1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "PPCTargetMachine.h"
16 #include "PPCPerfectShuffle.h"
17 #include "llvm/ADT/VectorExtras.h"
18 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/SSARegMap.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Function.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Target/TargetOptions.h"
31 PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
32 : TargetLowering(TM) {
34 // Fold away setcc operations if possible.
35 setSetCCIsExpensive();
38 // Use _setjmp/_longjmp instead of setjmp/longjmp.
39 setUseUnderscoreSetJmpLongJmp(true);
41 // Set up the register classes.
42 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
46 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
47 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
49 // PowerPC has no intrinsics for these particular operations
50 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
51 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
52 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
58 // PowerPC has no SREM/UREM instructions
59 setOperationAction(ISD::SREM, MVT::i32, Expand);
60 setOperationAction(ISD::UREM, MVT::i32, Expand);
61 setOperationAction(ISD::SREM, MVT::i64, Expand);
62 setOperationAction(ISD::UREM, MVT::i64, Expand);
64 // We don't support sin/cos/sqrt/fmod
65 setOperationAction(ISD::FSIN , MVT::f64, Expand);
66 setOperationAction(ISD::FCOS , MVT::f64, Expand);
67 setOperationAction(ISD::FREM , MVT::f64, Expand);
68 setOperationAction(ISD::FSIN , MVT::f32, Expand);
69 setOperationAction(ISD::FCOS , MVT::f32, Expand);
70 setOperationAction(ISD::FREM , MVT::f32, Expand);
72 // If we're enabling GP optimizations, use hardware square root
73 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
74 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
75 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
78 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
79 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
81 // PowerPC does not have BSWAP, CTPOP or CTTZ
82 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
83 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
84 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
86 // PowerPC does not have ROTR
87 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
89 // PowerPC does not have Select
90 setOperationAction(ISD::SELECT, MVT::i32, Expand);
91 setOperationAction(ISD::SELECT, MVT::f32, Expand);
92 setOperationAction(ISD::SELECT, MVT::f64, Expand);
94 // PowerPC wants to turn select_cc of FP into fsel when possible.
95 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
96 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
98 // PowerPC wants to optimize integer setcc a bit
99 setOperationAction(ISD::SETCC, MVT::i32, Custom);
101 // PowerPC does not have BRCOND which requires SetCC
102 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
104 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
105 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
107 // PowerPC does not have [U|S]INT_TO_FP
108 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
109 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
111 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
112 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
114 // PowerPC does not have truncstore for i1.
115 setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
117 // We cannot sextinreg(i1). Expand to shifts.
118 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
121 // Support label based line numbers.
122 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
123 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
124 // FIXME - use subtarget debug flags
125 if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
126 setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
128 // We want to legalize GlobalAddress and ConstantPool nodes into the
129 // appropriate instructions to materialize the address.
130 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
131 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
132 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
133 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
134 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
135 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
137 // RET must be custom lowered, to meet ABI requirements
138 setOperationAction(ISD::RET , MVT::Other, Custom);
140 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
141 setOperationAction(ISD::VASTART , MVT::Other, Custom);
143 // Use the default implementation.
144 setOperationAction(ISD::VAARG , MVT::Other, Expand);
145 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
146 setOperationAction(ISD::VAEND , MVT::Other, Expand);
147 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
148 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
149 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
151 // We want to custom lower some of our intrinsics.
152 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
154 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
155 // They also have instructions for converting between i64 and fp.
156 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
157 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
159 // FIXME: disable this lowered code. This generates 64-bit register values,
160 // and we don't model the fact that the top part is clobbered by calls. We
161 // need to flag these together so that the value isn't live across a call.
162 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
164 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
165 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
167 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
168 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
171 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
172 // 64 bit PowerPC implementations can support i64 types directly
173 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
174 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
175 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
177 // 32 bit PowerPC wants to expand i64 shifts itself.
178 setOperationAction(ISD::SHL, MVT::i64, Custom);
179 setOperationAction(ISD::SRL, MVT::i64, Custom);
180 setOperationAction(ISD::SRA, MVT::i64, Custom);
183 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
184 // First set operation action for all vector types to expand. Then we
185 // will selectively turn on ones that can be effectively codegen'd.
186 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
187 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
188 // add/sub are legal for all supported vector VT's.
189 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
190 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
192 // We promote all shuffles to v16i8.
193 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
194 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
196 // We promote all non-typed operations to v4i32.
197 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
198 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
199 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
200 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
201 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
202 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
203 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
204 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
205 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
206 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
207 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
208 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
210 // No other operations are legal.
211 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
212 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
213 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
214 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
215 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
216 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
217 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
218 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
219 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
221 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
224 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
225 // with merges, splats, etc.
226 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
228 setOperationAction(ISD::AND , MVT::v4i32, Legal);
229 setOperationAction(ISD::OR , MVT::v4i32, Legal);
230 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
231 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
232 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
233 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
235 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
236 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
237 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
238 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
240 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
241 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
242 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
243 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
245 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
246 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
248 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
249 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
250 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
251 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
254 setSetCCResultType(MVT::i32);
255 setShiftAmountType(MVT::i32);
256 setSetCCResultContents(ZeroOrOneSetCCResult);
257 setStackPointerRegisterToSaveRestore(PPC::R1);
259 // We have target-specific dag combine patterns for the following nodes:
260 setTargetDAGCombine(ISD::SINT_TO_FP);
261 setTargetDAGCombine(ISD::STORE);
262 setTargetDAGCombine(ISD::BR_CC);
264 computeRegisterProperties();
267 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
270 case PPCISD::FSEL: return "PPCISD::FSEL";
271 case PPCISD::FCFID: return "PPCISD::FCFID";
272 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
273 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
274 case PPCISD::STFIWX: return "PPCISD::STFIWX";
275 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
276 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
277 case PPCISD::VPERM: return "PPCISD::VPERM";
278 case PPCISD::Hi: return "PPCISD::Hi";
279 case PPCISD::Lo: return "PPCISD::Lo";
280 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
281 case PPCISD::SRL: return "PPCISD::SRL";
282 case PPCISD::SRA: return "PPCISD::SRA";
283 case PPCISD::SHL: return "PPCISD::SHL";
284 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
285 case PPCISD::STD_32: return "PPCISD::STD_32";
286 case PPCISD::CALL: return "PPCISD::CALL";
287 case PPCISD::MTCTR: return "PPCISD::MTCTR";
288 case PPCISD::BCTRL: return "PPCISD::BCTRL";
289 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
290 case PPCISD::MFCR: return "PPCISD::MFCR";
291 case PPCISD::VCMP: return "PPCISD::VCMP";
292 case PPCISD::VCMPo: return "PPCISD::VCMPo";
293 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
297 //===----------------------------------------------------------------------===//
298 // Node matching predicates, for use by the tblgen matching code.
299 //===----------------------------------------------------------------------===//
301 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
302 static bool isFloatingPointZero(SDOperand Op) {
303 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
304 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
305 else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
306 // Maybe this has already been legalized into the constant pool?
307 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
308 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
309 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
314 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
315 /// true if Op is undef or if it matches the specified value.
316 static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
317 return Op.getOpcode() == ISD::UNDEF ||
318 cast<ConstantSDNode>(Op)->getValue() == Val;
321 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
322 /// VPKUHUM instruction.
323 bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
325 for (unsigned i = 0; i != 16; ++i)
326 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
329 for (unsigned i = 0; i != 8; ++i)
330 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
331 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
337 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
338 /// VPKUWUM instruction.
339 bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
341 for (unsigned i = 0; i != 16; i += 2)
342 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
343 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
346 for (unsigned i = 0; i != 8; i += 2)
347 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
348 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
349 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
350 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
356 /// isVMerge - Common function, used to match vmrg* shuffles.
358 static bool isVMerge(SDNode *N, unsigned UnitSize,
359 unsigned LHSStart, unsigned RHSStart) {
360 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
361 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
362 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
363 "Unsupported merge size!");
365 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
366 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
367 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
368 LHSStart+j+i*UnitSize) ||
369 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
370 RHSStart+j+i*UnitSize))
376 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
377 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
378 bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
380 return isVMerge(N, UnitSize, 8, 24);
381 return isVMerge(N, UnitSize, 8, 8);
384 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
385 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
386 bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
388 return isVMerge(N, UnitSize, 0, 16);
389 return isVMerge(N, UnitSize, 0, 0);
393 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
394 /// amount, otherwise return -1.
395 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
396 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
397 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
398 // Find the first non-undef value in the shuffle mask.
400 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
403 if (i == 16) return -1; // all undef.
405 // Otherwise, check to see if the rest of the elements are consequtively
406 // numbered from this value.
407 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
408 if (ShiftAmt < i) return -1;
412 // Check the rest of the elements to see if they are consequtive.
413 for (++i; i != 16; ++i)
414 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
417 // Check the rest of the elements to see if they are consequtive.
418 for (++i; i != 16; ++i)
419 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
426 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
427 /// specifies a splat of a single element that is suitable for input to
428 /// VSPLTB/VSPLTH/VSPLTW.
429 bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
430 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
431 N->getNumOperands() == 16 &&
432 (EltSize == 1 || EltSize == 2 || EltSize == 4));
434 // This is a splat operation if each element of the permute is the same, and
435 // if the value doesn't reference the second vector.
436 unsigned ElementBase = 0;
437 SDOperand Elt = N->getOperand(0);
438 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
439 ElementBase = EltV->getValue();
441 return false; // FIXME: Handle UNDEF elements too!
443 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
446 // Check that they are consequtive.
447 for (unsigned i = 1; i != EltSize; ++i) {
448 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
449 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
453 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
454 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
455 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
456 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
457 "Invalid VECTOR_SHUFFLE mask!");
458 for (unsigned j = 0; j != EltSize; ++j)
459 if (N->getOperand(i+j) != N->getOperand(j))
466 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
467 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
468 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
469 assert(isSplatShuffleMask(N, EltSize));
470 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
473 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
474 /// by using a vspltis[bhw] instruction of the specified element size, return
475 /// the constant being splatted. The ByteSize field indicates the number of
476 /// bytes of each element [124] -> [bhw].
477 SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
478 SDOperand OpVal(0, 0);
480 // If ByteSize of the splat is bigger than the element size of the
481 // build_vector, then we have a case where we are checking for a splat where
482 // multiple elements of the buildvector are folded together into a single
483 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
484 unsigned EltSize = 16/N->getNumOperands();
485 if (EltSize < ByteSize) {
486 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
487 SDOperand UniquedVals[4];
488 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
490 // See if all of the elements in the buildvector agree across.
491 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
492 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
493 // If the element isn't a constant, bail fully out.
494 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
497 if (UniquedVals[i&(Multiple-1)].Val == 0)
498 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
499 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
500 return SDOperand(); // no match.
503 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
504 // either constant or undef values that are identical for each chunk. See
505 // if these chunks can form into a larger vspltis*.
507 // Check to see if all of the leading entries are either 0 or -1. If
508 // neither, then this won't fit into the immediate field.
509 bool LeadingZero = true;
510 bool LeadingOnes = true;
511 for (unsigned i = 0; i != Multiple-1; ++i) {
512 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
514 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
515 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
517 // Finally, check the least significant entry.
519 if (UniquedVals[Multiple-1].Val == 0)
520 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
521 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
523 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
526 if (UniquedVals[Multiple-1].Val == 0)
527 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
528 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
529 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
530 return DAG.getTargetConstant(Val, MVT::i32);
536 // Check to see if this buildvec has a single non-undef value in its elements.
537 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
538 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
540 OpVal = N->getOperand(i);
541 else if (OpVal != N->getOperand(i))
545 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
547 unsigned ValSizeInBytes = 0;
549 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
550 Value = CN->getValue();
551 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
552 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
553 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
554 Value = FloatToBits(CN->getValue());
558 // If the splat value is larger than the element value, then we can never do
559 // this splat. The only case that we could fit the replicated bits into our
560 // immediate field for would be zero, and we prefer to use vxor for it.
561 if (ValSizeInBytes < ByteSize) return SDOperand();
563 // If the element value is larger than the splat value, cut it in half and
564 // check to see if the two halves are equal. Continue doing this until we
565 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
566 while (ValSizeInBytes > ByteSize) {
567 ValSizeInBytes >>= 1;
569 // If the top half equals the bottom half, we're still ok.
570 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
571 (Value & ((1 << (8*ValSizeInBytes))-1)))
575 // Properly sign extend the value.
576 int ShAmt = (4-ByteSize)*8;
577 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
579 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
580 if (MaskVal == 0) return SDOperand();
582 // Finally, if this value fits in a 5 bit sext field, return it
583 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
584 return DAG.getTargetConstant(MaskVal, MVT::i32);
588 //===----------------------------------------------------------------------===//
589 // LowerOperation implementation
590 //===----------------------------------------------------------------------===//
592 static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
593 MVT::ValueType PtrVT = Op.getValueType();
594 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
595 Constant *C = CP->get();
596 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
597 SDOperand Zero = DAG.getConstant(0, PtrVT);
599 const TargetMachine &TM = DAG.getTarget();
601 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
602 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
604 // If this is a non-darwin platform, we don't support non-static relo models
606 if (TM.getRelocationModel() == Reloc::Static ||
607 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
608 // Generate non-pic code that has direct accesses to the constant pool.
609 // The address of the global is just (hi(&g)+lo(&g)).
610 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
613 if (TM.getRelocationModel() == Reloc::PIC) {
614 // With PIC, the first instruction is actually "GR+hi(&G)".
615 Hi = DAG.getNode(ISD::ADD, PtrVT,
616 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
619 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
623 static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
624 MVT::ValueType PtrVT = Op.getValueType();
625 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
626 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
627 SDOperand Zero = DAG.getConstant(0, PtrVT);
629 const TargetMachine &TM = DAG.getTarget();
631 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
632 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
634 // If this is a non-darwin platform, we don't support non-static relo models
636 if (TM.getRelocationModel() == Reloc::Static ||
637 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
638 // Generate non-pic code that has direct accesses to the constant pool.
639 // The address of the global is just (hi(&g)+lo(&g)).
640 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
643 if (TM.getRelocationModel() == Reloc::PIC) {
644 // With PIC, the first instruction is actually "GR+hi(&G)".
645 Hi = DAG.getNode(ISD::ADD, PtrVT,
646 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
649 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
653 static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
654 MVT::ValueType PtrVT = Op.getValueType();
655 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
656 GlobalValue *GV = GSDN->getGlobal();
657 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
658 SDOperand Zero = DAG.getConstant(0, PtrVT);
660 const TargetMachine &TM = DAG.getTarget();
662 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
663 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
665 // If this is a non-darwin platform, we don't support non-static relo models
667 if (TM.getRelocationModel() == Reloc::Static ||
668 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
669 // Generate non-pic code that has direct accesses to globals.
670 // The address of the global is just (hi(&g)+lo(&g)).
671 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
674 if (TM.getRelocationModel() == Reloc::PIC) {
675 // With PIC, the first instruction is actually "GR+hi(&G)".
676 Hi = DAG.getNode(ISD::ADD, PtrVT,
677 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
680 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
682 if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
683 (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
686 // If the global is weak or external, we have to go through the lazy
688 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
691 static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
692 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
694 // If we're comparing for equality to zero, expose the fact that this is
695 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
696 // fold the new nodes.
697 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
698 if (C->isNullValue() && CC == ISD::SETEQ) {
699 MVT::ValueType VT = Op.getOperand(0).getValueType();
700 SDOperand Zext = Op.getOperand(0);
703 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
705 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
706 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
707 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
708 DAG.getConstant(Log2b, MVT::i32));
709 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
711 // Leave comparisons against 0 and -1 alone for now, since they're usually
712 // optimized. FIXME: revisit this when we can custom lower all setcc
714 if (C->isAllOnesValue() || C->isNullValue())
718 // If we have an integer seteq/setne, turn it into a compare against zero
719 // by subtracting the rhs from the lhs, which is faster than setting a
720 // condition register, reading it back out, and masking the correct bit.
721 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
722 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
723 MVT::ValueType VT = Op.getValueType();
724 SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
726 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
731 static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
732 unsigned VarArgsFrameIndex) {
733 // vastart just stores the address of the VarArgsFrameIndex slot into the
734 // memory location argument.
735 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
736 return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
737 Op.getOperand(1), Op.getOperand(2));
740 static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
741 int &VarArgsFrameIndex) {
742 // TODO: add description of PPC stack frame format, or at least some docs.
744 MachineFunction &MF = DAG.getMachineFunction();
745 MachineFrameInfo *MFI = MF.getFrameInfo();
746 SSARegMap *RegMap = MF.getSSARegMap();
747 std::vector<SDOperand> ArgValues;
748 SDOperand Root = Op.getOperand(0);
750 unsigned ArgOffset = 24;
751 const unsigned Num_GPR_Regs = 8;
752 const unsigned Num_FPR_Regs = 13;
753 const unsigned Num_VR_Regs = 12;
754 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
756 static const unsigned GPR_32[] = { // 32-bit registers.
757 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
758 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
760 static const unsigned GPR_64[] = { // 64-bit registers.
761 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
762 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
764 static const unsigned FPR[] = {
765 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
766 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
768 static const unsigned VR[] = {
769 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
770 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
773 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
774 bool isPPC64 = PtrVT == MVT::i64;
775 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
777 // Add DAG nodes to load the arguments or copy them out of registers. On
778 // entry to a function on PPC, the arguments start at offset 24, although the
779 // first ones are often in registers.
780 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
782 bool needsLoad = false;
783 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
784 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
786 unsigned CurArgOffset = ArgOffset;
788 default: assert(0 && "Unhandled argument type!");
790 // All int arguments reserve stack space.
791 ArgOffset += isPPC64 ? 8 : 4;
793 if (GPR_idx != Num_GPR_Regs) {
794 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
795 MF.addLiveIn(GPR[GPR_idx], VReg);
796 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
802 case MVT::i64: // PPC64
803 // All int arguments reserve stack space.
806 if (GPR_idx != Num_GPR_Regs) {
807 unsigned VReg = RegMap->createVirtualRegister(&PPC::G8RCRegClass);
808 MF.addLiveIn(GPR[GPR_idx], VReg);
809 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
817 // All FP arguments reserve stack space.
818 ArgOffset += ObjSize;
820 // Every 4 bytes of argument space consumes one of the GPRs available for
822 if (GPR_idx != Num_GPR_Regs) {
824 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs)
827 if (FPR_idx != Num_FPR_Regs) {
829 if (ObjectVT == MVT::f32)
830 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
832 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
833 MF.addLiveIn(FPR[FPR_idx], VReg);
834 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
844 // Note that vector arguments in registers don't reserve stack space.
845 if (VR_idx != Num_VR_Regs) {
846 unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
847 MF.addLiveIn(VR[VR_idx], VReg);
848 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
851 // This should be simple, but requires getting 16-byte aligned stack
853 assert(0 && "Loading VR argument not implemented yet!");
859 // We need to load the argument to a virtual register if we determined above
860 // that we ran out of physical registers of the appropriate type
862 // If the argument is actually used, emit a load from the right stack
864 if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
865 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
866 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
867 ArgVal = DAG.getLoad(ObjectVT, Root, FIN,
868 DAG.getSrcValue(NULL));
870 // Don't emit a dead load.
871 ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
875 ArgValues.push_back(ArgVal);
878 // If the function takes variable number of arguments, make a frame index for
879 // the start of the first vararg value... for expansion of llvm.va_start.
880 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
882 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
884 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
885 // If this function is vararg, store any remaining integer argument regs
886 // to their spots on the stack so that they may be loaded by deferencing the
887 // result of va_next.
888 std::vector<SDOperand> MemOps;
889 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
890 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
891 MF.addLiveIn(GPR[GPR_idx], VReg);
892 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
893 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
894 Val, FIN, DAG.getSrcValue(NULL));
895 MemOps.push_back(Store);
896 // Increment the address by four for the next argument to store
897 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
898 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
901 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
904 ArgValues.push_back(Root);
906 // Return the new list of results.
907 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
908 Op.Val->value_end());
909 return DAG.getNode(ISD::MERGE_VALUES, RetVT, ArgValues);
912 /// isCallCompatibleAddress - Return the immediate to use if the specified
913 /// 32-bit value is representable in the immediate field of a BxA instruction.
914 static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
915 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
918 int Addr = C->getValue();
919 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
920 (Addr << 6 >> 6) != Addr)
921 return 0; // Top 6 bits have to be sext of immediate.
923 return DAG.getConstant((int)C->getValue() >> 2, MVT::i32).Val;
927 static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG) {
928 SDOperand Chain = Op.getOperand(0);
929 unsigned CallingConv= cast<ConstantSDNode>(Op.getOperand(1))->getValue();
930 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
931 bool isTailCall = cast<ConstantSDNode>(Op.getOperand(3))->getValue() != 0;
932 SDOperand Callee = Op.getOperand(4);
933 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
935 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
936 bool isPPC64 = PtrVT == MVT::i64;
937 unsigned PtrByteSize = isPPC64 ? 8 : 4;
940 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
941 // SelectExpr to use to put the arguments in the appropriate registers.
942 std::vector<SDOperand> args_to_use;
944 // Count how many bytes are to be pushed on the stack, including the linkage
945 // area, and parameter passing area. We start with 24/48 bytes, which is
946 // prereserved space for [SP][CR][LR][3 x unused].
947 unsigned NumBytes = 6*PtrByteSize;
949 // Add up all the space actually used.
950 for (unsigned i = 0; i != NumOps; ++i)
951 NumBytes += MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
953 // The prolog code of the callee may store up to 8 GPR argument registers to
954 // the stack, allowing va_start to index over them in memory if its varargs.
955 // Because we cannot tell if this is needed on the caller side, we have to
956 // conservatively assume that it is needed. As such, make sure we have at
957 // least enough stack space for the caller to store the 8 GPRs.
958 if (NumBytes < 6*PtrByteSize+8*PtrByteSize)
959 NumBytes = 6*PtrByteSize+8*PtrByteSize;
961 // Adjust the stack pointer for the new arguments...
962 // These operations are automatically eliminated by the prolog/epilog pass
963 Chain = DAG.getCALLSEQ_START(Chain,
964 DAG.getConstant(NumBytes, PtrVT));
966 // Set up a copy of the stack pointer for use loading and storing any
967 // arguments that may not fit in the registers available for argument
971 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
973 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
975 // Figure out which arguments are going to go in registers, and which in
976 // memory. Also, if this is a vararg function, floating point operations
977 // must be stored to our stack, and loaded into integer regs as well, if
978 // any integer regs are available for argument passing.
979 unsigned ArgOffset = 6*PtrByteSize;
980 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
981 static const unsigned GPR_32[] = { // 32-bit registers.
982 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
983 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
985 static const unsigned GPR_64[] = { // 64-bit registers.
986 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
987 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
989 static const unsigned FPR[] = {
990 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
991 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
993 static const unsigned VR[] = {
994 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
995 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
997 const unsigned NumGPRs = sizeof(GPR_32)/sizeof(GPR_32[0]);
998 const unsigned NumFPRs = sizeof(FPR)/sizeof(FPR[0]);
999 const unsigned NumVRs = sizeof( VR)/sizeof( VR[0]);
1001 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1003 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1004 std::vector<SDOperand> MemOpChains;
1005 for (unsigned i = 0; i != NumOps; ++i) {
1006 SDOperand Arg = Op.getOperand(5+2*i);
1008 // PtrOff will be used to store the current argument to the stack if a
1009 // register cannot be found for it.
1010 SDOperand PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1011 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1013 // On PPC64, promote integers to 64-bit values.
1014 if (isPPC64 && Arg.getValueType() == MVT::i32) {
1015 unsigned ExtOp = ISD::ZERO_EXTEND;
1016 if (cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue())
1017 ExtOp = ISD::SIGN_EXTEND;
1018 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1021 switch (Arg.getValueType()) {
1022 default: assert(0 && "Unexpected ValueType for argument!");
1025 if (GPR_idx != NumGPRs) {
1026 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1028 MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1029 Arg, PtrOff, DAG.getSrcValue(NULL)));
1031 ArgOffset += PtrByteSize;
1035 if (FPR_idx != NumFPRs) {
1036 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1039 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
1041 DAG.getSrcValue(NULL));
1042 MemOpChains.push_back(Store);
1044 // Float varargs are always shadowed in available integer registers
1045 if (GPR_idx != NumGPRs) {
1046 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff,
1047 DAG.getSrcValue(NULL));
1048 MemOpChains.push_back(Load.getValue(1));
1049 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1051 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64) {
1052 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1053 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1054 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff,
1055 DAG.getSrcValue(NULL));
1056 MemOpChains.push_back(Load.getValue(1));
1057 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Load));
1060 // If we have any FPRs remaining, we may also have GPRs remaining.
1061 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1063 if (GPR_idx != NumGPRs)
1065 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64)
1069 MemOpChains.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1070 Arg, PtrOff, DAG.getSrcValue(NULL)));
1075 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1081 assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1082 assert(VR_idx != NumVRs &&
1083 "Don't support passing more than 12 vector args yet!");
1084 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1088 if (!MemOpChains.empty())
1089 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOpChains);
1091 // Build a sequence of copy-to-reg nodes chained together with token chain
1092 // and flag operands which copy the outgoing args into the appropriate regs.
1094 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1095 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1097 InFlag = Chain.getValue(1);
1100 std::vector<MVT::ValueType> NodeTys;
1101 NodeTys.push_back(MVT::Other); // Returns a chain
1102 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
1104 std::vector<SDOperand> Ops;
1105 unsigned CallOpc = PPCISD::CALL;
1107 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1108 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1109 // node so that legalize doesn't hack it.
1110 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1111 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1112 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1113 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1114 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1115 // If this is an absolute destination address, use the munged value.
1116 Callee = SDOperand(Dest, 0);
1118 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
1119 // to do the call, we can't use PPCISD::CALL.
1120 Ops.push_back(Chain);
1121 Ops.push_back(Callee);
1124 Ops.push_back(InFlag);
1125 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, Ops);
1126 InFlag = Chain.getValue(1);
1128 // Copy the callee address into R12 on darwin.
1129 Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1130 InFlag = Chain.getValue(1);
1133 NodeTys.push_back(MVT::Other);
1134 NodeTys.push_back(MVT::Flag);
1136 Ops.push_back(Chain);
1137 CallOpc = PPCISD::BCTRL;
1141 // If this is a direct call, pass the chain and the callee.
1143 Ops.push_back(Chain);
1144 Ops.push_back(Callee);
1147 // Add argument registers to the end of the list so that they are known live
1149 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1150 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1151 RegsToPass[i].second.getValueType()));
1154 Ops.push_back(InFlag);
1155 Chain = DAG.getNode(CallOpc, NodeTys, Ops);
1156 InFlag = Chain.getValue(1);
1158 std::vector<SDOperand> ResultVals;
1161 // If the call has results, copy the values out of the ret val registers.
1162 switch (Op.Val->getValueType(0)) {
1163 default: assert(0 && "Unexpected ret value!");
1164 case MVT::Other: break;
1166 if (Op.Val->getValueType(1) == MVT::i32) {
1167 Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32, InFlag).getValue(1);
1168 ResultVals.push_back(Chain.getValue(0));
1169 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32,
1170 Chain.getValue(2)).getValue(1);
1171 ResultVals.push_back(Chain.getValue(0));
1172 NodeTys.push_back(MVT::i32);
1174 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1175 ResultVals.push_back(Chain.getValue(0));
1177 NodeTys.push_back(MVT::i32);
1180 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1181 ResultVals.push_back(Chain.getValue(0));
1182 NodeTys.push_back(MVT::i64);
1186 Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1187 InFlag).getValue(1);
1188 ResultVals.push_back(Chain.getValue(0));
1189 NodeTys.push_back(Op.Val->getValueType(0));
1195 Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1196 InFlag).getValue(1);
1197 ResultVals.push_back(Chain.getValue(0));
1198 NodeTys.push_back(Op.Val->getValueType(0));
1202 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
1203 DAG.getConstant(NumBytes, PtrVT));
1204 NodeTys.push_back(MVT::Other);
1206 // If the function returns void, just return the chain.
1207 if (ResultVals.empty())
1210 // Otherwise, merge everything together with a MERGE_VALUES node.
1211 ResultVals.push_back(Chain);
1212 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys, ResultVals);
1213 return Res.getValue(Op.ResNo);
1216 static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
1218 switch(Op.getNumOperands()) {
1220 assert(0 && "Do not know how to return this many arguments!");
1223 return SDOperand(); // ret void is legal
1225 MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
1227 if (ArgVT == MVT::i32) {
1229 } else if (ArgVT == MVT::i64) {
1231 } else if (MVT::isFloatingPoint(ArgVT)) {
1234 assert(MVT::isVector(ArgVT));
1238 Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
1241 // If we haven't noted the R3/F1 are live out, do so now.
1242 if (DAG.getMachineFunction().liveout_empty())
1243 DAG.getMachineFunction().addLiveOut(ArgReg);
1247 Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(3),
1249 Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
1250 // If we haven't noted the R3+R4 are live out, do so now.
1251 if (DAG.getMachineFunction().liveout_empty()) {
1252 DAG.getMachineFunction().addLiveOut(PPC::R3);
1253 DAG.getMachineFunction().addLiveOut(PPC::R4);
1257 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
1260 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1262 static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
1263 // Not FP? Not a fsel.
1264 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
1265 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
1268 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
1270 // Cannot handle SETEQ/SETNE.
1271 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
1273 MVT::ValueType ResVT = Op.getValueType();
1274 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
1275 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1276 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
1278 // If the RHS of the comparison is a 0.0, we don't need to do the
1279 // subtraction at all.
1280 if (isFloatingPointZero(RHS))
1282 default: break; // SETUO etc aren't handled by fsel.
1286 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
1290 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
1291 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1292 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
1296 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
1300 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
1301 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
1302 return DAG.getNode(PPCISD::FSEL, ResVT,
1303 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
1308 default: break; // SETUO etc aren't handled by fsel.
1312 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1313 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1314 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1315 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1319 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
1320 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1321 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1322 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1326 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1327 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1328 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1329 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1333 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1334 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1335 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1336 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1341 static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1342 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1343 SDOperand Src = Op.getOperand(0);
1344 if (Src.getValueType() == MVT::f32)
1345 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1348 switch (Op.getValueType()) {
1349 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1351 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1354 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1358 // Convert the FP value to an int value through memory.
1359 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1360 if (Op.getValueType() == MVT::i32)
1361 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1365 static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1366 if (Op.getOperand(0).getValueType() == MVT::i64) {
1367 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1368 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1369 if (Op.getValueType() == MVT::f32)
1370 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1374 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1375 "Unhandled SINT_TO_FP type in custom expander!");
1376 // Since we only generate this in 64-bit mode, we can take advantage of
1377 // 64-bit registers. In particular, sign extend the input value into the
1378 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1379 // then lfd it and fcfid it.
1380 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1381 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1382 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1384 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1387 // STD the extended value into the stack slot.
1388 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1389 DAG.getEntryNode(), Ext64, FIdx,
1390 DAG.getSrcValue(NULL));
1391 // Load the value as a double.
1392 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
1394 // FCFID it and return it.
1395 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1396 if (Op.getValueType() == MVT::f32)
1397 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1401 static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG,
1402 MVT::ValueType PtrVT) {
1403 assert(Op.getValueType() == MVT::i64 &&
1404 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1405 // The generic code does a fine job expanding shift by a constant.
1406 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1408 // Otherwise, expand into a bunch of logical ops. Note that these ops
1409 // depend on the PPC behavior for oversized shift amounts.
1410 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1411 DAG.getConstant(0, PtrVT));
1412 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1413 DAG.getConstant(1, PtrVT));
1414 SDOperand Amt = Op.getOperand(1);
1416 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1417 DAG.getConstant(32, MVT::i32), Amt);
1418 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1419 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1420 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1421 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1422 DAG.getConstant(-32U, MVT::i32));
1423 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1424 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1425 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1426 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1429 static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG,
1430 MVT::ValueType PtrVT) {
1431 assert(Op.getValueType() == MVT::i64 &&
1432 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1433 // The generic code does a fine job expanding shift by a constant.
1434 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1436 // Otherwise, expand into a bunch of logical ops. Note that these ops
1437 // depend on the PPC behavior for oversized shift amounts.
1438 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1439 DAG.getConstant(0, PtrVT));
1440 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1441 DAG.getConstant(1, PtrVT));
1442 SDOperand Amt = Op.getOperand(1);
1444 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1445 DAG.getConstant(32, MVT::i32), Amt);
1446 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1447 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1448 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1449 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1450 DAG.getConstant(-32U, MVT::i32));
1451 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1452 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1453 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1454 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1457 static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG,
1458 MVT::ValueType PtrVT) {
1459 assert(Op.getValueType() == MVT::i64 &&
1460 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1461 // The generic code does a fine job expanding shift by a constant.
1462 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1464 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1465 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1466 DAG.getConstant(0, PtrVT));
1467 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1468 DAG.getConstant(1, PtrVT));
1469 SDOperand Amt = Op.getOperand(1);
1471 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1472 DAG.getConstant(32, MVT::i32), Amt);
1473 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1474 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1475 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1476 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1477 DAG.getConstant(-32U, MVT::i32));
1478 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1479 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1480 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1481 Tmp4, Tmp6, ISD::SETLE);
1482 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1485 //===----------------------------------------------------------------------===//
1486 // Vector related lowering.
1489 // If this is a vector of constants or undefs, get the bits. A bit in
1490 // UndefBits is set if the corresponding element of the vector is an
1491 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1492 // zero. Return true if this is not an array of constants, false if it is.
1494 static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1495 uint64_t UndefBits[2]) {
1496 // Start with zero'd results.
1497 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1499 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1500 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1501 SDOperand OpVal = BV->getOperand(i);
1503 unsigned PartNo = i >= e/2; // In the upper 128 bits?
1504 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
1506 uint64_t EltBits = 0;
1507 if (OpVal.getOpcode() == ISD::UNDEF) {
1508 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1509 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1511 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1512 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1513 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1514 assert(CN->getValueType(0) == MVT::f32 &&
1515 "Only one legal FP vector type!");
1516 EltBits = FloatToBits(CN->getValue());
1518 // Nonconstant element.
1522 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1525 //printf("%llx %llx %llx %llx\n",
1526 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1530 // If this is a splat (repetition) of a value across the whole vector, return
1531 // the smallest size that splats it. For example, "0x01010101010101..." is a
1532 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1533 // SplatSize = 1 byte.
1534 static bool isConstantSplat(const uint64_t Bits128[2],
1535 const uint64_t Undef128[2],
1536 unsigned &SplatBits, unsigned &SplatUndef,
1537 unsigned &SplatSize) {
1539 // Don't let undefs prevent splats from matching. See if the top 64-bits are
1540 // the same as the lower 64-bits, ignoring undefs.
1541 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1542 return false; // Can't be a splat if two pieces don't match.
1544 uint64_t Bits64 = Bits128[0] | Bits128[1];
1545 uint64_t Undef64 = Undef128[0] & Undef128[1];
1547 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1549 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1550 return false; // Can't be a splat if two pieces don't match.
1552 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1553 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1555 // If the top 16-bits are different than the lower 16-bits, ignoring
1556 // undefs, we have an i32 splat.
1557 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1559 SplatUndef = Undef32;
1564 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
1565 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1567 // If the top 8-bits are different than the lower 8-bits, ignoring
1568 // undefs, we have an i16 splat.
1569 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1571 SplatUndef = Undef16;
1576 // Otherwise, we have an 8-bit splat.
1577 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
1578 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1583 /// BuildSplatI - Build a canonical splati of Val with an element size of
1584 /// SplatSize. Cast the result to VT.
1585 static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1586 SelectionDAG &DAG) {
1587 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1589 // Force vspltis[hw] -1 to vspltisb -1.
1590 if (Val == -1) SplatSize = 1;
1592 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1593 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1595 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1597 // Build a canonical splat for this value.
1598 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1599 std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
1600 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
1601 return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1604 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
1605 /// specified intrinsic ID.
1606 static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1608 MVT::ValueType DestVT = MVT::Other) {
1609 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1610 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1611 DAG.getConstant(IID, MVT::i32), LHS, RHS);
1614 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1615 /// specified intrinsic ID.
1616 static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1617 SDOperand Op2, SelectionDAG &DAG,
1618 MVT::ValueType DestVT = MVT::Other) {
1619 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1620 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1621 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1625 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1626 /// amount. The result has the specified value type.
1627 static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1628 MVT::ValueType VT, SelectionDAG &DAG) {
1629 // Force LHS/RHS to be the right type.
1630 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1631 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1633 std::vector<SDOperand> Ops;
1634 for (unsigned i = 0; i != 16; ++i)
1635 Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
1636 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1637 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1638 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1641 // If this is a case we can't handle, return null and let the default
1642 // expansion code take care of it. If we CAN select this case, and if it
1643 // selects to a single instruction, return Op. Otherwise, if we can codegen
1644 // this case more efficiently than a constant pool load, lower it to the
1645 // sequence of ops that should be used.
1646 static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1647 // If this is a vector of constants or undefs, get the bits. A bit in
1648 // UndefBits is set if the corresponding element of the vector is an
1649 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1651 uint64_t VectorBits[2];
1652 uint64_t UndefBits[2];
1653 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1654 return SDOperand(); // Not a constant vector.
1656 // If this is a splat (repetition) of a value across the whole vector, return
1657 // the smallest size that splats it. For example, "0x01010101010101..." is a
1658 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1659 // SplatSize = 1 byte.
1660 unsigned SplatBits, SplatUndef, SplatSize;
1661 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1662 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1664 // First, handle single instruction cases.
1667 if (SplatBits == 0) {
1668 // Canonicalize all zero vectors to be v4i32.
1669 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1670 SDOperand Z = DAG.getConstant(0, MVT::i32);
1671 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1672 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1677 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1678 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
1679 if (SextVal >= -16 && SextVal <= 15)
1680 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
1683 // Two instruction sequences.
1685 // If this value is in the range [-32,30] and is even, use:
1686 // tmp = VSPLTI[bhw], result = add tmp, tmp
1687 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1688 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1689 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1692 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
1693 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
1695 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
1696 // Make -1 and vspltisw -1:
1697 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
1699 // Make the VSLW intrinsic, computing 0x8000_0000.
1700 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
1703 // xor by OnesV to invert it.
1704 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1705 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1708 // Check to see if this is a wide variety of vsplti*, binop self cases.
1709 unsigned SplatBitSize = SplatSize*8;
1710 static const char SplatCsts[] = {
1711 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
1712 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
1714 for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
1715 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
1716 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
1717 int i = SplatCsts[idx];
1719 // Figure out what shift amount will be used by altivec if shifted by i in
1721 unsigned TypeShiftAmt = i & (SplatBitSize-1);
1723 // vsplti + shl self.
1724 if (SextVal == (i << (int)TypeShiftAmt)) {
1725 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1726 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1727 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
1728 Intrinsic::ppc_altivec_vslw
1730 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1733 // vsplti + srl self.
1734 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1735 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1736 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1737 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
1738 Intrinsic::ppc_altivec_vsrw
1740 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1743 // vsplti + sra self.
1744 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1745 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1746 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1747 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
1748 Intrinsic::ppc_altivec_vsraw
1750 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1753 // vsplti + rol self.
1754 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
1755 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
1756 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1757 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1758 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
1759 Intrinsic::ppc_altivec_vrlw
1761 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1764 // t = vsplti c, result = vsldoi t, t, 1
1765 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
1766 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1767 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
1769 // t = vsplti c, result = vsldoi t, t, 2
1770 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
1771 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1772 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
1774 // t = vsplti c, result = vsldoi t, t, 3
1775 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
1776 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1777 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
1781 // Three instruction sequences.
1783 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
1784 if (SextVal >= 0 && SextVal <= 31) {
1785 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
1786 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1787 return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
1789 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
1790 if (SextVal >= -31 && SextVal <= 0) {
1791 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
1792 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1793 return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
1800 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1801 /// the specified operations to build the shuffle.
1802 static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1803 SDOperand RHS, SelectionDAG &DAG) {
1804 unsigned OpNum = (PFEntry >> 26) & 0x0F;
1805 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
1806 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
1809 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
1821 if (OpNum == OP_COPY) {
1822 if (LHSID == (1*9+2)*9+3) return LHS;
1823 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1827 SDOperand OpLHS, OpRHS;
1828 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1829 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1831 unsigned ShufIdxs[16];
1833 default: assert(0 && "Unknown i32 permute!");
1835 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
1836 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1837 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
1838 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1841 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1842 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1843 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1844 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1847 for (unsigned i = 0; i != 16; ++i)
1848 ShufIdxs[i] = (i&3)+0;
1851 for (unsigned i = 0; i != 16; ++i)
1852 ShufIdxs[i] = (i&3)+4;
1855 for (unsigned i = 0; i != 16; ++i)
1856 ShufIdxs[i] = (i&3)+8;
1859 for (unsigned i = 0; i != 16; ++i)
1860 ShufIdxs[i] = (i&3)+12;
1863 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
1865 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
1867 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
1869 std::vector<SDOperand> Ops;
1870 for (unsigned i = 0; i != 16; ++i)
1871 Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
1873 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1874 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1877 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
1878 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
1879 /// return the code it can be lowered into. Worst case, it can always be
1880 /// lowered into a vperm.
1881 static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1882 SDOperand V1 = Op.getOperand(0);
1883 SDOperand V2 = Op.getOperand(1);
1884 SDOperand PermMask = Op.getOperand(2);
1886 // Cases that are handled by instructions that take permute immediates
1887 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1888 // selected by the instruction selector.
1889 if (V2.getOpcode() == ISD::UNDEF) {
1890 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1891 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1892 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1893 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1894 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1895 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1896 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1897 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1898 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1899 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1900 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1901 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1906 // Altivec has a variety of "shuffle immediates" that take two vector inputs
1907 // and produce a fixed permutation. If any of these match, do not lower to
1909 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1910 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1911 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1912 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1913 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1914 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1915 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1916 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1917 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1920 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
1921 // perfect shuffle table to emit an optimal matching sequence.
1922 unsigned PFIndexes[4];
1923 bool isFourElementShuffle = true;
1924 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1925 unsigned EltNo = 8; // Start out undef.
1926 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
1927 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1928 continue; // Undef, ignore it.
1930 unsigned ByteSource =
1931 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1932 if ((ByteSource & 3) != j) {
1933 isFourElementShuffle = false;
1938 EltNo = ByteSource/4;
1939 } else if (EltNo != ByteSource/4) {
1940 isFourElementShuffle = false;
1944 PFIndexes[i] = EltNo;
1947 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1948 // perfect shuffle vector to determine if it is cost effective to do this as
1949 // discrete instructions, or whether we should use a vperm.
1950 if (isFourElementShuffle) {
1951 // Compute the index in the perfect shuffle table.
1952 unsigned PFTableIndex =
1953 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1955 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1956 unsigned Cost = (PFEntry >> 30);
1958 // Determining when to avoid vperm is tricky. Many things affect the cost
1959 // of vperm, particularly how many times the perm mask needs to be computed.
1960 // For example, if the perm mask can be hoisted out of a loop or is already
1961 // used (perhaps because there are multiple permutes with the same shuffle
1962 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
1963 // the loop requires an extra register.
1965 // As a compromise, we only emit discrete instructions if the shuffle can be
1966 // generated in 3 or fewer operations. When we have loop information
1967 // available, if this block is within a loop, we should avoid using vperm
1968 // for 3-operation perms and use a constant pool load instead.
1970 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1973 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1974 // vector that will get spilled to the constant pool.
1975 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1977 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1978 // that it is in input element units, not in bytes. Convert now.
1979 MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1980 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1982 std::vector<SDOperand> ResultMask;
1983 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
1985 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1988 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
1990 for (unsigned j = 0; j != BytesPerElement; ++j)
1991 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
1995 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
1996 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
1999 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2000 /// altivec comparison. If it is, return true and fill in Opc/isDot with
2001 /// information about the intrinsic.
2002 static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2004 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2007 switch (IntrinsicID) {
2008 default: return false;
2009 // Comparison predicates.
2010 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
2011 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2012 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
2013 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
2014 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2015 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2016 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2017 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2018 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2019 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2020 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2021 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2022 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2024 // Normal Comparisons.
2025 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
2026 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
2027 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
2028 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
2029 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
2030 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
2031 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
2032 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
2033 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
2034 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
2035 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
2036 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
2037 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
2042 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2043 /// lower, do it, otherwise return null.
2044 static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2045 // If this is a lowered altivec predicate compare, CompareOpc is set to the
2046 // opcode number of the comparison.
2049 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2050 return SDOperand(); // Don't custom lower most intrinsics.
2052 // If this is a non-dot comparison, make the VCMP node and we are done.
2054 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2055 Op.getOperand(1), Op.getOperand(2),
2056 DAG.getConstant(CompareOpc, MVT::i32));
2057 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2060 // Create the PPCISD altivec 'dot' comparison node.
2061 std::vector<SDOperand> Ops;
2062 std::vector<MVT::ValueType> VTs;
2063 Ops.push_back(Op.getOperand(2)); // LHS
2064 Ops.push_back(Op.getOperand(3)); // RHS
2065 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
2066 VTs.push_back(Op.getOperand(2).getValueType());
2067 VTs.push_back(MVT::Flag);
2068 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
2070 // Now that we have the comparison, emit a copy from the CR to a GPR.
2071 // This is flagged to the above dot comparison.
2072 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2073 DAG.getRegister(PPC::CR6, MVT::i32),
2074 CompNode.getValue(1));
2076 // Unpack the result based on how the target uses it.
2077 unsigned BitNo; // Bit # of CR6.
2078 bool InvertBit; // Invert result?
2079 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2080 default: // Can't happen, don't crash on invalid number though.
2081 case 0: // Return the value of the EQ bit of CR6.
2082 BitNo = 0; InvertBit = false;
2084 case 1: // Return the inverted value of the EQ bit of CR6.
2085 BitNo = 0; InvertBit = true;
2087 case 2: // Return the value of the LT bit of CR6.
2088 BitNo = 2; InvertBit = false;
2090 case 3: // Return the inverted value of the LT bit of CR6.
2091 BitNo = 2; InvertBit = true;
2095 // Shift the bit into the low position.
2096 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2097 DAG.getConstant(8-(3-BitNo), MVT::i32));
2099 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2100 DAG.getConstant(1, MVT::i32));
2102 // If we are supposed to, toggle the bit.
2104 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2105 DAG.getConstant(1, MVT::i32));
2109 static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2110 // Create a stack slot that is 16-byte aligned.
2111 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2112 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2113 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
2115 // Store the input value into Value#0 of the stack slot.
2116 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
2117 Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
2119 return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
2122 static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2123 if (Op.getValueType() == MVT::v4i32) {
2124 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2126 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
2127 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2129 SDOperand RHSSwap = // = vrlw RHS, 16
2130 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2132 // Shrinkify inputs to v8i16.
2133 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2134 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2135 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2137 // Low parts multiplied together, generating 32-bit results (we ignore the
2139 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2140 LHS, RHS, DAG, MVT::v4i32);
2142 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2143 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2144 // Shift the high parts up 16 bits.
2145 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2146 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2147 } else if (Op.getValueType() == MVT::v8i16) {
2148 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2150 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2152 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2153 LHS, RHS, Zero, DAG);
2154 } else if (Op.getValueType() == MVT::v16i8) {
2155 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2157 // Multiply the even 8-bit parts, producing 16-bit sums.
2158 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2159 LHS, RHS, DAG, MVT::v8i16);
2160 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2162 // Multiply the odd 8-bit parts, producing 16-bit sums.
2163 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2164 LHS, RHS, DAG, MVT::v8i16);
2165 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2167 // Merge the results together.
2168 std::vector<SDOperand> Ops;
2169 for (unsigned i = 0; i != 8; ++i) {
2170 Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
2171 Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
2174 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2175 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
2177 assert(0 && "Unknown mul to lower!");
2182 /// LowerOperation - Provide custom lowering hooks for some operations.
2184 SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2185 switch (Op.getOpcode()) {
2186 default: assert(0 && "Wasn't expecting to be able to lower this!");
2187 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2188 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
2189 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
2190 case ISD::SETCC: return LowerSETCC(Op, DAG);
2191 case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
2192 case ISD::FORMAL_ARGUMENTS:
2193 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex);
2194 case ISD::CALL: return LowerCALL(Op, DAG);
2195 case ISD::RET: return LowerRET(Op, DAG);
2197 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
2198 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
2199 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
2201 // Lower 64-bit shifts.
2202 case ISD::SHL: return LowerSHL(Op, DAG, getPointerTy());
2203 case ISD::SRL: return LowerSRL(Op, DAG, getPointerTy());
2204 case ISD::SRA: return LowerSRA(Op, DAG, getPointerTy());
2206 // Vector-related lowering.
2207 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
2208 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
2209 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
2210 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
2211 case ISD::MUL: return LowerMUL(Op, DAG);
2216 //===----------------------------------------------------------------------===//
2217 // Other Lowering Code
2218 //===----------------------------------------------------------------------===//
2221 PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2222 MachineBasicBlock *BB) {
2223 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
2224 MI->getOpcode() == PPC::SELECT_CC_I8 ||
2225 MI->getOpcode() == PPC::SELECT_CC_F4 ||
2226 MI->getOpcode() == PPC::SELECT_CC_F8 ||
2227 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2228 "Unexpected instr type to insert");
2230 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2231 // control-flow pattern. The incoming instruction knows the destination vreg
2232 // to set, the condition code register to branch on, the true/false values to
2233 // select between, and a branch opcode to use.
2234 const BasicBlock *LLVM_BB = BB->getBasicBlock();
2235 ilist<MachineBasicBlock>::iterator It = BB;
2241 // cmpTY ccX, r1, r2
2243 // fallthrough --> copy0MBB
2244 MachineBasicBlock *thisMBB = BB;
2245 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2246 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2247 BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2248 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2249 MachineFunction *F = BB->getParent();
2250 F->getBasicBlockList().insert(It, copy0MBB);
2251 F->getBasicBlockList().insert(It, sinkMBB);
2252 // Update machine-CFG edges by first adding all successors of the current
2253 // block to the new block which will contain the Phi node for the select.
2254 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2255 e = BB->succ_end(); i != e; ++i)
2256 sinkMBB->addSuccessor(*i);
2257 // Next, remove all successors of the current block, and add the true
2258 // and fallthrough blocks as its successors.
2259 while(!BB->succ_empty())
2260 BB->removeSuccessor(BB->succ_begin());
2261 BB->addSuccessor(copy0MBB);
2262 BB->addSuccessor(sinkMBB);
2265 // %FalseValue = ...
2266 // # fallthrough to sinkMBB
2269 // Update machine-CFG edges
2270 BB->addSuccessor(sinkMBB);
2273 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2276 BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2277 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2278 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2280 delete MI; // The pseudo instruction is gone now.
2284 //===----------------------------------------------------------------------===//
2285 // Target Optimization Hooks
2286 //===----------------------------------------------------------------------===//
2288 SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2289 DAGCombinerInfo &DCI) const {
2290 TargetMachine &TM = getTargetMachine();
2291 SelectionDAG &DAG = DCI.DAG;
2292 switch (N->getOpcode()) {
2294 case ISD::SINT_TO_FP:
2295 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
2296 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2297 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2298 // We allow the src/dst to be either f32/f64, but the intermediate
2299 // type must be i64.
2300 if (N->getOperand(0).getValueType() == MVT::i64) {
2301 SDOperand Val = N->getOperand(0).getOperand(0);
2302 if (Val.getValueType() == MVT::f32) {
2303 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2304 DCI.AddToWorklist(Val.Val);
2307 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2308 DCI.AddToWorklist(Val.Val);
2309 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2310 DCI.AddToWorklist(Val.Val);
2311 if (N->getValueType(0) == MVT::f32) {
2312 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2313 DCI.AddToWorklist(Val.Val);
2316 } else if (N->getOperand(0).getValueType() == MVT::i32) {
2317 // If the intermediate type is i32, we can avoid the load/store here
2324 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2325 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2326 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2327 N->getOperand(1).getValueType() == MVT::i32) {
2328 SDOperand Val = N->getOperand(1).getOperand(0);
2329 if (Val.getValueType() == MVT::f32) {
2330 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2331 DCI.AddToWorklist(Val.Val);
2333 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2334 DCI.AddToWorklist(Val.Val);
2336 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2337 N->getOperand(2), N->getOperand(3));
2338 DCI.AddToWorklist(Val.Val);
2342 case PPCISD::VCMP: {
2343 // If a VCMPo node already exists with exactly the same operands as this
2344 // node, use its result instead of this node (VCMPo computes both a CR6 and
2345 // a normal output).
2347 if (!N->getOperand(0).hasOneUse() &&
2348 !N->getOperand(1).hasOneUse() &&
2349 !N->getOperand(2).hasOneUse()) {
2351 // Scan all of the users of the LHS, looking for VCMPo's that match.
2352 SDNode *VCMPoNode = 0;
2354 SDNode *LHSN = N->getOperand(0).Val;
2355 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2357 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2358 (*UI)->getOperand(1) == N->getOperand(1) &&
2359 (*UI)->getOperand(2) == N->getOperand(2) &&
2360 (*UI)->getOperand(0) == N->getOperand(0)) {
2365 // If there is no VCMPo node, or if the flag value has a single use, don't
2367 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2370 // Look at the (necessarily single) use of the flag value. If it has a
2371 // chain, this transformation is more complex. Note that multiple things
2372 // could use the value result, which we should ignore.
2373 SDNode *FlagUser = 0;
2374 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2375 FlagUser == 0; ++UI) {
2376 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2378 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2379 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2386 // If the user is a MFCR instruction, we know this is safe. Otherwise we
2387 // give up for right now.
2388 if (FlagUser->getOpcode() == PPCISD::MFCR)
2389 return SDOperand(VCMPoNode, 0);
2394 // If this is a branch on an altivec predicate comparison, lower this so
2395 // that we don't have to do a MFCR: instead, branch directly on CR6. This
2396 // lowering is done pre-legalize, because the legalizer lowers the predicate
2397 // compare down to code that is difficult to reassemble.
2398 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2399 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2403 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2404 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2405 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2406 assert(isDot && "Can't compare against a vector result!");
2408 // If this is a comparison against something other than 0/1, then we know
2409 // that the condition is never/always true.
2410 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2411 if (Val != 0 && Val != 1) {
2412 if (CC == ISD::SETEQ) // Cond never true, remove branch.
2413 return N->getOperand(0);
2414 // Always !=, turn it into an unconditional branch.
2415 return DAG.getNode(ISD::BR, MVT::Other,
2416 N->getOperand(0), N->getOperand(4));
2419 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2421 // Create the PPCISD altivec 'dot' comparison node.
2422 std::vector<SDOperand> Ops;
2423 std::vector<MVT::ValueType> VTs;
2424 Ops.push_back(LHS.getOperand(2)); // LHS of compare
2425 Ops.push_back(LHS.getOperand(3)); // RHS of compare
2426 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
2427 VTs.push_back(LHS.getOperand(2).getValueType());
2428 VTs.push_back(MVT::Flag);
2429 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
2431 // Unpack the result based on how the target uses it.
2433 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2434 default: // Can't happen, don't crash on invalid number though.
2435 case 0: // Branch on the value of the EQ bit of CR6.
2436 CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
2438 case 1: // Branch on the inverted value of the EQ bit of CR6.
2439 CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
2441 case 2: // Branch on the value of the LT bit of CR6.
2442 CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
2444 case 3: // Branch on the inverted value of the LT bit of CR6.
2445 CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
2449 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2450 DAG.getRegister(PPC::CR6, MVT::i32),
2451 DAG.getConstant(CompOpc, MVT::i32),
2452 N->getOperand(4), CompNode.getValue(1));
2461 //===----------------------------------------------------------------------===//
2462 // Inline Assembly Support
2463 //===----------------------------------------------------------------------===//
2465 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2467 uint64_t &KnownZero,
2469 unsigned Depth) const {
2472 switch (Op.getOpcode()) {
2474 case ISD::INTRINSIC_WO_CHAIN: {
2475 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2477 case Intrinsic::ppc_altivec_vcmpbfp_p:
2478 case Intrinsic::ppc_altivec_vcmpeqfp_p:
2479 case Intrinsic::ppc_altivec_vcmpequb_p:
2480 case Intrinsic::ppc_altivec_vcmpequh_p:
2481 case Intrinsic::ppc_altivec_vcmpequw_p:
2482 case Intrinsic::ppc_altivec_vcmpgefp_p:
2483 case Intrinsic::ppc_altivec_vcmpgtfp_p:
2484 case Intrinsic::ppc_altivec_vcmpgtsb_p:
2485 case Intrinsic::ppc_altivec_vcmpgtsh_p:
2486 case Intrinsic::ppc_altivec_vcmpgtsw_p:
2487 case Intrinsic::ppc_altivec_vcmpgtub_p:
2488 case Intrinsic::ppc_altivec_vcmpgtuh_p:
2489 case Intrinsic::ppc_altivec_vcmpgtuw_p:
2490 KnownZero = ~1U; // All bits but the low one are known to be zero.
2498 /// getConstraintType - Given a constraint letter, return the type of
2499 /// constraint it is for this target.
2500 PPCTargetLowering::ConstraintType
2501 PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2502 switch (ConstraintLetter) {
2509 return C_RegisterClass;
2511 return TargetLowering::getConstraintType(ConstraintLetter);
2515 std::vector<unsigned> PPCTargetLowering::
2516 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2517 MVT::ValueType VT) const {
2518 if (Constraint.size() == 1) {
2519 switch (Constraint[0]) { // GCC RS6000 Constraint Letters
2520 default: break; // Unknown constriant letter
2522 return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2523 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2524 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2525 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2526 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2527 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2528 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2529 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2532 return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2533 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2534 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2535 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2536 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2537 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2538 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2539 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2542 return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2543 PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2544 PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2545 PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2546 PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2547 PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2548 PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2549 PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2552 return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2553 PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2554 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2555 PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2556 PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2557 PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2558 PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2559 PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2562 return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2563 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2568 return std::vector<unsigned>();
2571 // isOperandValidForConstraint
2572 bool PPCTargetLowering::
2573 isOperandValidForConstraint(SDOperand Op, char Letter) {
2584 if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate.
2585 unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2587 default: assert(0 && "Unknown constraint letter!");
2588 case 'I': // "I" is a signed 16-bit constant.
2589 return (short)Value == (int)Value;
2590 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
2591 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
2592 return (short)Value == 0;
2593 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
2594 return (Value >> 16) == 0;
2595 case 'M': // "M" is a constant that is greater than 31.
2597 case 'N': // "N" is a positive constant that is an exact power of two.
2598 return (int)Value > 0 && isPowerOf2_32(Value);
2599 case 'O': // "O" is the constant zero.
2601 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
2602 return (short)-Value == (int)-Value;
2608 // Handle standard constraint letters.
2609 return TargetLowering::isOperandValidForConstraint(Op, Letter);
2612 /// isLegalAddressImmediate - Return true if the integer value can be used
2613 /// as the offset of the target addressing mode.
2614 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2615 // PPC allows a sign-extended 16-bit immediate field.
2616 return (V > -(1 << 16) && V < (1 << 16)-1);