned i = 0, e = TailCallArgs.size(); i != e; ++i) {
2396     SDValue Arg = TailCallArgs[i].Arg;
2397     SDValue FIN = TailCallArgs[i].FrameIdxOp;
2398     int FI = TailCallArgs[i].FrameIdx;
2399     // Store relative to framepointer.
2400     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, FIN,
2401                                        MachinePointerInfo::getFixedStack(FI),
2402                                        false, false, 0));
2403   }
2404 }
2405
2406 /// EmitTailCallStoreFPAndRetAddr - Move the frame pointer and return address to
2407 /// the appropriate stack slot for the tail call optimized function call.
2408 static SDValue EmitTailCallStoreFPAndRetAddr(SelectionDAG &DAG,
2409                                                MachineFunction &MF,
2410                                                SDValue Chain,
2411                                                SDValue OldRetAddr,
2412                                                SDValue OldFP,
2413                                                int SPDiff,
2414                                                bool isPPC64,
2415                                                bool isDarwinABI,
2416                                                DebugLoc dl) {
2417   if (SPDiff) {
2418     // Calculate the new stack slot for the return address.
2419     int SlotSize = isPPC64 ? 8 : 4;
2420     int NewRetAddrLoc = SPDiff + PPCFrameLowering::getReturnSaveOffset(isPPC64,
2421                                                                    isDarwinABI);
2422     int NewRetAddr = MF.getFrameInfo()->CreateFixedObject(SlotSize,
2423                                                           NewRetAddrLoc, true);
2424     EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2425     SDValue NewRetAddrFrIdx = DAG.getFrameIndex(NewRetAddr, VT);
2426     Chain = DAG.getStore(Chain, dl, OldRetAddr, NewRetAddrFrIdx,
2427                          MachinePointerInfo::getFixedStack(NewRetAddr),
2428                          false, false, 0);
2429
2430     // When using the 32/64-bit SVR4 ABI there is no need to move the FP stack
2431     // slot as the FP is never overwritten.
2432     if (isDarwinABI) {
2433       int NewFPLoc =
2434         SPDiff + PPCFrameLowering::getFramePointerSaveOffset(isPPC64, isDarwinABI);
2435       int NewFPIdx = MF.getFrameInfo()->CreateFixedObject(SlotSize, NewFPLoc,
2436                                                           true);
2437       SDValue NewFramePtrIdx = DAG.getFrameIndex(NewFPIdx, VT);
2438       Chain = DAG.getStore(Chain, dl, OldFP, NewFramePtrIdx,
2439                            MachinePointerInfo::getFixedStack(NewFPIdx),
2440                            false, false, 0);
2441     }
2442   }
2443   return Chain;
2444 }
2445
2446 /// CalculateTailCallArgDest - Remember Argument for later processing. Calculate
2447 /// the position of the argument.
2448 static void
2449 CalculateTailCallArgDest(SelectionDAG &DAG, MachineFunction &MF, bool isPPC64,
2450                          SDValue Arg, int SPDiff, unsigned ArgOffset,
2451                       SmallVector<TailCallArgumentInfo, 8>& TailCallArguments) {
2452   int Offset = ArgOffset + SPDiff;
2453   uint32_t OpSize = (Arg.getValueType().getSizeInBits()+7)/8;
2454   int FI = MF.getFrameInfo()->CreateFixedObject(OpSize, Offset, true);
2455   EVT VT = isPPC64 ? MVT::i64 : MVT::i32;
2456   SDValue FIN = DAG.getFrameIndex(FI, VT);
2457   TailCallArgumentInfo Info;
2458   Info.Arg = Arg;
2459   Info.FrameIdxOp = FIN;
2460   Info.FrameIdx = FI;
2461   TailCallArguments.push_back(Info);
2462 }
2463
2464 /// EmitTCFPAndRetAddrLoad - Emit load from frame pointer and return address
2465 /// stack slot. Returns the chain as result and the loaded frame pointers in
2466 /// LROpOut/FPOpout. Used when tail calling.
2467 SDValue PPCTargetLowering::EmitTailCallLoadFPAndRetAddr(SelectionDAG & DAG,
2468                                                         int SPDiff,
2469                                                         SDValue Chain,
2470                                                         SDValue &LROpOut,
2471                                                         SDValue &FPOpOut,
2472                                                         bool isDarwinABI,
2473                                                         DebugLoc dl) const {
2474   if (SPDiff) {
2475     // Load the LR and FP stack slot for later adjusting.
2476     EVT VT = PPCSubTarget.isPPC64() ? MVT::i64 : MVT::i32;
2477     LROpOut = getReturnAddrFrameIndex(DAG);
2478     LROpOut = DAG.getLoad(VT, dl, Chain, LROpOut, MachinePointerInfo(),
2479                           false, false, false, 0);
2480     Chain = SDValue(LROpOut.getNode(), 1);
2481
2482     // When using the 32/64-bit SVR4 ABI there is no need to load the FP stack
2483     // slot as the FP is never overwritten.
2484     if (isDarwinABI) {
2485       FPOpOut = getFramePointerFrameIndex(DAG);
2486       FPOpOut = DAG.getLoad(VT, dl, Chain, FPOpOut, MachinePointerInfo(),
2487                             false, false, false, 0);
2488       Chain = SDValue(FPOpOut.getNode(), 1);
2489     }
2490   }
2491   return Chain;
2492 }
2493
2494 /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified
2495 /// by "Src" to address "Dst" of size "Size".  Alignment information is
2496 /// specified by the specific parameter attribute. The copy will be passed as
2497 /// a byval function parameter.
2498 /// Sometimes what we are copying is the end of a larger object, the part that
2499 /// does not fit in registers.
2500 static SDValue
2501 CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain,
2502                           ISD::ArgFlagsTy Flags, SelectionDAG &DAG,
2503                           DebugLoc dl) {
2504   SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32);
2505   return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(),
2506                        false, false, MachinePointerInfo(0),
2507                        MachinePointerInfo(0));
2508 }
2509
2510 /// LowerMemOpCallTo - Store the argument to the stack or remember it in case of
2511 /// tail calls.
2512 static void
2513 LowerMemOpCallTo(SelectionDAG &DAG, MachineFunction &MF, SDValue Chain,
2514                  SDValue Arg, SDValue PtrOff, int SPDiff,
2515                  unsigned ArgOffset, bool isPPC64, bool isTailCall,
2516                  bool isVector, SmallVector<SDValue, 8> &MemOpChains,
2517                  SmallVector<TailCallArgumentInfo, 8> &TailCallArguments,
2518                  DebugLoc dl) {
2519   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2520   if (!isTailCall) {
2521     if (isVector) {
2522       SDValue StackPtr;
2523       if (isPPC64)
2524         StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
2525       else
2526         StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2527       PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
2528                            DAG.getConstant(ArgOffset, PtrVT));
2529     }
2530     MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
2531                                        MachinePointerInfo(), false, false, 0));
2532   // Calculate and remember argument location.
2533   } else CalculateTailCallArgDest(DAG, MF, isPPC64, Arg, SPDiff, ArgOffset,
2534                                   TailCallArguments);
2535 }
2536
2537 static
2538 void PrepareTailCall(SelectionDAG &DAG, SDValue &InFlag, SDValue &Chain,
2539                      DebugLoc dl, bool isPPC64, int SPDiff, unsigned NumBytes,
2540                      SDValue LROp, SDValue FPOp, bool isDarwinABI,
2541                      SmallVector<TailCallArgumentInfo, 8> &TailCallArguments) {
2542   MachineFunction &MF = DAG.getMachineFunction();
2543
2544   // Emit a sequence of copyto/copyfrom virtual registers for arguments that
2545   // might overwrite each other in case of tail call optimization.
2546   SmallVector<SDValue, 8> MemOpChains2;
2547   // Do not flag preceding copytoreg stuff together with the following stuff.
2548   InFlag = SDValue();
2549   StoreTailCallArgumentsToStackSlot(DAG, Chain, TailCallArguments,
2550                                     MemOpChains2, dl);
2551   if (!MemOpChains2.empty())
2552     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
2553                         &MemOpChains2[0], MemOpChains2.size());
2554
2555   // Store the return address to the appropriate stack slot.
2556   Chain = EmitTailCallStoreFPAndRetAddr(DAG, MF, Chain, LROp, FPOp, SPDiff,
2557                                         isPPC64, isDarwinABI, dl);
2558
2559   // Emit callseq_end just before tailcall node.
2560   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2561                              DAG.getIntPtrConstant(0, true), InFlag);
2562   InFlag = Chain.getValue(1);
2563 }
2564
2565 static
2566 unsigned PrepareCall(SelectionDAG &DAG, SDValue &Callee, SDValue &InFlag,
2567                      SDValue &Chain, DebugLoc dl, int SPDiff, bool isTailCall,
2568                      SmallVector<std::pair<unsigned, SDValue>, 8> &RegsToPass,
2569                      SmallVector<SDValue, 8> &Ops, std::vector<EVT> &NodeTys,
2570                      const PPCSubtarget &PPCSubTarget) {
2571
2572   bool isPPC64 = PPCSubTarget.isPPC64();
2573   bool isSVR4ABI = PPCSubTarget.isSVR4ABI();
2574
2575   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2576   NodeTys.push_back(MVT::Other);   // Returns a chain
2577   NodeTys.push_back(MVT::Glue);    // Returns a flag for retval copy to use.
2578
2579   unsigned CallOpc = isSVR4ABI ? PPCISD::CALL_SVR4 : PPCISD::CALL_Darwin;
2580
2581   bool needIndirectCall = true;
2582   if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG)) {
2583     // If this is an absolute destination address, use the munged value.
2584     Callee = SDValue(Dest, 0);
2585     needIndirectCall = false;
2586   }
2587
2588   if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) {
2589     // XXX Work around for http://llvm.org/bugs/show_bug.cgi?id=5201
2590     // Use indirect calls for ALL functions calls in JIT mode, since the
2591     // far-call stubs may be outside relocation limits for a BL instruction.
2592     if (!DAG.getTarget().getSubtarget<PPCSubtarget>().isJITCodeModel()) {
2593       unsigned OpFlags = 0;
2594       if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2595           (PPCSubTarget.getTargetTriple().isMacOSX() &&
2596            PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5)) &&
2597           (G->getGlobal()->isDeclaration() ||
2598            G->getGlobal()->isWeakForLinker())) {
2599         // PC-relative references to external symbols should go through $stub,
2600         // unless we're building with the leopard linker or later, which
2601         // automatically synthesizes these stubs.
2602         OpFlags = PPCII::MO_DARWIN_STUB;
2603       }
2604
2605       // If the callee is a GlobalAddress/ExternalSymbol node (quite common,
2606       // every direct call is) turn it into a TargetGlobalAddress /
2607       // TargetExternalSymbol node so that legalize doesn't hack it.
2608       Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl,
2609                                           Callee.getValueType(),
2610                                           0, OpFlags);
2611       needIndirectCall = false;
2612     }
2613   }
2614
2615   if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) {
2616     unsigned char OpFlags = 0;
2617
2618     if (DAG.getTarget().getRelocationModel() != Reloc::Static &&
2619         (PPCSubTarget.getTargetTriple().isMacOSX() &&
2620          PPCSubTarget.getTargetTriple().isMacOSXVersionLT(10, 5))) {
2621       // PC-relative references to external symbols should go through $stub,
2622       // unless we're building with the leopard linker or later, which
2623       // automatically synthesizes these stubs.
2624       OpFlags = PPCII::MO_DARWIN_STUB;
2625     }
2626
2627     Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType(),
2628                                          OpFlags);
2629     needIndirectCall = false;
2630   }
2631
2632   if (needIndirectCall) {
2633     // Otherwise, this is an indirect call.  We have to use a MTCTR/BCTRL pair
2634     // to do the call, we can't use PPCISD::CALL.
2635     SDValue MTCTROps[] = {Chain, Callee, InFlag};
2636
2637     if (isSVR4ABI && isPPC64) {
2638       // Function pointers in the 64-bit SVR4 ABI do not point to the function
2639       // entry point, but to the function descriptor (the function entry point
2640       // address is part of the function descriptor though).
2641       // The function descriptor is a three doubleword structure with the
2642       // following fields: function entry point, TOC base address and
2643       // environment pointer.
2644       // Thus for a call through a function pointer, the following actions need
2645       // to be performed:
2646       //   1. Save the TOC of the caller in the TOC save area of its stack
2647       //      frame (this is done in LowerCall_Darwin()).
2648       //   2. Load the address of the function entry point from the function
2649       //      descriptor.
2650       //   3. Load the TOC of the callee from the function descriptor into r2.
2651       //   4. Load the environment pointer from the function descriptor into
2652       //      r11.
2653       //   5. Branch to the function entry point address.
2654       //   6. On return of the callee, the TOC of the caller needs to be
2655       //      restored (this is done in FinishCall()).
2656       //
2657       // All those operations are flagged together to ensure that no other
2658       // operations can be scheduled in between. E.g. without flagging the
2659       // operations together, a TOC access in the caller could be scheduled
2660       // between the load of the callee TOC and the branch to the callee, which
2661       // results in the TOC access going through the TOC of the callee instead
2662       // of going through the TOC of the caller, which leads to incorrect code.
2663
2664       // Load the address of the function entry point from the function
2665       // descriptor.
2666       SDVTList VTs = DAG.getVTList(MVT::i64, MVT::Other, MVT::Glue);
2667       SDValue LoadFuncPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, MTCTROps,
2668                                         InFlag.getNode() ? 3 : 2);
2669       Chain = LoadFuncPtr.getValue(1);
2670       InFlag = LoadFuncPtr.getValue(2);
2671
2672       // Load environment pointer into r11.
2673       // Offset of the environment pointer within the function descriptor.
2674       SDValue PtrOff = DAG.getIntPtrConstant(16);
2675
2676       SDValue AddPtr = DAG.getNode(ISD::ADD, dl, MVT::i64, Callee, PtrOff);
2677       SDValue LoadEnvPtr = DAG.getNode(PPCISD::LOAD, dl, VTs, Chain, AddPtr,
2678                                        InFlag);
2679       Chain = LoadEnvPtr.getValue(1);
2680       InFlag = LoadEnvPtr.getValue(2);
2681
2682       SDValue EnvVal = DAG.getCopyToReg(Chain, dl, PPC::X11, LoadEnvPtr,
2683                                         InFlag);
2684       Chain = EnvVal.getValue(0);
2685       InFlag = EnvVal.getValue(1);
2686
2687       // Load TOC of the callee into r2. We are using a target-specific load
2688       // with r2 hard coded, because the result of a target-independent load
2689       // would never go directly into r2, since r2 is a reserved register (which
2690       // prevents the register allocator from allocating it), resulting in an
2691       // additional register being allocated and an unnecessary move instruction
2692       // being generated.
2693       VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2694       SDValue LoadTOCPtr = DAG.getNode(PPCISD::LOAD_TOC, dl, VTs, Chain,
2695                                        Callee, InFlag);
2696       Chain = LoadTOCPtr.getValue(0);
2697       InFlag = LoadTOCPtr.getValue(1);
2698
2699       MTCTROps[0] = Chain;
2700       MTCTROps[1] = LoadFuncPtr;
2701       MTCTROps[2] = InFlag;
2702     }
2703
2704     Chain = DAG.getNode(PPCISD::MTCTR, dl, NodeTys, MTCTROps,
2705                         2 + (InFlag.getNode() != 0));
2706     InFlag = Chain.getValue(1);
2707
2708     NodeTys.clear();
2709     NodeTys.push_back(MVT::Other);
2710     NodeTys.push_back(MVT::Glue);
2711     Ops.push_back(Chain);
2712     CallOpc = isSVR4ABI ? PPCISD::BCTRL_SVR4 : PPCISD::BCTRL_Darwin;
2713     Callee.setNode(0);
2714     // Add CTR register as callee so a bctr can be emitted later.
2715     if (isTailCall)
2716       Ops.push_back(DAG.getRegister(isPPC64 ? PPC::CTR8 : PPC::CTR, PtrVT));
2717   }
2718
2719   // If this is a direct call, pass the chain and the callee.
2720   if (Callee.getNode()) {
2721     Ops.push_back(Chain);
2722     Ops.push_back(Callee);
2723   }
2724   // If this is a tail call add stack pointer delta.
2725   if (isTailCall)
2726     Ops.push_back(DAG.getConstant(SPDiff, MVT::i32));
2727
2728   // Add argument registers to the end of the list so that they are known live
2729   // into the call.
2730   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
2731     Ops.push_back(DAG.getRegister(RegsToPass[i].first,
2732                                   RegsToPass[i].second.getValueType()));
2733
2734   return CallOpc;
2735 }
2736
2737 SDValue
2738 PPCTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag,
2739                                    CallingConv::ID CallConv, bool isVarArg,
2740                                    const SmallVectorImpl<ISD::InputArg> &Ins,
2741                                    DebugLoc dl, SelectionDAG &DAG,
2742                                    SmallVectorImpl<SDValue> &InVals) const {
2743
2744   SmallVector<CCValAssign, 16> RVLocs;
2745   CCState CCRetInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2746                     getTargetMachine(), RVLocs, *DAG.getContext());
2747   CCRetInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2748
2749   // Copy all of the result registers out of their specified physreg.
2750   for (unsigned i = 0, e = RVLocs.size(); i != e; ++i) {
2751     CCValAssign &VA = RVLocs[i];
2752     EVT VT = VA.getValVT();
2753     assert(VA.isRegLoc() && "Can only return in registers!");
2754     Chain = DAG.getCopyFromReg(Chain, dl,
2755                                VA.getLocReg(), VT, InFlag).getValue(1);
2756     InVals.push_back(Chain.getValue(0));
2757     InFlag = Chain.getValue(2);
2758   }
2759
2760   return Chain;
2761 }
2762
2763 SDValue
2764 PPCTargetLowering::FinishCall(CallingConv::ID CallConv, DebugLoc dl,
2765                               bool isTailCall, bool isVarArg,
2766                               SelectionDAG &DAG,
2767                               SmallVector<std::pair<unsigned, SDValue>, 8>
2768                                 &RegsToPass,
2769                               SDValue InFlag, SDValue Chain,
2770                               SDValue &Callee,
2771                               int SPDiff, unsigned NumBytes,
2772                               const SmallVectorImpl<ISD::InputArg> &Ins,
2773                               SmallVectorImpl<SDValue> &InVals) const {
2774   std::vector<EVT> NodeTys;
2775   SmallVector<SDValue, 8> Ops;
2776   unsigned CallOpc = PrepareCall(DAG, Callee, InFlag, Chain, dl, SPDiff,
2777                                  isTailCall, RegsToPass, Ops, NodeTys,
2778                                  PPCSubTarget);
2779
2780   // When performing tail call optimization the callee pops its arguments off
2781   // the stack. Account for this here so these bytes can be pushed back on in
2782   // PPCRegisterInfo::eliminateCallFramePseudoInstr.
2783   int BytesCalleePops =
2784     (CallConv == CallingConv::Fast &&
2785      getTargetMachine().Options.GuaranteedTailCallOpt) ? NumBytes : 0;
2786
2787   // Add a register mask operand representing the call-preserved registers.
2788   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
2789   const uint32_t *Mask = TRI->getCallPreservedMask(CallConv);
2790   assert(Mask && "Missing call preserved mask for calling convention");
2791   Ops.push_back(DAG.getRegisterMask(Mask));
2792
2793   if (InFlag.getNode())
2794     Ops.push_back(InFlag);
2795
2796   // Emit tail call.
2797   if (isTailCall) {
2798     // If this is the first return lowered for this function, add the regs
2799     // to the liveout set for the function.
2800     if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
2801       SmallVector<CCValAssign, 16> RVLocs;
2802       CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2803                      getTargetMachine(), RVLocs, *DAG.getContext());
2804       CCInfo.AnalyzeCallResult(Ins, RetCC_PPC);
2805       for (unsigned i = 0; i != RVLocs.size(); ++i)
2806         DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
2807     }
2808
2809     assert(((Callee.getOpcode() == ISD::Register &&
2810              cast<RegisterSDNode>(Callee)->getReg() == PPC::CTR) ||
2811             Callee.getOpcode() == ISD::TargetExternalSymbol ||
2812             Callee.getOpcode() == ISD::TargetGlobalAddress ||
2813             isa<ConstantSDNode>(Callee)) &&
2814     "Expecting an global address, external symbol, absolute value or register");
2815
2816     return DAG.getNode(PPCISD::TC_RETURN, dl, MVT::Other, &Ops[0], Ops.size());
2817   }
2818
2819   // Add a NOP immediately after the branch instruction when using the 64-bit
2820   // SVR4 ABI. At link time, if caller and callee are in a different module and
2821   // thus have a different TOC, the call will be replaced with a call to a stub
2822   // function which saves the current TOC, loads the TOC of the callee and
2823   // branches to the callee. The NOP will be replaced with a load instruction
2824   // which restores the TOC of the caller from the TOC save slot of the current
2825   // stack frame. If caller and callee belong to the same module (and have the
2826   // same TOC), the NOP will remain unchanged.
2827
2828   bool needsTOCRestore = false;
2829   if (!isTailCall && PPCSubTarget.isSVR4ABI()&& PPCSubTarget.isPPC64()) {
2830     if (CallOpc == PPCISD::BCTRL_SVR4) {
2831       // This is a call through a function pointer.
2832       // Restore the caller TOC from the save area into R2.
2833       // See PrepareCall() for more information about calls through function
2834       // pointers in the 64-bit SVR4 ABI.
2835       // We are using a target-specific load with r2 hard coded, because the
2836       // result of a target-independent load would never go directly into r2,
2837       // since r2 is a reserved register (which prevents the register allocator
2838       // from allocating it), resulting in an additional register being
2839       // allocated and an unnecessary move instruction being generated.
2840       needsTOCRestore = true;
2841     } else if (CallOpc == PPCISD::CALL_SVR4) {
2842       // Otherwise insert NOP.
2843       CallOpc = PPCISD::CALL_NOP_SVR4;
2844     }
2845   }
2846
2847   Chain = DAG.getNode(CallOpc, dl, NodeTys, &Ops[0], Ops.size());
2848   InFlag = Chain.getValue(1);
2849
2850   if (needsTOCRestore) {
2851     SDVTList VTs = DAG.getVTList(MVT::Other, MVT::Glue);
2852     Chain = DAG.getNode(PPCISD::TOC_RESTORE, dl, VTs, Chain, InFlag);
2853     InFlag = Chain.getValue(1);
2854   }
2855
2856   Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true),
2857                              DAG.getIntPtrConstant(BytesCalleePops, true),
2858                              InFlag);
2859   if (!Ins.empty())
2860     InFlag = Chain.getValue(1);
2861
2862   return LowerCallResult(Chain, InFlag, CallConv, isVarArg,
2863                          Ins, dl, DAG, InVals);
2864 }
2865
2866 SDValue
2867 PPCTargetLowering::LowerCall(SDValue Chain, SDValue Callee,
2868                              CallingConv::ID CallConv, bool isVarArg,
2869                              bool doesNotRet, bool &isTailCall,
2870                              const SmallVectorImpl<ISD::OutputArg> &Outs,
2871                              const SmallVectorImpl<SDValue> &OutVals,
2872                              const SmallVectorImpl<ISD::InputArg> &Ins,
2873                              DebugLoc dl, SelectionDAG &DAG,
2874                              SmallVectorImpl<SDValue> &InVals) const {
2875   if (isTailCall)
2876     isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg,
2877                                                    Ins, DAG);
2878
2879   if (PPCSubTarget.isSVR4ABI() && !PPCSubTarget.isPPC64())
2880     return LowerCall_SVR4(Chain, Callee, CallConv, isVarArg,
2881                           isTailCall, Outs, OutVals, Ins,
2882                           dl, DAG, InVals);
2883
2884   return LowerCall_Darwin(Chain, Callee, CallConv, isVarArg,
2885                           isTailCall, Outs, OutVals, Ins,
2886                           dl, DAG, InVals);
2887 }
2888
2889 SDValue
2890 PPCTargetLowering::LowerCall_SVR4(SDValue Chain, SDValue Callee,
2891                                   CallingConv::ID CallConv, bool isVarArg,
2892                                   bool isTailCall,
2893                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
2894                                   const SmallVectorImpl<SDValue> &OutVals,
2895                                   const SmallVectorImpl<ISD::InputArg> &Ins,
2896                                   DebugLoc dl, SelectionDAG &DAG,
2897                                   SmallVectorImpl<SDValue> &InVals) const {
2898   // See PPCTargetLowering::LowerFormalArguments_SVR4() for a description
2899   // of the 32-bit SVR4 ABI stack frame layout.
2900
2901   assert((CallConv == CallingConv::C ||
2902           CallConv == CallingConv::Fast) && "Unknown calling convention!");
2903
2904   unsigned PtrByteSize = 4;
2905
2906   MachineFunction &MF = DAG.getMachineFunction();
2907
2908   // Mark this function as potentially containing a function that contains a
2909   // tail call. As a consequence the frame pointer will be used for dynamicalloc
2910   // and restoring the callers stack pointer in this functions epilog. This is
2911   // done because by tail calling the called function might overwrite the value
2912   // in this function's (MF) stack pointer stack slot 0(SP).
2913   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
2914       CallConv == CallingConv::Fast)
2915     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
2916
2917   // Count how many bytes are to be pushed on the stack, including the linkage
2918   // area, parameter list area and the part of the local variable space which
2919   // contains copies of aggregates which are passed by value.
2920
2921   // Assign locations to all of the outgoing arguments.
2922   SmallVector<CCValAssign, 16> ArgLocs;
2923   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2924                  getTargetMachine(), ArgLocs, *DAG.getContext());
2925
2926   // Reserve space for the linkage area on the stack.
2927   CCInfo.AllocateStack(PPCFrameLowering::getLinkageSize(false, false), PtrByteSize);
2928
2929   if (isVarArg) {
2930     // Handle fixed and variable vector arguments differently.
2931     // Fixed vector arguments go into registers as long as registers are
2932     // available. Variable vector arguments always go into memory.
2933     unsigned NumArgs = Outs.size();
2934
2935     for (unsigned i = 0; i != NumArgs; ++i) {
2936       MVT ArgVT = Outs[i].VT;
2937       ISD::ArgFlagsTy ArgFlags = Outs[i].Flags;
2938       bool Result;
2939
2940       if (Outs[i].IsFixed) {
2941         Result = CC_PPC_SVR4(i, ArgVT, ArgVT, CCValAssign::Full, ArgFlags,
2942                              CCInfo);
2943       } else {
2944         Result = CC_PPC_SVR4_VarArg(i, ArgVT, ArgVT, CCValAssign::Full,
2945                                     ArgFlags, CCInfo);
2946       }
2947
2948       if (Result) {
2949 #ifndef NDEBUG
2950         errs() << "Call operand #" << i << " has unhandled type "
2951              << EVT(ArgVT).getEVTString() << "\n";
2952 #endif
2953         llvm_unreachable(0);
2954       }
2955     }
2956   } else {
2957     // All arguments are treated the same.
2958     CCInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4);
2959   }
2960
2961   // Assign locations to all of the outgoing aggregate by value arguments.
2962   SmallVector<CCValAssign, 16> ByValArgLocs;
2963   CCState CCByValInfo(CallConv, isVarArg, DAG.getMachineFunction(),
2964                       getTargetMachine(), ByValArgLocs, *DAG.getContext());
2965
2966   // Reserve stack space for the allocations in CCInfo.
2967   CCByValInfo.AllocateStack(CCInfo.getNextStackOffset(), PtrByteSize);
2968
2969   CCByValInfo.AnalyzeCallOperands(Outs, CC_PPC_SVR4_ByVal);
2970
2971   // Size of the linkage area, parameter list area and the part of the local
2972   // space variable where copies of aggregates which are passed by value are
2973   // stored.
2974   unsigned NumBytes = CCByValInfo.getNextStackOffset();
2975
2976   // Calculate by how many bytes the stack has to be adjusted in case of tail
2977   // call optimization.
2978   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
2979
2980   // Adjust the stack pointer for the new arguments...
2981   // These operations are automatically eliminated by the prolog/epilog pass
2982   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
2983   SDValue CallSeqStart = Chain;
2984
2985   // Load the return address and frame pointer so it can be moved somewhere else
2986   // later.
2987   SDValue LROp, FPOp;
2988   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, false,
2989                                        dl);
2990
2991   // Set up a copy of the stack pointer for use loading and storing any
2992   // arguments that may not fit in the registers available for argument
2993   // passing.
2994   SDValue StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
2995
2996   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
2997   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
2998   SmallVector<SDValue, 8> MemOpChains;
2999
3000   bool seenFloatArg = false;
3001   // Walk the register/memloc assignments, inserting copies/loads.
3002   for (unsigned i = 0, j = 0, e = ArgLocs.size();
3003        i != e;
3004        ++i) {
3005     CCValAssign &VA = ArgLocs[i];
3006     SDValue Arg = OutVals[i];
3007     ISD::ArgFlagsTy Flags = Outs[i].Flags;
3008
3009     if (Flags.isByVal()) {
3010       // Argument is an aggregate which is passed by value, thus we need to
3011       // create a copy of it in the local variable space of the current stack
3012       // frame (which is the stack frame of the caller) and pass the address of
3013       // this copy to the callee.
3014       assert((j < ByValArgLocs.size()) && "Index out of bounds!");
3015       CCValAssign &ByValVA = ByValArgLocs[j++];
3016       assert((VA.getValNo() == ByValVA.getValNo()) && "ValNo mismatch!");
3017
3018       // Memory reserved in the local variable space of the callers stack frame.
3019       unsigned LocMemOffset = ByValVA.getLocMemOffset();
3020
3021       SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3022       PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3023
3024       // Create a copy of the argument in the local area of the current
3025       // stack frame.
3026       SDValue MemcpyCall =
3027         CreateCopyOfByValArgument(Arg, PtrOff,
3028                                   CallSeqStart.getNode()->getOperand(0),
3029                                   Flags, DAG, dl);
3030
3031       // This must go outside the CALLSEQ_START..END.
3032       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3033                            CallSeqStart.getNode()->getOperand(1));
3034       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3035                              NewCallSeqStart.getNode());
3036       Chain = CallSeqStart = NewCallSeqStart;
3037
3038       // Pass the address of the aggregate copy on the stack either in a
3039       // physical register or in the parameter list area of the current stack
3040       // frame to the callee.
3041       Arg = PtrOff;
3042     }
3043
3044     if (VA.isRegLoc()) {
3045       seenFloatArg |= VA.getLocVT().isFloatingPoint();
3046       // Put argument in a physical register.
3047       RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg));
3048     } else {
3049       // Put argument in the parameter list area of the current stack frame.
3050       assert(VA.isMemLoc());
3051       unsigned LocMemOffset = VA.getLocMemOffset();
3052
3053       if (!isTailCall) {
3054         SDValue PtrOff = DAG.getIntPtrConstant(LocMemOffset);
3055         PtrOff = DAG.getNode(ISD::ADD, dl, getPointerTy(), StackPtr, PtrOff);
3056
3057         MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff,
3058                                            MachinePointerInfo(),
3059                                            false, false, 0));
3060       } else {
3061         // Calculate and remember argument location.
3062         CalculateTailCallArgDest(DAG, MF, false, Arg, SPDiff, LocMemOffset,
3063                                  TailCallArguments);
3064       }
3065     }
3066   }
3067
3068   if (!MemOpChains.empty())
3069     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3070                         &MemOpChains[0], MemOpChains.size());
3071
3072   // Set CR6 to true if this is a vararg call with floating args passed in
3073   // registers.
3074   if (isVarArg) {
3075     SDValue SetCR(DAG.getMachineNode(seenFloatArg ? PPC::CRSET : PPC::CRUNSET,
3076                                      dl, MVT::i32), 0);
3077     RegsToPass.push_back(std::make_pair(unsigned(PPC::CR1EQ), SetCR));
3078   }
3079
3080   // Build a sequence of copy-to-reg nodes chained together with token chain
3081   // and flag operands which copy the outgoing args into the appropriate regs.
3082   SDValue InFlag;
3083   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3084     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3085                              RegsToPass[i].second, InFlag);
3086     InFlag = Chain.getValue(1);
3087   }
3088
3089   if (isTailCall)
3090     PrepareTailCall(DAG, InFlag, Chain, dl, false, SPDiff, NumBytes, LROp, FPOp,
3091                     false, TailCallArguments);
3092
3093   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3094                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3095                     Ins, InVals);
3096 }
3097
3098 SDValue
3099 PPCTargetLowering::LowerCall_Darwin(SDValue Chain, SDValue Callee,
3100                                     CallingConv::ID CallConv, bool isVarArg,
3101                                     bool isTailCall,
3102                                     const SmallVectorImpl<ISD::OutputArg> &Outs,
3103                                     const SmallVectorImpl<SDValue> &OutVals,
3104                                     const SmallVectorImpl<ISD::InputArg> &Ins,
3105                                     DebugLoc dl, SelectionDAG &DAG,
3106                                     SmallVectorImpl<SDValue> &InVals) const {
3107
3108   unsigned NumOps  = Outs.size();
3109
3110   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3111   bool isPPC64 = PtrVT == MVT::i64;
3112   unsigned PtrByteSize = isPPC64 ? 8 : 4;
3113
3114   MachineFunction &MF = DAG.getMachineFunction();
3115
3116   // Mark this function as potentially containing a function that contains a
3117   // tail call. As a consequence the frame pointer will be used for dynamicalloc
3118   // and restoring the callers stack pointer in this functions epilog. This is
3119   // done because by tail calling the called function might overwrite the value
3120   // in this function's (MF) stack pointer stack slot 0(SP).
3121   if (getTargetMachine().Options.GuaranteedTailCallOpt &&
3122       CallConv == CallingConv::Fast)
3123     MF.getInfo<PPCFunctionInfo>()->setHasFastCall();
3124
3125   unsigned nAltivecParamsAtEnd = 0;
3126
3127   // Count how many bytes are to be pushed on the stack, including the linkage
3128   // area, and parameter passing area.  We start with 24/48 bytes, which is
3129   // prereserved space for [SP][CR][LR][3 x unused].
3130   unsigned NumBytes =
3131     CalculateParameterAndLinkageAreaSize(DAG, isPPC64, isVarArg, CallConv,
3132                                          Outs, OutVals,
3133                                          nAltivecParamsAtEnd);
3134
3135   // Calculate by how many bytes the stack has to be adjusted in case of tail
3136   // call optimization.
3137   int SPDiff = CalculateTailCallSPDiff(DAG, isTailCall, NumBytes);
3138
3139   // To protect arguments on the stack from being clobbered in a tail call,
3140   // force all the loads to happen before doing any other lowering.
3141   if (isTailCall)
3142     Chain = DAG.getStackArgumentTokenFactor(Chain);
3143
3144   // Adjust the stack pointer for the new arguments...
3145   // These operations are automatically eliminated by the prolog/epilog pass
3146   Chain = DAG.getCALLSEQ_START(Chain, DAG.getIntPtrConstant(NumBytes, true));
3147   SDValue CallSeqStart = Chain;
3148
3149   // Load the return address and frame pointer so it can be move somewhere else
3150   // later.
3151   SDValue LROp, FPOp;
3152   Chain = EmitTailCallLoadFPAndRetAddr(DAG, SPDiff, Chain, LROp, FPOp, true,
3153                                        dl);
3154
3155   // Set up a copy of the stack pointer for use loading and storing any
3156   // arguments that may not fit in the registers available for argument
3157   // passing.
3158   SDValue StackPtr;
3159   if (isPPC64)
3160     StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
3161   else
3162     StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
3163
3164   // Figure out which arguments are going to go in registers, and which in
3165   // memory.  Also, if this is a vararg function, floating point operations
3166   // must be stored to our stack, and loaded into integer regs as well, if
3167   // any integer regs are available for argument passing.
3168   unsigned ArgOffset = PPCFrameLowering::getLinkageSize(isPPC64, true);
3169   unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
3170
3171   static const uint16_t GPR_32[] = {           // 32-bit registers.
3172     PPC::R3, PPC::R4, PPC::R5, PPC::R6,
3173     PPC::R7, PPC::R8, PPC::R9, PPC::R10,
3174   };
3175   static const uint16_t GPR_64[] = {           // 64-bit registers.
3176     PPC::X3, PPC::X4, PPC::X5, PPC::X6,
3177     PPC::X7, PPC::X8, PPC::X9, PPC::X10,
3178   };
3179   static const uint16_t *FPR = GetFPR();
3180
3181   static const uint16_t VR[] = {
3182     PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
3183     PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
3184   };
3185   const unsigned NumGPRs = array_lengthof(GPR_32);
3186   const unsigned NumFPRs = 13;
3187   const unsigned NumVRs  = array_lengthof(VR);
3188
3189   const uint16_t *GPR = isPPC64 ? GPR_64 : GPR_32;
3190
3191   SmallVector<std::pair<unsigned, SDValue>, 8> RegsToPass;
3192   SmallVector<TailCallArgumentInfo, 8> TailCallArguments;
3193
3194   SmallVector<SDValue, 8> MemOpChains;
3195   for (unsigned i = 0; i != NumOps; ++i) {
3196     SDValue Arg = OutVals[i];
3197     ISD::ArgFlagsTy Flags = Outs[i].Flags;
3198
3199     // PtrOff will be used to store the current argument to the stack if a
3200     // register cannot be found for it.
3201     SDValue PtrOff;
3202
3203     PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
3204
3205     PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3206
3207     // On PPC64, promote integers to 64-bit values.
3208     if (isPPC64 && Arg.getValueType() == MVT::i32) {
3209       // FIXME: Should this use ANY_EXTEND if neither sext nor zext?
3210       unsigned ExtOp = Flags.isSExt() ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
3211       Arg = DAG.getNode(ExtOp, dl, MVT::i64, Arg);
3212     }
3213
3214     // FIXME memcpy is used way more than necessary.  Correctness first.
3215     if (Flags.isByVal()) {
3216       unsigned Size = Flags.getByValSize();
3217       if (Size==1 || Size==2) {
3218         // Very small objects are passed right-justified.
3219         // Everything else is passed left-justified.
3220         EVT VT = (Size==1) ? MVT::i8 : MVT::i16;
3221         if (GPR_idx != NumGPRs) {
3222           SDValue Load = DAG.getExtLoad(ISD::EXTLOAD, dl, PtrVT, Chain, Arg,
3223                                         MachinePointerInfo(), VT,
3224                                         false, false, 0);
3225           MemOpChains.push_back(Load.getValue(1));
3226           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3227
3228           ArgOffset += PtrByteSize;
3229         } else {
3230           SDValue Const = DAG.getConstant(4 - Size, PtrOff.getValueType());
3231           SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, Const);
3232           SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, AddPtr,
3233                                 CallSeqStart.getNode()->getOperand(0),
3234                                 Flags, DAG, dl);
3235           // This must go outside the CALLSEQ_START..END.
3236           SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3237                                CallSeqStart.getNode()->getOperand(1));
3238           DAG.ReplaceAllUsesWith(CallSeqStart.getNode(),
3239                                  NewCallSeqStart.getNode());
3240           Chain = CallSeqStart = NewCallSeqStart;
3241           ArgOffset += PtrByteSize;
3242         }
3243         continue;
3244       }
3245       // Copy entire object into memory.  There are cases where gcc-generated
3246       // code assumes it is there, even if it could be put entirely into
3247       // registers.  (This is not what the doc says.)
3248       SDValue MemcpyCall = CreateCopyOfByValArgument(Arg, PtrOff,
3249                             CallSeqStart.getNode()->getOperand(0),
3250                             Flags, DAG, dl);
3251       // This must go outside the CALLSEQ_START..END.
3252       SDValue NewCallSeqStart = DAG.getCALLSEQ_START(MemcpyCall,
3253                            CallSeqStart.getNode()->getOperand(1));
3254       DAG.ReplaceAllUsesWith(CallSeqStart.getNode(), NewCallSeqStart.getNode());
3255       Chain = CallSeqStart = NewCallSeqStart;
3256       // And copy the pieces of it that fit into registers.
3257       for (unsigned j=0; j<Size; j+=PtrByteSize) {
3258         SDValue Const = DAG.getConstant(j, PtrOff.getValueType());
3259         SDValue AddArg = DAG.getNode(ISD::ADD, dl, PtrVT, Arg, Const);
3260         if (GPR_idx != NumGPRs) {
3261           SDValue Load = DAG.getLoad(PtrVT, dl, Chain, AddArg,
3262                                      MachinePointerInfo(),
3263                                      false, false, false, 0);
3264           MemOpChains.push_back(Load.getValue(1));
3265           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3266           ArgOffset += PtrByteSize;
3267         } else {
3268           ArgOffset += ((Size - j + PtrByteSize-1)/PtrByteSize)*PtrByteSize;
3269           break;
3270         }
3271       }
3272       continue;
3273     }
3274
3275     switch (Arg.getValueType().getSimpleVT().SimpleTy) {
3276     default: llvm_unreachable("Unexpected ValueType for argument!");
3277     case MVT::i32:
3278     case MVT::i64:
3279       if (GPR_idx != NumGPRs) {
3280         RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
3281       } else {
3282         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3283                          isPPC64, isTailCall, false, MemOpChains,
3284                          TailCallArguments, dl);
3285       }
3286       ArgOffset += PtrByteSize;
3287       break;
3288     case MVT::f32:
3289     case MVT::f64:
3290       if (FPR_idx != NumFPRs) {
3291         RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
3292
3293         if (isVarArg) {
3294           SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3295                                        MachinePointerInfo(), false, false, 0);
3296           MemOpChains.push_back(Store);
3297
3298           // Float varargs are always shadowed in available integer registers
3299           if (GPR_idx != NumGPRs) {
3300             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3301                                        MachinePointerInfo(), false, false,
3302                                        false, 0);
3303             MemOpChains.push_back(Load.getValue(1));
3304             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3305           }
3306           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
3307             SDValue ConstFour = DAG.getConstant(4, PtrOff.getValueType());
3308             PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff, ConstFour);
3309             SDValue Load = DAG.getLoad(PtrVT, dl, Store, PtrOff,
3310                                        MachinePointerInfo(),
3311                                        false, false, false, 0);
3312             MemOpChains.push_back(Load.getValue(1));
3313             RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3314           }
3315         } else {
3316           // If we have any FPRs remaining, we may also have GPRs remaining.
3317           // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
3318           // GPRs.
3319           if (GPR_idx != NumGPRs)
3320             ++GPR_idx;
3321           if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
3322               !isPPC64)  // PPC64 has 64-bit GPR's obviously :)
3323             ++GPR_idx;
3324         }
3325       } else {
3326         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3327                          isPPC64, isTailCall, false, MemOpChains,
3328                          TailCallArguments, dl);
3329       }
3330       if (isPPC64)
3331         ArgOffset += 8;
3332       else
3333         ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
3334       break;
3335     case MVT::v4f32:
3336     case MVT::v4i32:
3337     case MVT::v8i16:
3338     case MVT::v16i8:
3339       if (isVarArg) {
3340         // These go aligned on the stack, or in the corresponding R registers
3341         // when within range.  The Darwin PPC ABI doc claims they also go in
3342         // V registers; in fact gcc does this only for arguments that are
3343         // prototyped, not for those that match the ...  We do it for all
3344         // arguments, seems to work.
3345         while (ArgOffset % 16 !=0) {
3346           ArgOffset += PtrByteSize;
3347           if (GPR_idx != NumGPRs)
3348             GPR_idx++;
3349         }
3350         // We could elide this store in the case where the object fits
3351         // entirely in R registers.  Maybe later.
3352         PtrOff = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr,
3353                             DAG.getConstant(ArgOffset, PtrVT));
3354         SDValue Store = DAG.getStore(Chain, dl, Arg, PtrOff,
3355                                      MachinePointerInfo(), false, false, 0);
3356         MemOpChains.push_back(Store);
3357         if (VR_idx != NumVRs) {
3358           SDValue Load = DAG.getLoad(MVT::v4f32, dl, Store, PtrOff,
3359                                      MachinePointerInfo(),
3360                                      false, false, false, 0);
3361           MemOpChains.push_back(Load.getValue(1));
3362           RegsToPass.push_back(std::make_pair(VR[VR_idx++], Load));
3363         }
3364         ArgOffset += 16;
3365         for (unsigned i=0; i<16; i+=PtrByteSize) {
3366           if (GPR_idx == NumGPRs)
3367             break;
3368           SDValue Ix = DAG.getNode(ISD::ADD, dl, PtrVT, PtrOff,
3369                                   DAG.getConstant(i, PtrVT));
3370           SDValue Load = DAG.getLoad(PtrVT, dl, Store, Ix, MachinePointerInfo(),
3371                                      false, false, false, 0);
3372           MemOpChains.push_back(Load.getValue(1));
3373           RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
3374         }
3375         break;
3376       }
3377
3378       // Non-varargs Altivec params generally go in registers, but have
3379       // stack space allocated at the end.
3380       if (VR_idx != NumVRs) {
3381         // Doesn't have GPR space allocated.
3382         RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
3383       } else if (nAltivecParamsAtEnd==0) {
3384         // We are emitting Altivec params in order.
3385         LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3386                          isPPC64, isTailCall, true, MemOpChains,
3387                          TailCallArguments, dl);
3388         ArgOffset += 16;
3389       }
3390       break;
3391     }
3392   }
3393   // If all Altivec parameters fit in registers, as they usually do,
3394   // they get stack space following the non-Altivec parameters.  We
3395   // don't track this here because nobody below needs it.
3396   // If there are more Altivec parameters than fit in registers emit
3397   // the stores here.
3398   if (!isVarArg && nAltivecParamsAtEnd > NumVRs) {
3399     unsigned j = 0;
3400     // Offset is aligned; skip 1st 12 params which go in V registers.
3401     ArgOffset = ((ArgOffset+15)/16)*16;
3402     ArgOffset += 12*16;
3403     for (unsigned i = 0; i != NumOps; ++i) {
3404       SDValue Arg = OutVals[i];
3405       EVT ArgType = Outs[i].VT;
3406       if (ArgType==MVT::v4f32 || ArgType==MVT::v4i32 ||
3407           ArgType==MVT::v8i16 || ArgType==MVT::v16i8) {
3408         if (++j > NumVRs) {
3409           SDValue PtrOff;
3410           // We are emitting Altivec params in order.
3411           LowerMemOpCallTo(DAG, MF, Chain, Arg, PtrOff, SPDiff, ArgOffset,
3412                            isPPC64, isTailCall, true, MemOpChains,
3413                            TailCallArguments, dl);
3414           ArgOffset += 16;
3415         }
3416       }
3417     }
3418   }
3419
3420   if (!MemOpChains.empty())
3421     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
3422                         &MemOpChains[0], MemOpChains.size());
3423
3424   // Check if this is an indirect call (MTCTR/BCTRL).
3425   // See PrepareCall() for more information about calls through function
3426   // pointers in the 64-bit SVR4 ABI.
3427   if (!isTailCall && isPPC64 && PPCSubTarget.isSVR4ABI() &&
3428       !dyn_cast<GlobalAddressSDNode>(Callee) &&
3429       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3430       !isBLACompatibleAddress(Callee, DAG)) {
3431     // Load r2 into a virtual register and store it to the TOC save area.
3432     SDValue Val = DAG.getCopyFromReg(Chain, dl, PPC::X2, MVT::i64);
3433     // TOC save area offset.
3434     SDValue PtrOff = DAG.getIntPtrConstant(40);
3435     SDValue AddPtr = DAG.getNode(ISD::ADD, dl, PtrVT, StackPtr, PtrOff);
3436     Chain = DAG.getStore(Val.getValue(1), dl, Val, AddPtr, MachinePointerInfo(),
3437                          false, false, 0);
3438   }
3439
3440   // On Darwin, R12 must contain the address of an indirect callee.  This does
3441   // not mean the MTCTR instruction must use R12; it's easier to model this as
3442   // an extra parameter, so do that.
3443   if (!isTailCall &&
3444       !dyn_cast<GlobalAddressSDNode>(Callee) &&
3445       !dyn_cast<ExternalSymbolSDNode>(Callee) &&
3446       !isBLACompatibleAddress(Callee, DAG))
3447     RegsToPass.push_back(std::make_pair((unsigned)(isPPC64 ? PPC::X12 :
3448                                                    PPC::R12), Callee));
3449
3450   // Build a sequence of copy-to-reg nodes chained together with token chain
3451   // and flag operands which copy the outgoing args into the appropriate regs.
3452   SDValue InFlag;
3453   for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
3454     Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first,
3455                              RegsToPass[i].second, InFlag);
3456     InFlag = Chain.getValue(1);
3457   }
3458
3459   if (isTailCall)
3460     PrepareTailCall(DAG, InFlag, Chain, dl, isPPC64, SPDiff, NumBytes, LROp,
3461                     FPOp, true, TailCallArguments);
3462
3463   return FinishCall(CallConv, dl, isTailCall, isVarArg, DAG,
3464                     RegsToPass, InFlag, Chain, Callee, SPDiff, NumBytes,
3465                     Ins, InVals);
3466 }
3467
3468 bool
3469 PPCTargetLowering::CanLowerReturn(CallingConv::ID CallConv,
3470                                   MachineFunction &MF, bool isVarArg,
3471                                   const SmallVectorImpl<ISD::OutputArg> &Outs,
3472                                   LLVMContext &Context) const {
3473   SmallVector<CCValAssign, 16> RVLocs;
3474   CCState CCInfo(CallConv, isVarArg, MF, getTargetMachine(),
3475                  RVLocs, Context);
3476   return CCInfo.CheckReturn(Outs, RetCC_PPC);
3477 }
3478
3479 SDValue
3480 PPCTargetLowering::LowerReturn(SDValue Chain,
3481                                CallingConv::ID CallConv, bool isVarArg,
3482                                const SmallVectorImpl<ISD::OutputArg> &Outs,
3483                                const SmallVectorImpl<SDValue> &OutVals,
3484                                DebugLoc dl, SelectionDAG &DAG) const {
3485
3486   SmallVector<CCValAssign, 16> RVLocs;
3487   CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(),
3488                  getTargetMachine(), RVLocs, *DAG.getContext());
3489   CCInfo.AnalyzeReturn(Outs, RetCC_PPC);
3490
3491   // If this is the first return lowered for this function, add the regs to the
3492   // liveout set for the function.
3493   if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
3494     for (unsigned i = 0; i != RVLocs.size(); ++i)
3495       DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
3496   }
3497
3498   SDValue Flag;
3499
3500   // Copy the result values into the output registers.
3501   for (unsigned i = 0; i != RVLocs.size(); ++i) {
3502     CCValAssign &VA = RVLocs[i];
3503     assert(VA.isRegLoc() && "Can only return in registers!");
3504     Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(),
3505                              OutVals[i], Flag);
3506     Flag = Chain.getValue(1);
3507   }
3508
3509   if (Flag.getNode())
3510     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain, Flag);
3511   else
3512     return DAG.getNode(PPCISD::RET_FLAG, dl, MVT::Other, Chain);
3513 }
3514
3515 SDValue PPCTargetLowering::LowerSTACKRESTORE(SDValue Op, SelectionDAG &DAG,
3516                                    const PPCSubtarget &Subtarget) const {
3517   // When we pop the dynamic allocation we need to restore the SP link.
3518   DebugLoc dl = Op.getDebugLoc();
3519
3520   // Get the corect type for pointers.
3521   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3522
3523   // Construct the stack pointer operand.
3524   bool isPPC64 = Subtarget.isPPC64();
3525   unsigned SP = isPPC64 ? PPC::X1 : PPC::R1;
3526   SDValue StackPtr = DAG.getRegister(SP, PtrVT);
3527
3528   // Get the operands for the STACKRESTORE.
3529   SDValue Chain = Op.getOperand(0);
3530   SDValue SaveSP = Op.getOperand(1);
3531
3532   // Load the old link SP.
3533   SDValue LoadLinkSP = DAG.getLoad(PtrVT, dl, Chain, StackPtr,
3534                                    MachinePointerInfo(),
3535                                    false, false, false, 0);
3536
3537   // Restore the stack pointer.
3538   Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), dl, SP, SaveSP);
3539
3540   // Store the old link SP.
3541   return DAG.getStore(Chain, dl, LoadLinkSP, StackPtr, MachinePointerInfo(),
3542                       false, false, 0);
3543 }
3544
3545
3546
3547 SDValue
3548 PPCTargetLowering::getReturnAddrFrameIndex(SelectionDAG & DAG) const {
3549   MachineFunction &MF = DAG.getMachineFunction();
3550   bool isPPC64 = PPCSubTarget.isPPC64();
3551   bool isDarwinABI = PPCSubTarget.isDarwinABI();
3552   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3553
3554   // Get current frame pointer save index.  The users of this index will be
3555   // primarily DYNALLOC instructions.
3556   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3557   int RASI = FI->getReturnAddrSaveIndex();
3558
3559   // If the frame pointer save index hasn't been defined yet.
3560   if (!RASI) {
3561     // Find out what the fix offset of the frame pointer save area.
3562     int LROffset = PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI);
3563     // Allocate the frame index for frame pointer save area.
3564     RASI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, LROffset, true);
3565     // Save the result.
3566     FI->setReturnAddrSaveIndex(RASI);
3567   }
3568   return DAG.getFrameIndex(RASI, PtrVT);
3569 }
3570
3571 SDValue
3572 PPCTargetLowering::getFramePointerFrameIndex(SelectionDAG & DAG) const {
3573   MachineFunction &MF = DAG.getMachineFunction();
3574   bool isPPC64 = PPCSubTarget.isPPC64();
3575   bool isDarwinABI = PPCSubTarget.isDarwinABI();
3576   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3577
3578   // Get current frame pointer save index.  The users of this index will be
3579   // primarily DYNALLOC instructions.
3580   PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
3581   int FPSI = FI->getFramePointerSaveIndex();
3582
3583   // If the frame pointer save index hasn't been defined yet.
3584   if (!FPSI) {
3585     // Find out what the fix offset of the frame pointer save area.
3586     int FPOffset = PPCFrameLowering::getFramePointerSaveOffset(isPPC64,
3587                                                            isDarwinABI);
3588
3589     // Allocate the frame index for frame pointer save area.
3590     FPSI = MF.getFrameInfo()->CreateFixedObject(isPPC64? 8 : 4, FPOffset, true);
3591     // Save the result.
3592     FI->setFramePointerSaveIndex(FPSI);
3593   }
3594   return DAG.getFrameIndex(FPSI, PtrVT);
3595 }
3596
3597 SDValue PPCTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op,
3598                                          SelectionDAG &DAG,
3599                                          const PPCSubtarget &Subtarget) const {
3600   // Get the inputs.
3601   SDValue Chain = Op.getOperand(0);
3602   SDValue Size  = Op.getOperand(1);
3603   DebugLoc dl = Op.getDebugLoc();
3604
3605   // Get the corect type for pointers.
3606   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3607   // Negate the size.
3608   SDValue NegSize = DAG.getNode(ISD::SUB, dl, PtrVT,
3609                                   DAG.getConstant(0, PtrVT), Size);
3610   // Construct a node for the frame pointer save index.
3611   SDValue FPSIdx = getFramePointerFrameIndex(DAG);
3612   // Build a DYNALLOC node.
3613   SDValue Ops[3] = { Chain, NegSize, FPSIdx };
3614   SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
3615   return DAG.getNode(PPCISD::DYNALLOC, dl, VTs, Ops, 3);
3616 }
3617
3618 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
3619 /// possible.
3620 SDValue PPCTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const {
3621   // Not FP? Not a fsel.
3622   if (!Op.getOperand(0).getValueType().isFloatingPoint() ||
3623       !Op.getOperand(2).getValueType().isFloatingPoint())
3624     return Op;
3625
3626   ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
3627
3628   // Cannot handle SETEQ/SETNE.
3629   if (CC == ISD::SETEQ || CC == ISD::SETNE) return Op;
3630
3631   EVT ResVT = Op.getValueType();
3632   EVT CmpVT = Op.getOperand(0).getValueType();
3633   SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
3634   SDValue TV  = Op.getOperand(2), FV  = Op.getOperand(3);
3635   DebugLoc dl = Op.getDebugLoc();
3636
3637   // If the RHS of the comparison is a 0.0, we don't need to do the
3638   // subtraction at all.
3639   if (isFloatingPointZero(RHS))
3640     switch (CC) {
3641     default: break;       // SETUO etc aren't handled by fsel.
3642     case ISD::SETULT:
3643     case ISD::SETLT:
3644       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3645     case ISD::SETOGE:
3646     case ISD::SETGE:
3647       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3648         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3649       return DAG.getNode(PPCISD::FSEL, dl, ResVT, LHS, TV, FV);
3650     case ISD::SETUGT:
3651     case ISD::SETGT:
3652       std::swap(TV, FV);  // fsel is natively setge, swap operands for setlt
3653     case ISD::SETOLE:
3654     case ISD::SETLE:
3655       if (LHS.getValueType() == MVT::f32)   // Comparison is always 64-bits
3656         LHS = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, LHS);
3657       return DAG.getNode(PPCISD::FSEL, dl, ResVT,
3658                          DAG.getNode(ISD::FNEG, dl, MVT::f64, LHS), TV, FV);
3659     }
3660
3661   SDValue Cmp;
3662   switch (CC) {
3663   default: break;       // SETUO etc aren't handled by fsel.
3664   case ISD::SETULT:
3665   case ISD::SETLT:
3666     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3667     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3668       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3669       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3670   case ISD::SETOGE:
3671   case ISD::SETGE:
3672     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, LHS, RHS);
3673     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3674       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3675       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3676   case ISD::SETUGT:
3677   case ISD::SETGT:
3678     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3679     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3680       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3681       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, FV, TV);
3682   case ISD::SETOLE:
3683   case ISD::SETLE:
3684     Cmp = DAG.getNode(ISD::FSUB, dl, CmpVT, RHS, LHS);
3685     if (Cmp.getValueType() == MVT::f32)   // Comparison is always 64-bits
3686       Cmp = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Cmp);
3687       return DAG.getNode(PPCISD::FSEL, dl, ResVT, Cmp, TV, FV);
3688   }
3689   return Op;
3690 }
3691
3692 // FIXME: Split this code up when LegalizeDAGTypes lands.
3693 SDValue PPCTargetLowering::LowerFP_TO_INT(SDValue Op, SelectionDAG &DAG,
3694                                            DebugLoc dl) const {
3695   assert(Op.getOperand(0).getValueType().isFloatingPoint());
3696   SDValue Src = Op.getOperand(0);
3697   if (Src.getValueType() == MVT::f32)
3698     Src = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Src);
3699
3700   SDValue Tmp;
3701   switch (Op.getValueType().getSimpleVT().SimpleTy) {
3702   default: llvm_unreachable("Unhandled FP_TO_INT type in custom expander!");
3703   case MVT::i32:
3704     Tmp = DAG.getNode(Op.getOpcode()==ISD::FP_TO_SINT ? PPCISD::FCTIWZ :
3705                                                          PPCISD::FCTIDZ,
3706                       dl, MVT::f64, Src);
3707     break;
3708   case MVT::i64:
3709     Tmp = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Src);
3710     break;
3711   }
3712
3713   // Convert the FP value to an int value through memory.
3714   SDValue FIPtr = DAG.CreateStackTemporary(MVT::f64);
3715
3716   // Emit a store to the stack slot.
3717   SDValue Chain = DAG.getStore(DAG.getEntryNode(), dl, Tmp, FIPtr,
3718                                MachinePointerInfo(), false, false, 0);
3719
3720   // Result is a load from the stack slot.  If loading 4 bytes, make sure to
3721   // add in a bias.
3722   if (Op.getValueType() == MVT::i32)
3723     FIPtr = DAG.getNode(ISD::ADD, dl, FIPtr.getValueType(), FIPtr,
3724                         DAG.getConstant(4, FIPtr.getValueType()));
3725   return DAG.getLoad(Op.getValueType(), dl, Chain, FIPtr, MachinePointerInfo(),
3726                      false, false, false, 0);
3727 }
3728
3729 SDValue PPCTargetLowering::LowerSINT_TO_FP(SDValue Op,
3730                                            SelectionDAG &DAG) const {
3731   DebugLoc dl = Op.getDebugLoc();
3732   // Don't handle ppc_fp128 here; let it be lowered to a libcall.
3733   if (Op.getValueType() != MVT::f32 && Op.getValueType() != MVT::f64)
3734     return SDValue();
3735
3736   if (Op.getOperand(0).getValueType() == MVT::i64) {
3737     SDValue Bits = DAG.getNode(ISD::BITCAST, dl, MVT::f64, Op.getOperand(0));
3738     SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Bits);
3739     if (Op.getValueType() == MVT::f32)
3740       FP = DAG.getNode(ISD::FP_ROUND, dl,
3741                        MVT::f32, FP, DAG.getIntPtrConstant(0));
3742     return FP;
3743   }
3744
3745   assert(Op.getOperand(0).getValueType() == MVT::i32 &&
3746          "Unhandled SINT_TO_FP type in custom expander!");
3747   // Since we only generate this in 64-bit mode, we can take advantage of
3748   // 64-bit registers.  In particular, sign extend the input value into the
3749   // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
3750   // then lfd it and fcfid it.
3751   MachineFunction &MF = DAG.getMachineFunction();
3752   MachineFrameInfo *FrameInfo = MF.getFrameInfo();
3753   int FrameIdx = FrameInfo->CreateStackObject(8, 8, false);
3754   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3755   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
3756
3757   SDValue Ext64 = DAG.getNode(PPCISD::EXTSW_32, dl, MVT::i32,
3758                                 Op.getOperand(0));
3759
3760   // STD the extended value into the stack slot.
3761   MachineMemOperand *MMO =
3762     MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FrameIdx),
3763                             MachineMemOperand::MOStore, 8, 8);
3764   SDValue Ops[] = { DAG.getEntryNode(), Ext64, FIdx };
3765   SDValue Store =
3766     DAG.getMemIntrinsicNode(PPCISD::STD_32, dl, DAG.getVTList(MVT::Other),
3767                             Ops, 4, MVT::i64, MMO);
3768   // Load the value as a double.
3769   SDValue Ld = DAG.getLoad(MVT::f64, dl, Store, FIdx, MachinePointerInfo(),
3770                            false, false, false, 0);
3771
3772   // FCFID it and return it.
3773   SDValue FP = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Ld);
3774   if (Op.getValueType() == MVT::f32)
3775     FP = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, FP, DAG.getIntPtrConstant(0));
3776   return FP;
3777 }
3778
3779 SDValue PPCTargetLowering::LowerFLT_ROUNDS_(SDValue Op,
3780                                             SelectionDAG &DAG) const {
3781   DebugLoc dl = Op.getDebugLoc();
3782   /*
3783    The rounding mode is in bits 30:31 of FPSR, and has the following
3784    settings:
3785      00 Round to nearest
3786      01 Round to 0
3787      10 Round to +inf
3788      11 Round to -inf
3789
3790   FLT_ROUNDS, on the other hand, expects the following:
3791     -1 Undefined
3792      0 Round to 0
3793      1 Round to nearest
3794      2 Round to +inf
3795      3 Round to -inf
3796
3797   To perform the conversion, we do:
3798     ((FPSCR & 0x3) ^ ((~FPSCR & 0x3) >> 1))
3799   */
3800
3801   MachineFunction &MF = DAG.getMachineFunction();
3802   EVT VT = Op.getValueType();
3803   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3804   std::vector<EVT> NodeTys;
3805   SDValue MFFSreg, InFlag;
3806
3807   // Save FP Control Word to register
3808   NodeTys.push_back(MVT::f64);    // return register
3809   NodeTys.push_back(MVT::Glue);   // unused in this context
3810   SDValue Chain = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
3811
3812   // Save FP register to stack slot
3813   int SSFI = MF.getFrameInfo()->CreateStackObject(8, 8, false);
3814   SDValue StackSlot = DAG.getFrameIndex(SSFI, PtrVT);
3815   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl, Chain,
3816                                StackSlot, MachinePointerInfo(), false, false,0);
3817
3818   // Load FP Control Word from low 32 bits of stack slot.
3819   SDValue Four = DAG.getConstant(4, PtrVT);
3820   SDValue Addr = DAG.getNode(ISD::ADD, dl, PtrVT, StackSlot, Four);
3821   SDValue CWD = DAG.getLoad(MVT::i32, dl, Store, Addr, MachinePointerInfo(),
3822                             false, false, false, 0);
3823
3824   // Transform as necessary
3825   SDValue CWD1 =
3826     DAG.getNode(ISD::AND, dl, MVT::i32,
3827                 CWD, DAG.getConstant(3, MVT::i32));
3828   SDValue CWD2 =
3829     DAG.getNode(ISD::SRL, dl, MVT::i32,
3830                 DAG.getNode(ISD::AND, dl, MVT::i32,
3831                             DAG.getNode(ISD::XOR, dl, MVT::i32,
3832                                         CWD, DAG.getConstant(3, MVT::i32)),
3833                             DAG.getConstant(3, MVT::i32)),
3834                 DAG.getConstant(1, MVT::i32));
3835
3836   SDValue RetVal =
3837     DAG.getNode(ISD::XOR, dl, MVT::i32, CWD1, CWD2);
3838
3839   return DAG.getNode((VT.getSizeInBits() < 16 ?
3840                       ISD::TRUNCATE : ISD::ZERO_EXTEND), dl, VT, RetVal);
3841 }
3842
3843 SDValue PPCTargetLowering::LowerSHL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3844   EVT VT = Op.getValueType();
3845   unsigned BitWidth = VT.getSizeInBits();
3846   DebugLoc dl = Op.getDebugLoc();
3847   assert(Op.getNumOperands() == 3 &&
3848          VT == Op.getOperand(1).getValueType() &&
3849          "Unexpected SHL!");
3850
3851   // Expand into a bunch of logical ops.  Note that these ops
3852   // depend on the PPC behavior for oversized shift amounts.
3853   SDValue Lo = Op.getOperand(0);
3854   SDValue Hi = Op.getOperand(1);
3855   SDValue Amt = Op.getOperand(2);
3856   EVT AmtVT = Amt.getValueType();
3857
3858   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3859                              DAG.getConstant(BitWidth, AmtVT), Amt);
3860   SDValue Tmp2 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Amt);
3861   SDValue Tmp3 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Tmp1);
3862   SDValue Tmp4 = DAG.getNode(ISD::OR , dl, VT, Tmp2, Tmp3);
3863   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3864                              DAG.getConstant(-BitWidth, AmtVT));
3865   SDValue Tmp6 = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Tmp5);
3866   SDValue OutHi = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3867   SDValue OutLo = DAG.getNode(PPCISD::SHL, dl, VT, Lo, Amt);
3868   SDValue OutOps[] = { OutLo, OutHi };
3869   return DAG.getMergeValues(OutOps, 2, dl);
3870 }
3871
3872 SDValue PPCTargetLowering::LowerSRL_PARTS(SDValue Op, SelectionDAG &DAG) const {
3873   EVT VT = Op.getValueType();
3874   DebugLoc dl = Op.getDebugLoc();
3875   unsigned BitWidth = VT.getSizeInBits();
3876   assert(Op.getNumOperands() == 3 &&
3877          VT == Op.getOperand(1).getValueType() &&
3878          "Unexpected SRL!");
3879
3880   // Expand into a bunch of logical ops.  Note that these ops
3881   // depend on the PPC behavior for oversized shift amounts.
3882   SDValue Lo = Op.getOperand(0);
3883   SDValue Hi = Op.getOperand(1);
3884   SDValue Amt = Op.getOperand(2);
3885   EVT AmtVT = Amt.getValueType();
3886
3887   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3888                              DAG.getConstant(BitWidth, AmtVT), Amt);
3889   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3890   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3891   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3892   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3893                              DAG.getConstant(-BitWidth, AmtVT));
3894   SDValue Tmp6 = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Tmp5);
3895   SDValue OutLo = DAG.getNode(ISD::OR, dl, VT, Tmp4, Tmp6);
3896   SDValue OutHi = DAG.getNode(PPCISD::SRL, dl, VT, Hi, Amt);
3897   SDValue OutOps[] = { OutLo, OutHi };
3898   return DAG.getMergeValues(OutOps, 2, dl);
3899 }
3900
3901 SDValue PPCTargetLowering::LowerSRA_PARTS(SDValue Op, SelectionDAG &DAG) const {
3902   DebugLoc dl = Op.getDebugLoc();
3903   EVT VT = Op.getValueType();
3904   unsigned BitWidth = VT.getSizeInBits();
3905   assert(Op.getNumOperands() == 3 &&
3906          VT == Op.getOperand(1).getValueType() &&
3907          "Unexpected SRA!");
3908
3909   // Expand into a bunch of logical ops, followed by a select_cc.
3910   SDValue Lo = Op.getOperand(0);
3911   SDValue Hi = Op.getOperand(1);
3912   SDValue Amt = Op.getOperand(2);
3913   EVT AmtVT = Amt.getValueType();
3914
3915   SDValue Tmp1 = DAG.getNode(ISD::SUB, dl, AmtVT,
3916                              DAG.getConstant(BitWidth, AmtVT), Amt);
3917   SDValue Tmp2 = DAG.getNode(PPCISD::SRL, dl, VT, Lo, Amt);
3918   SDValue Tmp3 = DAG.getNode(PPCISD::SHL, dl, VT, Hi, Tmp1);
3919   SDValue Tmp4 = DAG.getNode(ISD::OR, dl, VT, Tmp2, Tmp3);
3920   SDValue Tmp5 = DAG.getNode(ISD::ADD, dl, AmtVT, Amt,
3921                              DAG.getConstant(-BitWidth, AmtVT));
3922   SDValue Tmp6 = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Tmp5);
3923   SDValue OutHi = DAG.getNode(PPCISD::SRA, dl, VT, Hi, Amt);
3924   SDValue OutLo = DAG.getSelectCC(dl, Tmp5, DAG.getConstant(0, AmtVT),
3925                                   Tmp4, Tmp6, ISD::SETLE);
3926   SDValue OutOps[] = { OutLo, OutHi };
3927   return DAG.getMergeValues(OutOps, 2, dl);
3928 }
3929
3930 //===----------------------------------------------------------------------===//
3931 // Vector related lowering.
3932 //
3933
3934 /// BuildSplatI - Build a canonical splati of Val with an element size of
3935 /// SplatSize.  Cast the result to VT.
3936 static SDValue BuildSplatI(int Val, unsigned SplatSize, EVT VT,
3937                              SelectionDAG &DAG, DebugLoc dl) {
3938   assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
3939
3940   static const EVT VTys[] = { // canonical VT to use for each size.
3941     MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
3942   };
3943
3944   EVT ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
3945
3946   // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
3947   if (Val == -1)
3948     SplatSize = 1;
3949
3950   EVT CanonicalVT = VTys[SplatSize-1];
3951
3952   // Build a canonical splat for this value.
3953   SDValue Elt = DAG.getConstant(Val, MVT::i32);
3954   SmallVector<SDValue, 8> Ops;
3955   Ops.assign(CanonicalVT.getVectorNumElements(), Elt);
3956   SDValue Res = DAG.getNode(ISD::BUILD_VECTOR, dl, CanonicalVT,
3957                               &Ops[0], Ops.size());
3958   return DAG.getNode(ISD::BITCAST, dl, ReqVT, Res);
3959 }
3960
3961 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
3962 /// specified intrinsic ID.
3963 static SDValue BuildIntrinsicOp(unsigned IID, SDValue LHS, SDValue RHS,
3964                                 SelectionDAG &DAG, DebugLoc dl,
3965                                 EVT DestVT = MVT::Other) {
3966   if (DestVT == MVT::Other) DestVT = LHS.getValueType();
3967   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3968                      DAG.getConstant(IID, MVT::i32), LHS, RHS);
3969 }
3970
3971 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
3972 /// specified intrinsic ID.
3973 static SDValue BuildIntrinsicOp(unsigned IID, SDValue Op0, SDValue Op1,
3974                                 SDValue Op2, SelectionDAG &DAG,
3975                                 DebugLoc dl, EVT DestVT = MVT::Other) {
3976   if (DestVT == MVT::Other) DestVT = Op0.getValueType();
3977   return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, dl, DestVT,
3978                      DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
3979 }
3980
3981
3982 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
3983 /// amount.  The result has the specified value type.
3984 static SDValue BuildVSLDOI(SDValue LHS, SDValue RHS, unsigned Amt,
3985                              EVT VT, SelectionDAG &DAG, DebugLoc dl) {
3986   // Force LHS/RHS to be the right type.
3987   LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, LHS);
3988   RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, RHS);
3989
3990   int Ops[16];
3991   for (unsigned i = 0; i != 16; ++i)
3992     Ops[i] = i + Amt;
3993   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, LHS, RHS, Ops);
3994   return DAG.getNode(ISD::BITCAST, dl, VT, T);
3995 }
3996
3997 // If this is a case we can't handle, return null and let the default
3998 // expansion code take care of it.  If we CAN select this case, and if it
3999 // selects to a single instruction, return Op.  Otherwise, if we can codegen
4000 // this case more efficiently than a constant pool load, lower it to the
4001 // sequence of ops that should be used.
4002 SDValue PPCTargetLowering::LowerBUILD_VECTOR(SDValue Op,
4003                                              SelectionDAG &DAG) const {
4004   DebugLoc dl = Op.getDebugLoc();
4005   BuildVectorSDNode *BVN = dyn_cast<BuildVectorSDNode>(Op.getNode());
4006   assert(BVN != 0 && "Expected a BuildVectorSDNode in LowerBUILD_VECTOR");
4007
4008   // Check if this is a splat of a constant value.
4009   APInt APSplatBits, APSplatUndef;
4010   unsigned SplatBitSize;
4011   bool HasAnyUndefs;
4012   if (! BVN->isConstantSplat(APSplatBits, APSplatUndef, SplatBitSize,
4013                              HasAnyUndefs, 0, true) || SplatBitSize > 32)
4014     return SDValue();
4015
4016   unsigned SplatBits = APSplatBits.getZExtValue();
4017   unsigned SplatUndef = APSplatUndef.getZExtValue();
4018   unsigned SplatSize = SplatBitSize / 8;
4019
4020   // First, handle single instruction cases.
4021
4022   // All zeros?
4023   if (SplatBits == 0) {
4024     // Canonicalize all zero vectors to be v4i32.
4025     if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
4026       SDValue Z = DAG.getConstant(0, MVT::i32);
4027       Z = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v4i32, Z, Z, Z, Z);
4028       Op = DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Z);
4029     }
4030     return Op;
4031   }
4032
4033   // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
4034   int32_t SextVal= (int32_t(SplatBits << (32-SplatBitSize)) >>
4035                     (32-SplatBitSize));
4036   if (SextVal >= -16 && SextVal <= 15)
4037     return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG, dl);
4038
4039
4040   // Two instruction sequences.
4041
4042   // If this value is in the range [-32,30] and is even, use:
4043   //    tmp = VSPLTI[bhw], result = add tmp, tmp
4044   if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
4045     SDValue Res = BuildSplatI(SextVal >> 1, SplatSize, MVT::Other, DAG, dl);
4046     Res = DAG.getNode(ISD::ADD, dl, Res.getValueType(), Res, Res);
4047     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4048   }
4049
4050   // If this is 0x8000_0000 x 4, turn into vspltisw + vslw.  If it is
4051   // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000).  This is important
4052   // for fneg/fabs.
4053   if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
4054     // Make -1 and vspltisw -1:
4055     SDValue OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG, dl);
4056
4057     // Make the VSLW intrinsic, computing 0x8000_0000.
4058     SDValue Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
4059                                    OnesV, DAG, dl);
4060
4061     // xor by OnesV to invert it.
4062     Res = DAG.getNode(ISD::XOR, dl, MVT::v4i32, Res, OnesV);
4063     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4064   }
4065
4066   // Check to see if this is a wide variety of vsplti*, binop self cases.
4067   static const signed char SplatCsts[] = {
4068     -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
4069     -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
4070   };
4071
4072   for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
4073     // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
4074     // cases which are ambiguous (e.g. formation of 0x8000_0000).  'vsplti -1'
4075     int i = SplatCsts[idx];
4076
4077     // Figure out what shift amount will be used by altivec if shifted by i in
4078     // this splat size.
4079     unsigned TypeShiftAmt = i & (SplatBitSize-1);
4080
4081     // vsplti + shl self.
4082     if (SextVal == (i << (int)TypeShiftAmt)) {
4083       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4084       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4085         Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
4086         Intrinsic::ppc_altivec_vslw
4087       };
4088       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4089       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4090     }
4091
4092     // vsplti + srl self.
4093     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4094       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4095       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4096         Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
4097         Intrinsic::ppc_altivec_vsrw
4098       };
4099       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4100       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4101     }
4102
4103     // vsplti + sra self.
4104     if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
4105       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4106       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4107         Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
4108         Intrinsic::ppc_altivec_vsraw
4109       };
4110       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4111       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4112     }
4113
4114     // vsplti + rol self.
4115     if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
4116                          ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
4117       SDValue Res = BuildSplatI(i, SplatSize, MVT::Other, DAG, dl);
4118       static const unsigned IIDs[] = { // Intrinsic to use for each size.
4119         Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
4120         Intrinsic::ppc_altivec_vrlw
4121       };
4122       Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG, dl);
4123       return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Res);
4124     }
4125
4126     // t = vsplti c, result = vsldoi t, t, 1
4127     if (SextVal == ((i << 8) | (i < 0 ? 0xFF : 0))) {
4128       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4129       return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG, dl);
4130     }
4131     // t = vsplti c, result = vsldoi t, t, 2
4132     if (SextVal == ((i << 16) | (i < 0 ? 0xFFFF : 0))) {
4133       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4134       return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG, dl);
4135     }
4136     // t = vsplti c, result = vsldoi t, t, 3
4137     if (SextVal == ((i << 24) | (i < 0 ? 0xFFFFFF : 0))) {
4138       SDValue T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG, dl);
4139       return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG, dl);
4140     }
4141   }
4142
4143   // Three instruction sequences.
4144
4145   // Odd, in range [17,31]:  (vsplti C)-(vsplti -16).
4146   if (SextVal >= 0 && SextVal <= 31) {
4147     SDValue LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG, dl);
4148     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4149     LHS = DAG.getNode(ISD::SUB, dl, LHS.getValueType(), LHS, RHS);
4150     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4151   }
4152   // Odd, in range [-31,-17]:  (vsplti C)+(vsplti -16).
4153   if (SextVal >= -31 && SextVal <= 0) {
4154     SDValue LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG, dl);
4155     SDValue RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG, dl);
4156     LHS = DAG.getNode(ISD::ADD, dl, LHS.getValueType(), LHS, RHS);
4157     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), LHS);
4158   }
4159
4160   return SDValue();
4161 }
4162
4163 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
4164 /// the specified operations to build the shuffle.
4165 static SDValue GeneratePerfectShuffle(unsigned PFEntry, SDValue LHS,
4166                                       SDValue RHS, SelectionDAG &DAG,
4167                                       DebugLoc dl) {
4168   unsigned OpNum = (PFEntry >> 26) & 0x0F;
4169   unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
4170   unsigned RHSID = (PFEntry >>  0) & ((1 << 13)-1);
4171
4172   enum {
4173     OP_COPY = 0,  // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
4174     OP_VMRGHW,
4175     OP_VMRGLW,
4176     OP_VSPLTISW0,
4177     OP_VSPLTISW1,
4178     OP_VSPLTISW2,
4179     OP_VSPLTISW3,
4180     OP_VSLDOI4,
4181     OP_VSLDOI8,
4182     OP_VSLDOI12
4183   };
4184
4185   if (OpNum == OP_COPY) {
4186     if (LHSID == (1*9+2)*9+3) return LHS;
4187     assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
4188     return RHS;
4189   }
4190
4191   SDValue OpLHS, OpRHS;
4192   OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG, dl);
4193   OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG, dl);
4194
4195   int ShufIdxs[16];
4196   switch (OpNum) {
4197   default: llvm_unreachable("Unknown i32 permute!");
4198   case OP_VMRGHW:
4199     ShufIdxs[ 0] =  0; ShufIdxs[ 1] =  1; ShufIdxs[ 2] =  2; ShufIdxs[ 3] =  3;
4200     ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
4201     ShufIdxs[ 8] =  4; ShufIdxs[ 9] =  5; ShufIdxs[10] =  6; ShufIdxs[11] =  7;
4202     ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
4203     break;
4204   case OP_VMRGLW:
4205     ShufIdxs[ 0] =  8; ShufIdxs[ 1] =  9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
4206     ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
4207     ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
4208     ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
4209     break;
4210   case OP_VSPLTISW0:
4211     for (unsigned i = 0; i != 16; ++i)
4212       ShufIdxs[i] = (i&3)+0;
4213     break;
4214   case OP_VSPLTISW1:
4215     for (unsigned i = 0; i != 16; ++i)
4216       ShufIdxs[i] = (i&3)+4;
4217     break;
4218   case OP_VSPLTISW2:
4219     for (unsigned i = 0; i != 16; ++i)
4220       ShufIdxs[i] = (i&3)+8;
4221     break;
4222   case OP_VSPLTISW3:
4223     for (unsigned i = 0; i != 16; ++i)
4224       ShufIdxs[i] = (i&3)+12;
4225     break;
4226   case OP_VSLDOI4:
4227     return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG, dl);
4228   case OP_VSLDOI8:
4229     return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG, dl);
4230   case OP_VSLDOI12:
4231     return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG, dl);
4232   }
4233   EVT VT = OpLHS.getValueType();
4234   OpLHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpLHS);
4235   OpRHS = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OpRHS);
4236   SDValue T = DAG.getVectorShuffle(MVT::v16i8, dl, OpLHS, OpRHS, ShufIdxs);
4237   return DAG.getNode(ISD::BITCAST, dl, VT, T);
4238 }
4239
4240 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE.  If this
4241 /// is a shuffle we can handle in a single instruction, return it.  Otherwise,
4242 /// return the code it can be lowered into.  Worst case, it can always be
4243 /// lowered into a vperm.
4244 SDValue PPCTargetLowering::LowerVECTOR_SHUFFLE(SDValue Op,
4245                                                SelectionDAG &DAG) const {
4246   DebugLoc dl = Op.getDebugLoc();
4247   SDValue V1 = Op.getOperand(0);
4248   SDValue V2 = Op.getOperand(1);
4249   ShuffleVectorSDNode *SVOp = cast<ShuffleVectorSDNode>(Op);
4250   EVT VT = Op.getValueType();
4251
4252   // Cases that are handled by instructions that take permute immediates
4253   // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
4254   // selected by the instruction selector.
4255   if (V2.getOpcode() == ISD::UNDEF) {
4256     if (PPC::isSplatShuffleMask(SVOp, 1) ||
4257         PPC::isSplatShuffleMask(SVOp, 2) ||
4258         PPC::isSplatShuffleMask(SVOp, 4) ||
4259         PPC::isVPKUWUMShuffleMask(SVOp, true) ||
4260         PPC::isVPKUHUMShuffleMask(SVOp, true) ||
4261         PPC::isVSLDOIShuffleMask(SVOp, true) != -1 ||
4262         PPC::isVMRGLShuffleMask(SVOp, 1, true) ||
4263         PPC::isVMRGLShuffleMask(SVOp, 2, true) ||
4264         PPC::isVMRGLShuffleMask(SVOp, 4, true) ||
4265         PPC::isVMRGHShuffleMask(SVOp, 1, true) ||
4266         PPC::isVMRGHShuffleMask(SVOp, 2, true) ||
4267         PPC::isVMRGHShuffleMask(SVOp, 4, true)) {
4268       return Op;
4269     }
4270   }
4271
4272   // Altivec has a variety of "shuffle immediates" that take two vector inputs
4273   // and produce a fixed permutation.  If any of these match, do not lower to
4274   // VPERM.
4275   if (PPC::isVPKUWUMShuffleMask(SVOp, false) ||
4276       PPC::isVPKUHUMShuffleMask(SVOp, false) ||
4277       PPC::isVSLDOIShuffleMask(SVOp, false) != -1 ||
4278       PPC::isVMRGLShuffleMask(SVOp, 1, false) ||
4279       PPC::isVMRGLShuffleMask(SVOp, 2, false) ||
4280       PPC::isVMRGLShuffleMask(SVOp, 4, false) ||
4281       PPC::isVMRGHShuffleMask(SVOp, 1, false) ||
4282       PPC::isVMRGHShuffleMask(SVOp, 2, false) ||
4283       PPC::isVMRGHShuffleMask(SVOp, 4, false))
4284     return Op;
4285
4286   // Check to see if this is a shuffle of 4-byte values.  If so, we can use our
4287   // perfect shuffle table to emit an optimal matching sequence.
4288   ArrayRef<int> PermMask = SVOp->getMask();
4289
4290   unsigned PFIndexes[4];
4291   bool isFourElementShuffle = true;
4292   for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
4293     unsigned EltNo = 8;   // Start out undef.
4294     for (unsigned j = 0; j != 4; ++j) {  // Intra-element byte.
4295       if (PermMask[i*4+j] < 0)
4296         continue;   // Undef, ignore it.
4297
4298       unsigned ByteSource = PermMask[i*4+j];
4299       if ((ByteSource & 3) != j) {
4300         isFourElementShuffle = false;
4301         break;
4302       }
4303
4304       if (EltNo == 8) {
4305         EltNo = ByteSource/4;
4306       } else if (EltNo != ByteSource/4) {
4307         isFourElementShuffle = false;
4308         break;
4309       }
4310     }
4311     PFIndexes[i] = EltNo;
4312   }
4313
4314   // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
4315   // perfect shuffle vector to determine if it is cost effective to do this as
4316   // discrete instructions, or whether we should use a vperm.
4317   if (isFourElementShuffle) {
4318     // Compute the index in the perfect shuffle table.
4319     unsigned PFTableIndex =
4320       PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
4321
4322     unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
4323     unsigned Cost  = (PFEntry >> 30);
4324
4325     // Determining when to avoid vperm is tricky.  Many things affect the cost
4326     // of vperm, particularly how many times the perm mask needs to be computed.
4327     // For example, if the perm mask can be hoisted out of a loop or is already
4328     // used (perhaps because there are multiple permutes with the same shuffle
4329     // mask?) the vperm has a cost of 1.  OTOH, hoisting the permute mask out of
4330     // the loop requires an extra register.
4331     //
4332     // As a compromise, we only emit discrete instructions if the shuffle can be
4333     // generated in 3 or fewer operations.  When we have loop information
4334     // available, if this block is within a loop, we should avoid using vperm
4335     // for 3-operation perms and use a constant pool load instead.
4336     if (Cost < 3)
4337       return GeneratePerfectShuffle(PFEntry, V1, V2, DAG, dl);
4338   }
4339
4340   // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
4341   // vector that will get spilled to the constant pool.
4342   if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
4343
4344   // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
4345   // that it is in input element units, not in bytes.  Convert now.
4346   EVT EltVT = V1.getValueType().getVectorElementType();
4347   unsigned BytesPerElement = EltVT.getSizeInBits()/8;
4348
4349   SmallVector<SDValue, 16> ResultMask;
4350   for (unsigned i = 0, e = VT.getVectorNumElements(); i != e; ++i) {
4351     unsigned SrcElt = PermMask[i] < 0 ? 0 : PermMask[i];
4352
4353     for (unsigned j = 0; j != BytesPerElement; ++j)
4354       ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
4355                                            MVT::i32));
4356   }
4357
4358   SDValue VPermMask = DAG.getNode(ISD::BUILD_VECTOR, dl, MVT::v16i8,
4359                                     &ResultMask[0], ResultMask.size());
4360   return DAG.getNode(PPCISD::VPERM, dl, V1.getValueType(), V1, V2, VPermMask);
4361 }
4362
4363 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
4364 /// altivec comparison.  If it is, return true and fill in Opc/isDot with
4365 /// information about the intrinsic.
4366 static bool getAltivecCompareInfo(SDValue Intrin, int &CompareOpc,
4367                                   bool &isDot) {
4368   unsigned IntrinsicID =
4369     cast<ConstantSDNode>(Intrin.getOperand(0))->getZExtValue();
4370   CompareOpc = -1;
4371   isDot = false;
4372   switch (IntrinsicID) {
4373   default: return false;
4374     // Comparison predicates.
4375   case Intrinsic::ppc_altivec_vcmpbfp_p:  CompareOpc = 966; isDot = 1; break;
4376   case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
4377   case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc =   6; isDot = 1; break;
4378   case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc =  70; isDot = 1; break;
4379   case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
4380   case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
4381   case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
4382   case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
4383   case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
4384   case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
4385   case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
4386   case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
4387   case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
4388
4389     // Normal Comparisons.
4390   case Intrinsic::ppc_altivec_vcmpbfp:    CompareOpc = 966; isDot = 0; break;
4391   case Intrinsic::ppc_altivec_vcmpeqfp:   CompareOpc = 198; isDot = 0; break;
4392   case Intrinsic::ppc_altivec_vcmpequb:   CompareOpc =   6; isDot = 0; break;
4393   case Intrinsic::ppc_altivec_vcmpequh:   CompareOpc =  70; isDot = 0; break;
4394   case Intrinsic::ppc_altivec_vcmpequw:   CompareOpc = 134; isDot = 0; break;
4395   case Intrinsic::ppc_altivec_vcmpgefp:   CompareOpc = 454; isDot = 0; break;
4396   case Intrinsic::ppc_altivec_vcmpgtfp:   CompareOpc = 710; isDot = 0; break;
4397   case Intrinsic::ppc_altivec_vcmpgtsb:   CompareOpc = 774; isDot = 0; break;
4398   case Intrinsic::ppc_altivec_vcmpgtsh:   CompareOpc = 838; isDot = 0; break;
4399   case Intrinsic::ppc_altivec_vcmpgtsw:   CompareOpc = 902; isDot = 0; break;
4400   case Intrinsic::ppc_altivec_vcmpgtub:   CompareOpc = 518; isDot = 0; break;
4401   case Intrinsic::ppc_altivec_vcmpgtuh:   CompareOpc = 582; isDot = 0; break;
4402   case Intrinsic::ppc_altivec_vcmpgtuw:   CompareOpc = 646; isDot = 0; break;
4403   }
4404   return true;
4405 }
4406
4407 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
4408 /// lower, do it, otherwise return null.
4409 SDValue PPCTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
4410                                                    SelectionDAG &DAG) const {
4411   // If this is a lowered altivec predicate compare, CompareOpc is set to the
4412   // opcode number of the comparison.
4413   DebugLoc dl = Op.getDebugLoc();
4414   int CompareOpc;
4415   bool isDot;
4416   if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
4417     return SDValue();    // Don't custom lower most intrinsics.
4418
4419   // If this is a non-dot comparison, make the VCMP node and we are done.
4420   if (!isDot) {
4421     SDValue Tmp = DAG.getNode(PPCISD::VCMP, dl, Op.getOperand(2).getValueType(),
4422                               Op.getOperand(1), Op.getOperand(2),
4423                               DAG.getConstant(CompareOpc, MVT::i32));
4424     return DAG.getNode(ISD::BITCAST, dl, Op.getValueType(), Tmp);
4425   }
4426
4427   // Create the PPCISD altivec 'dot' comparison node.
4428   SDValue Ops[] = {
4429     Op.getOperand(2),  // LHS
4430     Op.getOperand(3),  // RHS
4431     DAG.getConstant(CompareOpc, MVT::i32)
4432   };
4433   std::vector<EVT> VTs;
4434   VTs.push_back(Op.getOperand(2).getValueType());
4435   VTs.push_back(MVT::Glue);
4436   SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
4437
4438   // Now that we have the comparison, emit a copy from the CR to a GPR.
4439   // This is flagged to the above dot comparison.
4440   SDValue Flags = DAG.getNode(PPCISD::MFCR, dl, MVT::i32,
4441                                 DAG.getRegister(PPC::CR6, MVT::i32),
4442                                 CompNode.getValue(1));
4443
4444   // Unpack the result based on how the target uses it.
4445   unsigned BitNo;   // Bit # of CR6.
4446   bool InvertBit;   // Invert result?
4447   switch (cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue()) {
4448   default:  // Can't happen, don't crash on invalid number though.
4449   case 0:   // Return the value of the EQ bit of CR6.
4450     BitNo = 0; InvertBit = false;
4451     break;
4452   case 1:   // Return the inverted value of the EQ bit of CR6.
4453     BitNo = 0; InvertBit = true;
4454     break;
4455   case 2:   // Return the value of the LT bit of CR6.
4456     BitNo = 2; InvertBit = false;
4457     break;
4458   case 3:   // Return the inverted value of the LT bit of CR6.
4459     BitNo = 2; InvertBit = true;
4460     break;
4461   }
4462
4463   // Shift the bit into the low position.
4464   Flags = DAG.getNode(ISD::SRL, dl, MVT::i32, Flags,
4465                       DAG.getConstant(8-(3-BitNo), MVT::i32));
4466   // Isolate the bit.
4467   Flags = DAG.getNode(ISD::AND, dl, MVT::i32, Flags,
4468                       DAG.getConstant(1, MVT::i32));
4469
4470   // If we are supposed to, toggle the bit.
4471   if (InvertBit)
4472     Flags = DAG.getNode(ISD::XOR, dl, MVT::i32, Flags,
4473                         DAG.getConstant(1, MVT::i32));
4474   return Flags;
4475 }
4476
4477 SDValue PPCTargetLowering::LowerSCALAR_TO_VECTOR(SDValue Op,
4478                                                    SelectionDAG &DAG) const {
4479   DebugLoc dl = Op.getDebugLoc();
4480   // Create a stack slot that is 16-byte aligned.
4481   MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
4482   int FrameIdx = FrameInfo->CreateStackObject(16, 16, false);
4483   EVT PtrVT = getPointerTy();
4484   SDValue FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
4485
4486   // Store the input value into Value#0 of the stack slot.
4487   SDValue Store = DAG.getStore(DAG.getEntryNode(), dl,
4488                                Op.getOperand(0), FIdx, MachinePointerInfo(),
4489                                false, false, 0);
4490   // Load it out.
4491   return DAG.getLoad(Op.getValueType(), dl, Store, FIdx, MachinePointerInfo(),
4492                      false, false, false, 0);
4493 }
4494
4495 SDValue PPCTargetLowering::LowerMUL(SDValue Op, SelectionDAG &DAG) const {
4496   DebugLoc dl = Op.getDebugLoc();
4497   if (Op.getValueType() == MVT::v4i32) {
4498     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4499
4500     SDValue Zero  = BuildSplatI(  0, 1, MVT::v4i32, DAG, dl);
4501     SDValue Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG, dl);//+16 as shift amt.
4502
4503     SDValue RHSSwap =   // = vrlw RHS, 16
4504       BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG, dl);
4505
4506     // Shrinkify inputs to v8i16.
4507     LHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, LHS);
4508     RHS = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHS);
4509     RHSSwap = DAG.getNode(ISD::BITCAST, dl, MVT::v8i16, RHSSwap);
4510
4511     // Low parts multiplied together, generating 32-bit results (we ignore the
4512     // top parts).
4513     SDValue LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
4514                                         LHS, RHS, DAG, dl, MVT::v4i32);
4515
4516     SDValue HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
4517                                       LHS, RHSSwap, Zero, DAG, dl, MVT::v4i32);
4518     // Shift the high parts up 16 bits.
4519     HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd,
4520                               Neg16, DAG, dl);
4521     return DAG.getNode(ISD::ADD, dl, MVT::v4i32, LoProd, HiProd);
4522   } else if (Op.getValueType() == MVT::v8i16) {
4523     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4524
4525     SDValue Zero = BuildSplatI(0, 1, MVT::v8i16, DAG, dl);
4526
4527     return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
4528                             LHS, RHS, Zero, DAG, dl);
4529   } else if (Op.getValueType() == MVT::v16i8) {
4530     SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1);
4531
4532     // Multiply the even 8-bit parts, producing 16-bit sums.
4533     SDValue EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
4534                                            LHS, RHS, DAG, dl, MVT::v8i16);
4535     EvenParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, EvenParts);
4536
4537     // Multiply the odd 8-bit parts, producing 16-bit sums.
4538     SDValue OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
4539                                           LHS, RHS, DAG, dl, MVT::v8i16);
4540     OddParts = DAG.getNode(ISD::BITCAST, dl, MVT::v16i8, OddParts);
4541
4542     // Merge the results together.
4543     int Ops[16];
4544     for (unsigned i = 0; i != 8; ++i) {
4545       Ops[i*2  ] = 2*i+1;
4546       Ops[i*2+1] = 2*i+1+16;
4547     }
4548     return DAG.getVectorShuffle(MVT::v16i8, dl, EvenParts, OddParts, Ops);
4549   } else {
4550     llvm_unreachable("Unknown mul to lower!");
4551   }
4552 }
4553
4554 /// LowerOperation - Provide custom lowering hooks for some operations.
4555 ///
4556 SDValue PPCTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
4557   switch (Op.getOpcode()) {
4558   default: llvm_unreachable("Wasn't expecting to be able to lower this!");
4559   case ISD::ConstantPool:       return LowerConstantPool(Op, DAG);
4560   case ISD::BlockAddress:       return LowerBlockAddress(Op, DAG);
4561   case ISD::GlobalAddress:      return LowerGlobalAddress(Op, DAG);
4562   case ISD::GlobalTLSAddress:   llvm_unreachable("TLS not implemented for PPC");
4563   case ISD::JumpTable:          return LowerJumpTable(Op, DAG);
4564   case ISD::SETCC:              return LowerSETCC(Op, DAG);
4565   case ISD::INIT_TRAMPOLINE:    return LowerINIT_TRAMPOLINE(Op, DAG);
4566   case ISD::ADJUST_TRAMPOLINE:  return LowerADJUST_TRAMPOLINE(Op, DAG);
4567   case ISD::VASTART:
4568     return LowerVASTART(Op, DAG, PPCSubTarget);
4569
4570   case ISD::VAARG:
4571     return LowerVAARG(Op, DAG, PPCSubTarget);
4572
4573   case ISD::STACKRESTORE:       return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
4574   case ISD::DYNAMIC_STACKALLOC:
4575     return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
4576
4577   case ISD::SELECT_CC:          return LowerSELECT_CC(Op, DAG);
4578   case ISD::FP_TO_UINT:
4579   case ISD::FP_TO_SINT:         return LowerFP_TO_INT(Op, DAG,
4580                                                        Op.getDebugLoc());
4581   case ISD::SINT_TO_FP:         return LowerSINT_TO_FP(Op, DAG);
4582   case ISD::FLT_ROUNDS_:        return LowerFLT_ROUNDS_(Op, DAG);
4583
4584   // Lower 64-bit shifts.
4585   case ISD::SHL_PARTS:          return LowerSHL_PARTS(Op, DAG);
4586   case ISD::SRL_PARTS:          return LowerSRL_PARTS(Op, DAG);
4587   case ISD::SRA_PARTS:          return LowerSRA_PARTS(Op, DAG);
4588
4589   // Vector-related lowering.
4590   case ISD::BUILD_VECTOR:       return LowerBUILD_VECTOR(Op, DAG);
4591   case ISD::VECTOR_SHUFFLE:     return LowerVECTOR_SHUFFLE(Op, DAG);
4592   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
4593   case ISD::SCALAR_TO_VECTOR:   return LowerSCALAR_TO_VECTOR(Op, DAG);
4594   case ISD::MUL:                return LowerMUL(Op, DAG);
4595
4596   // Frame & Return address.
4597   case ISD::RETURNADDR:         return LowerRETURNADDR(Op, DAG);
4598   case ISD::FRAMEADDR:          return LowerFRAMEADDR(Op, DAG);
4599   }
4600 }
4601
4602 void PPCTargetLowering::ReplaceNodeResults(SDNode *N,
4603                                            SmallVectorImpl<SDValue>&Results,
4604                                            SelectionDAG &DAG) const {
4605   const TargetMachine &TM = getTargetMachine();
4606   DebugLoc dl = N->getDebugLoc();
4607   switch (N->getOpcode()) {
4608   default:
4609     llvm_unreachable("Do not know how to custom type legalize this operation!");
4610   case ISD::VAARG: {
4611     if (!TM.getSubtarget<PPCSubtarget>().isSVR4ABI()
4612         || TM.getSubtarget<PPCSubtarget>().isPPC64())
4613       return;
4614
4615     EVT VT = N->getValueType(0);
4616
4617     if (VT == MVT::i64) {
4618       SDValue NewNode = LowerVAARG(SDValue(N, 1), DAG, PPCSubTarget);
4619
4620       Results.push_back(NewNode);
4621       Results.push_back(NewNode.getValue(1));
4622     }
4623     return;
4624   }
4625   case ISD::FP_ROUND_INREG: {
4626     assert(N->getValueType(0) == MVT::ppcf128);
4627     assert(N->getOperand(0).getValueType() == MVT::ppcf128);
4628     SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4629                              MVT::f64, N->getOperand(0),
4630                              DAG.getIntPtrConstant(0));
4631     SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, dl,
4632                              MVT::f64, N->getOperand(0),
4633                              DAG.getIntPtrConstant(1));
4634
4635     // This sequence changes FPSCR to do round-to-zero, adds the two halves
4636     // of the long double, and puts FPSCR back the way it was.  We do not
4637     // actually model FPSCR.
4638     std::vector<EVT> NodeTys;
4639     SDValue Ops[4], Result, MFFSreg, InFlag, FPreg;
4640
4641     NodeTys.push_back(MVT::f64);   // Return register
4642     NodeTys.push_back(MVT::Glue);    // Returns a flag for later insns
4643     Result = DAG.getNode(PPCISD::MFFS, dl, NodeTys, &InFlag, 0);
4644     MFFSreg = Result.getValue(0);
4645     InFlag = Result.getValue(1);
4646
4647     NodeTys.clear();
4648     NodeTys.push_back(MVT::Glue);   // Returns a flag
4649     Ops[0] = DAG.getConstant(31, MVT::i32);
4650     Ops[1] = InFlag;
4651     Result = DAG.getNode(PPCISD::MTFSB1, dl, NodeTys, Ops, 2);
4652     InFlag = Result.getValue(0);
4653
4654     NodeTys.clear();
4655     NodeTys.push_back(MVT::Glue);   // Returns a flag
4656     Ops[0] = DAG.getConstant(30, MVT::i32);
4657     Ops[1] = InFlag;
4658     Result = DAG.getNode(PPCISD::MTFSB0, dl, NodeTys, Ops, 2);
4659     InFlag = Result.getValue(0);
4660
4661     NodeTys.clear();
4662     NodeTys.push_back(MVT::f64);    // result of add
4663     NodeTys.push_back(MVT::Glue);   // Returns a flag
4664     Ops[0] = Lo;
4665     Ops[1] = Hi;
4666     Ops[2] = InFlag;
4667     Result = DAG.getNode(PPCISD::FADDRTZ, dl, NodeTys, Ops, 3);
4668     FPreg = Result.getValue(0);
4669     InFlag = Result.getValue(1);
4670
4671     NodeTys.clear();
4672     NodeTys.push_back(MVT::f64);
4673     Ops[0] = DAG.getConstant(1, MVT::i32);
4674     Ops[1] = MFFSreg;
4675     Ops[2] = FPreg;
4676     Ops[3] = InFlag;
4677     Result = DAG.getNode(PPCISD::MTFSF, dl, NodeTys, Ops, 4);
4678     FPreg = Result.getValue(0);
4679
4680     // We know the low half is about to be thrown away, so just use something
4681     // convenient.
4682     Results.push_back(DAG.getNode(ISD::BUILD_PAIR, dl, MVT::ppcf128,
4683                                 FPreg, FPreg));
4684     return;
4685   }
4686   case ISD::FP_TO_SINT:
4687     Results.push_back(LowerFP_TO_INT(SDValue(N, 0), DAG, dl));
4688     return;
4689   }
4690 }
4691
4692
4693 //===----------------------------------------------------------------------===//
4694 //  Other Lowering Code
4695 //===----------------------------------------------------------------------===//
4696
4697 MachineBasicBlock *
4698 PPCTargetLowering::EmitAtomicBinary(MachineInstr *MI, MachineBasicBlock *BB,
4699                                     bool is64bit, unsigned BinOpcode) const {
4700   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4701   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4702
4703   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4704   MachineFunction *F = BB->getParent();
4705   MachineFunction::iterator It = BB;
4706   ++It;
4707
4708   unsigned dest = MI->getOperand(0).getReg();
4709   unsigned ptrA = MI->getOperand(1).getReg();
4710   unsigned ptrB = MI->getOperand(2).getReg();
4711   unsigned incr = MI->getOperand(3).getReg();
4712   DebugLoc dl = MI->getDebugLoc();
4713
4714   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4715   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4716   F->insert(It, loopMBB);
4717   F->insert(It, exitMBB);
4718   exitMBB->splice(exitMBB->begin(), BB,
4719                   llvm::next(MachineBasicBlock::iterator(MI)),
4720                   BB->end());
4721   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4722
4723   MachineRegisterInfo &RegInfo = F->getRegInfo();
4724   unsigned TmpReg = (!BinOpcode) ? incr :
4725     RegInfo.createVirtualRegister(
4726        is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4727                  (const TargetRegisterClass *) &PPC::GPRCRegClass);
4728
4729   //  thisMBB:
4730   //   ...
4731   //   fallthrough --> loopMBB
4732   BB->addSuccessor(loopMBB);
4733
4734   //  loopMBB:
4735   //   l[wd]arx dest, ptr
4736   //   add r0, dest, incr
4737   //   st[wd]cx. r0, ptr
4738   //   bne- loopMBB
4739   //   fallthrough --> exitMBB
4740   BB = loopMBB;
4741   BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
4742     .addReg(ptrA).addReg(ptrB);
4743   if (BinOpcode)
4744     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg).addReg(incr).addReg(dest);
4745   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4746     .addReg(TmpReg).addReg(ptrA).addReg(ptrB);
4747   BuildMI(BB, dl, TII->get(PPC::BCC))
4748     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4749   BB->addSuccessor(loopMBB);
4750   BB->addSuccessor(exitMBB);
4751
4752   //  exitMBB:
4753   //   ...
4754   BB = exitMBB;
4755   return BB;
4756 }
4757
4758 MachineBasicBlock *
4759 PPCTargetLowering::EmitPartwordAtomicBinary(MachineInstr *MI,
4760                                             MachineBasicBlock *BB,
4761                                             bool is8bit,    // operation
4762                                             unsigned BinOpcode) const {
4763   // This also handles ATOMIC_SWAP, indicated by BinOpcode==0.
4764   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4765   // In 64 bit mode we have to use 64 bits for addresses, even though the
4766   // lwarx/stwcx are 32 bits.  With the 32-bit atomics we can use address
4767   // registers without caring whether they're 32 or 64, but here we're
4768   // doing actual arithmetic on the addresses.
4769   bool is64bit = PPCSubTarget.isPPC64();
4770   unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
4771
4772   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4773   MachineFunction *F = BB->getParent();
4774   MachineFunction::iterator It = BB;
4775   ++It;
4776
4777   unsigned dest = MI->getOperand(0).getReg();
4778   unsigned ptrA = MI->getOperand(1).getReg();
4779   unsigned ptrB = MI->getOperand(2).getReg();
4780   unsigned incr = MI->getOperand(3).getReg();
4781   DebugLoc dl = MI->getDebugLoc();
4782
4783   MachineBasicBlock *loopMBB = F->CreateMachineBasicBlock(LLVM_BB);
4784   MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
4785   F->insert(It, loopMBB);
4786   F->insert(It, exitMBB);
4787   exitMBB->splice(exitMBB->begin(), BB,
4788                   llvm::next(MachineBasicBlock::iterator(MI)),
4789                   BB->end());
4790   exitMBB->transferSuccessorsAndUpdatePHIs(BB);
4791
4792   MachineRegisterInfo &RegInfo = F->getRegInfo();
4793   const TargetRegisterClass *RC =
4794     is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
4795               (const TargetRegisterClass *) &PPC::GPRCRegClass;
4796   unsigned PtrReg = RegInfo.createVirtualRegister(RC);
4797   unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
4798   unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
4799   unsigned Incr2Reg = RegInfo.createVirtualRegister(RC);
4800   unsigned MaskReg = RegInfo.createVirtualRegister(RC);
4801   unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
4802   unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
4803   unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
4804   unsigned Tmp3Reg = RegInfo.createVirtualRegister(RC);
4805   unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
4806   unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
4807   unsigned Ptr1Reg;
4808   unsigned TmpReg = (!BinOpcode) ? Incr2Reg : RegInfo.createVirtualRegister(RC);
4809
4810   //  thisMBB:
4811   //   ...
4812   //   fallthrough --> loopMBB
4813   BB->addSuccessor(loopMBB);
4814
4815   // The 4-byte load must be aligned, while a char or short may be
4816   // anywhere in the word.  Hence all this nasty bookkeeping code.
4817   //   add ptr1, ptrA, ptrB [copy if ptrA==0]
4818   //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
4819   //   xori shift, shift1, 24 [16]
4820   //   rlwinm ptr, ptr1, 0, 0, 29
4821   //   slw incr2, incr, shift
4822   //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
4823   //   slw mask, mask2, shift
4824   //  loopMBB:
4825   //   lwarx tmpDest, ptr
4826   //   add tmp, tmpDest, incr2
4827   //   andc tmp2, tmpDest, mask
4828   //   and tmp3, tmp, mask
4829   //   or tmp4, tmp3, tmp2
4830   //   stwcx. tmp4, ptr
4831   //   bne- loopMBB
4832   //   fallthrough --> exitMBB
4833   //   srw dest, tmpDest, shift
4834   if (ptrA != ZeroReg) {
4835     Ptr1Reg = RegInfo.createVirtualRegister(RC);
4836     BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
4837       .addReg(ptrA).addReg(ptrB);
4838   } else {
4839     Ptr1Reg = ptrB;
4840   }
4841   BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
4842       .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
4843   BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
4844       .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
4845   if (is64bit)
4846     BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
4847       .addReg(Ptr1Reg).addImm(0).addImm(61);
4848   else
4849     BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
4850       .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
4851   BuildMI(BB, dl, TII->get(PPC::SLW), Incr2Reg)
4852       .addReg(incr).addReg(ShiftReg);
4853   if (is8bit)
4854     BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
4855   else {
4856     BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
4857     BuildMI(BB, dl, TII->get(PPC::ORI),Mask2Reg).addReg(Mask3Reg).addImm(65535);
4858   }
4859   BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
4860       .addReg(Mask2Reg).addReg(ShiftReg);
4861
4862   BB = loopMBB;
4863   BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
4864     .addReg(ZeroReg).addReg(PtrReg);
4865   if (BinOpcode)
4866     BuildMI(BB, dl, TII->get(BinOpcode), TmpReg)
4867       .addReg(Incr2Reg).addReg(TmpDestReg);
4868   BuildMI(BB, dl, TII->get(is64bit ? PPC::ANDC8 : PPC::ANDC), Tmp2Reg)
4869     .addReg(TmpDestReg).addReg(MaskReg);
4870   BuildMI(BB, dl, TII->get(is64bit ? PPC::AND8 : PPC::AND), Tmp3Reg)
4871     .addReg(TmpReg).addReg(MaskReg);
4872   BuildMI(BB, dl, TII->get(is64bit ? PPC::OR8 : PPC::OR), Tmp4Reg)
4873     .addReg(Tmp3Reg).addReg(Tmp2Reg);
4874   BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
4875     .addReg(Tmp4Reg).addReg(ZeroReg).addReg(PtrReg);
4876   BuildMI(BB, dl, TII->get(PPC::BCC))
4877     .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loopMBB);
4878   BB->addSuccessor(loopMBB);
4879   BB->addSuccessor(exitMBB);
4880
4881   //  exitMBB:
4882   //   ...
4883   BB = exitMBB;
4884   BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW), dest).addReg(TmpDestReg)
4885     .addReg(ShiftReg);
4886   return BB;
4887 }
4888
4889 MachineBasicBlock *
4890 PPCTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI,
4891                                                MachineBasicBlock *BB) const {
4892   const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
4893
4894   // To "insert" these instructions we actually have to insert their
4895   // control-flow patterns.
4896   const BasicBlock *LLVM_BB = BB->getBasicBlock();
4897   MachineFunction::iterator It = BB;
4898   ++It;
4899
4900   MachineFunction *F = BB->getParent();
4901
4902   if (MI->getOpcode() == PPC::SELECT_CC_I4 ||
4903       MI->getOpcode() == PPC::SELECT_CC_I8 ||
4904       MI->getOpcode() == PPC::SELECT_CC_F4 ||
4905       MI->getOpcode() == PPC::SELECT_CC_F8 ||
4906       MI->getOpcode() == PPC::SELECT_CC_VRRC) {
4907
4908     // The incoming instruction knows the destination vreg to set, the
4909     // condition code register to branch on, the true/false values to
4910     // select between, and a branch opcode to use.
4911
4912     //  thisMBB:
4913     //  ...
4914     //   TrueVal = ...
4915     //   cmpTY ccX, r1, r2
4916     //   bCC copy1MBB
4917     //   fallthrough --> copy0MBB
4918     MachineBasicBlock *thisMBB = BB;
4919     MachineBasicBlock *copy0MBB = F->CreateMachineBasicBlock(LLVM_BB);
4920     MachineBasicBlock *sinkMBB = F->CreateMachineBasicBlock(LLVM_BB);
4921     unsigned SelectPred = MI->getOperand(4).getImm();
4922     DebugLoc dl = MI->getDebugLoc();
4923     F->insert(It, copy0MBB);
4924     F->insert(It, sinkMBB);
4925
4926     // Transfer the remainder of BB and its successor edges to sinkMBB.
4927     sinkMBB->splice(sinkMBB->begin(), BB,
4928                     llvm::next(MachineBasicBlock::iterator(MI)),
4929                     BB->end());
4930     sinkMBB->transferSuccessorsAndUpdatePHIs(BB);
4931
4932     // Next, add the true and fallthrough blocks as its successors.
4933     BB->addSuccessor(copy0MBB);
4934     BB->addSuccessor(sinkMBB);
4935
4936     BuildMI(BB, dl, TII->get(PPC::BCC))
4937       .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
4938
4939     //  copy0MBB:
4940     //   %FalseValue = ...
4941     //   # fallthrough to sinkMBB
4942     BB = copy0MBB;
4943
4944     // Update machine-CFG edges
4945     BB->addSuccessor(sinkMBB);
4946
4947     //  sinkMBB:
4948     //   %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
4949     //  ...
4950     BB = sinkMBB;
4951     BuildMI(*BB, BB->begin(), dl,
4952             TII->get(PPC::PHI), MI->getOperand(0).getReg())
4953       .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
4954       .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
4955   }
4956   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I8)
4957     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ADD4);
4958   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I16)
4959     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ADD4);
4960   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I32)
4961     BB = EmitAtomicBinary(MI, BB, false, PPC::ADD4);
4962   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_ADD_I64)
4963     BB = EmitAtomicBinary(MI, BB, true, PPC::ADD8);
4964
4965   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I8)
4966     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::AND);
4967   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I16)
4968     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::AND);
4969   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I32)
4970     BB = EmitAtomicBinary(MI, BB, false, PPC::AND);
4971   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_AND_I64)
4972     BB = EmitAtomicBinary(MI, BB, true, PPC::AND8);
4973
4974   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I8)
4975     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::OR);
4976   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I16)
4977     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::OR);
4978   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I32)
4979     BB = EmitAtomicBinary(MI, BB, false, PPC::OR);
4980   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_OR_I64)
4981     BB = EmitAtomicBinary(MI, BB, true, PPC::OR8);
4982
4983   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I8)
4984     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::XOR);
4985   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I16)
4986     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::XOR);
4987   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I32)
4988     BB = EmitAtomicBinary(MI, BB, false, PPC::XOR);
4989   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_XOR_I64)
4990     BB = EmitAtomicBinary(MI, BB, true, PPC::XOR8);
4991
4992   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I8)
4993     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::ANDC);
4994   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I16)
4995     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::ANDC);
4996   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I32)
4997     BB = EmitAtomicBinary(MI, BB, false, PPC::ANDC);
4998   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_NAND_I64)
4999     BB = EmitAtomicBinary(MI, BB, true, PPC::ANDC8);
5000
5001   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I8)
5002     BB = EmitPartwordAtomicBinary(MI, BB, true, PPC::SUBF);
5003   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I16)
5004     BB = EmitPartwordAtomicBinary(MI, BB, false, PPC::SUBF);
5005   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I32)
5006     BB = EmitAtomicBinary(MI, BB, false, PPC::SUBF);
5007   else if (MI->getOpcode() == PPC::ATOMIC_LOAD_SUB_I64)
5008     BB = EmitAtomicBinary(MI, BB, true, PPC::SUBF8);
5009
5010   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I8)
5011     BB = EmitPartwordAtomicBinary(MI, BB, true, 0);
5012   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I16)
5013     BB = EmitPartwordAtomicBinary(MI, BB, false, 0);
5014   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I32)
5015     BB = EmitAtomicBinary(MI, BB, false, 0);
5016   else if (MI->getOpcode() == PPC::ATOMIC_SWAP_I64)
5017     BB = EmitAtomicBinary(MI, BB, true, 0);
5018
5019   else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I32 ||
5020            MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64) {
5021     bool is64bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I64;
5022
5023     unsigned dest   = MI->getOperand(0).getReg();
5024     unsigned ptrA   = MI->getOperand(1).getReg();
5025     unsigned ptrB   = MI->getOperand(2).getReg();
5026     unsigned oldval = MI->getOperand(3).getReg();
5027     unsigned newval = MI->getOperand(4).getReg();
5028     DebugLoc dl     = MI->getDebugLoc();
5029
5030     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5031     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5032     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5033     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5034     F->insert(It, loop1MBB);
5035     F->insert(It, loop2MBB);
5036     F->insert(It, midMBB);
5037     F->insert(It, exitMBB);
5038     exitMBB->splice(exitMBB->begin(), BB,
5039                     llvm::next(MachineBasicBlock::iterator(MI)),
5040                     BB->end());
5041     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5042
5043     //  thisMBB:
5044     //   ...
5045     //   fallthrough --> loopMBB
5046     BB->addSuccessor(loop1MBB);
5047
5048     // loop1MBB:
5049     //   l[wd]arx dest, ptr
5050     //   cmp[wd] dest, oldval
5051     //   bne- midMBB
5052     // loop2MBB:
5053     //   st[wd]cx. newval, ptr
5054     //   bne- loopMBB
5055     //   b exitBB
5056     // midMBB:
5057     //   st[wd]cx. dest, ptr
5058     // exitBB:
5059     BB = loop1MBB;
5060     BuildMI(BB, dl, TII->get(is64bit ? PPC::LDARX : PPC::LWARX), dest)
5061       .addReg(ptrA).addReg(ptrB);
5062     BuildMI(BB, dl, TII->get(is64bit ? PPC::CMPD : PPC::CMPW), PPC::CR0)
5063       .addReg(oldval).addReg(dest);
5064     BuildMI(BB, dl, TII->get(PPC::BCC))
5065       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5066     BB->addSuccessor(loop2MBB);
5067     BB->addSuccessor(midMBB);
5068
5069     BB = loop2MBB;
5070     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5071       .addReg(newval).addReg(ptrA).addReg(ptrB);
5072     BuildMI(BB, dl, TII->get(PPC::BCC))
5073       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5074     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5075     BB->addSuccessor(loop1MBB);
5076     BB->addSuccessor(exitMBB);
5077
5078     BB = midMBB;
5079     BuildMI(BB, dl, TII->get(is64bit ? PPC::STDCX : PPC::STWCX))
5080       .addReg(dest).addReg(ptrA).addReg(ptrB);
5081     BB->addSuccessor(exitMBB);
5082
5083     //  exitMBB:
5084     //   ...
5085     BB = exitMBB;
5086   } else if (MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8 ||
5087              MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I16) {
5088     // We must use 64-bit registers for addresses when targeting 64-bit,
5089     // since we're actually doing arithmetic on them.  Other registers
5090     // can be 32-bit.
5091     bool is64bit = PPCSubTarget.isPPC64();
5092     bool is8bit = MI->getOpcode() == PPC::ATOMIC_CMP_SWAP_I8;
5093
5094     unsigned dest   = MI->getOperand(0).getReg();
5095     unsigned ptrA   = MI->getOperand(1).getReg();
5096     unsigned ptrB   = MI->getOperand(2).getReg();
5097     unsigned oldval = MI->getOperand(3).getReg();
5098     unsigned newval = MI->getOperand(4).getReg();
5099     DebugLoc dl     = MI->getDebugLoc();
5100
5101     MachineBasicBlock *loop1MBB = F->CreateMachineBasicBlock(LLVM_BB);
5102     MachineBasicBlock *loop2MBB = F->CreateMachineBasicBlock(LLVM_BB);
5103     MachineBasicBlock *midMBB = F->CreateMachineBasicBlock(LLVM_BB);
5104     MachineBasicBlock *exitMBB = F->CreateMachineBasicBlock(LLVM_BB);
5105     F->insert(It, loop1MBB);
5106     F->insert(It, loop2MBB);
5107     F->insert(It, midMBB);
5108     F->insert(It, exitMBB);
5109     exitMBB->splice(exitMBB->begin(), BB,
5110                     llvm::next(MachineBasicBlock::iterator(MI)),
5111                     BB->end());
5112     exitMBB->transferSuccessorsAndUpdatePHIs(BB);
5113
5114     MachineRegisterInfo &RegInfo = F->getRegInfo();
5115     const TargetRegisterClass *RC =
5116       is64bit ? (const TargetRegisterClass *) &PPC::G8RCRegClass :
5117                 (const TargetRegisterClass *) &PPC::GPRCRegClass;
5118     unsigned PtrReg = RegInfo.createVirtualRegister(RC);
5119     unsigned Shift1Reg = RegInfo.createVirtualRegister(RC);
5120     unsigned ShiftReg = RegInfo.createVirtualRegister(RC);
5121     unsigned NewVal2Reg = RegInfo.createVirtualRegister(RC);
5122     unsigned NewVal3Reg = RegInfo.createVirtualRegister(RC);
5123     unsigned OldVal2Reg = RegInfo.createVirtualRegister(RC);
5124     unsigned OldVal3Reg = RegInfo.createVirtualRegister(RC);
5125     unsigned MaskReg = RegInfo.createVirtualRegister(RC);
5126     unsigned Mask2Reg = RegInfo.createVirtualRegister(RC);
5127     unsigned Mask3Reg = RegInfo.createVirtualRegister(RC);
5128     unsigned Tmp2Reg = RegInfo.createVirtualRegister(RC);
5129     unsigned Tmp4Reg = RegInfo.createVirtualRegister(RC);
5130     unsigned TmpDestReg = RegInfo.createVirtualRegister(RC);
5131     unsigned Ptr1Reg;
5132     unsigned TmpReg = RegInfo.createVirtualRegister(RC);
5133     unsigned ZeroReg = is64bit ? PPC::X0 : PPC::R0;
5134     //  thisMBB:
5135     //   ...
5136     //   fallthrough --> loopMBB
5137     BB->addSuccessor(loop1MBB);
5138
5139     // The 4-byte load must be aligned, while a char or short may be
5140     // anywhere in the word.  Hence all this nasty bookkeeping code.
5141     //   add ptr1, ptrA, ptrB [copy if ptrA==0]
5142     //   rlwinm shift1, ptr1, 3, 27, 28 [3, 27, 27]
5143     //   xori shift, shift1, 24 [16]
5144     //   rlwinm ptr, ptr1, 0, 0, 29
5145     //   slw newval2, newval, shift
5146     //   slw oldval2, oldval,shift
5147     //   li mask2, 255 [li mask3, 0; ori mask2, mask3, 65535]
5148     //   slw mask, mask2, shift
5149     //   and newval3, newval2, mask
5150     //   and oldval3, oldval2, mask
5151     // loop1MBB:
5152     //   lwarx tmpDest, ptr
5153     //   and tmp, tmpDest, mask
5154     //   cmpw tmp, oldval3
5155     //   bne- midMBB
5156     // loop2MBB:
5157     //   andc tmp2, tmpDest, mask
5158     //   or tmp4, tmp2, newval3
5159     //   stwcx. tmp4, ptr
5160     //   bne- loop1MBB
5161     //   b exitBB
5162     // midMBB:
5163     //   stwcx. tmpDest, ptr
5164     // exitBB:
5165     //   srw dest, tmpDest, shift
5166     if (ptrA != ZeroReg) {
5167       Ptr1Reg = RegInfo.createVirtualRegister(RC);
5168       BuildMI(BB, dl, TII->get(is64bit ? PPC::ADD8 : PPC::ADD4), Ptr1Reg)
5169         .addReg(ptrA).addReg(ptrB);
5170     } else {
5171       Ptr1Reg = ptrB;
5172     }
5173     BuildMI(BB, dl, TII->get(PPC::RLWINM), Shift1Reg).addReg(Ptr1Reg)
5174         .addImm(3).addImm(27).addImm(is8bit ? 28 : 27);
5175     BuildMI(BB, dl, TII->get(is64bit ? PPC::XORI8 : PPC::XORI), ShiftReg)
5176         .addReg(Shift1Reg).addImm(is8bit ? 24 : 16);
5177     if (is64bit)
5178       BuildMI(BB, dl, TII->get(PPC::RLDICR), PtrReg)
5179         .addReg(Ptr1Reg).addImm(0).addImm(61);
5180     else
5181       BuildMI(BB, dl, TII->get(PPC::RLWINM), PtrReg)
5182         .addReg(Ptr1Reg).addImm(0).addImm(0).addImm(29);
5183     BuildMI(BB, dl, TII->get(PPC::SLW), NewVal2Reg)
5184         .addReg(newval).addReg(ShiftReg);
5185     BuildMI(BB, dl, TII->get(PPC::SLW), OldVal2Reg)
5186         .addReg(oldval).addReg(ShiftReg);
5187     if (is8bit)
5188       BuildMI(BB, dl, TII->get(PPC::LI), Mask2Reg).addImm(255);
5189     else {
5190       BuildMI(BB, dl, TII->get(PPC::LI), Mask3Reg).addImm(0);
5191       BuildMI(BB, dl, TII->get(PPC::ORI), Mask2Reg)
5192         .addReg(Mask3Reg).addImm(65535);
5193     }
5194     BuildMI(BB, dl, TII->get(PPC::SLW), MaskReg)
5195         .addReg(Mask2Reg).addReg(ShiftReg);
5196     BuildMI(BB, dl, TII->get(PPC::AND), NewVal3Reg)
5197         .addReg(NewVal2Reg).addReg(MaskReg);
5198     BuildMI(BB, dl, TII->get(PPC::AND), OldVal3Reg)
5199         .addReg(OldVal2Reg).addReg(MaskReg);
5200
5201     BB = loop1MBB;
5202     BuildMI(BB, dl, TII->get(PPC::LWARX), TmpDestReg)
5203         .addReg(ZeroReg).addReg(PtrReg);
5204     BuildMI(BB, dl, TII->get(PPC::AND),TmpReg)
5205         .addReg(TmpDestReg).addReg(MaskReg);
5206     BuildMI(BB, dl, TII->get(PPC::CMPW), PPC::CR0)
5207         .addReg(TmpReg).addReg(OldVal3Reg);
5208     BuildMI(BB, dl, TII->get(PPC::BCC))
5209         .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(midMBB);
5210     BB->addSuccessor(loop2MBB);
5211     BB->addSuccessor(midMBB);
5212
5213     BB = loop2MBB;
5214     BuildMI(BB, dl, TII->get(PPC::ANDC),Tmp2Reg)
5215         .addReg(TmpDestReg).addReg(MaskReg);
5216     BuildMI(BB, dl, TII->get(PPC::OR),Tmp4Reg)
5217         .addReg(Tmp2Reg).addReg(NewVal3Reg);
5218     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(Tmp4Reg)
5219         .addReg(ZeroReg).addReg(PtrReg);
5220     BuildMI(BB, dl, TII->get(PPC::BCC))
5221       .addImm(PPC::PRED_NE).addReg(PPC::CR0).addMBB(loop1MBB);
5222     BuildMI(BB, dl, TII->get(PPC::B)).addMBB(exitMBB);
5223     BB->addSuccessor(loop1MBB);
5224     BB->addSuccessor(exitMBB);
5225
5226     BB = midMBB;
5227     BuildMI(BB, dl, TII->get(PPC::STWCX)).addReg(TmpDestReg)
5228       .addReg(ZeroReg).addReg(PtrReg);
5229     BB->addSuccessor(exitMBB);
5230
5231     //  exitMBB:
5232     //   ...
5233     BB = exitMBB;
5234     BuildMI(*BB, BB->begin(), dl, TII->get(PPC::SRW),dest).addReg(TmpReg)
5235       .addReg(ShiftReg);
5236   } else {
5237     llvm_unreachable("Unexpected instr type to insert");
5238   }
5239
5240   MI->eraseFromParent();   // The pseudo instruction is gone now.
5241   return BB;
5242 }
5243
5244 //===----------------------------------------------------------------------===//
5245 // Target Optimization Hooks
5246 //===----------------------------------------------------------------------===//
5247
5248 SDValue PPCTargetLowering::PerformDAGCombine(SDNode *N,
5249                                              DAGCombinerInfo &DCI) const {
5250   const TargetMachine &TM = getTargetMachine();
5251   SelectionDAG &DAG = DCI.DAG;
5252   DebugLoc dl = N->getDebugLoc();
5253   switch (N->getOpcode()) {
5254   default: break;
5255   case PPCISD::SHL:
5256     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5257       if (C->isNullValue())   // 0 << V -> 0.
5258         return N->getOperand(0);
5259     }
5260     break;
5261   case PPCISD::SRL:
5262     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5263       if (C->isNullValue())   // 0 >>u V -> 0.
5264         return N->getOperand(0);
5265     }
5266     break;
5267   case PPCISD::SRA:
5268     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
5269       if (C->isNullValue() ||   //  0 >>s V -> 0.
5270           C->isAllOnesValue())    // -1 >>s V -> -1.
5271         return N->getOperand(0);
5272     }
5273     break;
5274
5275   case ISD::SINT_TO_FP:
5276     if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
5277       if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
5278         // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
5279         // We allow the src/dst to be either f32/f64, but the intermediate
5280         // type must be i64.
5281         if (N->getOperand(0).getValueType() == MVT::i64 &&
5282             N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
5283           SDValue Val = N->getOperand(0).getOperand(0);
5284           if (Val.getValueType() == MVT::f32) {
5285             Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5286             DCI.AddToWorklist(Val.getNode());
5287           }
5288
5289           Val = DAG.getNode(PPCISD::FCTIDZ, dl, MVT::f64, Val);
5290           DCI.AddToWorklist(Val.getNode());
5291           Val = DAG.getNode(PPCISD::FCFID, dl, MVT::f64, Val);
5292           DCI.AddToWorklist(Val.getNode());
5293           if (N->getValueType(0) == MVT::f32) {
5294             Val = DAG.getNode(ISD::FP_ROUND, dl, MVT::f32, Val,
5295                               DAG.getIntPtrConstant(0));
5296             DCI.AddToWorklist(Val.getNode());
5297           }
5298           return Val;
5299         } else if (N->getOperand(0).getValueType() == MVT::i32) {
5300           // If the intermediate type is i32, we can avoid the load/store here
5301           // too.
5302         }
5303       }
5304     }
5305     break;
5306   case ISD::STORE:
5307     // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
5308     if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
5309         !cast<StoreSDNode>(N)->isTruncatingStore() &&
5310         N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
5311         N->getOperand(1).getValueType() == MVT::i32 &&
5312         N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
5313       SDValue Val = N->getOperand(1).getOperand(0);
5314       if (Val.getValueType() == MVT::f32) {
5315         Val = DAG.getNode(ISD::FP_EXTEND, dl, MVT::f64, Val);
5316         DCI.AddToWorklist(Val.getNode());
5317       }
5318       Val = DAG.getNode(PPCISD::FCTIWZ, dl, MVT::f64, Val);
5319       DCI.AddToWorklist(Val.getNode());
5320
5321       Val = DAG.getNode(PPCISD::STFIWX, dl, MVT::Other, N->getOperand(0), Val,
5322                         N->getOperand(2), N->getOperand(3));
5323       DCI.AddToWorklist(Val.getNode());
5324       return Val;
5325     }
5326
5327     // Turn STORE (BSWAP) -> sthbrx/stwbrx.
5328     if (cast<StoreSDNode>(N)->isUnindexed() &&
5329         N->getOperand(1).getOpcode() == ISD::BSWAP &&
5330         N->getOperand(1).getNode()->hasOneUse() &&
5331         (N->getOperand(1).getValueType() == MVT::i32 ||
5332          N->getOperand(1).getValueType() == MVT::i16)) {
5333       SDValue BSwapOp = N->getOperand(1).getOperand(0);
5334       // Do an any-extend to 32-bits if this is a half-word input.
5335       if (BSwapOp.getValueType() == MVT::i16)
5336         BSwapOp = DAG.getNode(ISD::ANY_EXTEND, dl, MVT::i32, BSwapOp);
5337
5338       SDValue Ops[] = {
5339         N->getOperand(0), BSwapOp, N->getOperand(2),
5340         DAG.getValueType(N->getOperand(1).getValueType())
5341       };
5342       return
5343         DAG.getMemIntrinsicNode(PPCISD::STBRX, dl, DAG.getVTList(MVT::Other),
5344                                 Ops, array_lengthof(Ops),
5345                                 cast<StoreSDNode>(N)->getMemoryVT(),
5346                                 cast<StoreSDNode>(N)->getMemOperand());
5347     }
5348     break;
5349   case ISD::BSWAP:
5350     // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
5351     if (ISD::isNON_EXTLoad(N->getOperand(0).getNode()) &&
5352         N->getOperand(0).hasOneUse() &&
5353         (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
5354       SDValue Load = N->getOperand(0);
5355       LoadSDNode *LD = cast<LoadSDNode>(Load);
5356       // Create the byte-swapping load.
5357       SDValue Ops[] = {
5358         LD->getChain(),    // Chain
5359         LD->getBasePtr(),  // Ptr
5360         DAG.getValueType(N->getValueType(0)) // VT
5361       };
5362       SDValue BSLoad =
5363         DAG.getMemIntrinsicNode(PPCISD::LBRX, dl,
5364                                 DAG.getVTList(MVT::i32, MVT::Other), Ops, 3,
5365                                 LD->getMemoryVT(), LD->getMemOperand());
5366
5367       // If this is an i16 load, insert the truncate.
5368       SDValue ResVal = BSLoad;
5369       if (N->getValueType(0) == MVT::i16)
5370         ResVal = DAG.getNode(ISD::TRUNCATE, dl, MVT::i16, BSLoad);
5371
5372       // First, combine the bswap away.  This makes the value produced by the
5373       // load dead.
5374       DCI.CombineTo(N, ResVal);
5375
5376       // Next, combine the load away, we give it a bogus result value but a real
5377       // chain result.  The result value is dead because the bswap is dead.
5378       DCI.CombineTo(Load.getNode(), ResVal, BSLoad.getValue(1));
5379
5380       // Return N so it doesn't get rechecked!
5381       return SDValue(N, 0);
5382     }
5383
5384     break;
5385   case PPCISD::VCMP: {
5386     // If a VCMPo node already exists with exactly the same operands as this
5387     // node, use its result instead of this node (VCMPo computes both a CR6 and
5388     // a normal output).
5389     //
5390     if (!N->getOperand(0).hasOneUse() &&
5391         !N->getOperand(1).hasOneUse() &&
5392         !N->getOperand(2).hasOneUse()) {
5393
5394       // Scan all of the users of the LHS, looking for VCMPo's that match.
5395       SDNode *VCMPoNode = 0;
5396
5397       SDNode *LHSN = N->getOperand(0).getNode();
5398       for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
5399            UI != E; ++UI)
5400         if (UI->getOpcode() == PPCISD::VCMPo &&
5401             UI->getOperand(1) == N->getOperand(1) &&
5402             UI->getOperand(2) == N->getOperand(2) &&
5403             UI->getOperand(0) == N->getOperand(0)) {
5404           VCMPoNode = *UI;
5405           break;
5406         }
5407
5408       // If there is no VCMPo node, or if the flag value has a single use, don't
5409       // transform this.
5410       if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
5411         break;
5412
5413       // Look at the (necessarily single) use of the flag value.  If it has a
5414       // chain, this transformation is more complex.  Note that multiple things
5415       // could use the value result, which we should ignore.
5416       SDNode *FlagUser = 0;
5417       for (SDNode::use_iterator UI = VCMPoNode->use_begin();
5418            FlagUser == 0; ++UI) {
5419         assert(UI != VCMPoNode->use_end() && "Didn't find user!");
5420         SDNode *User = *UI;
5421         for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
5422           if (User->getOperand(i) == SDValue(VCMPoNode, 1)) {
5423             FlagUser = User;
5424             break;
5425           }
5426         }
5427       }
5428
5429       // If the user is a MFCR instruction, we know this is safe.  Otherwise we
5430       // give up for right now.
5431       if (FlagUser->getOpcode() == PPCISD::MFCR)
5432         return SDValue(VCMPoNode, 0);
5433     }
5434     break;
5435   }
5436   case ISD::BR_CC: {
5437     // If this is a branch on an altivec predicate comparison, lower this so
5438     // that we don't have to do a MFCR: instead, branch directly on CR6.  This
5439     // lowering is done pre-legalize, because the legalizer lowers the predicate
5440     // compare down to code that is difficult to reassemble.
5441     ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
5442     SDValue LHS = N->getOperand(2), RHS = N->getOperand(3);
5443     int CompareOpc;
5444     bool isDot;
5445
5446     if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
5447         isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
5448         getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
5449       assert(isDot && "Can't compare against a vector result!");
5450
5451       // If this is a comparison against something other than 0/1, then we know
5452       // that the condition is never/always true.
5453       unsigned Val = cast<ConstantSDNode>(RHS)->getZExtValue();
5454       if (Val != 0 && Val != 1) {
5455         if (CC == ISD::SETEQ)      // Cond never true, remove branch.
5456           return N->getOperand(0);
5457         // Always !=, turn it into an unconditional branch.
5458         return DAG.getNode(ISD::BR, dl, MVT::Other,
5459                            N->getOperand(0), N->getOperand(4));
5460       }
5461
5462       bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
5463
5464       // Create the PPCISD altivec 'dot' comparison node.
5465       std::vector<EVT> VTs;
5466       SDValue Ops[] = {
5467         LHS.getOperand(2),  // LHS of compare
5468         LHS.getOperand(3),  // RHS of compare
5469         DAG.getConstant(CompareOpc, MVT::i32)
5470       };
5471       VTs.push_back(LHS.getOperand(2).getValueType());
5472       VTs.push_back(MVT::Glue);
5473       SDValue CompNode = DAG.getNode(PPCISD::VCMPo, dl, VTs, Ops, 3);
5474
5475       // Unpack the result based on how the target uses it.
5476       PPC::Predicate CompOpc;
5477       switch (cast<ConstantSDNode>(LHS.getOperand(1))->getZExtValue()) {
5478       default:  // Can't happen, don't crash on invalid number though.
5479       case 0:   // Branch on the value of the EQ bit of CR6.
5480         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
5481         break;
5482       case 1:   // Branch on the inverted value of the EQ bit of CR6.
5483         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
5484         break;
5485       case 2:   // Branch on the value of the LT bit of CR6.
5486         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
5487         break;
5488       case 3:   // Branch on the inverted value of the LT bit of CR6.
5489         CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
5490         break;
5491       }
5492
5493       return DAG.getNode(PPCISD::COND_BRANCH, dl, MVT::Other, N->getOperand(0),
5494                          DAG.getConstant(CompOpc, MVT::i32),
5495                          DAG.getRegister(PPC::CR6, MVT::i32),
5496                          N->getOperand(4), CompNode.getValue(1));
5497     }
5498     break;
5499   }
5500   }
5501
5502   return SDValue();
5503 }
5504
5505 //===----------------------------------------------------------------------===//
5506 // Inline Assembly Support
5507 //===----------------------------------------------------------------------===//
5508
5509 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDValue Op,
5510                                                        APInt &KnownZero,
5511                                                        APInt &KnownOne,
5512                                                        const SelectionDAG &DAG,
5513                                                        unsigned Depth) const {
5514   KnownZero = KnownOne = APInt(KnownZero.getBitWidth(), 0);
5515   switch (Op.getOpcode()) {
5516   default: break;
5517   case PPCISD::LBRX: {
5518     // lhbrx is known to have the top bits cleared out.
5519     if (cast<VTSDNode>(Op.getOperand(2))->getVT() == MVT::i16)
5520       KnownZero = 0xFFFF0000;
5521     break;
5522   }
5523   case ISD::INTRINSIC_WO_CHAIN: {
5524     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
5525     default: break;
5526     case Intrinsic::ppc_altivec_vcmpbfp_p:
5527     case Intrinsic::ppc_altivec_vcmpeqfp_p:
5528     case Intrinsic::ppc_altivec_vcmpequb_p:
5529     case Intrinsic::ppc_altivec_vcmpequh_p:
5530     case Intrinsic::ppc_altivec_vcmpequw_p:
5531     case Intrinsic::ppc_altivec_vcmpgefp_p:
5532     case Intrinsic::ppc_altivec_vcmpgtfp_p:
5533     case Intrinsic::ppc_altivec_vcmpgtsb_p:
5534     case Intrinsic::ppc_altivec_vcmpgtsh_p:
5535     case Intrinsic::ppc_altivec_vcmpgtsw_p:
5536     case Intrinsic::ppc_altivec_vcmpgtub_p:
5537     case Intrinsic::ppc_altivec_vcmpgtuh_p:
5538     case Intrinsic::ppc_altivec_vcmpgtuw_p:
5539       KnownZero = ~1U;  // All bits but the low one are known to be zero.
5540       break;
5541     }
5542   }
5543   }
5544 }
5545
5546
5547 /// getConstraintType - Given a constraint, return the type of
5548 /// constraint it is for this target.
5549 PPCTargetLowering::ConstraintType
5550 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
5551   if (Constraint.size() == 1) {
5552     switch (Constraint[0]) {
5553     default: break;
5554     case 'b':
5555     case 'r':
5556     case 'f':
5557     case 'v':
5558     case 'y':
5559       return C_RegisterClass;
5560     }
5561   }
5562   return TargetLowering::getConstraintType(Constraint);
5563 }
5564
5565 /// Examine constraint type and operand type and determine a weight value.
5566 /// This object must already have been set up with the operand type
5567 /// and the current alternative constraint selected.
5568 TargetLowering::ConstraintWeight
5569 PPCTargetLowering::getSingleConstraintMatchWeight(
5570     AsmOperandInfo &info, const char *constraint) const {
5571   ConstraintWeight weight = CW_Invalid;
5572   Value *CallOperandVal = info.CallOperandVal;
5573     // If we don't have a value, we can't do a match,
5574     // but allow it at the lowest weight.
5575   if (CallOperandVal == NULL)
5576     return CW_Default;
5577   Type *type = CallOperandVal->getType();
5578   // Look at the constraint type.
5579   switch (*constraint) {
5580   default:
5581     weight = TargetLowering::getSingleConstraintMatchWeight(info, constraint);
5582     break;
5583   case 'b':
5584     if (type->isIntegerTy())
5585       weight = CW_Register;
5586     break;
5587   case 'f':
5588     if (type->isFloatTy())
5589       weight = CW_Register;
5590     break;
5591   case 'd':
5592     if (type->isDoubleTy())
5593       weight = CW_Register;
5594     break;
5595   case 'v':
5596     if (type->isVectorTy())
5597       weight = CW_Register;
5598     break;
5599   case 'y':
5600     weight = CW_Register;
5601     break;
5602   }
5603   return weight;
5604 }
5605
5606 std::pair<unsigned, const TargetRegisterClass*>
5607 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
5608                                                 EVT VT) const {
5609   if (Constraint.size() == 1) {
5610     // GCC RS6000 Constraint Letters
5611     switch (Constraint[0]) {
5612     case 'b':   // R1-R31
5613     case 'r':   // R0-R31
5614       if (VT == MVT::i64 && PPCSubTarget.isPPC64())
5615         return std::make_pair(0U, &PPC::G8RCRegClass);
5616       return std::make_pair(0U, &PPC::GPRCRegClass);
5617     case 'f':
5618       if (VT == MVT::f32)
5619         return std::make_pair(0U, &PPC::F4RCRegClass);
5620       if (VT == MVT::f64)
5621         return std::make_pair(0U, &PPC::F8RCRegClass);
5622       break;
5623     case 'v':
5624       return std::make_pair(0U, &PPC::VRRCRegClass);
5625     case 'y':   // crrc
5626       return std::make_pair(0U, &PPC::CRRCRegClass);
5627     }
5628   }
5629
5630   return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
5631 }
5632
5633
5634 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
5635 /// vector.  If it is invalid, don't add anything to Ops.
5636 void PPCTargetLowering::LowerAsmOperandForConstraint(SDValue Op,
5637                                                      std::string &Constraint,
5638                                                      std::vector<SDValue>&Ops,
5639                                                      SelectionDAG &DAG) const {
5640   SDValue Result(0,0);
5641
5642   // Only support length 1 constraints.
5643   if (Constraint.length() > 1) return;
5644
5645   char Letter = Constraint[0];
5646   switch (Letter) {
5647   default: break;
5648   case 'I':
5649   case 'J':
5650   case 'K':
5651   case 'L':
5652   case 'M':
5653   case 'N':
5654   case 'O':
5655   case 'P': {
5656     ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
5657     if (!CST) return; // Must be an immediate to match.
5658     unsigned Value = CST->getZExtValue();
5659     switch (Letter) {
5660     default: llvm_unreachable("Unknown constraint letter!");
5661     case 'I':  // "I" is a signed 16-bit constant.
5662       if ((short)Value == (int)Value)
5663         Result = DAG.getTargetConstant(Value, Op.getValueType());
5664       break;
5665     case 'J':  // "J" is a constant with only the high-order 16 bits nonzero.
5666     case 'L':  // "L" is a signed 16-bit constant shifted left 16 bits.
5667       if ((short)Value == 0)
5668         Result = DAG.getTargetConstant(Value, Op.getValueType());
5669       break;
5670     case 'K':  // "K" is a constant with only the low-order 16 bits nonzero.
5671       if ((Value >> 16) == 0)
5672         Result = DAG.getTargetConstant(Value, Op.getValueType());
5673       break;
5674     case 'M':  // "M" is a constant that is greater than 31.
5675       if (Value > 31)
5676         Result = DAG.getTargetConstant(Value, Op.getValueType());
5677       break;
5678     case 'N':  // "N" is a positive constant that is an exact power of two.
5679       if ((int)Value > 0 && isPowerOf2_32(Value))
5680         Result = DAG.getTargetConstant(Value, Op.getValueType());
5681       break;
5682     case 'O':  // "O" is the constant zero.
5683       if (Value == 0)
5684         Result = DAG.getTargetConstant(Value, Op.getValueType());
5685       break;
5686     case 'P':  // "P" is a constant whose negation is a signed 16-bit constant.
5687       if ((short)-Value == (int)-Value)
5688         Result = DAG.getTargetConstant(Value, Op.getValueType());
5689       break;
5690     }
5691     break;
5692   }
5693   }
5694
5695   if (Result.getNode()) {
5696     Ops.push_back(Result);
5697     return;
5698   }
5699
5700   // Handle standard constraint letters.
5701   TargetLowering::LowerAsmOperandForConstraint(Op, Constraint, Ops, DAG);
5702 }
5703
5704 // isLegalAddressingMode - Return true if the addressing mode represented
5705 // by AM is legal for this target, for a load/store of the specified type.
5706 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
5707                                               Type *Ty) const {
5708   // FIXME: PPC does not allow r+i addressing modes for vectors!
5709
5710   // PPC allows a sign-extended 16-bit immediate field.
5711   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
5712     return false;
5713
5714   // No global is ever allowed as a base.
5715   if (AM.BaseGV)
5716     return false;
5717
5718   // PPC only support r+r,
5719   switch (AM.Scale) {
5720   case 0:  // "r+i" or just "i", depending on HasBaseReg.
5721     break;
5722   case 1:
5723     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
5724       return false;
5725     // Otherwise we have r+r or r+i.
5726     break;
5727   case 2:
5728     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
5729       return false;
5730     // Allow 2*r as r+r.
5731     break;
5732   default:
5733     // No other scales are supported.
5734     return false;
5735   }
5736
5737   return true;
5738 }
5739
5740 /// isLegalAddressImmediate - Return true if the integer value can be used
5741 /// as the offset of the target addressing mode for load / store of the
5742 /// given type.
5743 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,Type *Ty) const{
5744   // PPC allows a sign-extended 16-bit immediate field.
5745   return (V > -(1 << 16) && V < (1 << 16)-1);
5746 }
5747
5748 bool PPCTargetLowering::isLegalAddressImmediate(GlobalValue* GV) const {
5749   return false;
5750 }
5751
5752 SDValue PPCTargetLowering::LowerRETURNADDR(SDValue Op,
5753                                            SelectionDAG &DAG) const {
5754   MachineFunction &MF = DAG.getMachineFunction();
5755   MachineFrameInfo *MFI = MF.getFrameInfo();
5756   MFI->setReturnAddressIsTaken(true);
5757
5758   DebugLoc dl = Op.getDebugLoc();
5759   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5760
5761   // Make sure the function does not optimize away the store of the RA to
5762   // the stack.
5763   PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
5764   FuncInfo->setLRStoreRequired();
5765   bool isPPC64 = PPCSubTarget.isPPC64();
5766   bool isDarwinABI = PPCSubTarget.isDarwinABI();
5767
5768   if (Depth > 0) {
5769     SDValue FrameAddr = LowerFRAMEADDR(Op, DAG);
5770     SDValue Offset =
5771
5772       DAG.getConstant(PPCFrameLowering::getReturnSaveOffset(isPPC64, isDarwinABI),
5773                       isPPC64? MVT::i64 : MVT::i32);
5774     return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5775                        DAG.getNode(ISD::ADD, dl, getPointerTy(),
5776                                    FrameAddr, Offset),
5777                        MachinePointerInfo(), false, false, false, 0);
5778   }
5779
5780   // Just load the return address off the stack.
5781   SDValue RetAddrFI = getReturnAddrFrameIndex(DAG);
5782   return DAG.getLoad(getPointerTy(), dl, DAG.getEntryNode(),
5783                      RetAddrFI, MachinePointerInfo(), false, false, false, 0);
5784 }
5785
5786 SDValue PPCTargetLowering::LowerFRAMEADDR(SDValue Op,
5787                                           SelectionDAG &DAG) const {
5788   DebugLoc dl = Op.getDebugLoc();
5789   unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
5790
5791   EVT PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
5792   bool isPPC64 = PtrVT == MVT::i64;
5793
5794   MachineFunction &MF = DAG.getMachineFunction();
5795   MachineFrameInfo *MFI = MF.getFrameInfo();
5796   MFI->setFrameAddressIsTaken(true);
5797   bool is31 = (getTargetMachine().Options.DisableFramePointerElim(MF) ||
5798                MFI->hasVarSizedObjects()) &&
5799                   MFI->getStackSize() &&
5800                   !MF.getFunction()->hasFnAttr(Attribute::Naked);
5801   unsigned FrameReg = isPPC64 ? (is31 ? PPC::X31 : PPC::X1) :
5802                                 (is31 ? PPC::R31 : PPC::R1);
5803   SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, FrameReg,
5804                                          PtrVT);
5805   while (Depth--)
5806     FrameAddr = DAG.getLoad(Op.getValueType(), dl, DAG.getEntryNode(),
5807                             FrameAddr, MachinePointerInfo(), false, false,
5808                             false, 0);
5809   return FrameAddr;
5810 }
5811
5812 bool
5813 PPCTargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
5814   // The PowerPC target isn't yet aware of offsets.
5815   return false;
5816 }
5817
5818 /// getOptimalMemOpType - Returns the target specific optimal type for load
5819 /// and store operations as a result of memset, memcpy, and memmove
5820 /// lowering. If DstAlign is zero that means it's safe to destination
5821 /// alignment can satisfy any constraint. Similarly if SrcAlign is zero it
5822 /// means there isn't a need to check it against alignment requirement,
5823 /// probably because the source does not need to be loaded. If
5824 /// 'IsZeroVal' is true, that means it's safe to return a
5825 /// non-scalar-integer type, e.g. empty string source, constant, or loaded
5826 /// from memory. 'MemcpyStrSrc' indicates whether the memcpy source is
5827 /// constant so it does not need to be loaded.
5828 /// It returns EVT::Other if the type should be determined using generic
5829 /// target-independent logic.
5830 EVT PPCTargetLowering::getOptimalMemOpType(uint64_t Size,
5831                                            unsigned DstAlign, unsigned SrcAlign,
5832                                            bool IsZeroVal,
5833                                            bool MemcpyStrSrc,
5834                                            MachineFunction &MF) const {
5835   if (this->PPCSubTarget.isPPC64()) {
5836     return MVT::i64;
5837   } else {
5838     return MVT::i32;
5839   }
5840 }
5841
5842 Sched::Preference PPCTargetLowering::getSchedulingPreference(SDNode *N) const {
5843   unsigned Directive = PPCSubTarget.getDarwinDirective();
5844   if (Directive == PPC::DIR_440 || Directive == PPC::DIR_A2)
5845     return Sched::ILP;
5846
5847   return TargetLowering::getSchedulingPreference(N);
5848 }
5849