1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file was developed by Chris Lattner and is distributed under
6 // the University of Illinois Open Source License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "PPCTargetMachine.h"
16 #include "PPCPerfectShuffle.h"
17 #include "llvm/ADT/VectorExtras.h"
18 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/SelectionDAG.h"
23 #include "llvm/CodeGen/SSARegMap.h"
24 #include "llvm/Constants.h"
25 #include "llvm/Function.h"
26 #include "llvm/Intrinsics.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Target/TargetOptions.h"
31 PPCTargetLowering::PPCTargetLowering(TargetMachine &TM)
32 : TargetLowering(TM) {
34 // Fold away setcc operations if possible.
35 setSetCCIsExpensive();
38 // Use _setjmp/_longjmp instead of setjmp/longjmp.
39 setUseUnderscoreSetJmpLongJmp(true);
41 // Set up the register classes.
42 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
43 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
44 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
46 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
47 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
49 // PowerPC has no intrinsics for these particular operations
50 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
51 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
52 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setOperationAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setOperationAction(ISD::SEXTLOAD, MVT::i8, Expand);
58 // PowerPC has no SREM/UREM instructions
59 setOperationAction(ISD::SREM, MVT::i32, Expand);
60 setOperationAction(ISD::UREM, MVT::i32, Expand);
62 // We don't support sin/cos/sqrt/fmod
63 setOperationAction(ISD::FSIN , MVT::f64, Expand);
64 setOperationAction(ISD::FCOS , MVT::f64, Expand);
65 setOperationAction(ISD::FREM , MVT::f64, Expand);
66 setOperationAction(ISD::FSIN , MVT::f32, Expand);
67 setOperationAction(ISD::FCOS , MVT::f32, Expand);
68 setOperationAction(ISD::FREM , MVT::f32, Expand);
70 // If we're enabling GP optimizations, use hardware square root
71 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
72 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
73 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
76 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
77 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
79 // PowerPC does not have BSWAP, CTPOP or CTTZ
80 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
81 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
82 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
84 // PowerPC does not have ROTR
85 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
87 // PowerPC does not have Select
88 setOperationAction(ISD::SELECT, MVT::i32, Expand);
89 setOperationAction(ISD::SELECT, MVT::f32, Expand);
90 setOperationAction(ISD::SELECT, MVT::f64, Expand);
92 // PowerPC wants to turn select_cc of FP into fsel when possible.
93 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
94 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
96 // PowerPC wants to optimize integer setcc a bit
97 setOperationAction(ISD::SETCC, MVT::i32, Custom);
99 // PowerPC does not have BRCOND which requires SetCC
100 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
102 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
103 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
105 // PowerPC does not have [U|S]INT_TO_FP
106 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
107 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
109 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
110 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
112 // PowerPC does not have truncstore for i1.
113 setOperationAction(ISD::TRUNCSTORE, MVT::i1, Promote);
115 // We cannot sextinreg(i1). Expand to shifts.
116 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
119 // Support label based line numbers.
120 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
121 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
122 // FIXME - use subtarget debug flags
123 if (!TM.getSubtarget<PPCSubtarget>().isDarwin())
124 setOperationAction(ISD::DEBUG_LABEL, MVT::Other, Expand);
126 // We want to legalize GlobalAddress and ConstantPool nodes into the
127 // appropriate instructions to materialize the address.
128 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
129 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
130 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
132 // RET must be custom lowered, to meet ABI requirements
133 setOperationAction(ISD::RET , MVT::Other, Custom);
135 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
136 setOperationAction(ISD::VASTART , MVT::Other, Custom);
138 // Use the default implementation.
139 setOperationAction(ISD::VAARG , MVT::Other, Expand);
140 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
141 setOperationAction(ISD::VAEND , MVT::Other, Expand);
142 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
143 setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand);
144 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Expand);
146 // We want to custom lower some of our intrinsics.
147 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
149 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
150 // They also have instructions for converting between i64 and fp.
151 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
152 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
154 // FIXME: disable this lowered code. This generates 64-bit register values,
155 // and we don't model the fact that the top part is clobbered by calls. We
156 // need to flag these together so that the value isn't live across a call.
157 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
159 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
160 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
162 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
163 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
166 if (TM.getSubtarget<PPCSubtarget>().has64BitRegs()) {
167 // 64 bit PowerPC implementations can support i64 types directly
168 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
169 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
170 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
172 // 32 bit PowerPC wants to expand i64 shifts itself.
173 setOperationAction(ISD::SHL, MVT::i64, Custom);
174 setOperationAction(ISD::SRL, MVT::i64, Custom);
175 setOperationAction(ISD::SRA, MVT::i64, Custom);
178 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
179 // First set operation action for all vector types to expand. Then we
180 // will selectively turn on ones that can be effectively codegen'd.
181 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
182 VT != (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
183 // add/sub are legal for all supported vector VT's.
184 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
185 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
187 // We promote all shuffles to v16i8.
188 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
189 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
191 // We promote all non-typed operations to v4i32.
192 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
193 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
194 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
195 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
196 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
197 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
198 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
199 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
200 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
201 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
202 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
203 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
205 // No other operations are legal.
206 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
207 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
208 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
209 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
210 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
211 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
212 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
213 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
215 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
218 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
219 // with merges, splats, etc.
220 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
222 setOperationAction(ISD::AND , MVT::v4i32, Legal);
223 setOperationAction(ISD::OR , MVT::v4i32, Legal);
224 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
225 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
226 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
227 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
229 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
230 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
231 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
232 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
234 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
235 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
236 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
237 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
239 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
240 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
242 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
243 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
244 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
245 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
248 setSetCCResultContents(ZeroOrOneSetCCResult);
249 setStackPointerRegisterToSaveRestore(PPC::R1);
251 // We have target-specific dag combine patterns for the following nodes:
252 setTargetDAGCombine(ISD::SINT_TO_FP);
253 setTargetDAGCombine(ISD::STORE);
254 setTargetDAGCombine(ISD::BR_CC);
256 computeRegisterProperties();
259 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
262 case PPCISD::FSEL: return "PPCISD::FSEL";
263 case PPCISD::FCFID: return "PPCISD::FCFID";
264 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
265 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
266 case PPCISD::STFIWX: return "PPCISD::STFIWX";
267 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
268 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
269 case PPCISD::VPERM: return "PPCISD::VPERM";
270 case PPCISD::Hi: return "PPCISD::Hi";
271 case PPCISD::Lo: return "PPCISD::Lo";
272 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
273 case PPCISD::SRL: return "PPCISD::SRL";
274 case PPCISD::SRA: return "PPCISD::SRA";
275 case PPCISD::SHL: return "PPCISD::SHL";
276 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
277 case PPCISD::STD_32: return "PPCISD::STD_32";
278 case PPCISD::CALL: return "PPCISD::CALL";
279 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
280 case PPCISD::MFCR: return "PPCISD::MFCR";
281 case PPCISD::VCMP: return "PPCISD::VCMP";
282 case PPCISD::VCMPo: return "PPCISD::VCMPo";
283 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
287 //===----------------------------------------------------------------------===//
288 // Node matching predicates, for use by the tblgen matching code.
289 //===----------------------------------------------------------------------===//
291 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
292 static bool isFloatingPointZero(SDOperand Op) {
293 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
294 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
295 else if (Op.getOpcode() == ISD::EXTLOAD || Op.getOpcode() == ISD::LOAD) {
296 // Maybe this has already been legalized into the constant pool?
297 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
298 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->get()))
299 return CFP->isExactlyValue(-0.0) || CFP->isExactlyValue(0.0);
304 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
305 /// true if Op is undef or if it matches the specified value.
306 static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
307 return Op.getOpcode() == ISD::UNDEF ||
308 cast<ConstantSDNode>(Op)->getValue() == Val;
311 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
312 /// VPKUHUM instruction.
313 bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
315 for (unsigned i = 0; i != 16; ++i)
316 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
319 for (unsigned i = 0; i != 8; ++i)
320 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
321 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
327 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
328 /// VPKUWUM instruction.
329 bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
331 for (unsigned i = 0; i != 16; i += 2)
332 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
333 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
336 for (unsigned i = 0; i != 8; i += 2)
337 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
338 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
339 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
340 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
346 /// isVMerge - Common function, used to match vmrg* shuffles.
348 static bool isVMerge(SDNode *N, unsigned UnitSize,
349 unsigned LHSStart, unsigned RHSStart) {
350 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
351 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
352 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
353 "Unsupported merge size!");
355 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
356 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
357 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
358 LHSStart+j+i*UnitSize) ||
359 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
360 RHSStart+j+i*UnitSize))
366 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
367 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
368 bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
370 return isVMerge(N, UnitSize, 8, 24);
371 return isVMerge(N, UnitSize, 8, 8);
374 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
375 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
376 bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
378 return isVMerge(N, UnitSize, 0, 16);
379 return isVMerge(N, UnitSize, 0, 0);
383 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
384 /// amount, otherwise return -1.
385 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
386 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
387 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
388 // Find the first non-undef value in the shuffle mask.
390 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
393 if (i == 16) return -1; // all undef.
395 // Otherwise, check to see if the rest of the elements are consequtively
396 // numbered from this value.
397 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
398 if (ShiftAmt < i) return -1;
402 // Check the rest of the elements to see if they are consequtive.
403 for (++i; i != 16; ++i)
404 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
407 // Check the rest of the elements to see if they are consequtive.
408 for (++i; i != 16; ++i)
409 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
416 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
417 /// specifies a splat of a single element that is suitable for input to
418 /// VSPLTB/VSPLTH/VSPLTW.
419 bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
420 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
421 N->getNumOperands() == 16 &&
422 (EltSize == 1 || EltSize == 2 || EltSize == 4));
424 // This is a splat operation if each element of the permute is the same, and
425 // if the value doesn't reference the second vector.
426 unsigned ElementBase = 0;
427 SDOperand Elt = N->getOperand(0);
428 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
429 ElementBase = EltV->getValue();
431 return false; // FIXME: Handle UNDEF elements too!
433 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
436 // Check that they are consequtive.
437 for (unsigned i = 1; i != EltSize; ++i) {
438 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
439 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
443 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
444 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
445 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
446 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
447 "Invalid VECTOR_SHUFFLE mask!");
448 for (unsigned j = 0; j != EltSize; ++j)
449 if (N->getOperand(i+j) != N->getOperand(j))
456 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
457 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
458 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
459 assert(isSplatShuffleMask(N, EltSize));
460 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
463 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
464 /// by using a vspltis[bhw] instruction of the specified element size, return
465 /// the constant being splatted. The ByteSize field indicates the number of
466 /// bytes of each element [124] -> [bhw].
467 SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
468 SDOperand OpVal(0, 0);
470 // If ByteSize of the splat is bigger than the element size of the
471 // build_vector, then we have a case where we are checking for a splat where
472 // multiple elements of the buildvector are folded together into a single
473 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
474 unsigned EltSize = 16/N->getNumOperands();
475 if (EltSize < ByteSize) {
476 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
477 SDOperand UniquedVals[4];
478 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
480 // See if all of the elements in the buildvector agree across.
481 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
482 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
483 // If the element isn't a constant, bail fully out.
484 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
487 if (UniquedVals[i&(Multiple-1)].Val == 0)
488 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
489 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
490 return SDOperand(); // no match.
493 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
494 // either constant or undef values that are identical for each chunk. See
495 // if these chunks can form into a larger vspltis*.
497 // Check to see if all of the leading entries are either 0 or -1. If
498 // neither, then this won't fit into the immediate field.
499 bool LeadingZero = true;
500 bool LeadingOnes = true;
501 for (unsigned i = 0; i != Multiple-1; ++i) {
502 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
504 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
505 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
507 // Finally, check the least significant entry.
509 if (UniquedVals[Multiple-1].Val == 0)
510 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
511 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
513 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
516 if (UniquedVals[Multiple-1].Val == 0)
517 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
518 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
519 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
520 return DAG.getTargetConstant(Val, MVT::i32);
526 // Check to see if this buildvec has a single non-undef value in its elements.
527 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
528 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
530 OpVal = N->getOperand(i);
531 else if (OpVal != N->getOperand(i))
535 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
537 unsigned ValSizeInBytes = 0;
539 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
540 Value = CN->getValue();
541 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
542 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
543 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
544 Value = FloatToBits(CN->getValue());
548 // If the splat value is larger than the element value, then we can never do
549 // this splat. The only case that we could fit the replicated bits into our
550 // immediate field for would be zero, and we prefer to use vxor for it.
551 if (ValSizeInBytes < ByteSize) return SDOperand();
553 // If the element value is larger than the splat value, cut it in half and
554 // check to see if the two halves are equal. Continue doing this until we
555 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
556 while (ValSizeInBytes > ByteSize) {
557 ValSizeInBytes >>= 1;
559 // If the top half equals the bottom half, we're still ok.
560 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
561 (Value & ((1 << (8*ValSizeInBytes))-1)))
565 // Properly sign extend the value.
566 int ShAmt = (4-ByteSize)*8;
567 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
569 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
570 if (MaskVal == 0) return SDOperand();
572 // Finally, if this value fits in a 5 bit sext field, return it
573 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
574 return DAG.getTargetConstant(MaskVal, MVT::i32);
578 //===----------------------------------------------------------------------===//
579 // LowerOperation implementation
580 //===----------------------------------------------------------------------===//
582 static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
583 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
584 Constant *C = CP->get();
585 SDOperand CPI = DAG.getTargetConstantPool(C, MVT::i32, CP->getAlignment());
586 SDOperand Zero = DAG.getConstant(0, MVT::i32);
588 const TargetMachine &TM = DAG.getTarget();
590 // If this is a non-darwin platform, we don't support non-static relo models
592 if (TM.getRelocationModel() == Reloc::Static ||
593 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
594 // Generate non-pic code that has direct accesses to the constant pool.
595 // The address of the global is just (hi(&g)+lo(&g)).
596 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
597 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
598 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
601 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, CPI, Zero);
602 if (TM.getRelocationModel() == Reloc::PIC) {
603 // With PIC, the first instruction is actually "GR+hi(&G)".
604 Hi = DAG.getNode(ISD::ADD, MVT::i32,
605 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
608 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, CPI, Zero);
609 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
613 static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
614 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
615 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32);
616 SDOperand Zero = DAG.getConstant(0, MVT::i32);
618 const TargetMachine &TM = DAG.getTarget();
620 // If this is a non-darwin platform, we don't support non-static relo models
622 if (TM.getRelocationModel() == Reloc::Static ||
623 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
624 // Generate non-pic code that has direct accesses to the constant pool.
625 // The address of the global is just (hi(&g)+lo(&g)).
626 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
627 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
628 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
631 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, JTI, Zero);
632 if (TM.getRelocationModel() == Reloc::PIC) {
633 // With PIC, the first instruction is actually "GR+hi(&G)".
634 Hi = DAG.getNode(ISD::ADD, MVT::i32,
635 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
638 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, JTI, Zero);
639 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
643 static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
644 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
645 GlobalValue *GV = GSDN->getGlobal();
646 SDOperand GA = DAG.getTargetGlobalAddress(GV, MVT::i32, GSDN->getOffset());
647 SDOperand Zero = DAG.getConstant(0, MVT::i32);
649 const TargetMachine &TM = DAG.getTarget();
651 // If this is a non-darwin platform, we don't support non-static relo models
653 if (TM.getRelocationModel() == Reloc::Static ||
654 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
655 // Generate non-pic code that has direct accesses to globals.
656 // The address of the global is just (hi(&g)+lo(&g)).
657 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
658 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
659 return DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
662 SDOperand Hi = DAG.getNode(PPCISD::Hi, MVT::i32, GA, Zero);
663 if (TM.getRelocationModel() == Reloc::PIC) {
664 // With PIC, the first instruction is actually "GR+hi(&G)".
665 Hi = DAG.getNode(ISD::ADD, MVT::i32,
666 DAG.getNode(PPCISD::GlobalBaseReg, MVT::i32), Hi);
669 SDOperand Lo = DAG.getNode(PPCISD::Lo, MVT::i32, GA, Zero);
670 Lo = DAG.getNode(ISD::ADD, MVT::i32, Hi, Lo);
672 if (!GV->hasWeakLinkage() && !GV->hasLinkOnceLinkage() &&
673 (!GV->isExternal() || GV->hasNotBeenReadFromBytecode()))
676 // If the global is weak or external, we have to go through the lazy
678 return DAG.getLoad(MVT::i32, DAG.getEntryNode(), Lo, DAG.getSrcValue(0));
681 static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
682 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
684 // If we're comparing for equality to zero, expose the fact that this is
685 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
686 // fold the new nodes.
687 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
688 if (C->isNullValue() && CC == ISD::SETEQ) {
689 MVT::ValueType VT = Op.getOperand(0).getValueType();
690 SDOperand Zext = Op.getOperand(0);
693 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
695 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
696 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
697 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
698 DAG.getConstant(Log2b, MVT::i32));
699 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
701 // Leave comparisons against 0 and -1 alone for now, since they're usually
702 // optimized. FIXME: revisit this when we can custom lower all setcc
704 if (C->isAllOnesValue() || C->isNullValue())
708 // If we have an integer seteq/setne, turn it into a compare against zero
709 // by subtracting the rhs from the lhs, which is faster than setting a
710 // condition register, reading it back out, and masking the correct bit.
711 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
712 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
713 MVT::ValueType VT = Op.getValueType();
714 SDOperand Sub = DAG.getNode(ISD::SUB, LHSVT, Op.getOperand(0),
716 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
721 static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
722 unsigned VarArgsFrameIndex) {
723 // vastart just stores the address of the VarArgsFrameIndex slot into the
724 // memory location argument.
725 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
726 return DAG.getNode(ISD::STORE, MVT::Other, Op.getOperand(0), FR,
727 Op.getOperand(1), Op.getOperand(2));
730 static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
731 int &VarArgsFrameIndex) {
732 // TODO: add description of PPC stack frame format, or at least some docs.
734 MachineFunction &MF = DAG.getMachineFunction();
735 MachineFrameInfo *MFI = MF.getFrameInfo();
736 SSARegMap *RegMap = MF.getSSARegMap();
737 std::vector<SDOperand> ArgValues;
738 SDOperand Root = Op.getOperand(0);
740 unsigned ArgOffset = 24;
741 unsigned GPR_remaining = 8;
742 unsigned FPR_remaining = 13;
743 unsigned VR_remaining = 12;
744 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
745 static const unsigned GPR[] = {
746 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
747 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
749 static const unsigned FPR[] = {
750 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
751 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
753 static const unsigned VR[] = {
754 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
755 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
758 // Add DAG nodes to load the arguments or copy them out of registers. On
759 // entry to a function on PPC, the arguments start at offset 24, although the
760 // first ones are often in registers.
761 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
763 bool needsLoad = false;
764 bool ArgLive = !Op.Val->hasNUsesOfValue(0, ArgNo);
765 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
766 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
768 unsigned CurArgOffset = ArgOffset;
771 default: assert(0 && "Unhandled argument type!");
773 // All int arguments reserve stack space.
777 if (GPR_remaining > 0) {
783 if (GPR_remaining > 0) {
784 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
785 MF.addLiveIn(GPR[GPR_idx], VReg);
786 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
795 // All FP arguments reserve stack space.
796 ArgOffset += ObjSize;
798 // Every 4 bytes of argument space consumes one of the GPRs available for
800 if (GPR_remaining > 0) {
801 unsigned delta = (GPR_remaining > 1 && ObjSize == 8) ? 2 : 1;
802 GPR_remaining -= delta;
806 if (FPR_remaining > 0) {
812 if (FPR_remaining > 0) {
814 if (ObjectVT == MVT::f32)
815 VReg = RegMap->createVirtualRegister(&PPC::F4RCRegClass);
817 VReg = RegMap->createVirtualRegister(&PPC::F8RCRegClass);
818 MF.addLiveIn(FPR[FPR_idx], VReg);
819 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
830 // Note that vector arguments in registers don't reserve stack space.
832 if (VR_remaining > 0) {
838 if (VR_remaining > 0) {
839 unsigned VReg = RegMap->createVirtualRegister(&PPC::VRRCRegClass);
840 MF.addLiveIn(VR[VR_idx], VReg);
841 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
845 // This should be simple, but requires getting 16-byte aligned stack
847 assert(0 && "Loading VR argument not implemented yet!");
853 // We need to load the argument to a virtual register if we determined above
854 // that we ran out of physical registers of the appropriate type
856 int FI = MFI->CreateFixedObject(ObjSize, CurArgOffset);
857 SDOperand FIN = DAG.getFrameIndex(FI, MVT::i32);
858 ArgVal = DAG.getLoad(ObjectVT, Root, FIN,
859 DAG.getSrcValue(NULL));
863 ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
864 ArgValues.push_back(ArgVal);
867 // If the function takes variable number of arguments, make a frame index for
868 // the start of the first vararg value... for expansion of llvm.va_start.
869 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
871 VarArgsFrameIndex = MFI->CreateFixedObject(4, ArgOffset);
872 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, MVT::i32);
873 // If this function is vararg, store any remaining integer argument regs
874 // to their spots on the stack so that they may be loaded by deferencing the
875 // result of va_next.
876 std::vector<SDOperand> MemOps;
877 for (; GPR_remaining > 0; --GPR_remaining, ++GPR_idx) {
878 unsigned VReg = RegMap->createVirtualRegister(&PPC::GPRCRegClass);
879 MF.addLiveIn(GPR[GPR_idx], VReg);
880 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::i32);
881 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Val.getValue(1),
882 Val, FIN, DAG.getSrcValue(NULL));
883 MemOps.push_back(Store);
884 // Increment the address by four for the next argument to store
885 SDOperand PtrOff = DAG.getConstant(4, MVT::i32);
886 FIN = DAG.getNode(ISD::ADD, MVT::i32, FIN, PtrOff);
889 Root = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
892 ArgValues.push_back(Root);
894 // Return the new list of results.
895 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
896 Op.Val->value_end());
897 return DAG.getNode(ISD::MERGE_VALUES, RetVT, ArgValues);
900 static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG) {
902 switch(Op.getNumOperands()) {
904 assert(0 && "Do not know how to return this many arguments!");
907 return SDOperand(); // ret void is legal
909 MVT::ValueType ArgVT = Op.getOperand(1).getValueType();
911 if (MVT::isVector(ArgVT))
913 else if (MVT::isInteger(ArgVT))
916 assert(MVT::isFloatingPoint(ArgVT));
920 Copy = DAG.getCopyToReg(Op.getOperand(0), ArgReg, Op.getOperand(1),
923 // If we haven't noted the R3/F1 are live out, do so now.
924 if (DAG.getMachineFunction().liveout_empty())
925 DAG.getMachineFunction().addLiveOut(ArgReg);
929 Copy = DAG.getCopyToReg(Op.getOperand(0), PPC::R3, Op.getOperand(2),
931 Copy = DAG.getCopyToReg(Copy, PPC::R4, Op.getOperand(1),Copy.getValue(1));
932 // If we haven't noted the R3+R4 are live out, do so now.
933 if (DAG.getMachineFunction().liveout_empty()) {
934 DAG.getMachineFunction().addLiveOut(PPC::R3);
935 DAG.getMachineFunction().addLiveOut(PPC::R4);
939 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Copy, Copy.getValue(1));
942 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
944 static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
945 // Not FP? Not a fsel.
946 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
947 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
950 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
952 // Cannot handle SETEQ/SETNE.
953 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
955 MVT::ValueType ResVT = Op.getValueType();
956 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
957 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
958 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
960 // If the RHS of the comparison is a 0.0, we don't need to do the
961 // subtraction at all.
962 if (isFloatingPointZero(RHS))
964 default: break; // SETUO etc aren't handled by fsel.
967 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
970 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
971 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
972 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
975 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
978 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
979 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
980 return DAG.getNode(PPCISD::FSEL, ResVT,
981 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
986 default: break; // SETUO etc aren't handled by fsel.
989 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
990 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
991 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
992 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
995 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
996 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
997 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
998 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1001 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1002 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1003 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1004 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
1007 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
1008 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
1009 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
1010 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
1015 static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
1016 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
1017 SDOperand Src = Op.getOperand(0);
1018 if (Src.getValueType() == MVT::f32)
1019 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
1022 switch (Op.getValueType()) {
1023 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
1025 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
1028 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
1032 // Convert the FP value to an int value through memory.
1033 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::i64, Tmp);
1034 if (Op.getValueType() == MVT::i32)
1035 Bits = DAG.getNode(ISD::TRUNCATE, MVT::i32, Bits);
1039 static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
1040 if (Op.getOperand(0).getValueType() == MVT::i64) {
1041 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
1042 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
1043 if (Op.getValueType() == MVT::f32)
1044 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1048 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
1049 "Unhandled SINT_TO_FP type in custom expander!");
1050 // Since we only generate this in 64-bit mode, we can take advantage of
1051 // 64-bit registers. In particular, sign extend the input value into the
1052 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
1053 // then lfd it and fcfid it.
1054 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1055 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
1056 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1058 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
1061 // STD the extended value into the stack slot.
1062 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
1063 DAG.getEntryNode(), Ext64, FIdx,
1064 DAG.getSrcValue(NULL));
1065 // Load the value as a double.
1066 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, DAG.getSrcValue(NULL));
1068 // FCFID it and return it.
1069 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
1070 if (Op.getValueType() == MVT::f32)
1071 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
1075 static SDOperand LowerSHL(SDOperand Op, SelectionDAG &DAG) {
1076 assert(Op.getValueType() == MVT::i64 &&
1077 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1078 // The generic code does a fine job expanding shift by a constant.
1079 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1081 // Otherwise, expand into a bunch of logical ops. Note that these ops
1082 // depend on the PPC behavior for oversized shift amounts.
1083 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1084 DAG.getConstant(0, MVT::i32));
1085 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1086 DAG.getConstant(1, MVT::i32));
1087 SDOperand Amt = Op.getOperand(1);
1089 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1090 DAG.getConstant(32, MVT::i32), Amt);
1091 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
1092 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
1093 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1094 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1095 DAG.getConstant(-32U, MVT::i32));
1096 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
1097 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1098 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
1099 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1102 static SDOperand LowerSRL(SDOperand Op, SelectionDAG &DAG) {
1103 assert(Op.getValueType() == MVT::i64 &&
1104 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
1105 // The generic code does a fine job expanding shift by a constant.
1106 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1108 // Otherwise, expand into a bunch of logical ops. Note that these ops
1109 // depend on the PPC behavior for oversized shift amounts.
1110 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1111 DAG.getConstant(0, MVT::i32));
1112 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1113 DAG.getConstant(1, MVT::i32));
1114 SDOperand Amt = Op.getOperand(1);
1116 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1117 DAG.getConstant(32, MVT::i32), Amt);
1118 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1119 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1120 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1121 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1122 DAG.getConstant(-32U, MVT::i32));
1123 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
1124 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
1125 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
1126 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1129 static SDOperand LowerSRA(SDOperand Op, SelectionDAG &DAG) {
1130 assert(Op.getValueType() == MVT::i64 &&
1131 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
1132 // The generic code does a fine job expanding shift by a constant.
1133 if (isa<ConstantSDNode>(Op.getOperand(1))) return SDOperand();
1135 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
1136 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1137 DAG.getConstant(0, MVT::i32));
1138 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32, Op.getOperand(0),
1139 DAG.getConstant(1, MVT::i32));
1140 SDOperand Amt = Op.getOperand(1);
1142 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
1143 DAG.getConstant(32, MVT::i32), Amt);
1144 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
1145 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
1146 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
1147 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
1148 DAG.getConstant(-32U, MVT::i32));
1149 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
1150 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
1151 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
1152 Tmp4, Tmp6, ISD::SETLE);
1153 return DAG.getNode(ISD::BUILD_PAIR, MVT::i64, OutLo, OutHi);
1156 //===----------------------------------------------------------------------===//
1157 // Vector related lowering.
1160 // If this is a vector of constants or undefs, get the bits. A bit in
1161 // UndefBits is set if the corresponding element of the vector is an
1162 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1163 // zero. Return true if this is not an array of constants, false if it is.
1165 static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
1166 uint64_t UndefBits[2]) {
1167 // Start with zero'd results.
1168 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
1170 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
1171 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
1172 SDOperand OpVal = BV->getOperand(i);
1174 unsigned PartNo = i >= e/2; // In the upper 128 bits?
1175 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
1177 uint64_t EltBits = 0;
1178 if (OpVal.getOpcode() == ISD::UNDEF) {
1179 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
1180 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
1182 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
1183 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
1184 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
1185 assert(CN->getValueType(0) == MVT::f32 &&
1186 "Only one legal FP vector type!");
1187 EltBits = FloatToBits(CN->getValue());
1189 // Nonconstant element.
1193 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
1196 //printf("%llx %llx %llx %llx\n",
1197 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
1201 // If this is a splat (repetition) of a value across the whole vector, return
1202 // the smallest size that splats it. For example, "0x01010101010101..." is a
1203 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1204 // SplatSize = 1 byte.
1205 static bool isConstantSplat(const uint64_t Bits128[2],
1206 const uint64_t Undef128[2],
1207 unsigned &SplatBits, unsigned &SplatUndef,
1208 unsigned &SplatSize) {
1210 // Don't let undefs prevent splats from matching. See if the top 64-bits are
1211 // the same as the lower 64-bits, ignoring undefs.
1212 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
1213 return false; // Can't be a splat if two pieces don't match.
1215 uint64_t Bits64 = Bits128[0] | Bits128[1];
1216 uint64_t Undef64 = Undef128[0] & Undef128[1];
1218 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
1220 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
1221 return false; // Can't be a splat if two pieces don't match.
1223 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
1224 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
1226 // If the top 16-bits are different than the lower 16-bits, ignoring
1227 // undefs, we have an i32 splat.
1228 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
1230 SplatUndef = Undef32;
1235 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
1236 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
1238 // If the top 8-bits are different than the lower 8-bits, ignoring
1239 // undefs, we have an i16 splat.
1240 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
1242 SplatUndef = Undef16;
1247 // Otherwise, we have an 8-bit splat.
1248 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
1249 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
1254 /// BuildSplatI - Build a canonical splati of Val with an element size of
1255 /// SplatSize. Cast the result to VT.
1256 static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
1257 SelectionDAG &DAG) {
1258 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
1260 // Force vspltis[hw] -1 to vspltisb -1.
1261 if (Val == -1) SplatSize = 1;
1263 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
1264 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
1266 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
1268 // Build a canonical splat for this value.
1269 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorBaseType(CanonicalVT));
1270 std::vector<SDOperand> Ops(MVT::getVectorNumElements(CanonicalVT), Elt);
1271 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT, Ops);
1272 return DAG.getNode(ISD::BIT_CONVERT, VT, Res);
1275 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
1276 /// specified intrinsic ID.
1277 static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
1279 MVT::ValueType DestVT = MVT::Other) {
1280 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
1281 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1282 DAG.getConstant(IID, MVT::i32), LHS, RHS);
1285 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
1286 /// specified intrinsic ID.
1287 static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
1288 SDOperand Op2, SelectionDAG &DAG,
1289 MVT::ValueType DestVT = MVT::Other) {
1290 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
1291 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
1292 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
1296 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
1297 /// amount. The result has the specified value type.
1298 static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
1299 MVT::ValueType VT, SelectionDAG &DAG) {
1300 // Force LHS/RHS to be the right type.
1301 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
1302 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
1304 std::vector<SDOperand> Ops;
1305 for (unsigned i = 0; i != 16; ++i)
1306 Ops.push_back(DAG.getConstant(i+Amt, MVT::i32));
1307 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
1308 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1309 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
1312 // If this is a case we can't handle, return null and let the default
1313 // expansion code take care of it. If we CAN select this case, and if it
1314 // selects to a single instruction, return Op. Otherwise, if we can codegen
1315 // this case more efficiently than a constant pool load, lower it to the
1316 // sequence of ops that should be used.
1317 static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1318 // If this is a vector of constants or undefs, get the bits. A bit in
1319 // UndefBits is set if the corresponding element of the vector is an
1320 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
1322 uint64_t VectorBits[2];
1323 uint64_t UndefBits[2];
1324 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
1325 return SDOperand(); // Not a constant vector.
1327 // If this is a splat (repetition) of a value across the whole vector, return
1328 // the smallest size that splats it. For example, "0x01010101010101..." is a
1329 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
1330 // SplatSize = 1 byte.
1331 unsigned SplatBits, SplatUndef, SplatSize;
1332 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
1333 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
1335 // First, handle single instruction cases.
1338 if (SplatBits == 0) {
1339 // Canonicalize all zero vectors to be v4i32.
1340 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
1341 SDOperand Z = DAG.getConstant(0, MVT::i32);
1342 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
1343 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
1348 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
1349 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
1350 if (SextVal >= -16 && SextVal <= 15)
1351 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
1354 // Two instruction sequences.
1356 // If this value is in the range [-32,30] and is even, use:
1357 // tmp = VSPLTI[bhw], result = add tmp, tmp
1358 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
1359 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
1360 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
1363 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
1364 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
1366 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
1367 // Make -1 and vspltisw -1:
1368 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
1370 // Make the VSLW intrinsic, computing 0x8000_0000.
1371 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
1374 // xor by OnesV to invert it.
1375 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
1376 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
1379 // Check to see if this is a wide variety of vsplti*, binop self cases.
1380 unsigned SplatBitSize = SplatSize*8;
1381 static const char SplatCsts[] = {
1382 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
1383 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
1385 for (unsigned idx = 0; idx < sizeof(SplatCsts)/sizeof(SplatCsts[0]); ++idx){
1386 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
1387 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
1388 int i = SplatCsts[idx];
1390 // Figure out what shift amount will be used by altivec if shifted by i in
1392 unsigned TypeShiftAmt = i & (SplatBitSize-1);
1394 // vsplti + shl self.
1395 if (SextVal == (i << (int)TypeShiftAmt)) {
1396 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1397 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1398 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
1399 Intrinsic::ppc_altivec_vslw
1401 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1404 // vsplti + srl self.
1405 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1406 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1407 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1408 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
1409 Intrinsic::ppc_altivec_vsrw
1411 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1414 // vsplti + sra self.
1415 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
1416 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1417 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1418 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
1419 Intrinsic::ppc_altivec_vsraw
1421 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1424 // vsplti + rol self.
1425 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
1426 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
1427 Op = BuildSplatI(i, SplatSize, Op.getValueType(), DAG);
1428 static const unsigned IIDs[] = { // Intrinsic to use for each size.
1429 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
1430 Intrinsic::ppc_altivec_vrlw
1432 return BuildIntrinsicOp(IIDs[SplatSize-1], Op, Op, DAG);
1435 // t = vsplti c, result = vsldoi t, t, 1
1436 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
1437 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1438 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
1440 // t = vsplti c, result = vsldoi t, t, 2
1441 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
1442 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1443 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
1445 // t = vsplti c, result = vsldoi t, t, 3
1446 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
1447 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
1448 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
1452 // Three instruction sequences.
1454 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
1455 if (SextVal >= 0 && SextVal <= 31) {
1456 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, Op.getValueType(),DAG);
1457 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1458 return DAG.getNode(ISD::SUB, Op.getValueType(), LHS, RHS);
1460 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
1461 if (SextVal >= -31 && SextVal <= 0) {
1462 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, Op.getValueType(),DAG);
1463 SDOperand RHS = BuildSplatI(-16, SplatSize, Op.getValueType(), DAG);
1464 return DAG.getNode(ISD::ADD, Op.getValueType(), LHS, RHS);
1471 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
1472 /// the specified operations to build the shuffle.
1473 static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
1474 SDOperand RHS, SelectionDAG &DAG) {
1475 unsigned OpNum = (PFEntry >> 26) & 0x0F;
1476 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
1477 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
1480 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
1492 if (OpNum == OP_COPY) {
1493 if (LHSID == (1*9+2)*9+3) return LHS;
1494 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
1498 SDOperand OpLHS, OpRHS;
1499 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
1500 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
1502 unsigned ShufIdxs[16];
1504 default: assert(0 && "Unknown i32 permute!");
1506 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
1507 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
1508 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
1509 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
1512 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
1513 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
1514 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
1515 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
1518 for (unsigned i = 0; i != 16; ++i)
1519 ShufIdxs[i] = (i&3)+0;
1522 for (unsigned i = 0; i != 16; ++i)
1523 ShufIdxs[i] = (i&3)+4;
1526 for (unsigned i = 0; i != 16; ++i)
1527 ShufIdxs[i] = (i&3)+8;
1530 for (unsigned i = 0; i != 16; ++i)
1531 ShufIdxs[i] = (i&3)+12;
1534 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
1536 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
1538 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
1540 std::vector<SDOperand> Ops;
1541 for (unsigned i = 0; i != 16; ++i)
1542 Ops.push_back(DAG.getConstant(ShufIdxs[i], MVT::i32));
1544 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
1545 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1548 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
1549 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
1550 /// return the code it can be lowered into. Worst case, it can always be
1551 /// lowered into a vperm.
1552 static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
1553 SDOperand V1 = Op.getOperand(0);
1554 SDOperand V2 = Op.getOperand(1);
1555 SDOperand PermMask = Op.getOperand(2);
1557 // Cases that are handled by instructions that take permute immediates
1558 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
1559 // selected by the instruction selector.
1560 if (V2.getOpcode() == ISD::UNDEF) {
1561 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
1562 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
1563 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
1564 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
1565 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
1566 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
1567 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
1568 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
1569 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
1570 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
1571 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
1572 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
1577 // Altivec has a variety of "shuffle immediates" that take two vector inputs
1578 // and produce a fixed permutation. If any of these match, do not lower to
1580 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
1581 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
1582 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
1583 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
1584 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
1585 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
1586 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
1587 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
1588 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
1591 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
1592 // perfect shuffle table to emit an optimal matching sequence.
1593 unsigned PFIndexes[4];
1594 bool isFourElementShuffle = true;
1595 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
1596 unsigned EltNo = 8; // Start out undef.
1597 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
1598 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
1599 continue; // Undef, ignore it.
1601 unsigned ByteSource =
1602 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
1603 if ((ByteSource & 3) != j) {
1604 isFourElementShuffle = false;
1609 EltNo = ByteSource/4;
1610 } else if (EltNo != ByteSource/4) {
1611 isFourElementShuffle = false;
1615 PFIndexes[i] = EltNo;
1618 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
1619 // perfect shuffle vector to determine if it is cost effective to do this as
1620 // discrete instructions, or whether we should use a vperm.
1621 if (isFourElementShuffle) {
1622 // Compute the index in the perfect shuffle table.
1623 unsigned PFTableIndex =
1624 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
1626 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
1627 unsigned Cost = (PFEntry >> 30);
1629 // Determining when to avoid vperm is tricky. Many things affect the cost
1630 // of vperm, particularly how many times the perm mask needs to be computed.
1631 // For example, if the perm mask can be hoisted out of a loop or is already
1632 // used (perhaps because there are multiple permutes with the same shuffle
1633 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
1634 // the loop requires an extra register.
1636 // As a compromise, we only emit discrete instructions if the shuffle can be
1637 // generated in 3 or fewer operations. When we have loop information
1638 // available, if this block is within a loop, we should avoid using vperm
1639 // for 3-operation perms and use a constant pool load instead.
1641 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
1644 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
1645 // vector that will get spilled to the constant pool.
1646 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
1648 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
1649 // that it is in input element units, not in bytes. Convert now.
1650 MVT::ValueType EltVT = MVT::getVectorBaseType(V1.getValueType());
1651 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
1653 std::vector<SDOperand> ResultMask;
1654 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
1656 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
1659 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
1661 for (unsigned j = 0; j != BytesPerElement; ++j)
1662 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
1666 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, ResultMask);
1667 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
1670 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
1671 /// altivec comparison. If it is, return true and fill in Opc/isDot with
1672 /// information about the intrinsic.
1673 static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
1675 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
1678 switch (IntrinsicID) {
1679 default: return false;
1680 // Comparison predicates.
1681 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
1682 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
1683 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
1684 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
1685 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
1686 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
1687 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
1688 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
1689 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
1690 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
1691 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
1692 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
1693 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
1695 // Normal Comparisons.
1696 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
1697 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
1698 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
1699 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
1700 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
1701 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
1702 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
1703 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
1704 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
1705 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
1706 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
1707 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
1708 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
1713 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
1714 /// lower, do it, otherwise return null.
1715 static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
1716 // If this is a lowered altivec predicate compare, CompareOpc is set to the
1717 // opcode number of the comparison.
1720 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
1721 return SDOperand(); // Don't custom lower most intrinsics.
1723 // If this is a non-dot comparison, make the VCMP node and we are done.
1725 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
1726 Op.getOperand(1), Op.getOperand(2),
1727 DAG.getConstant(CompareOpc, MVT::i32));
1728 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
1731 // Create the PPCISD altivec 'dot' comparison node.
1732 std::vector<SDOperand> Ops;
1733 std::vector<MVT::ValueType> VTs;
1734 Ops.push_back(Op.getOperand(2)); // LHS
1735 Ops.push_back(Op.getOperand(3)); // RHS
1736 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
1737 VTs.push_back(Op.getOperand(2).getValueType());
1738 VTs.push_back(MVT::Flag);
1739 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
1741 // Now that we have the comparison, emit a copy from the CR to a GPR.
1742 // This is flagged to the above dot comparison.
1743 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
1744 DAG.getRegister(PPC::CR6, MVT::i32),
1745 CompNode.getValue(1));
1747 // Unpack the result based on how the target uses it.
1748 unsigned BitNo; // Bit # of CR6.
1749 bool InvertBit; // Invert result?
1750 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
1751 default: // Can't happen, don't crash on invalid number though.
1752 case 0: // Return the value of the EQ bit of CR6.
1753 BitNo = 0; InvertBit = false;
1755 case 1: // Return the inverted value of the EQ bit of CR6.
1756 BitNo = 0; InvertBit = true;
1758 case 2: // Return the value of the LT bit of CR6.
1759 BitNo = 2; InvertBit = false;
1761 case 3: // Return the inverted value of the LT bit of CR6.
1762 BitNo = 2; InvertBit = true;
1766 // Shift the bit into the low position.
1767 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
1768 DAG.getConstant(8-(3-BitNo), MVT::i32));
1770 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
1771 DAG.getConstant(1, MVT::i32));
1773 // If we are supposed to, toggle the bit.
1775 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
1776 DAG.getConstant(1, MVT::i32));
1780 static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
1781 // Create a stack slot that is 16-byte aligned.
1782 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
1783 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
1784 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, MVT::i32);
1786 // Store the input value into Value#0 of the stack slot.
1787 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, DAG.getEntryNode(),
1788 Op.getOperand(0), FIdx,DAG.getSrcValue(NULL));
1790 return DAG.getLoad(Op.getValueType(), Store, FIdx, DAG.getSrcValue(NULL));
1793 static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
1794 if (Op.getValueType() == MVT::v4i32) {
1795 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1797 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
1798 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
1800 SDOperand RHSSwap = // = vrlw RHS, 16
1801 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
1803 // Shrinkify inputs to v8i16.
1804 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
1805 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
1806 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
1808 // Low parts multiplied together, generating 32-bit results (we ignore the
1810 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
1811 LHS, RHS, DAG, MVT::v4i32);
1813 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
1814 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
1815 // Shift the high parts up 16 bits.
1816 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
1817 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
1818 } else if (Op.getValueType() == MVT::v8i16) {
1819 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1821 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
1823 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
1824 LHS, RHS, Zero, DAG);
1825 } else if (Op.getValueType() == MVT::v16i8) {
1826 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
1828 // Multiply the even 8-bit parts, producing 16-bit sums.
1829 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
1830 LHS, RHS, DAG, MVT::v8i16);
1831 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
1833 // Multiply the odd 8-bit parts, producing 16-bit sums.
1834 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
1835 LHS, RHS, DAG, MVT::v8i16);
1836 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
1838 // Merge the results together.
1839 std::vector<SDOperand> Ops;
1840 for (unsigned i = 0; i != 8; ++i) {
1841 Ops.push_back(DAG.getConstant(2*i+1, MVT::i8));
1842 Ops.push_back(DAG.getConstant(2*i+1+16, MVT::i8));
1845 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
1846 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops));
1848 assert(0 && "Unknown mul to lower!");
1853 /// LowerOperation - Provide custom lowering hooks for some operations.
1855 SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
1856 switch (Op.getOpcode()) {
1857 default: assert(0 && "Wasn't expecting to be able to lower this!");
1858 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
1859 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
1860 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
1861 case ISD::SETCC: return LowerSETCC(Op, DAG);
1862 case ISD::VASTART: return LowerVASTART(Op, DAG, VarArgsFrameIndex);
1863 case ISD::FORMAL_ARGUMENTS: return LowerFORMAL_ARGUMENTS(Op, DAG,
1865 case ISD::RET: return LowerRET(Op, DAG);
1867 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
1868 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
1869 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
1871 // Lower 64-bit shifts.
1872 case ISD::SHL: return LowerSHL(Op, DAG);
1873 case ISD::SRL: return LowerSRL(Op, DAG);
1874 case ISD::SRA: return LowerSRA(Op, DAG);
1876 // Vector-related lowering.
1877 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
1878 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
1879 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
1880 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
1881 case ISD::MUL: return LowerMUL(Op, DAG);
1886 //===----------------------------------------------------------------------===//
1887 // Other Lowering Code
1888 //===----------------------------------------------------------------------===//
1890 std::pair<SDOperand, SDOperand>
1891 PPCTargetLowering::LowerCallTo(SDOperand Chain,
1892 const Type *RetTy, bool isVarArg,
1893 unsigned CallingConv, bool isTailCall,
1894 SDOperand Callee, ArgListTy &Args,
1895 SelectionDAG &DAG) {
1896 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1897 // SelectExpr to use to put the arguments in the appropriate registers.
1898 std::vector<SDOperand> args_to_use;
1900 // Count how many bytes are to be pushed on the stack, including the linkage
1901 // area, and parameter passing area.
1902 unsigned NumBytes = 24;
1905 Chain = DAG.getCALLSEQ_START(Chain,
1906 DAG.getConstant(NumBytes, getPointerTy()));
1908 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1909 switch (getValueType(Args[i].second)) {
1910 default: assert(0 && "Unknown value type!");
1925 // Just to be safe, we'll always reserve the full 24 bytes of linkage area
1926 // plus 32 bytes of argument space in case any called code gets funky on us.
1927 // (Required by ABI to support var arg)
1928 if (NumBytes < 56) NumBytes = 56;
1930 // Adjust the stack pointer for the new arguments...
1931 // These operations are automatically eliminated by the prolog/epilog pass
1932 Chain = DAG.getCALLSEQ_START(Chain,
1933 DAG.getConstant(NumBytes, getPointerTy()));
1935 // Set up a copy of the stack pointer for use loading and storing any
1936 // arguments that may not fit in the registers available for argument
1938 SDOperand StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1940 // Figure out which arguments are going to go in registers, and which in
1941 // memory. Also, if this is a vararg function, floating point operations
1942 // must be stored to our stack, and loaded into integer regs as well, if
1943 // any integer regs are available for argument passing.
1944 unsigned ArgOffset = 24;
1945 unsigned GPR_remaining = 8;
1946 unsigned FPR_remaining = 13;
1948 std::vector<SDOperand> MemOps;
1949 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
1950 // PtrOff will be used to store the current argument to the stack if a
1951 // register cannot be found for it.
1952 SDOperand PtrOff = DAG.getConstant(ArgOffset, getPointerTy());
1953 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, StackPtr, PtrOff);
1954 MVT::ValueType ArgVT = getValueType(Args[i].second);
1957 default: assert(0 && "Unexpected ValueType for argument!");
1961 // Promote the integer to 32 bits. If the input type is signed use a
1962 // sign extend, otherwise use a zero extend.
1963 if (Args[i].second->isSigned())
1964 Args[i].first =DAG.getNode(ISD::SIGN_EXTEND, MVT::i32, Args[i].first);
1966 Args[i].first =DAG.getNode(ISD::ZERO_EXTEND, MVT::i32, Args[i].first);
1969 if (GPR_remaining > 0) {
1970 args_to_use.push_back(Args[i].first);
1973 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1974 Args[i].first, PtrOff,
1975 DAG.getSrcValue(NULL)));
1980 // If we have one free GPR left, we can place the upper half of the i64
1981 // in it, and store the other half to the stack. If we have two or more
1982 // free GPRs, then we can pass both halves of the i64 in registers.
1983 if (GPR_remaining > 0) {
1984 SDOperand Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1985 Args[i].first, DAG.getConstant(1, MVT::i32));
1986 SDOperand Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, MVT::i32,
1987 Args[i].first, DAG.getConstant(0, MVT::i32));
1988 args_to_use.push_back(Hi);
1990 if (GPR_remaining > 0) {
1991 args_to_use.push_back(Lo);
1994 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
1995 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
1996 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
1997 Lo, PtrOff, DAG.getSrcValue(NULL)));
2000 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2001 Args[i].first, PtrOff,
2002 DAG.getSrcValue(NULL)));
2008 if (FPR_remaining > 0) {
2009 args_to_use.push_back(Args[i].first);
2012 SDOperand Store = DAG.getNode(ISD::STORE, MVT::Other, Chain,
2013 Args[i].first, PtrOff,
2014 DAG.getSrcValue(NULL));
2015 MemOps.push_back(Store);
2016 // Float varargs are always shadowed in available integer registers
2017 if (GPR_remaining > 0) {
2018 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
2019 DAG.getSrcValue(NULL));
2020 MemOps.push_back(Load.getValue(1));
2021 args_to_use.push_back(Load);
2024 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
2025 SDOperand ConstFour = DAG.getConstant(4, getPointerTy());
2026 PtrOff = DAG.getNode(ISD::ADD, MVT::i32, PtrOff, ConstFour);
2027 SDOperand Load = DAG.getLoad(MVT::i32, Store, PtrOff,
2028 DAG.getSrcValue(NULL));
2029 MemOps.push_back(Load.getValue(1));
2030 args_to_use.push_back(Load);
2034 // If we have any FPRs remaining, we may also have GPRs remaining.
2035 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
2037 if (GPR_remaining > 0) {
2038 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2041 if (GPR_remaining > 0 && MVT::f64 == ArgVT) {
2042 args_to_use.push_back(DAG.getNode(ISD::UNDEF, MVT::i32));
2047 MemOps.push_back(DAG.getNode(ISD::STORE, MVT::Other, Chain,
2048 Args[i].first, PtrOff,
2049 DAG.getSrcValue(NULL)));
2051 ArgOffset += (ArgVT == MVT::f32) ? 4 : 8;
2055 if (!MemOps.empty())
2056 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, MemOps);
2059 std::vector<MVT::ValueType> RetVals;
2060 MVT::ValueType RetTyVT = getValueType(RetTy);
2061 MVT::ValueType ActualRetTyVT = RetTyVT;
2062 if (RetTyVT >= MVT::i1 && RetTyVT <= MVT::i16)
2063 ActualRetTyVT = MVT::i32; // Promote result to i32.
2065 if (RetTyVT == MVT::i64) {
2066 RetVals.push_back(MVT::i32);
2067 RetVals.push_back(MVT::i32);
2068 } else if (RetTyVT != MVT::isVoid) {
2069 RetVals.push_back(ActualRetTyVT);
2071 RetVals.push_back(MVT::Other);
2073 // If the callee is a GlobalAddress node (quite common, every direct call is)
2074 // turn it into a TargetGlobalAddress node so that legalize doesn't hack it.
2075 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
2076 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), MVT::i32);
2078 std::vector<SDOperand> Ops;
2079 Ops.push_back(Chain);
2080 Ops.push_back(Callee);
2081 Ops.insert(Ops.end(), args_to_use.begin(), args_to_use.end());
2082 SDOperand TheCall = DAG.getNode(PPCISD::CALL, RetVals, Ops);
2083 Chain = TheCall.getValue(TheCall.Val->getNumValues()-1);
2084 Chain = DAG.getNode(ISD::CALLSEQ_END, MVT::Other, Chain,
2085 DAG.getConstant(NumBytes, getPointerTy()));
2086 SDOperand RetVal = TheCall;
2088 // If the result is a small value, add a note so that we keep track of the
2089 // information about whether it is sign or zero extended.
2090 if (RetTyVT != ActualRetTyVT) {
2091 RetVal = DAG.getNode(RetTy->isSigned() ? ISD::AssertSext : ISD::AssertZext,
2092 MVT::i32, RetVal, DAG.getValueType(RetTyVT));
2093 RetVal = DAG.getNode(ISD::TRUNCATE, RetTyVT, RetVal);
2094 } else if (RetTyVT == MVT::i64) {
2095 RetVal = DAG.getNode(ISD::BUILD_PAIR, MVT::i64, RetVal, RetVal.getValue(1));
2098 return std::make_pair(RetVal, Chain);
2102 PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
2103 MachineBasicBlock *BB) {
2104 assert((MI->getOpcode() == PPC::SELECT_CC_Int ||
2105 MI->getOpcode() == PPC::SELECT_CC_F4 ||
2106 MI->getOpcode() == PPC::SELECT_CC_F8 ||
2107 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
2108 "Unexpected instr type to insert");
2110 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
2111 // control-flow pattern. The incoming instruction knows the destination vreg
2112 // to set, the condition code register to branch on, the true/false values to
2113 // select between, and a branch opcode to use.
2114 const BasicBlock *LLVM_BB = BB->getBasicBlock();
2115 ilist<MachineBasicBlock>::iterator It = BB;
2121 // cmpTY ccX, r1, r2
2123 // fallthrough --> copy0MBB
2124 MachineBasicBlock *thisMBB = BB;
2125 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
2126 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
2127 BuildMI(BB, MI->getOperand(4).getImmedValue(), 2)
2128 .addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
2129 MachineFunction *F = BB->getParent();
2130 F->getBasicBlockList().insert(It, copy0MBB);
2131 F->getBasicBlockList().insert(It, sinkMBB);
2132 // Update machine-CFG edges by first adding all successors of the current
2133 // block to the new block which will contain the Phi node for the select.
2134 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
2135 e = BB->succ_end(); i != e; ++i)
2136 sinkMBB->addSuccessor(*i);
2137 // Next, remove all successors of the current block, and add the true
2138 // and fallthrough blocks as its successors.
2139 while(!BB->succ_empty())
2140 BB->removeSuccessor(BB->succ_begin());
2141 BB->addSuccessor(copy0MBB);
2142 BB->addSuccessor(sinkMBB);
2145 // %FalseValue = ...
2146 // # fallthrough to sinkMBB
2149 // Update machine-CFG edges
2150 BB->addSuccessor(sinkMBB);
2153 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
2156 BuildMI(BB, PPC::PHI, 4, MI->getOperand(0).getReg())
2157 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
2158 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
2160 delete MI; // The pseudo instruction is gone now.
2164 //===----------------------------------------------------------------------===//
2165 // Target Optimization Hooks
2166 //===----------------------------------------------------------------------===//
2168 SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
2169 DAGCombinerInfo &DCI) const {
2170 TargetMachine &TM = getTargetMachine();
2171 SelectionDAG &DAG = DCI.DAG;
2172 switch (N->getOpcode()) {
2174 case ISD::SINT_TO_FP:
2175 if (TM.getSubtarget<PPCSubtarget>().is64Bit()) {
2176 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
2177 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
2178 // We allow the src/dst to be either f32/f64, but the intermediate
2179 // type must be i64.
2180 if (N->getOperand(0).getValueType() == MVT::i64) {
2181 SDOperand Val = N->getOperand(0).getOperand(0);
2182 if (Val.getValueType() == MVT::f32) {
2183 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2184 DCI.AddToWorklist(Val.Val);
2187 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
2188 DCI.AddToWorklist(Val.Val);
2189 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
2190 DCI.AddToWorklist(Val.Val);
2191 if (N->getValueType(0) == MVT::f32) {
2192 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
2193 DCI.AddToWorklist(Val.Val);
2196 } else if (N->getOperand(0).getValueType() == MVT::i32) {
2197 // If the intermediate type is i32, we can avoid the load/store here
2204 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
2205 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
2206 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
2207 N->getOperand(1).getValueType() == MVT::i32) {
2208 SDOperand Val = N->getOperand(1).getOperand(0);
2209 if (Val.getValueType() == MVT::f32) {
2210 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
2211 DCI.AddToWorklist(Val.Val);
2213 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
2214 DCI.AddToWorklist(Val.Val);
2216 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
2217 N->getOperand(2), N->getOperand(3));
2218 DCI.AddToWorklist(Val.Val);
2222 case PPCISD::VCMP: {
2223 // If a VCMPo node already exists with exactly the same operands as this
2224 // node, use its result instead of this node (VCMPo computes both a CR6 and
2225 // a normal output).
2227 if (!N->getOperand(0).hasOneUse() &&
2228 !N->getOperand(1).hasOneUse() &&
2229 !N->getOperand(2).hasOneUse()) {
2231 // Scan all of the users of the LHS, looking for VCMPo's that match.
2232 SDNode *VCMPoNode = 0;
2234 SDNode *LHSN = N->getOperand(0).Val;
2235 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
2237 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
2238 (*UI)->getOperand(1) == N->getOperand(1) &&
2239 (*UI)->getOperand(2) == N->getOperand(2) &&
2240 (*UI)->getOperand(0) == N->getOperand(0)) {
2245 // If there is no VCMPo node, or if the flag value has a single use, don't
2247 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
2250 // Look at the (necessarily single) use of the flag value. If it has a
2251 // chain, this transformation is more complex. Note that multiple things
2252 // could use the value result, which we should ignore.
2253 SDNode *FlagUser = 0;
2254 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
2255 FlagUser == 0; ++UI) {
2256 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
2258 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
2259 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
2266 // If the user is a MFCR instruction, we know this is safe. Otherwise we
2267 // give up for right now.
2268 if (FlagUser->getOpcode() == PPCISD::MFCR)
2269 return SDOperand(VCMPoNode, 0);
2274 // If this is a branch on an altivec predicate comparison, lower this so
2275 // that we don't have to do a MFCR: instead, branch directly on CR6. This
2276 // lowering is done pre-legalize, because the legalizer lowers the predicate
2277 // compare down to code that is difficult to reassemble.
2278 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
2279 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
2283 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
2284 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
2285 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
2286 assert(isDot && "Can't compare against a vector result!");
2288 // If this is a comparison against something other than 0/1, then we know
2289 // that the condition is never/always true.
2290 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
2291 if (Val != 0 && Val != 1) {
2292 if (CC == ISD::SETEQ) // Cond never true, remove branch.
2293 return N->getOperand(0);
2294 // Always !=, turn it into an unconditional branch.
2295 return DAG.getNode(ISD::BR, MVT::Other,
2296 N->getOperand(0), N->getOperand(4));
2299 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
2301 // Create the PPCISD altivec 'dot' comparison node.
2302 std::vector<SDOperand> Ops;
2303 std::vector<MVT::ValueType> VTs;
2304 Ops.push_back(LHS.getOperand(2)); // LHS of compare
2305 Ops.push_back(LHS.getOperand(3)); // RHS of compare
2306 Ops.push_back(DAG.getConstant(CompareOpc, MVT::i32));
2307 VTs.push_back(LHS.getOperand(2).getValueType());
2308 VTs.push_back(MVT::Flag);
2309 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops);
2311 // Unpack the result based on how the target uses it.
2313 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
2314 default: // Can't happen, don't crash on invalid number though.
2315 case 0: // Branch on the value of the EQ bit of CR6.
2316 CompOpc = BranchOnWhenPredTrue ? PPC::BEQ : PPC::BNE;
2318 case 1: // Branch on the inverted value of the EQ bit of CR6.
2319 CompOpc = BranchOnWhenPredTrue ? PPC::BNE : PPC::BEQ;
2321 case 2: // Branch on the value of the LT bit of CR6.
2322 CompOpc = BranchOnWhenPredTrue ? PPC::BLT : PPC::BGE;
2324 case 3: // Branch on the inverted value of the LT bit of CR6.
2325 CompOpc = BranchOnWhenPredTrue ? PPC::BGE : PPC::BLT;
2329 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
2330 DAG.getRegister(PPC::CR6, MVT::i32),
2331 DAG.getConstant(CompOpc, MVT::i32),
2332 N->getOperand(4), CompNode.getValue(1));
2341 //===----------------------------------------------------------------------===//
2342 // Inline Assembly Support
2343 //===----------------------------------------------------------------------===//
2345 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
2347 uint64_t &KnownZero,
2349 unsigned Depth) const {
2352 switch (Op.getOpcode()) {
2354 case ISD::INTRINSIC_WO_CHAIN: {
2355 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
2357 case Intrinsic::ppc_altivec_vcmpbfp_p:
2358 case Intrinsic::ppc_altivec_vcmpeqfp_p:
2359 case Intrinsic::ppc_altivec_vcmpequb_p:
2360 case Intrinsic::ppc_altivec_vcmpequh_p:
2361 case Intrinsic::ppc_altivec_vcmpequw_p:
2362 case Intrinsic::ppc_altivec_vcmpgefp_p:
2363 case Intrinsic::ppc_altivec_vcmpgtfp_p:
2364 case Intrinsic::ppc_altivec_vcmpgtsb_p:
2365 case Intrinsic::ppc_altivec_vcmpgtsh_p:
2366 case Intrinsic::ppc_altivec_vcmpgtsw_p:
2367 case Intrinsic::ppc_altivec_vcmpgtub_p:
2368 case Intrinsic::ppc_altivec_vcmpgtuh_p:
2369 case Intrinsic::ppc_altivec_vcmpgtuw_p:
2370 KnownZero = ~1U; // All bits but the low one are known to be zero.
2378 /// getConstraintType - Given a constraint letter, return the type of
2379 /// constraint it is for this target.
2380 PPCTargetLowering::ConstraintType
2381 PPCTargetLowering::getConstraintType(char ConstraintLetter) const {
2382 switch (ConstraintLetter) {
2389 return C_RegisterClass;
2391 return TargetLowering::getConstraintType(ConstraintLetter);
2395 std::vector<unsigned> PPCTargetLowering::
2396 getRegClassForInlineAsmConstraint(const std::string &Constraint,
2397 MVT::ValueType VT) const {
2398 if (Constraint.size() == 1) {
2399 switch (Constraint[0]) { // GCC RS6000 Constraint Letters
2400 default: break; // Unknown constriant letter
2402 return make_vector<unsigned>(/*no R0*/ PPC::R1 , PPC::R2 , PPC::R3 ,
2403 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2404 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2405 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2406 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2407 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2408 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2409 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2412 return make_vector<unsigned>(PPC::R0 , PPC::R1 , PPC::R2 , PPC::R3 ,
2413 PPC::R4 , PPC::R5 , PPC::R6 , PPC::R7 ,
2414 PPC::R8 , PPC::R9 , PPC::R10, PPC::R11,
2415 PPC::R12, PPC::R13, PPC::R14, PPC::R15,
2416 PPC::R16, PPC::R17, PPC::R18, PPC::R19,
2417 PPC::R20, PPC::R21, PPC::R22, PPC::R23,
2418 PPC::R24, PPC::R25, PPC::R26, PPC::R27,
2419 PPC::R28, PPC::R29, PPC::R30, PPC::R31,
2422 return make_vector<unsigned>(PPC::F0 , PPC::F1 , PPC::F2 , PPC::F3 ,
2423 PPC::F4 , PPC::F5 , PPC::F6 , PPC::F7 ,
2424 PPC::F8 , PPC::F9 , PPC::F10, PPC::F11,
2425 PPC::F12, PPC::F13, PPC::F14, PPC::F15,
2426 PPC::F16, PPC::F17, PPC::F18, PPC::F19,
2427 PPC::F20, PPC::F21, PPC::F22, PPC::F23,
2428 PPC::F24, PPC::F25, PPC::F26, PPC::F27,
2429 PPC::F28, PPC::F29, PPC::F30, PPC::F31,
2432 return make_vector<unsigned>(PPC::V0 , PPC::V1 , PPC::V2 , PPC::V3 ,
2433 PPC::V4 , PPC::V5 , PPC::V6 , PPC::V7 ,
2434 PPC::V8 , PPC::V9 , PPC::V10, PPC::V11,
2435 PPC::V12, PPC::V13, PPC::V14, PPC::V15,
2436 PPC::V16, PPC::V17, PPC::V18, PPC::V19,
2437 PPC::V20, PPC::V21, PPC::V22, PPC::V23,
2438 PPC::V24, PPC::V25, PPC::V26, PPC::V27,
2439 PPC::V28, PPC::V29, PPC::V30, PPC::V31,
2442 return make_vector<unsigned>(PPC::CR0, PPC::CR1, PPC::CR2, PPC::CR3,
2443 PPC::CR4, PPC::CR5, PPC::CR6, PPC::CR7,
2448 return std::vector<unsigned>();
2451 // isOperandValidForConstraint
2452 bool PPCTargetLowering::
2453 isOperandValidForConstraint(SDOperand Op, char Letter) {
2464 if (!isa<ConstantSDNode>(Op)) return false; // Must be an immediate.
2465 unsigned Value = cast<ConstantSDNode>(Op)->getValue();
2467 default: assert(0 && "Unknown constraint letter!");
2468 case 'I': // "I" is a signed 16-bit constant.
2469 return (short)Value == (int)Value;
2470 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
2471 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
2472 return (short)Value == 0;
2473 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
2474 return (Value >> 16) == 0;
2475 case 'M': // "M" is a constant that is greater than 31.
2477 case 'N': // "N" is a positive constant that is an exact power of two.
2478 return (int)Value > 0 && isPowerOf2_32(Value);
2479 case 'O': // "O" is the constant zero.
2481 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
2482 return (short)-Value == (int)-Value;
2488 // Handle standard constraint letters.
2489 return TargetLowering::isOperandValidForConstraint(Op, Letter);
2492 /// isLegalAddressImmediate - Return true if the integer value can be used
2493 /// as the offset of the target addressing mode.
2494 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V) const {
2495 // PPC allows a sign-extended 16-bit immediate field.
2496 return (V > -(1 << 16) && V < (1 << 16)-1);