1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "PPCTargetMachine.h"
16 #include "PPCPerfectShuffle.h"
17 #include "llvm/ADT/VectorExtras.h"
18 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/SSARegMap.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Function.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Target/TargetOptions.h"
31 PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
32 : TargetLowering(TM) {
34 // Fold away setcc operations if possible.
35 setSetCCIsExpensive();
38 // Use _setjmp/_longjmp instead of setjmp/longjmp.
39 setUseUnderscoreSetJmpLongJmp(true);
41 // Set up the register classes.
42 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
46 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
47 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
49 // PowerPC has no intrinsics for these particular operations
50 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
51 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
52 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
58 // PowerPC has no SREM/UREM instructions
59 setOperationAction(ISD::SREM, MVT::i32, Expand);
60 setOperationAction(ISD::UREM, MVT::i32, Expand);
62 // We don't support sin/cos/sqrt/fmod
63 setOperationAction(ISD::FSIN , MVT::f64, Expand);
64 setOperationAction(ISD::FCOS , MVT::f64, Expand);
65 setOperationAction(ISD::FREM , MVT::f64, Expand);
66 setOperationAction(ISD::FSIN , MVT::f32, Expand);
67 setOperationAction(ISD::FCOS , MVT::f32, Expand);
68 setOperationAction(ISD::FREM , MVT::f32, Expand);
70 // If we're enabling GP optimizations, use hardware square root
71 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
72 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
73 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
76 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
77 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
79 // PowerPC does not have BSWAP, CTPOP or CTTZ
80 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
81 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
82 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
84 // PowerPC does not have ROTR
85 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
87 // PowerPC does not have Select
88 setOperationAction(ISD::SELECT, MVT::i32, Expand);
89 setOperationAction(ISD::SELECT, MVT::f32, Expand);
90 setOperationAction(ISD::SELECT, MVT::f64, Expand);
92 // PowerPC wants to turn select_cc of FP into fsel when possible.
93 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
94 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
96 // PowerPC wants to optimize integer setcc a bit
97 setOperationAction(ISD::SETCC, MVT::i32, Custom);
99 // PowerPC does not have BRCOND which requires SetCC
100 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
102 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
103 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
105 // PowerPC does not have [U|S]INT_TO_FP
106 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
107 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
109 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
110 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
112 // PowerPC does not have truncstore for i1.
113 setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
115 // We cannot sextinreg(i1). Expand to shifts.
116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
119 // Support label based line numbers.
120 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
121 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
122 // FIXME - use subtarget debug flags
123 if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
124 setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
126 // We want to legalize GlobalAddress and ConstantPool nodes into the
127 // appropriate instructions to materialize the address.
128 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
129 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
130 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
132 // RET must be custom lowered, to meet ABI requirements
133 setOperationAction(ISD::RET , MVT::Other, Custom);
135 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
136 setOperationAction(ISD::VASTART , MVT::Other, Custom);
138 // Use the default implementation.
139 setOperationAction(ISD::VAARG , MVT::Other, Expand);
140 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
141 setOperationAction(ISD::VAEND , MVT::Other, Expand);
142 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
143 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
146 // We want to custom lower some of our intrinsics.
147 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
149 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
150 // They also have instructions for converting between i64 and fp.
151 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
152 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
154 // FIXME: disable this lowered code. This generates 64-bit register values,
155 // and we don't model the fact that the top part is clobbered by calls. We
156 // need to flag these together so that the value isn't live across a call.
157 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
159 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
160 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
162 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
163 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
166 if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
167 // 64 bit PowerPC implementations can support i64 types directly
168 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
169 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
170 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
172 // 32 bit PowerPC wants to expand i64 shifts itself.
173 setOperationAction(ISD::SHL, MVT::i64, Custom);
174 setOperationAction(ISD::SRL, MVT::i64, Custom);
175 setOperationAction(ISD::SRA, MVT::i64, Custom);
178 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
179 // First set operation action for all vector types to expand. Then we
180 // will selectively turn on ones that can be effectively codegen'd.
181 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
182 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
183 // add/sub are legal for all supported vector VT's.
184 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
185 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
187 // We promote all shuffles to v16i8.
188 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
189 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
191 // We promote all non-typed operations to v4i32.
192 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
193 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
194 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
195 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
196 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
197 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
198 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
199 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
200 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
201 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
202 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
203 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
205 // No other operations are legal.
206 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
207 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
208 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
209 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
210 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
211 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
212 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
213 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
215 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
218 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
219 // with merges, splats, etc.
220 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
222 setOperationAction(ISD::AND , MVT::v4i32, Legal);
223 setOperationAction(ISD::OR , MVT::v4i32, Legal);
224 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
225 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
226 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
227 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
229 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
230 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
231 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
232 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
234 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
235 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
236 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
237 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
239 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
240 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
242 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
243 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
244 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
245 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
248 setSetCCResultContents(ZeroOrOneSetCCResult);
249 setStackPointerRegisterToSaveRestore(PPC::R1);
251 // We have target-specific dag combine patterns for the following nodes:
252 setTargetDAGCombine(ISD::SINT_TO_FP);
253 setTargetDAGCombine(ISD::STORE);
254 setTargetDAGCombine(ISD::BR_CC);
256 computeRegisterProperties();
259 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
262 case PPCISD::FSEL: return "PPCISD::FSEL";
263 case PPCISD::FCFID: return "PPCISD::FCFID";
264 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
265 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
266 case PPCISD::STFIWX: return "PPCISD::STFIWX";
267 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
268 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
269 case PPCISD::VPERM: return "PPCISD::VPERM";
270 case PPCISD::Hi: return "PPCISD::Hi";
271 case PPCISD::Lo: return "PPCISD::Lo";
272 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
273 case PPCISD::SRL: return "PPCISD::SRL";
274 case PPCISD::SRA: return "PPCISD::SRA";
275 case PPCISD::SHL: return "PPCISD::SHL";
276 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
277 case PPCISD::STD_32: return "PPCISD::STD_32";
278 case PPCISD::CALL: return "PPCISD::CALL";
279 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
280 case PPCISD::MFCR: return "PPCISD::MFCR";
281 case PPCISD::VCMP: return "PPCISD::VCMP";
282 case PPCISD::VCMPo: return "PPCISD::VCMPo";
283 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
287 //===----------------------------------------------------------------------===//
288 // Node matching predicates, for use by the tblgen matching code.
289 //===----------------------------------------------------------------------===//
291 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
292 static bool isFloatingPointZero(SDOperand Op) {
293 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
294 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
295 else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
296 // Maybe this has already been legalized into the constant pool?
297 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
298 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
299 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
304 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
305 /// true if Op is undef or if it matches the specified value.
306 static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
307 return Op.getOpcode() == ISD::UNDEF ||
308 cast<ConstantSDNode>(Op)->getValue() == Val;
311 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
312 /// VPKUHUM instruction.
313 bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
315 for (unsigned i = 0; i != 16; ++i)
316 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
319 for (unsigned i = 0; i != 8; ++i)
320 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
321 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
327 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
328 /// VPKUWUM instruction.
329 bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
331 for (unsigned i = 0; i != 16; i += 2)
332 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
333 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
336 for (unsigned i = 0; i != 8; i += 2)
337 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
338 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
339 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
340 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
346 /// isVMerge - Common function, used to match vmrg* shuffles.
348 static bool isVMerge(SDNode *N, unsigned UnitSize,
349 unsigned LHSStart, unsigned RHSStart) {
350 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
351 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
352 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
353 "Unsupported merge size!");
355 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
356 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
357 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
358 LHSStart+j+i*UnitSize) ||
359 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
360 RHSStart+j+i*UnitSize))
366 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
367 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
368 bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
370 return isVMerge(N, UnitSize, 8, 24);
371 return isVMerge(N, UnitSize, 8, 8);
374 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
375 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
376 bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
378 return isVMerge(N, UnitSize, 0, 16);
379 return isVMerge(N, UnitSize, 0, 0);
383 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
384 /// amount, otherwise return -1.
385 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
386 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
387 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
388 // Find the first non-undef value in the shuffle mask.
390 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
393 if (i == 16) return -1; // all undef.
395 // Otherwise, check to see if the rest of the elements are consequtively
396 // numbered from this value.
397 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
398 if (ShiftAmt < i) return -1;
402 // Check the rest of the elements to see if they are consequtive.
403 for (++i; i != 16; ++i)
404 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
407 // Check the rest of the elements to see if they are consequtive.
408 for (++i; i != 16; ++i)
409 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
416 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
417 /// specifies a splat of a single element that is suitable for input to
418 /// VSPLTB/VSPLTH/VSPLTW.
419 bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
420 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
421 N->getNumOperands() == 16 &&
422 (EltSize == 1 || EltSize == 2 || EltSize == 4));
424 // This is a splat operation if each element of the permute is the same, and
425 // if the value doesn't reference the second vector.
426 unsigned ElementBase = 0;
427 SDOperand Elt = N->getOperand(0);
428 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
429 ElementBase = EltV->getValue();
431 return false; // FIXME: Handle UNDEF elements too!
433 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
436 // Check that they are consequtive.
437 for (unsigned i = 1; i != EltSize; ++i) {
438 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
439 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
443 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
444 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
445 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
446 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
447 "Invalid VECTOR_SHUFFLE mask!");
448 for (unsigned j = 0; j != EltSize; ++j)
449 if (N->getOperand(i+j) != N->getOperand(j))
456 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
457 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
458 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
459 assert(isSplatShuffleMask(N, EltSize));
460 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
463 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
464 /// by using a vspltis[bhw] instruction of the specified element size, return
465 /// the constant being splatted. The ByteSize field indicates the number of
466 /// bytes of each element [124] -> [bhw].
467 SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
468 SDOperand OpVal(0, 0);
470 // If ByteSize of the splat is bigger than the element size of the
471 // build_vector, then we have a case where we are checking for a splat where
472 // multiple elements of the buildvector are folded together into a single
473 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
474 unsigned EltSize = 16/N->getNumOperands();
475 if (EltSize < ByteSize) {
476 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
477 SDOperand UniquedVals[4];
478 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
480 // See if all of the elements in the buildvector agree across.
481 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
482 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
483 // If the element isn't a constant, bail fully out.
484 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
487 if (UniquedVals[i&(Multiple-1)].Val == 0)
488 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
489 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
490 return SDOperand(); // no match.
493 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
494 // either constant or undef values that are identical for each chunk. See
495 // if these chunks can form into a larger vspltis*.
497 // Check to see if all of the leading entries are either 0 or -1. If
498 // neither, then this won't fit into the immediate field.
499 bool LeadingZero = true;
500 bool LeadingOnes = true;
501 for (unsigned i = 0; i != Multiple-1; ++i) {
502 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
504 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
505 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
507 // Finally, check the least significant entry.
509 if (UniquedVals[Multiple-1].Val == 0)
510 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
511 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
513 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
516 if (UniquedVals[Multiple-1].Val == 0)
517 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
518 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
519 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
520 return DAG.getTargetConstant(Val, MVT::i32);
526 // Check to see if this buildvec has a single non-undef value in its elements.
527 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
528 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
530 OpVal = N->getOperand(i);
531 else if (OpVal != N->getOperand(i))
535 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
537 unsigned ValSizeInBytes = 0;
539 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
540 Value = CN->getValue();
541 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
542 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
543 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
544 Value = FloatToBits(CN->getValue());
548 // If the splat value is larger than the element value, then we can never do
549 // this splat. The only case that we could fit the replicated bits into our
550 // immediate field for would be zero, and we prefer to use vxor for it.
551 if (ValSizeInBytes < ByteSize) return SDOperand();
553 // If the element value is larger than the splat value, cut it in half and
554 // check to see if the two halves are equal. Continue doing this until we
555 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
556 while (ValSizeInBytes > ByteSize) {
557 ValSizeInBytes >>= 1;
559 // If the top half equals the bottom half, we're still ok.
560 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
561 (Value & ((1 << (8*ValSizeInBytes))-1)))
565 // Properly sign extend the value.
566 int ShAmt = (4-ByteSize)*8;
567 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
569 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
570 if (MaskVal == 0) return SDOperand();
572 // Finally, if this value fits in a 5 bit sext field, return it
573 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
574 return DAG.getTargetConstant(MaskVal, MVT::i32);
578 //===----------------------------------------------------------------------===//
579 // LowerOperation implementation
580 //===----------------------------------------------------------------------===//
582 static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
583 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
584 Constant *C = CP->get();
585 SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
586 SDOperand Zero = DAG.getConstant(0, MVT::i32);
588 const TargetMachine &TM = DAG.getTarget();
590 // If this is a non-darwin platform, we don't support non-static relo models
592 if (TM.getRelocationModel() == Reloc::Static ||
593 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
594 // Generate non-pic code that has direct accesses to the constant pool.
595 // The address of the global is just (hi(&g)+lo(&g)).
596 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
597 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
598 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
601 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
602 if (TM.getRelocationModel() == Reloc::PIC) {
603 // With PIC, the first instruction is actually "GR+hi(&G)".
604 Hi = DAG.getNode(ISD::ADD, MVT::i32,
605 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
608 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
609 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
613 static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
614 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
615 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
616 SDOperand Zero = DAG.getConstant(0, MVT::i32);
618 const TargetMachine &TM = DAG.getTarget();
620 // If this is a non-darwin platform, we don't support non-static relo models
622 if (TM.getRelocationModel() == Reloc::Static ||
623 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
624 // Generate non-pic code that has direct accesses to the constant pool.
625 // The address of the global is just (hi(&g)+lo(&g)).
626 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
627 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
628 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
631 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
632 if (TM.getRelocationModel() == Reloc::PIC) {
633 // With PIC, the first instruction is actually "GR+hi(&G)".
634 Hi = DAG.getNode(ISD::ADD, MVT::i32,
635 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
638 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
639 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
643 static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
644 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
645 GlobalValue *GV = GSDN->getGlobal();
646 SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
647 SDOperand Zero = DAG.getConstant(0, MVT::i32);
649 const TargetMachine &TM = DAG.getTarget();
651 // If this is a non-darwin platform, we don't support non-static relo models
653 if (TM.getRelocationModel() == Reloc::Static ||
654 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
655 // Generate non-pic code that has direct accesses to globals.
656 // The address of the global is just (hi(&g)+lo(&g)).
657 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
658 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
659 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
662 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
663 if (TM.getRelocationModel() == Reloc::PIC) {
664 // With PIC, the first instruction is actually "GR+hi(&G)".
665 Hi = DAG.getNode(ISD::ADD, MVT::i32,
666 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
669 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
670 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
672 if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
673 (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
676 // If the global is weak or external, we have to go through the lazy
678 return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
681 static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
682 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
684 // If we're comparing for equality to zero, expose the fact that this is
685 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
686 // fold the new nodes.
687 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
688 if (C->isNullValue() && CC == ISD::SETEQ) {
689 MVT::ValueType VT = Op.getOperand(0).getValueType();
690 SDOperand Zext = Op.getOperand(0);
693 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
695 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
696 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
697 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
698 DAG.getConstant(Log2b, MVT::i32));
699 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
701 // Leave comparisons against 0 and -1 alone for now, since they're usually
702 // optimized. FIXME: revisit this when we can custom lower all setcc
704 if (C->isAllOnesValue() || C->isNullValue())
708 // If we have an integer seteq/setne, turn it into a compare against zero
709 // by subtracting the rhs from the lhs, which is faster than setting a
710 // condition register, reading it back out, and masking the correct bit.
711 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
712 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
713 MVT::ValueType VT = Op.getValueType();
714 SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
716 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
721 static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
722 unsigned VarArgsFrameIndex) {
723 // vastart just stores the address of the VarArgsFrameIndex slot into the
724 // memory location argument.
725 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
726 return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
727 Op.getOperand(1), Op.getOperand(2));
730 static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
732 switch(Op.getNumOperands()) {
734 assert(0 && "Do not know how to return this many arguments!");
737 return SDOperand(); // ret void is legal
739 MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
741 if (MVT::isVector(ArgVT))
743 else if (MVT::isInteger(ArgVT))
746 assert(MVT::isFloatingPoint(ArgVT));
750 Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
753 // If we haven't noted the R3/F1 are live out, do so now.
754 if (DAG.getMachineFunction().liveout_empty())
755 DAG.getMachineFunction().addLiveOut(ArgReg);
759 Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2),
761 Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
762 // If we haven't noted the R3+R4 are live out, do so now.
763 if (DAG.getMachineFunction().liveout_empty()) {
764 DAG.getMachineFunction().addLiveOut(PPC::R3);
765 DAG.getMachineFunction().addLiveOut(PPC::R4);
769 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
772 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
774 static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
775 // Not FP? Not a fsel.
776 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
777 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
780 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
782 // Cannot handle SETEQ/SETNE.
783 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
785 MVT::ValueType ResVT = Op.getValueType();
786 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
787 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
788 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
790 // If the RHS of the comparison is a 0.0, we don't need to do the
791 // subtraction at all.
792 if (isFloatingPointZero(RHS))
794 default: break; // SETUO etc aren't handled by fsel.
797 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
800 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
801 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
802 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
805 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
808 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
809 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
810 return DAG.getNode(PPCISD::FSEL, ResVT,
811 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
816 default: break; // SETUO etc aren't handled by fsel.
819 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
820 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
821 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
822 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
825 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
826 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
827 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
828 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
831 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
832 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
833 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
834 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
837 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
838 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
839 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
840 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
845 static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
846 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
847 SDOperand Src = Op.getOperand(0);
848 if (Src.getValueType() == MVT::f32)
849 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
852 switch (Op.getValueType()) {
853 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
855 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
858 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
862 // Convert the FP value to an int value through memory.
863 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
864 if (Op.getValueType() == MVT::i32)
865 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
869 static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
870 if (Op.getOperand(0).getValueType() == MVT::i64) {
871 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
872 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
873 if (Op.getValueType() == MVT::f32)
874 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
878 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
879 "Unhandled SINT_TO_FP type in custom expander!");
880 // Since we only generate this in 64-bit mode, we can take advantage of
881 // 64-bit registers. In particular, sign extend the input value into the
882 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
883 // then lfd it and fcfid it.
884 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
885 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
886 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
888 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
891 // STD the extended value into the stack slot.
892 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
893 DAG.getEntryNode(), Ext64, FIdx,
894 DAG.getSrcValue(NULL));
895 // Load the value as a double.
896 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
898 // FCFID it and return it.
899 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
900 if (Op.getValueType() == MVT::f32)
901 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
905 static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
906 assert(Op.getValueType() == MVT::i64 &&
907 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
908 // The generic code does a fine job expanding shift by a constant.
909 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
911 // Otherwise, expand into a bunch of logical ops. Note that these ops
912 // depend on the PPC behavior for oversized shift amounts.
913 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
914 DAG.getConstant(0, MVT::i32));
915 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
916 DAG.getConstant(1, MVT::i32));
917 SDOperand Amt = Op.getOperand(1);
919 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
920 DAG.getConstant(32, MVT::i32), Amt);
921 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
922 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
923 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
924 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
925 DAG.getConstant(-32U, MVT::i32));
926 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
927 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
928 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
929 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
932 static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
933 assert(Op.getValueType() == MVT::i64 &&
934 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
935 // The generic code does a fine job expanding shift by a constant.
936 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
938 // Otherwise, expand into a bunch of logical ops. Note that these ops
939 // depend on the PPC behavior for oversized shift amounts.
940 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
941 DAG.getConstant(0, MVT::i32));
942 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
943 DAG.getConstant(1, MVT::i32));
944 SDOperand Amt = Op.getOperand(1);
946 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
947 DAG.getConstant(32, MVT::i32), Amt);
948 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
949 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
950 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
951 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
952 DAG.getConstant(-32U, MVT::i32));
953 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
954 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
955 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
956 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
959 static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
960 assert(Op.getValueType() == MVT::i64 &&
961 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
962 // The generic code does a fine job expanding shift by a constant.
963 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
965 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
966 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
967 DAG.getConstant(0, MVT::i32));
968 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
969 DAG.getConstant(1, MVT::i32));
970 SDOperand Amt = Op.getOperand(1);
972 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
973 DAG.getConstant(32, MVT::i32), Amt);
974 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
975 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
976 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
977 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
978 DAG.getConstant(-32U, MVT::i32));
979 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
980 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
981 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
982 Tmp4, Tmp6, ISD::SETLE);
983 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
986 //===----------------------------------------------------------------------===//
987 // Vector related lowering.
990 // If this is a vector of constants or undefs, get the bits. A bit in
991 // UndefBits is set if the corresponding element of the vector is an
992 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
993 // zero. Return true if this is not an array of constants, false if it is.
995 static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
996 uint64_t UndefBits[2]) {
997 // Start with zero'd results.
998 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1000 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1001 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1002 SDOperand OpVal = BV->getOperand(i);
1004 unsigned PartNo = i >= e/2; // In the upper 128 bits?
1005 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
1007 uint64_t EltBits = 0;
1008 if (OpVal.getOpcode() == ISD::UNDEF) {
1009 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1010 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1012 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1013 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1014 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1015 assert(CN->getValueType(0) == MVT::f32 &&
1016 "Only one legal FP vector type!");
1017 EltBits = FloatToBits(CN->getValue());
1019 // Nonconstant element.
1023 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1026 //printf("%llx %llx %llx %llx\n",
1027 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1031 // If this is a splat (repetition) of a value across the whole vector, return
1032 // the smallest size that splats it. For example, "0x01010101010101..." is a
1033 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1034 // SplatSize = 1 byte.
1035 static bool isConstantSplat(const uint64_t Bits128[2],
1036 const uint64_t Undef128[2],
1037 unsigned &SplatBits, unsigned &SplatUndef,
1038 unsigned &SplatSize) {
1040 // Don't let undefs prevent splats from matching. See if the top 64-bits are
1041 // the same as the lower 64-bits, ignoring undefs.
1042 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1043 return false; // Can't be a splat if two pieces don't match.
1045 uint64_t Bits64 = Bits128[0] | Bits128[1];
1046 uint64_t Undef64 = Undef128[0] & Undef128[1];
1048 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1050 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1051 return false; // Can't be a splat if two pieces don't match.
1053 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1054 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1056 // If the top 16-bits are different than the lower 16-bits, ignoring
1057 // undefs, we have an i32 splat.
1058 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1060 SplatUndef = Undef32;
1065 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
1066 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1068 // If the top 8-bits are different than the lower 8-bits, ignoring
1069 // undefs, we have an i16 splat.
1070 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1072 SplatUndef = Undef16;
1077 // Otherwise, we have an 8-bit splat.
1078 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
1079 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1084 /// BuildSplatI - Build a canonical splati of Val with an element size of
1085 /// SplatSize. Cast the result to VT.
1086 static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1087 SelectionDAG &DAG) {
1088 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1090 // Force vspltis[hw] -1 to vspltisb -1.
1091 if (Val == -1) SplatSize = 1;
1093 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1094 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1096 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1098 // Build a canonical splat for this value.
1099 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1100 std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
1101 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
1102 return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1105 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
1106 /// specified intrinsic ID.
1107 static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1109 MVT::ValueType DestVT = MVT::Other) {
1110 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1111 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1112 DAG.getConstant(IID, MVT::i32), LHS, RHS);
1115 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1116 /// specified intrinsic ID.
1117 static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1118 SDOperand Op2, SelectionDAG &DAG,
1119 MVT::ValueType DestVT = MVT::Other) {
1120 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1121 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1122 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1126 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1127 /// amount. The result has the specified value type.
1128 static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1129 MVT::ValueType VT, SelectionDAG &DAG) {
1130 // Force LHS/RHS to be the right type.
1131 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1132 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1134 std::vector<SDOperand> Ops;
1135 for (unsigned i = 0; i != 16; ++i)
1136 Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
1137 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1138 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1139 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1142 // If this is a case we can't handle, return null and let the default
1143 // expansion code take care of it. If we CAN select this case, and if it
1144 // selects to a single instruction, return Op. Otherwise, if we can codegen
1145 // this case more efficiently than a constant pool load, lower it to the
1146 // sequence of ops that should be used.
1147 static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1148 // If this is a vector of constants or undefs, get the bits. A bit in
1149 // UndefBits is set if the corresponding element of the vector is an
1150 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1152 uint64_t VectorBits[2];
1153 uint64_t UndefBits[2];
1154 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1155 return SDOperand(); // Not a constant vector.
1157 // If this is a splat (repetition) of a value across the whole vector, return
1158 // the smallest size that splats it. For example, "0x01010101010101..." is a
1159 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1160 // SplatSize = 1 byte.
1161 unsigned SplatBits, SplatUndef, SplatSize;
1162 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1163 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1165 // First, handle single instruction cases.
1168 if (SplatBits == 0) {
1169 // Canonicalize all zero vectors to be v4i32.
1170 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1171 SDOperand Z = DAG.getConstant(0, MVT::i32);
1172 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1173 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1178 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1179 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
1180 if (SextVal >= -16 && SextVal <= 15)
1181 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
1184 // Two instruction sequences.
1186 // If this value is in the range [-32,30] and is even, use:
1187 // tmp = VSPLTI[bhw], result = add tmp, tmp
1188 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1189 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1190 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1193 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
1194 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
1196 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
1197 // Make -1 and vspltisw -1:
1198 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
1200 // Make the VSLW intrinsic, computing 0x8000_0000.
1201 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
1204 // xor by OnesV to invert it.
1205 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1206 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1209 // Check to see if this is a wide variety of vsplti*, binop self cases.
1210 unsigned SplatBitSize = SplatSize*8;
1211 static const char SplatCsts[] = {
1212 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
1213 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
1215 for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
1216 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
1217 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
1218 int i = SplatCsts[idx];
1220 // Figure out what shift amount will be used by altivec if shifted by i in
1222 unsigned TypeShiftAmt = i & (SplatBitSize-1);
1224 // vsplti + shl self.
1225 if (SextVal == (i << (int)TypeShiftAmt)) {
1226 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1227 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1228 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
1229 Intrinsic::ppc_altivec_vslw
1231 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1234 // vsplti + srl self.
1235 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1236 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1237 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1238 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
1239 Intrinsic::ppc_altivec_vsrw
1241 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1244 // vsplti + sra self.
1245 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1246 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1247 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1248 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
1249 Intrinsic::ppc_altivec_vsraw
1251 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1254 // vsplti + rol self.
1255 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
1256 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
1257 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1258 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1259 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
1260 Intrinsic::ppc_altivec_vrlw
1262 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1265 // t = vsplti c, result = vsldoi t, t, 1
1266 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
1267 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1268 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
1270 // t = vsplti c, result = vsldoi t, t, 2
1271 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
1272 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1273 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
1275 // t = vsplti c, result = vsldoi t, t, 3
1276 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
1277 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1278 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
1282 // Three instruction sequences.
1284 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
1285 if (SextVal >= 0 && SextVal <= 31) {
1286 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
1287 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1288 return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
1290 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
1291 if (SextVal >= -31 && SextVal <= 0) {
1292 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
1293 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1294 return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
1301 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1302 /// the specified operations to build the shuffle.
1303 static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1304 SDOperand RHS, SelectionDAG &DAG) {
1305 unsigned OpNum = (PFEntry >> 26) & 0x0F;
1306 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
1307 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
1310 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
1322 if (OpNum == OP_COPY) {
1323 if (LHSID == (1*9+2)*9+3) return LHS;
1324 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1328 SDOperand OpLHS, OpRHS;
1329 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1330 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1332 unsigned ShufIdxs[16];
1334 default: assert(0 && "Unknown i32 permute!");
1336 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
1337 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1338 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
1339 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1342 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1343 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1344 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1345 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1348 for (unsigned i = 0; i != 16; ++i)
1349 ShufIdxs[i] = (i&3)+0;
1352 for (unsigned i = 0; i != 16; ++i)
1353 ShufIdxs[i] = (i&3)+4;
1356 for (unsigned i = 0; i != 16; ++i)
1357 ShufIdxs[i] = (i&3)+8;
1360 for (unsigned i = 0; i != 16; ++i)
1361 ShufIdxs[i] = (i&3)+12;
1364 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
1366 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
1368 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
1370 std::vector<SDOperand> Ops;
1371 for (unsigned i = 0; i != 16; ++i)
1372 Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
1374 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1375 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1378 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
1379 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
1380 /// return the code it can be lowered into. Worst case, it can always be
1381 /// lowered into a vperm.
1382 static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1383 SDOperand V1 = Op.getOperand(0);
1384 SDOperand V2 = Op.getOperand(1);
1385 SDOperand PermMask = Op.getOperand(2);
1387 // Cases that are handled by instructions that take permute immediates
1388 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1389 // selected by the instruction selector.
1390 if (V2.getOpcode() == ISD::UNDEF) {
1391 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1392 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1393 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1394 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1395 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1396 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1397 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1398 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1399 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1400 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1401 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1402 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1407 // Altivec has a variety of "shuffle immediates" that take two vector inputs
1408 // and produce a fixed permutation. If any of these match, do not lower to
1410 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1411 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1412 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1413 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1414 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1415 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1416 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1417 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1418 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1421 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
1422 // perfect shuffle table to emit an optimal matching sequence.
1423 unsigned PFIndexes[4];
1424 bool isFourElementShuffle = true;
1425 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1426 unsigned EltNo = 8; // Start out undef.
1427 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
1428 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1429 continue; // Undef, ignore it.
1431 unsigned ByteSource =
1432 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1433 if ((ByteSource & 3) != j) {
1434 isFourElementShuffle = false;
1439 EltNo = ByteSource/4;
1440 } else if (EltNo != ByteSource/4) {
1441 isFourElementShuffle = false;
1445 PFIndexes[i] = EltNo;
1448 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1449 // perfect shuffle vector to determine if it is cost effective to do this as
1450 // discrete instructions, or whether we should use a vperm.
1451 if (isFourElementShuffle) {
1452 // Compute the index in the perfect shuffle table.
1453 unsigned PFTableIndex =
1454 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1456 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1457 unsigned Cost = (PFEntry >> 30);
1459 // Determining when to avoid vperm is tricky. Many things affect the cost
1460 // of vperm, particularly how many times the perm mask needs to be computed.
1461 // For example, if the perm mask can be hoisted out of a loop or is already
1462 // used (perhaps because there are multiple permutes with the same shuffle
1463 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
1464 // the loop requires an extra register.
1466 // As a compromise, we only emit discrete instructions if the shuffle can be
1467 // generated in 3 or fewer operations. When we have loop information
1468 // available, if this block is within a loop, we should avoid using vperm
1469 // for 3-operation perms and use a constant pool load instead.
1471 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1474 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1475 // vector that will get spilled to the constant pool.
1476 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1478 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1479 // that it is in input element units, not in bytes. Convert now.
1480 MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1481 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1483 std::vector<SDOperand> ResultMask;
1484 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
1486 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1489 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
1491 for (unsigned j = 0; j != BytesPerElement; ++j)
1492 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
1496 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
1497 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
1500 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
1501 /// altivec comparison. If it is, return true and fill in Opc/isDot with
1502 /// information about the intrinsic.
1503 static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
1505 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
1508 switch (IntrinsicID) {
1509 default: return false;
1510 // Comparison predicates.
1511 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
1512 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
1513 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
1514 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
1515 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
1516 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
1517 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
1518 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
1519 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
1520 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
1521 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
1522 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
1523 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
1525 // Normal Comparisons.
1526 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
1527 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
1528 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
1529 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
1530 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
1531 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
1532 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
1533 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
1534 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
1535 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
1536 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
1537 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
1538 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
1543 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
1544 /// lower, do it, otherwise return null.
1545 static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
1546 // If this is a lowered altivec predicate compare, CompareOpc is set to the
1547 // opcode number of the comparison.
1550 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
1551 return SDOperand(); // Don't custom lower most intrinsics.
1553 // If this is a non-dot comparison, make the VCMP node and we are done.
1555 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
1556 Op.getOperand(1), Op.getOperand(2),
1557 DAG.getConstant(CompareOpc, MVT::i32));
1558 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
1561 // Create the PPCISD altivec 'dot' comparison node.
1562 std::vector<SDOperand> Ops;
1563 std::vector<MVT::ValueType> VTs;
1564 Ops.push_back(Op.getOperand(2)); // LHS
1565 Ops.push_back(Op.getOperand(3)); // RHS
1566 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
1567 VTs.push_back(Op.getOperand(2).getValueType());
1568 VTs.push_back(MVT::Flag);
1569 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
1571 // Now that we have the comparison, emit a copy from the CR to a GPR.
1572 // This is flagged to the above dot comparison.
1573 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
1574 DAG.getRegister(PPC::CR6, MVT::i32),
1575 CompNode.getValue(1));
1577 // Unpack the result based on how the target uses it.
1578 unsigned BitNo; // Bit # of CR6.
1579 bool InvertBit; // Invert result?
1580 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1581 default: // Can't happen, don't crash on invalid number though.
1582 case 0: // Return the value of the EQ bit of CR6.
1583 BitNo = 0; InvertBit = false;
1585 case 1: // Return the inverted value of the EQ bit of CR6.
1586 BitNo = 0; InvertBit = true;
1588 case 2: // Return the value of the LT bit of CR6.
1589 BitNo = 2; InvertBit = false;
1591 case 3: // Return the inverted value of the LT bit of CR6.
1592 BitNo = 2; InvertBit = true;
1596 // Shift the bit into the low position.
1597 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
1598 DAG.getConstant(8-(3-BitNo), MVT::i32));
1600 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
1601 DAG.getConstant(1, MVT::i32));
1603 // If we are supposed to, toggle the bit.
1605 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
1606 DAG.getConstant(1, MVT::i32));
1610 static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1611 // Create a stack slot that is 16-byte aligned.
1612 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1613 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
1614 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1616 // Store the input value into Value#0 of the stack slot.
1617 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
1618 Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
1620 return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
1623 static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
1624 if (Op.getValueType() == MVT::v4i32) {
1625 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1627 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
1628 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
1630 SDOperand RHSSwap = // = vrlw RHS, 16
1631 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
1633 // Shrinkify inputs to v8i16.
1634 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
1635 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
1636 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
1638 // Low parts multiplied together, generating 32-bit results (we ignore the
1640 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
1641 LHS, RHS, DAG, MVT::v4i32);
1643 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
1644 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
1645 // Shift the high parts up 16 bits.
1646 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
1647 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
1648 } else if (Op.getValueType() == MVT::v8i16) {
1649 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1651 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
1653 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
1654 LHS, RHS, Zero, DAG);
1655 } else if (Op.getValueType() == MVT::v16i8) {
1656 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1658 // Multiply the even 8-bit parts, producing 16-bit sums.
1659 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
1660 LHS, RHS, DAG, MVT::v8i16);
1661 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
1663 // Multiply the odd 8-bit parts, producing 16-bit sums.
1664 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
1665 LHS, RHS, DAG, MVT::v8i16);
1666 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
1668 // Merge the results together.
1669 std::vector<SDOperand> Ops;
1670 for (unsigned i = 0; i != 8; ++i) {
1671 Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
1672 Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
1675 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
1676 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1678 assert(0 && "Unknown mul to lower!");
1683 /// LowerOperation - Provide custom lowering hooks for some operations.
1685 SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
1686 switch (Op.getOpcode()) {
1687 default: assert(0 && "Wasn't expecting to be able to lower this!");
1688 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
1689 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
1690 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
1691 case ISD::SETCC: return LowerSETCC(Op, DAG);
1692 case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
1693 case ISD::RET: return LowerRET(Op, DAG);
1695 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
1696 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1697 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1699 // Lower 64-bit shifts.
1700 case ISD::SHL: return LowerSHL(Op, DAG);
1701 case ISD::SRL: return LowerSRL(Op, DAG);
1702 case ISD::SRA: return LowerSRA(Op, DAG);
1704 // Vector-related lowering.
1705 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
1706 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
1707 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1708 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
1709 case ISD::MUL: return LowerMUL(Op, DAG);
1714 //===----------------------------------------------------------------------===//
1715 // Other Lowering Code
1716 //===----------------------------------------------------------------------===//
1718 std::vector<SDOperand>
1719 PPCTargetLowering::LowerArguments(Function &F, SelectionDAG &DAG) {
1721 // add beautiful description of PPC stack frame format, or at least some docs
1723 MachineFunction &MF = DAG.getMachineFunction();
1724 MachineFrameInfo *MFI = MF.getFrameInfo();
1725 SSARegMap *RegMap = MF.getSSARegMap();
1726 std::vector<SDOperand> ArgValues;
1728 unsigned ArgOffset = 24;
1729 unsigned GPR_remaining = 8;
1730 unsigned FPR_remaining = 13;
1731 unsigned GPR_idx = 0, FPR_idx = 0;
1732 static const unsigned GPR[] = {
1733 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1734 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1736 static const unsigned FPR[] = {
1737 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1738 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1741 // Add DAG nodes to load the arguments... On entry to a function on PPC,
1742 // the arguments start at offset 24, although they are likely to be passed
1744 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I) {
1745 SDOperand newroot, argt;
1747 bool needsLoad = false;
1748 bool ArgLive = !I->use_empty();
1749 MVT::ValueType ObjectVT = getValueType(I->getType());
1752 default: assert(0 && "Unhandled argument type!");
1758 if (!ArgLive) break;
1759 if (GPR_remaining > 0) {
1760 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1761 MF.addLiveIn(GPR[GPR_idx], VReg);
1762 argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
1763 if (ObjectVT != MVT::i32) {
1764 unsigned AssertOp = I->getType()->isSigned() ? ISD::AssertSext
1766 argt = DAG.getNode(AssertOp, MVT::i32, argt,
1767 DAG.getValueType(ObjectVT));
1768 argt = DAG.getNode(ISD::TRUNCATE, ObjectVT, argt);
1776 if (!ArgLive) break;
1777 if (GPR_remaining > 0) {
1778 SDOperand argHi, argLo;
1779 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1780 MF.addLiveIn(GPR[GPR_idx], VReg);
1781 argHi = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
1782 // If we have two or more remaining argument registers, then both halves
1783 // of the i64 can be sourced from there. Otherwise, the lower half will
1784 // have to come off the stack. This can happen when an i64 is preceded
1785 // by 28 bytes of arguments.
1786 if (GPR_remaining > 1) {
1787 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1788 MF.addLiveIn(GPR[GPR_idx+1], VReg);
1789 argLo = DAG.getCopyFromReg(argHi, VReg, MVT::i32);
1791 int FI = MFI->CreateFixedObject(4, ArgOffset+4);
1792 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
1793 argLo = DAG.getLoad(MVT::i32, DAG.getEntryNode(), FIN,
1794 DAG.getSrcValue(NULL));
1796 // Build the outgoing arg thingy
1797 argt = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, argLo, argHi);
1805 ObjSize = (ObjectVT == MVT::f64) ? 8 : 4;
1807 if (FPR_remaining > 0) {
1813 if (FPR_remaining > 0) {
1815 if (ObjectVT == MVT::f32)
1816 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
1818 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
1819 MF.addLiveIn(FPR[FPR_idx], VReg);
1820 argt = newroot = DAG.getCopyFromReg(DAG.getRoot(), VReg, ObjectVT);
1829 // We need to load the argument to a virtual register if we determined above
1830 // that we ran out of physical registers of the appropriate type
1832 unsigned SubregOffset = 0;
1833 if (ObjectVT == MVT::i8 || ObjectVT == MVT::i1) SubregOffset = 3;
1834 if (ObjectVT == MVT::i16) SubregOffset = 2;
1835 int FI = MFI->CreateFixedObject(ObjSize, ArgOffset);
1836 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
1837 FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN,
1838 DAG.getConstant(SubregOffset, MVT::i32));
1839 argt = newroot = DAG.getLoad(ObjectVT, DAG.getEntryNode(), FIN,
1840 DAG.getSrcValue(NULL));
1843 // Every 4 bytes of argument space consumes one of the GPRs available for
1844 // argument passing.
1845 if (GPR_remaining > 0) {
1846 unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
1847 GPR_remaining -= delta;
1850 ArgOffset += ObjSize;
1852 DAG.setRoot(newroot.getValue(1));
1854 ArgValues.push_back(argt);
1857 // If the function takes variable number of arguments, make a frame index for
1858 // the start of the first vararg value... for expansion of llvm.va_start.
1860 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
1861 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
1862 // If this function is vararg, store any remaining integer argument regs
1863 // to their spots on the stack so that they may be loaded by deferencing the
1864 // result of va_next.
1865 std::vector<SDOperand> MemOps;
1866 for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
1867 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
1868 MF.addLiveIn(GPR[GPR_idx], VReg);
1869 SDOperand Val = DAG.getCopyFromReg(DAG.getRoot(), VReg, MVT::i32);
1870 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
1871 Val, FIN, DAG.getSrcValue(NULL));
1872 MemOps.push_back(Store);
1873 // Increment the address by four for the next argument to store
1874 SDOperand PtrOff = DAG.getConstant(4, getPointerTy());
1875 FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
1877 if (!MemOps.empty()) {
1878 MemOps.push_back(DAG.getRoot());
1879 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps));
1886 std::pair<SDOperand, SDOperand>
1887 PPCTargetLowering::LowerCallTo(SDOperand Chain,
1888 const Type *RetTy, bool isVarArg,
1889 unsigned CallingConv, bool isTailCall,
1890 SDOperand Callee, ArgListTy &Args,
1891 SelectionDAG &DAG) {
1892 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1893 // SelectExpr to use to put the arguments in the appropriate registers.
1894 std::vector<SDOperand> args_to_use;
1896 // Count how many bytes are to be pushed on the stack, including the linkage
1897 // area, and parameter passing area.
1898 unsigned NumBytes = 24;
1901 Chain = DAG.getCALLSEQ_START(Chain,
1902 DAG.getConstant(NumBytes, getPointerTy()));
1904 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1905 switch (getValueType(Args[i].second)) {
1906 default: assert(0 && "Unknown value type!");
1921 // Just to be safe, we'll always reserve the full 24 bytes of linkage area
1922 // plus 32 bytes of argument space in case any called code gets funky on us.
1923 // (Required by ABI to support var arg)
1924 if (NumBytes < 56) NumBytes = 56;
1926 // Adjust the stack pointer for the new arguments...
1927 // These operations are automatically eliminated by the prolog/epilog pass
1928 Chain = DAG.getCALLSEQ_START(Chain,
1929 DAG.getConstant(NumBytes, getPointerTy()));
1931 // Set up a copy of the stack pointer for use loading and storing any
1932 // arguments that may not fit in the registers available for argument
1934 SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1936 // Figure out which arguments are going to go in registers, and which in
1937 // memory. Also, if this is a vararg function, floating point operations
1938 // must be stored to our stack, and loaded into integer regs as well, if
1939 // any integer regs are available for argument passing.
1940 unsigned ArgOffset = 24;
1941 unsigned GPR_remaining = 8;
1942 unsigned FPR_remaining = 13;
1944 std::vector<SDOperand> MemOps;
1945 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1946 // PtrOff will be used to store the current argument to the stack if a
1947 // register cannot be found for it.
1948 SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1949 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
1950 MVT::ValueType ArgVT = getValueType(Args[i].second);
1953 default: assert(0 && "Unexpected ValueType for argument!");
1957 // Promote the integer to 32 bits. If the input type is signed use a
1958 // sign extend, otherwise use a zero extend.
1959 if (Args[i].second->isSigned())
1960 Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
1962 Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
1965 if (GPR_remaining > 0) {
1966 args_to_use.push_back(Args[i].first);
1969 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1970 Args[i].first, PtrOff,
1971 DAG.getSrcValue(NULL)));
1976 // If we have one free GPR left, we can place the upper half of the i64
1977 // in it, and store the other half to the stack. If we have two or more
1978 // free GPRs, then we can pass both halves of the i64 in registers.
1979 if (GPR_remaining > 0) {
1980 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1981 Args[i].first, DAG.getConstant(1, MVT::i32));
1982 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1983 Args[i].first, DAG.getConstant(0, MVT::i32));
1984 args_to_use.push_back(Hi);
1986 if (GPR_remaining > 0) {
1987 args_to_use.push_back(Lo);
1990 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1991 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
1992 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1993 Lo, PtrOff, DAG.getSrcValue(NULL)));
1996 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1997 Args[i].first, PtrOff,
1998 DAG.getSrcValue(NULL)));
2004 if (FPR_remaining > 0) {
2005 args_to_use.push_back(Args[i].first);
2008 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
2009 Args[i].first, PtrOff,
2010 DAG.getSrcValue(NULL));
2011 MemOps.push_back(Store);
2012 // Float varargs are always shadowed in available integer registers
2013 if (GPR_remaining > 0) {
2014 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
2015 DAG.getSrcValue(NULL));
2016 MemOps.push_back(Load.getValue(1));
2017 args_to_use.push_back(Load);
2020 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
2021 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
2022 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
2023 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
2024 DAG.getSrcValue(NULL));
2025 MemOps.push_back(Load.getValue(1));
2026 args_to_use.push_back(Load);
2030 // If we have any FPRs remaining, we may also have GPRs remaining.
2031 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2033 if (GPR_remaining > 0) {
2034 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2037 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
2038 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2043 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2044 Args[i].first, PtrOff,
2045 DAG.getSrcValue(NULL)));
2047 ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
2051 if (!MemOps.empty())
2052 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
2055 std::vector<MVT::ValueType> RetVals;
2056 MVT::ValueType RetTyVT = getValueType(RetTy);
2057 MVT::ValueType ActualRetTyVT = RetTyVT;
2058 if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
2059 ActualRetTyVT = MVT::i32; // Promote result to i32.
2061 if (RetTyVT == MVT::i64) {
2062 RetVals.push_back(MVT::i32);
2063 RetVals.push_back(MVT::i32);
2064 } else if (RetTyVT != MVT::isVoid) {
2065 RetVals.push_back(ActualRetTyVT);
2067 RetVals.push_back(MVT::Other);
2069 // If the callee is a GlobalAddress node (quite common, every direct call is)
2070 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
2071 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2072 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
2074 std::vector<SDOperand> Ops;
2075 Ops.push_back(Chain);
2076 Ops.push_back(Callee);
2077 Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
2078 SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
2079 Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
2080 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
2081 DAG.getConstant(NumBytes, getPointerTy()));
2082 SDOperand RetVal = TheCall;
2084 // If the result is a small value, add a note so that we keep track of the
2085 // information about whether it is sign or zero extended.
2086 if (RetTyVT != ActualRetTyVT) {
2087 RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
2088 MVT::i32, RetVal, DAG.getValueType(RetTyVT));
2089 RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
2090 } else if (RetTyVT == MVT::i64) {
2091 RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
2094 return std::make_pair(RetVal, Chain);
2098 PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2099 MachineBasicBlock *BB) {
2100 assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
2101 MI->getOpcode() == PPC::SELECT_CC_F4 ||
2102 MI->getOpcode() == PPC::SELECT_CC_F8 ||
2103 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2104 "Unexpected instr type to insert");
2106 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2107 // control-flow pattern. The incoming instruction knows the destination vreg
2108 // to set, the condition code register to branch on, the true/false values to
2109 // select between, and a branch opcode to use.
2110 const BasicBlock *LLVM_BB = BB->getBasicBlock();
2111 ilist<MachineBasicBlock>::iterator It = BB;
2117 // cmpTY ccX, r1, r2
2119 // fallthrough --> copy0MBB
2120 MachineBasicBlock *thisMBB = BB;
2121 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2122 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2123 BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2124 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2125 MachineFunction *F = BB->getParent();
2126 F->getBasicBlockList().insert(It, copy0MBB);
2127 F->getBasicBlockList().insert(It, sinkMBB);
2128 // Update machine-CFG edges by first adding all successors of the current
2129 // block to the new block which will contain the Phi node for the select.
2130 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2131 e = BB->succ_end(); i != e; ++i)
2132 sinkMBB->addSuccessor(*i);
2133 // Next, remove all successors of the current block, and add the true
2134 // and fallthrough blocks as its successors.
2135 while(!BB->succ_empty())
2136 BB->removeSuccessor(BB->succ_begin());
2137 BB->addSuccessor(copy0MBB);
2138 BB->addSuccessor(sinkMBB);
2141 // %FalseValue = ...
2142 // # fallthrough to sinkMBB
2145 // Update machine-CFG edges
2146 BB->addSuccessor(sinkMBB);
2149 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2152 BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2153 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2154 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2156 delete MI; // The pseudo instruction is gone now.
2160 //===----------------------------------------------------------------------===//
2161 // Target Optimization Hooks
2162 //===----------------------------------------------------------------------===//
2164 SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2165 DAGCombinerInfo &DCI) const {
2166 TargetMachine &TM = getTargetMachine();
2167 SelectionDAG &DAG = DCI.DAG;
2168 switch (N->getOpcode()) {
2170 case ISD::SINT_TO_FP:
2171 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
2172 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2173 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2174 // We allow the src/dst to be either f32/f64, but the intermediate
2175 // type must be i64.
2176 if (N->getOperand(0).getValueType() == MVT::i64) {
2177 SDOperand Val = N->getOperand(0).getOperand(0);
2178 if (Val.getValueType() == MVT::f32) {
2179 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2180 DCI.AddToWorklist(Val.Val);
2183 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2184 DCI.AddToWorklist(Val.Val);
2185 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2186 DCI.AddToWorklist(Val.Val);
2187 if (N->getValueType(0) == MVT::f32) {
2188 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2189 DCI.AddToWorklist(Val.Val);
2192 } else if (N->getOperand(0).getValueType() == MVT::i32) {
2193 // If the intermediate type is i32, we can avoid the load/store here
2200 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2201 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2202 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2203 N->getOperand(1).getValueType() == MVT::i32) {
2204 SDOperand Val = N->getOperand(1).getOperand(0);
2205 if (Val.getValueType() == MVT::f32) {
2206 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2207 DCI.AddToWorklist(Val.Val);
2209 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2210 DCI.AddToWorklist(Val.Val);
2212 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2213 N->getOperand(2), N->getOperand(3));
2214 DCI.AddToWorklist(Val.Val);
2218 case PPCISD::VCMP: {
2219 // If a VCMPo node already exists with exactly the same operands as this
2220 // node, use its result instead of this node (VCMPo computes both a CR6 and
2221 // a normal output).
2223 if (!N->getOperand(0).hasOneUse() &&
2224 !N->getOperand(1).hasOneUse() &&
2225 !N->getOperand(2).hasOneUse()) {
2227 // Scan all of the users of the LHS, looking for VCMPo's that match.
2228 SDNode *VCMPoNode = 0;
2230 SDNode *LHSN = N->getOperand(0).Val;
2231 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2233 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2234 (*UI)->getOperand(1) == N->getOperand(1) &&
2235 (*UI)->getOperand(2) == N->getOperand(2) &&
2236 (*UI)->getOperand(0) == N->getOperand(0)) {
2241 // If there is no VCMPo node, or if the flag value has a single use, don't
2243 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2246 // Look at the (necessarily single) use of the flag value. If it has a
2247 // chain, this transformation is more complex. Note that multiple things
2248 // could use the value result, which we should ignore.
2249 SDNode *FlagUser = 0;
2250 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2251 FlagUser == 0; ++UI) {
2252 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2254 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2255 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2262 // If the user is a MFCR instruction, we know this is safe. Otherwise we
2263 // give up for right now.
2264 if (FlagUser->getOpcode() == PPCISD::MFCR)
2265 return SDOperand(VCMPoNode, 0);
2270 // If this is a branch on an altivec predicate comparison, lower this so
2271 // that we don't have to do a MFCR: instead, branch directly on CR6. This
2272 // lowering is done pre-legalize, because the legalizer lowers the predicate
2273 // compare down to code that is difficult to reassemble.
2274 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2275 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2279 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2280 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2281 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2282 assert(isDot && "Can't compare against a vector result!");
2284 // If this is a comparison against something other than 0/1, then we know
2285 // that the condition is never/always true.
2286 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2287 if (Val != 0 && Val != 1) {
2288 if (CC == ISD::SETEQ) // Cond never true, remove branch.
2289 return N->getOperand(0);
2290 // Always !=, turn it into an unconditional branch.
2291 return DAG.getNode(ISD::BR, MVT::Other,
2292 N->getOperand(0), N->getOperand(4));
2295 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2297 // Create the PPCISD altivec 'dot' comparison node.
2298 std::vector<SDOperand> Ops;
2299 std::vector<MVT::ValueType> VTs;
2300 Ops.push_back(LHS.getOperand(2)); // LHS of compare
2301 Ops.push_back(LHS.getOperand(3)); // RHS of compare
2302 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
2303 VTs.push_back(LHS.getOperand(2).getValueType());
2304 VTs.push_back(MVT::Flag);
2305 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
2307 // Unpack the result based on how the target uses it.
2309 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2310 default: // Can't happen, don't crash on invalid number though.
2311 case 0: // Branch on the value of the EQ bit of CR6.
2312 CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
2314 case 1: // Branch on the inverted value of the EQ bit of CR6.
2315 CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
2317 case 2: // Branch on the value of the LT bit of CR6.
2318 CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
2320 case 3: // Branch on the inverted value of the LT bit of CR6.
2321 CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
2325 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2326 DAG.getRegister(PPC::CR6, MVT::i32),
2327 DAG.getConstant(CompOpc, MVT::i32),
2328 N->getOperand(4), CompNode.getValue(1));
2337 //===----------------------------------------------------------------------===//
2338 // Inline Assembly Support
2339 //===----------------------------------------------------------------------===//
2341 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2343 uint64_t &KnownZero,
2345 unsigned Depth) const {
2348 switch (Op.getOpcode()) {
2350 case ISD::INTRINSIC_WO_CHAIN: {
2351 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2353 case Intrinsic::ppc_altivec_vcmpbfp_p:
2354 case Intrinsic::ppc_altivec_vcmpeqfp_p:
2355 case Intrinsic::ppc_altivec_vcmpequb_p:
2356 case Intrinsic::ppc_altivec_vcmpequh_p:
2357 case Intrinsic::ppc_altivec_vcmpequw_p:
2358 case Intrinsic::ppc_altivec_vcmpgefp_p:
2359 case Intrinsic::ppc_altivec_vcmpgtfp_p:
2360 case Intrinsic::ppc_altivec_vcmpgtsb_p:
2361 case Intrinsic::ppc_altivec_vcmpgtsh_p:
2362 case Intrinsic::ppc_altivec_vcmpgtsw_p:
2363 case Intrinsic::ppc_altivec_vcmpgtub_p:
2364 case Intrinsic::ppc_altivec_vcmpgtuh_p:
2365 case Intrinsic::ppc_altivec_vcmpgtuw_p:
2366 KnownZero = ~1U; // All bits but the low one are known to be zero.
2374 /// getConstraintType - Given a constraint letter, return the type of
2375 /// constraint it is for this target.
2376 PPCTargetLowering::ConstraintType
2377 PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2378 switch (ConstraintLetter) {
2385 return C_RegisterClass;
2387 return TargetLowering::getConstraintType(ConstraintLetter);
2391 std::vector<unsigned> PPCTargetLowering::
2392 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2393 MVT::ValueType VT) const {
2394 if (Constraint.size() == 1) {
2395 switch (Constraint[0]) { // GCC RS6000 Constraint Letters
2396 default: break; // Unknown constriant letter
2398 return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2399 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2400 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2401 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2402 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2403 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2404 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2405 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2408 return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2409 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2410 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2411 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2412 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2413 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2414 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2415 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2418 return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2419 PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2420 PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2421 PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2422 PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2423 PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2424 PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2425 PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2428 return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2429 PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2430 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2431 PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2432 PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2433 PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2434 PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2435 PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2438 return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2439 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2444 return std::vector<unsigned>();
2447 // isOperandValidForConstraint
2448 bool PPCTargetLowering::
2449 isOperandValidForConstraint(SDOperand Op, char Letter) {
2460 if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate.
2461 unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2463 default: assert(0 && "Unknown constraint letter!");
2464 case 'I': // "I" is a signed 16-bit constant.
2465 return (short)Value == (int)Value;
2466 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
2467 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
2468 return (short)Value == 0;
2469 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
2470 return (Value >> 16) == 0;
2471 case 'M': // "M" is a constant that is greater than 31.
2473 case 'N': // "N" is a positive constant that is an exact power of two.
2474 return (int)Value > 0 && isPowerOf2_32(Value);
2475 case 'O': // "O" is the constant zero.
2477 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
2478 return (short)-Value == (int)-Value;
2484 // Handle standard constraint letters.
2485 return TargetLowering::isOperandValidForConstraint(Op, Letter);
2488 /// isLegalAddressImmediate - Return true if the integer value can be used
2489 /// as the offset of the target addressing mode.
2490 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2491 // PPC allows a sign-extended 16-bit immediate field.
2492 return (V > -(1 << 16) && V < (1 << 16)-1);