R600: Add carry and borrow instructions. Use them to implement UADDO/USUBO
[oota-llvm.git] / lib / Target / R600 / AMDGPUISelLowering.cpp
1 //===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 /// \brief This is the parent TargetLowering class for hardware code gen
12 /// targets.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "AMDGPUISelLowering.h"
17 #include "AMDGPU.h"
18 #include "AMDGPUFrameLowering.h"
19 #include "AMDGPUIntrinsicInfo.h"
20 #include "AMDGPURegisterInfo.h"
21 #include "AMDGPUSubtarget.h"
22 #include "R600MachineFunctionInfo.h"
23 #include "SIMachineFunctionInfo.h"
24 #include "llvm/CodeGen/CallingConvLower.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DiagnosticInfo.h"
31 #include "llvm/IR/DiagnosticPrinter.h"
32
33 using namespace llvm;
34
35 namespace {
36
37 /// Diagnostic information for unimplemented or unsupported feature reporting.
38 class DiagnosticInfoUnsupported : public DiagnosticInfo {
39 private:
40   const Twine &Description;
41   const Function &Fn;
42
43   static int KindID;
44
45   static int getKindID() {
46     if (KindID == 0)
47       KindID = llvm::getNextAvailablePluginDiagnosticKind();
48     return KindID;
49   }
50
51 public:
52   DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
53                           DiagnosticSeverity Severity = DS_Error)
54     : DiagnosticInfo(getKindID(), Severity),
55       Description(Desc),
56       Fn(Fn) { }
57
58   const Function &getFunction() const { return Fn; }
59   const Twine &getDescription() const { return Description; }
60
61   void print(DiagnosticPrinter &DP) const override {
62     DP << "unsupported " << getDescription() << " in " << Fn.getName();
63   }
64
65   static bool classof(const DiagnosticInfo *DI) {
66     return DI->getKind() == getKindID();
67   }
68 };
69
70 int DiagnosticInfoUnsupported::KindID = 0;
71 }
72
73
74 static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
75                       CCValAssign::LocInfo LocInfo,
76                       ISD::ArgFlagsTy ArgFlags, CCState &State) {
77   unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
78                                         ArgFlags.getOrigAlign());
79   State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
80
81   return true;
82 }
83
84 #include "AMDGPUGenCallingConv.inc"
85
86 // Find a larger type to do a load / store of a vector with.
87 EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
88   unsigned StoreSize = VT.getStoreSizeInBits();
89   if (StoreSize <= 32)
90     return EVT::getIntegerVT(Ctx, StoreSize);
91
92   assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
93   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
94 }
95
96 // Type for a vector that will be loaded to.
97 EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
98   unsigned StoreSize = VT.getStoreSizeInBits();
99   if (StoreSize <= 32)
100     return EVT::getIntegerVT(Ctx, 32);
101
102   return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
103 }
104
105 AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM,
106                                            const AMDGPUSubtarget &STI)
107     : TargetLowering(TM), Subtarget(&STI) {
108   setOperationAction(ISD::Constant, MVT::i32, Legal);
109   setOperationAction(ISD::Constant, MVT::i64, Legal);
110   setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
111   setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
112
113   setOperationAction(ISD::BR_JT, MVT::Other, Expand);
114   setOperationAction(ISD::BRIND, MVT::Other, Expand);
115
116   // We need to custom lower some of the intrinsics
117   setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
118
119   // Library functions.  These default to Expand, but we have instructions
120   // for them.
121   setOperationAction(ISD::FCEIL,  MVT::f32, Legal);
122   setOperationAction(ISD::FEXP2,  MVT::f32, Legal);
123   setOperationAction(ISD::FPOW,   MVT::f32, Legal);
124   setOperationAction(ISD::FLOG2,  MVT::f32, Legal);
125   setOperationAction(ISD::FABS,   MVT::f32, Legal);
126   setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
127   setOperationAction(ISD::FRINT,  MVT::f32, Legal);
128   setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
129   setOperationAction(ISD::FMINNUM, MVT::f32, Legal);
130   setOperationAction(ISD::FMAXNUM, MVT::f32, Legal);
131
132   setOperationAction(ISD::FROUND, MVT::f32, Custom);
133   setOperationAction(ISD::FROUND, MVT::f64, Custom);
134
135   setOperationAction(ISD::FREM, MVT::f32, Custom);
136   setOperationAction(ISD::FREM, MVT::f64, Custom);
137
138   // v_mad_f32 does not support denormals according to some sources.
139   if (!Subtarget->hasFP32Denormals())
140     setOperationAction(ISD::FMAD, MVT::f32, Legal);
141
142   // Expand to fneg + fadd.
143   setOperationAction(ISD::FSUB, MVT::f64, Expand);
144
145   // Lower floating point store/load to integer store/load to reduce the number
146   // of patterns in tablegen.
147   setOperationAction(ISD::STORE, MVT::f32, Promote);
148   AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
149
150   setOperationAction(ISD::STORE, MVT::v2f32, Promote);
151   AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
152
153   setOperationAction(ISD::STORE, MVT::v4f32, Promote);
154   AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
155
156   setOperationAction(ISD::STORE, MVT::v8f32, Promote);
157   AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
158
159   setOperationAction(ISD::STORE, MVT::v16f32, Promote);
160   AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
161
162   setOperationAction(ISD::STORE, MVT::f64, Promote);
163   AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
164
165   setOperationAction(ISD::STORE, MVT::v2f64, Promote);
166   AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
167
168   // Custom lowering of vector stores is required for local address space
169   // stores.
170   setOperationAction(ISD::STORE, MVT::v4i32, Custom);
171
172   setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
173   setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
174   setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
175
176   // XXX: This can be change to Custom, once ExpandVectorStores can
177   // handle 64-bit stores.
178   setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
179
180   setTruncStoreAction(MVT::i64, MVT::i16, Expand);
181   setTruncStoreAction(MVT::i64, MVT::i8, Expand);
182   setTruncStoreAction(MVT::i64, MVT::i1, Expand);
183   setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
184   setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
185
186
187   setOperationAction(ISD::LOAD, MVT::f32, Promote);
188   AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
189
190   setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
191   AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
192
193   setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
194   AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
195
196   setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
197   AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
198
199   setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
200   AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
201
202   setOperationAction(ISD::LOAD, MVT::f64, Promote);
203   AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
204
205   setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
206   AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
207
208   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
209   setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
210   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
211   setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
212   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
213   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
214   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
215   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
216   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
217   setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
218
219   // There are no 64-bit extloads. These should be done as a 32-bit extload and
220   // an extension to 64-bit.
221   for (MVT VT : MVT::integer_valuetypes()) {
222     setLoadExtAction(ISD::EXTLOAD, MVT::i64, VT, Expand);
223     setLoadExtAction(ISD::SEXTLOAD, MVT::i64, VT, Expand);
224     setLoadExtAction(ISD::ZEXTLOAD, MVT::i64, VT, Expand);
225   }
226
227   for (MVT VT : MVT::integer_vector_valuetypes()) {
228     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i8, Expand);
229     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i8, Expand);
230     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i8, Expand);
231     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i8, Expand);
232     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i8, Expand);
233     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i8, Expand);
234     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v2i16, Expand);
235     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v2i16, Expand);
236     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v2i16, Expand);
237     setLoadExtAction(ISD::EXTLOAD, VT, MVT::v4i16, Expand);
238     setLoadExtAction(ISD::SEXTLOAD, VT, MVT::v4i16, Expand);
239     setLoadExtAction(ISD::ZEXTLOAD, VT, MVT::v4i16, Expand);
240   }
241
242   setOperationAction(ISD::BR_CC, MVT::i1, Expand);
243
244   if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
245     setOperationAction(ISD::FCEIL, MVT::f64, Custom);
246     setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
247     setOperationAction(ISD::FRINT, MVT::f64, Custom);
248     setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
249   }
250
251   if (!Subtarget->hasBFI()) {
252     // fcopysign can be done in a single instruction with BFI.
253     setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
254     setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
255   }
256
257   setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
258
259   setLoadExtAction(ISD::EXTLOAD, MVT::f32, MVT::f16, Expand);
260   setLoadExtAction(ISD::EXTLOAD, MVT::f64, MVT::f16, Expand);
261   setTruncStoreAction(MVT::f32, MVT::f16, Expand);
262   setTruncStoreAction(MVT::f64, MVT::f16, Expand);
263
264   const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
265   for (MVT VT : ScalarIntVTs) {
266     setOperationAction(ISD::SREM, VT, Expand);
267     setOperationAction(ISD::SDIV, VT, Expand);
268
269     // GPU does not have divrem function for signed or unsigned.
270     setOperationAction(ISD::SDIVREM, VT, Custom);
271     setOperationAction(ISD::UDIVREM, VT, Custom);
272
273     // GPU does not have [S|U]MUL_LOHI functions as a single instruction.
274     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
275     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
276
277     setOperationAction(ISD::BSWAP, VT, Expand);
278     setOperationAction(ISD::CTTZ, VT, Expand);
279     setOperationAction(ISD::CTLZ, VT, Expand);
280   }
281
282   if (!Subtarget->hasBCNT(32))
283     setOperationAction(ISD::CTPOP, MVT::i32, Expand);
284
285   if (!Subtarget->hasBCNT(64))
286     setOperationAction(ISD::CTPOP, MVT::i64, Expand);
287
288   // The hardware supports 32-bit ROTR, but not ROTL.
289   setOperationAction(ISD::ROTL, MVT::i32, Expand);
290   setOperationAction(ISD::ROTL, MVT::i64, Expand);
291   setOperationAction(ISD::ROTR, MVT::i64, Expand);
292
293   setOperationAction(ISD::MUL, MVT::i64, Expand);
294   setOperationAction(ISD::MULHU, MVT::i64, Expand);
295   setOperationAction(ISD::MULHS, MVT::i64, Expand);
296   setOperationAction(ISD::UDIV, MVT::i32, Expand);
297   setOperationAction(ISD::UREM, MVT::i32, Expand);
298   setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
299   setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
300   setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
301   setOperationAction(ISD::FP_TO_UINT, MVT::i64, Custom);
302   setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
303
304   if (!Subtarget->hasFFBH())
305     setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
306
307   if (!Subtarget->hasFFBL())
308     setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
309
310   static const MVT::SimpleValueType VectorIntTypes[] = {
311     MVT::v2i32, MVT::v4i32
312   };
313
314   for (MVT VT : VectorIntTypes) {
315     // Expand the following operations for the current type by default.
316     setOperationAction(ISD::ADD,  VT, Expand);
317     setOperationAction(ISD::AND,  VT, Expand);
318     setOperationAction(ISD::FP_TO_SINT, VT, Expand);
319     setOperationAction(ISD::FP_TO_UINT, VT, Expand);
320     setOperationAction(ISD::MUL,  VT, Expand);
321     setOperationAction(ISD::OR,   VT, Expand);
322     setOperationAction(ISD::SHL,  VT, Expand);
323     setOperationAction(ISD::SRA,  VT, Expand);
324     setOperationAction(ISD::SRL,  VT, Expand);
325     setOperationAction(ISD::ROTL, VT, Expand);
326     setOperationAction(ISD::ROTR, VT, Expand);
327     setOperationAction(ISD::SUB,  VT, Expand);
328     setOperationAction(ISD::SINT_TO_FP, VT, Expand);
329     setOperationAction(ISD::UINT_TO_FP, VT, Expand);
330     setOperationAction(ISD::SDIV, VT, Expand);
331     setOperationAction(ISD::UDIV, VT, Expand);
332     setOperationAction(ISD::SREM, VT, Expand);
333     setOperationAction(ISD::UREM, VT, Expand);
334     setOperationAction(ISD::SMUL_LOHI, VT, Expand);
335     setOperationAction(ISD::UMUL_LOHI, VT, Expand);
336     setOperationAction(ISD::SDIVREM, VT, Custom);
337     setOperationAction(ISD::UDIVREM, VT, Custom);
338     setOperationAction(ISD::ADDC, VT, Expand);
339     setOperationAction(ISD::SUBC, VT, Expand);
340     setOperationAction(ISD::ADDE, VT, Expand);
341     setOperationAction(ISD::SUBE, VT, Expand);
342     setOperationAction(ISD::SELECT, VT, Expand);
343     setOperationAction(ISD::VSELECT, VT, Expand);
344     setOperationAction(ISD::SELECT_CC, VT, Expand);
345     setOperationAction(ISD::XOR,  VT, Expand);
346     setOperationAction(ISD::BSWAP, VT, Expand);
347     setOperationAction(ISD::CTPOP, VT, Expand);
348     setOperationAction(ISD::CTTZ, VT, Expand);
349     setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
350     setOperationAction(ISD::CTLZ, VT, Expand);
351     setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
352     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
353   }
354
355   static const MVT::SimpleValueType FloatVectorTypes[] = {
356     MVT::v2f32, MVT::v4f32
357   };
358
359   for (MVT VT : FloatVectorTypes) {
360     setOperationAction(ISD::FABS, VT, Expand);
361     setOperationAction(ISD::FMINNUM, VT, Expand);
362     setOperationAction(ISD::FMAXNUM, VT, Expand);
363     setOperationAction(ISD::FADD, VT, Expand);
364     setOperationAction(ISD::FCEIL, VT, Expand);
365     setOperationAction(ISD::FCOS, VT, Expand);
366     setOperationAction(ISD::FDIV, VT, Expand);
367     setOperationAction(ISD::FEXP2, VT, Expand);
368     setOperationAction(ISD::FLOG2, VT, Expand);
369     setOperationAction(ISD::FREM, VT, Expand);
370     setOperationAction(ISD::FPOW, VT, Expand);
371     setOperationAction(ISD::FFLOOR, VT, Expand);
372     setOperationAction(ISD::FTRUNC, VT, Expand);
373     setOperationAction(ISD::FMUL, VT, Expand);
374     setOperationAction(ISD::FMA, VT, Expand);
375     setOperationAction(ISD::FRINT, VT, Expand);
376     setOperationAction(ISD::FNEARBYINT, VT, Expand);
377     setOperationAction(ISD::FSQRT, VT, Expand);
378     setOperationAction(ISD::FSIN, VT, Expand);
379     setOperationAction(ISD::FSUB, VT, Expand);
380     setOperationAction(ISD::FNEG, VT, Expand);
381     setOperationAction(ISD::SELECT, VT, Expand);
382     setOperationAction(ISD::VSELECT, VT, Expand);
383     setOperationAction(ISD::SELECT_CC, VT, Expand);
384     setOperationAction(ISD::FCOPYSIGN, VT, Expand);
385     setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
386   }
387
388   setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
389   setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
390
391   setTargetDAGCombine(ISD::MUL);
392   setTargetDAGCombine(ISD::SELECT);
393   setTargetDAGCombine(ISD::SELECT_CC);
394   setTargetDAGCombine(ISD::STORE);
395
396   setTargetDAGCombine(ISD::FADD);
397   setTargetDAGCombine(ISD::FSUB);
398
399   setBooleanContents(ZeroOrNegativeOneBooleanContent);
400   setBooleanVectorContents(ZeroOrNegativeOneBooleanContent);
401
402   setSchedulingPreference(Sched::RegPressure);
403   setJumpIsExpensive(true);
404
405   // SI at least has hardware support for floating point exceptions, but no way
406   // of using or handling them is implemented. They are also optional in OpenCL
407   // (Section 7.3)
408   setHasFloatingPointExceptions(false);
409
410   setSelectIsExpensive(false);
411   PredictableSelectIsExpensive = false;
412
413   // There are no integer divide instructions, and these expand to a pretty
414   // large sequence of instructions.
415   setIntDivIsCheap(false);
416   setPow2SDivIsCheap(false);
417   setFsqrtIsCheap(true);
418
419   // FIXME: Need to really handle these.
420   MaxStoresPerMemcpy  = 4096;
421   MaxStoresPerMemmove = 4096;
422   MaxStoresPerMemset  = 4096;
423 }
424
425 //===----------------------------------------------------------------------===//
426 // Target Information
427 //===----------------------------------------------------------------------===//
428
429 MVT AMDGPUTargetLowering::getVectorIdxTy() const {
430   return MVT::i32;
431 }
432
433 bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
434   return true;
435 }
436
437 // The backend supports 32 and 64 bit floating point immediates.
438 // FIXME: Why are we reporting vectors of FP immediates as legal?
439 bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
440   EVT ScalarVT = VT.getScalarType();
441   return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
442 }
443
444 // We don't want to shrink f64 / f32 constants.
445 bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
446   EVT ScalarVT = VT.getScalarType();
447   return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
448 }
449
450 bool AMDGPUTargetLowering::shouldReduceLoadWidth(SDNode *N,
451                                                  ISD::LoadExtType,
452                                                  EVT NewVT) const {
453
454   unsigned NewSize = NewVT.getStoreSizeInBits();
455
456   // If we are reducing to a 32-bit load, this is always better.
457   if (NewSize == 32)
458     return true;
459
460   EVT OldVT = N->getValueType(0);
461   unsigned OldSize = OldVT.getStoreSizeInBits();
462
463   // Don't produce extloads from sub 32-bit types. SI doesn't have scalar
464   // extloads, so doing one requires using a buffer_load. In cases where we
465   // still couldn't use a scalar load, using the wider load shouldn't really
466   // hurt anything.
467
468   // If the old size already had to be an extload, there's no harm in continuing
469   // to reduce the width.
470   return (OldSize < 32);
471 }
472
473 bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
474                                                    EVT CastTy) const {
475   if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
476     return true;
477
478   unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
479   unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
480
481   return ((LScalarSize <= CastScalarSize) ||
482           (CastScalarSize >= 32) ||
483           (LScalarSize < 32));
484 }
485
486 // SI+ has instructions for cttz / ctlz for 32-bit values. This is probably also
487 // profitable with the expansion for 64-bit since it's generally good to
488 // speculate things.
489 // FIXME: These should really have the size as a parameter.
490 bool AMDGPUTargetLowering::isCheapToSpeculateCttz() const {
491   return true;
492 }
493
494 bool AMDGPUTargetLowering::isCheapToSpeculateCtlz() const {
495   return true;
496 }
497
498 //===---------------------------------------------------------------------===//
499 // Target Properties
500 //===---------------------------------------------------------------------===//
501
502 bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
503   assert(VT.isFloatingPoint());
504   return VT == MVT::f32 || VT == MVT::f64;
505 }
506
507 bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
508   assert(VT.isFloatingPoint());
509   return VT == MVT::f32 || VT == MVT::f64;
510 }
511
512 bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
513   // Truncate is just accessing a subregister.
514   return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
515 }
516
517 bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
518   // Truncate is just accessing a subregister.
519   return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
520          (Dest->getPrimitiveSizeInBits() % 32 == 0);
521 }
522
523 bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
524   const DataLayout *DL = getDataLayout();
525   unsigned SrcSize = DL->getTypeSizeInBits(Src->getScalarType());
526   unsigned DestSize = DL->getTypeSizeInBits(Dest->getScalarType());
527
528   return SrcSize == 32 && DestSize == 64;
529 }
530
531 bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
532   // Any register load of a 64-bit value really requires 2 32-bit moves. For all
533   // practical purposes, the extra mov 0 to load a 64-bit is free.  As used,
534   // this will enable reducing 64-bit operations the 32-bit, which is always
535   // good.
536   return Src == MVT::i32 && Dest == MVT::i64;
537 }
538
539 bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
540   return isZExtFree(Val.getValueType(), VT2);
541 }
542
543 bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
544   // There aren't really 64-bit registers, but pairs of 32-bit ones and only a
545   // limited number of native 64-bit operations. Shrinking an operation to fit
546   // in a single 32-bit register should always be helpful. As currently used,
547   // this is much less general than the name suggests, and is only used in
548   // places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
549   // not profitable, and may actually be harmful.
550   return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
551 }
552
553 //===---------------------------------------------------------------------===//
554 // TargetLowering Callbacks
555 //===---------------------------------------------------------------------===//
556
557 void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
558                              const SmallVectorImpl<ISD::InputArg> &Ins) const {
559
560   State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
561 }
562
563 SDValue AMDGPUTargetLowering::LowerReturn(
564                                      SDValue Chain,
565                                      CallingConv::ID CallConv,
566                                      bool isVarArg,
567                                      const SmallVectorImpl<ISD::OutputArg> &Outs,
568                                      const SmallVectorImpl<SDValue> &OutVals,
569                                      SDLoc DL, SelectionDAG &DAG) const {
570   return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
571 }
572
573 //===---------------------------------------------------------------------===//
574 // Target specific lowering
575 //===---------------------------------------------------------------------===//
576
577 SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
578                                         SmallVectorImpl<SDValue> &InVals) const {
579   SDValue Callee = CLI.Callee;
580   SelectionDAG &DAG = CLI.DAG;
581
582   const Function &Fn = *DAG.getMachineFunction().getFunction();
583
584   StringRef FuncName("<unknown>");
585
586   if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
587     FuncName = G->getSymbol();
588   else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
589     FuncName = G->getGlobal()->getName();
590
591   DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
592   DAG.getContext()->diagnose(NoCalls);
593   return SDValue();
594 }
595
596 SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
597                                              SelectionDAG &DAG) const {
598   switch (Op.getOpcode()) {
599   default:
600     Op.getNode()->dump();
601     llvm_unreachable("Custom lowering code for this"
602                      "instruction is not implemented yet!");
603     break;
604   case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
605   case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
606   case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
607   case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
608   case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
609   case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
610   case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
611   case ISD::FREM: return LowerFREM(Op, DAG);
612   case ISD::FCEIL: return LowerFCEIL(Op, DAG);
613   case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
614   case ISD::FRINT: return LowerFRINT(Op, DAG);
615   case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
616   case ISD::FROUND: return LowerFROUND(Op, DAG);
617   case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
618   case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
619   case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
620   case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
621   case ISD::FP_TO_UINT: return LowerFP_TO_UINT(Op, DAG);
622   }
623   return Op;
624 }
625
626 void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
627                                               SmallVectorImpl<SDValue> &Results,
628                                               SelectionDAG &DAG) const {
629   switch (N->getOpcode()) {
630   case ISD::SIGN_EXTEND_INREG:
631     // Different parts of legalization seem to interpret which type of
632     // sign_extend_inreg is the one to check for custom lowering. The extended
633     // from type is what really matters, but some places check for custom
634     // lowering of the result type. This results in trying to use
635     // ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
636     // nothing here and let the illegal result integer be handled normally.
637     return;
638   case ISD::LOAD: {
639     SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
640     if (!Node)
641       return;
642
643     Results.push_back(SDValue(Node, 0));
644     Results.push_back(SDValue(Node, 1));
645     // XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
646     // function
647     DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
648     return;
649   }
650   case ISD::STORE: {
651     SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
652     if (Lowered.getNode())
653       Results.push_back(Lowered);
654     return;
655   }
656   default:
657     return;
658   }
659 }
660
661 // FIXME: This implements accesses to initialized globals in the constant
662 // address space by copying them to private and accessing that. It does not
663 // properly handle illegal types or vectors. The private vector loads are not
664 // scalarized, and the illegal scalars hit an assertion. This technique will not
665 // work well with large initializers, and this should eventually be
666 // removed. Initialized globals should be placed into a data section that the
667 // runtime will load into a buffer before the kernel is executed. Uses of the
668 // global need to be replaced with a pointer loaded from an implicit kernel
669 // argument into this buffer holding the copy of the data, which will remove the
670 // need for any of this.
671 SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
672                                                        const GlobalValue *GV,
673                                                        const SDValue &InitPtr,
674                                                        SDValue Chain,
675                                                        SelectionDAG &DAG) const {
676   const DataLayout *TD = getDataLayout();
677   SDLoc DL(InitPtr);
678   Type *InitTy = Init->getType();
679
680   if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
681     EVT VT = EVT::getEVT(InitTy);
682     PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
683     return DAG.getStore(Chain, DL, DAG.getConstant(*CI, VT), InitPtr,
684                         MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
685                         TD->getPrefTypeAlignment(InitTy));
686   }
687
688   if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
689     EVT VT = EVT::getEVT(CFP->getType());
690     PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
691     return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, VT), InitPtr,
692                  MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
693                  TD->getPrefTypeAlignment(CFP->getType()));
694   }
695
696   if (StructType *ST = dyn_cast<StructType>(InitTy)) {
697     const StructLayout *SL = TD->getStructLayout(ST);
698
699     EVT PtrVT = InitPtr.getValueType();
700     SmallVector<SDValue, 8> Chains;
701
702     for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
703       SDValue Offset = DAG.getConstant(SL->getElementOffset(I), PtrVT);
704       SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
705
706       Constant *Elt = Init->getAggregateElement(I);
707       Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
708     }
709
710     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
711   }
712
713   if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
714     EVT PtrVT = InitPtr.getValueType();
715
716     unsigned NumElements;
717     if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
718       NumElements = AT->getNumElements();
719     else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
720       NumElements = VT->getNumElements();
721     else
722       llvm_unreachable("Unexpected type");
723
724     unsigned EltSize = TD->getTypeAllocSize(SeqTy->getElementType());
725     SmallVector<SDValue, 8> Chains;
726     for (unsigned i = 0; i < NumElements; ++i) {
727       SDValue Offset = DAG.getConstant(i * EltSize, PtrVT);
728       SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
729
730       Constant *Elt = Init->getAggregateElement(i);
731       Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
732     }
733
734     return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
735   }
736
737   if (isa<UndefValue>(Init)) {
738     EVT VT = EVT::getEVT(InitTy);
739     PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
740     return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
741                         MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
742                         TD->getPrefTypeAlignment(InitTy));
743   }
744
745   Init->dump();
746   llvm_unreachable("Unhandled constant initializer");
747 }
748
749 static bool hasDefinedInitializer(const GlobalValue *GV) {
750   const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
751   if (!GVar || !GVar->hasInitializer())
752     return false;
753
754   if (isa<UndefValue>(GVar->getInitializer()))
755     return false;
756
757   return true;
758 }
759
760 SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
761                                                  SDValue Op,
762                                                  SelectionDAG &DAG) const {
763
764   const DataLayout *TD = getDataLayout();
765   GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
766   const GlobalValue *GV = G->getGlobal();
767
768   switch (G->getAddressSpace()) {
769   case AMDGPUAS::LOCAL_ADDRESS: {
770     // XXX: What does the value of G->getOffset() mean?
771     assert(G->getOffset() == 0 &&
772          "Do not know what to do with an non-zero offset");
773
774     // TODO: We could emit code to handle the initialization somewhere.
775     if (hasDefinedInitializer(GV))
776       break;
777
778     unsigned Offset;
779     if (MFI->LocalMemoryObjects.count(GV) == 0) {
780       uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
781       Offset = MFI->LDSSize;
782       MFI->LocalMemoryObjects[GV] = Offset;
783       // XXX: Account for alignment?
784       MFI->LDSSize += Size;
785     } else {
786       Offset = MFI->LocalMemoryObjects[GV];
787     }
788
789     return DAG.getConstant(Offset, getPointerTy(AMDGPUAS::LOCAL_ADDRESS));
790   }
791   case AMDGPUAS::CONSTANT_ADDRESS: {
792     MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
793     Type *EltType = GV->getType()->getElementType();
794     unsigned Size = TD->getTypeAllocSize(EltType);
795     unsigned Alignment = TD->getPrefTypeAlignment(EltType);
796
797     MVT PrivPtrVT = getPointerTy(AMDGPUAS::PRIVATE_ADDRESS);
798     MVT ConstPtrVT = getPointerTy(AMDGPUAS::CONSTANT_ADDRESS);
799
800     int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
801     SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
802
803     const GlobalVariable *Var = cast<GlobalVariable>(GV);
804     if (!Var->hasInitializer()) {
805       // This has no use, but bugpoint will hit it.
806       return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
807     }
808
809     const Constant *Init = Var->getInitializer();
810     SmallVector<SDNode*, 8> WorkList;
811
812     for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
813                               E = DAG.getEntryNode()->use_end(); I != E; ++I) {
814       if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
815         continue;
816       WorkList.push_back(*I);
817     }
818     SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
819     for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
820                                            E = WorkList.end(); I != E; ++I) {
821       SmallVector<SDValue, 8> Ops;
822       Ops.push_back(Chain);
823       for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
824         Ops.push_back((*I)->getOperand(i));
825       }
826       DAG.UpdateNodeOperands(*I, Ops);
827     }
828     return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
829   }
830   }
831
832   const Function &Fn = *DAG.getMachineFunction().getFunction();
833   DiagnosticInfoUnsupported BadInit(Fn,
834                                     "initializer for address space");
835   DAG.getContext()->diagnose(BadInit);
836   return SDValue();
837 }
838
839 SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
840                                                   SelectionDAG &DAG) const {
841   SmallVector<SDValue, 8> Args;
842   SDValue A = Op.getOperand(0);
843   SDValue B = Op.getOperand(1);
844
845   DAG.ExtractVectorElements(A, Args);
846   DAG.ExtractVectorElements(B, Args);
847
848   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
849 }
850
851 SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
852                                                      SelectionDAG &DAG) const {
853
854   SmallVector<SDValue, 8> Args;
855   unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
856   EVT VT = Op.getValueType();
857   DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
858                             VT.getVectorNumElements());
859
860   return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
861 }
862
863 SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
864                                               SelectionDAG &DAG) const {
865
866   MachineFunction &MF = DAG.getMachineFunction();
867   const AMDGPUFrameLowering *TFL = Subtarget->getFrameLowering();
868
869   FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
870
871   unsigned FrameIndex = FIN->getIndex();
872   unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
873   return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF),
874                          Op.getValueType());
875 }
876
877 SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
878     SelectionDAG &DAG) const {
879   unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
880   SDLoc DL(Op);
881   EVT VT = Op.getValueType();
882
883   switch (IntrinsicID) {
884     default: return Op;
885     case AMDGPUIntrinsic::AMDGPU_abs:
886     case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
887       return LowerIntrinsicIABS(Op, DAG);
888     case AMDGPUIntrinsic::AMDGPU_lrp:
889       return LowerIntrinsicLRP(Op, DAG);
890
891     case AMDGPUIntrinsic::AMDGPU_clamp:
892     case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
893       return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
894                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
895
896     case Intrinsic::AMDGPU_div_scale: {
897       // 3rd parameter required to be a constant.
898       const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
899       if (!Param)
900         return DAG.getUNDEF(VT);
901
902       // Translate to the operands expected by the machine instruction. The
903       // first parameter must be the same as the first instruction.
904       SDValue Numerator = Op.getOperand(1);
905       SDValue Denominator = Op.getOperand(2);
906
907       // Note this order is opposite of the machine instruction's operations,
908       // which is s0.f = Quotient, s1.f = Denominator, s2.f = Numerator. The
909       // intrinsic has the numerator as the first operand to match a normal
910       // division operation.
911
912       SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
913
914       return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
915                          Denominator, Numerator);
916     }
917
918     case Intrinsic::AMDGPU_div_fmas:
919       return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
920                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3),
921                          Op.getOperand(4));
922
923     case Intrinsic::AMDGPU_div_fixup:
924       return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
925                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
926
927     case Intrinsic::AMDGPU_trig_preop:
928       return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
929                          Op.getOperand(1), Op.getOperand(2));
930
931     case Intrinsic::AMDGPU_rcp:
932       return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
933
934     case Intrinsic::AMDGPU_rsq:
935       return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
936
937     case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
938       return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
939
940     case Intrinsic::AMDGPU_rsq_clamped:
941       if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS) {
942         Type *Type = VT.getTypeForEVT(*DAG.getContext());
943         APFloat Max = APFloat::getLargest(Type->getFltSemantics());
944         APFloat Min = APFloat::getLargest(Type->getFltSemantics(), true);
945
946         SDValue Rsq = DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
947         SDValue Tmp = DAG.getNode(ISD::FMINNUM, DL, VT, Rsq,
948                                   DAG.getConstantFP(Max, VT));
949         return DAG.getNode(ISD::FMAXNUM, DL, VT, Tmp,
950                            DAG.getConstantFP(Min, VT));
951       } else {
952         return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
953       }
954
955     case Intrinsic::AMDGPU_ldexp:
956       return DAG.getNode(AMDGPUISD::LDEXP, DL, VT, Op.getOperand(1),
957                                                    Op.getOperand(2));
958
959     case AMDGPUIntrinsic::AMDGPU_imax:
960       return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Op.getOperand(1),
961                                                   Op.getOperand(2));
962     case AMDGPUIntrinsic::AMDGPU_umax:
963       return DAG.getNode(AMDGPUISD::UMAX, DL, VT, Op.getOperand(1),
964                                                   Op.getOperand(2));
965     case AMDGPUIntrinsic::AMDGPU_imin:
966       return DAG.getNode(AMDGPUISD::SMIN, DL, VT, Op.getOperand(1),
967                                                   Op.getOperand(2));
968     case AMDGPUIntrinsic::AMDGPU_umin:
969       return DAG.getNode(AMDGPUISD::UMIN, DL, VT, Op.getOperand(1),
970                                                   Op.getOperand(2));
971
972     case AMDGPUIntrinsic::AMDGPU_umul24:
973       return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
974                          Op.getOperand(1), Op.getOperand(2));
975
976     case AMDGPUIntrinsic::AMDGPU_imul24:
977       return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
978                          Op.getOperand(1), Op.getOperand(2));
979
980     case AMDGPUIntrinsic::AMDGPU_umad24:
981       return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
982                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
983
984     case AMDGPUIntrinsic::AMDGPU_imad24:
985       return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
986                          Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
987
988     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
989       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
990
991     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
992       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
993
994     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
995       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
996
997     case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
998       return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
999
1000     case AMDGPUIntrinsic::AMDGPU_bfe_i32:
1001       return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
1002                          Op.getOperand(1),
1003                          Op.getOperand(2),
1004                          Op.getOperand(3));
1005
1006     case AMDGPUIntrinsic::AMDGPU_bfe_u32:
1007       return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
1008                          Op.getOperand(1),
1009                          Op.getOperand(2),
1010                          Op.getOperand(3));
1011
1012     case AMDGPUIntrinsic::AMDGPU_bfi:
1013       return DAG.getNode(AMDGPUISD::BFI, DL, VT,
1014                          Op.getOperand(1),
1015                          Op.getOperand(2),
1016                          Op.getOperand(3));
1017
1018     case AMDGPUIntrinsic::AMDGPU_bfm:
1019       return DAG.getNode(AMDGPUISD::BFM, DL, VT,
1020                          Op.getOperand(1),
1021                          Op.getOperand(2));
1022
1023     case AMDGPUIntrinsic::AMDGPU_brev:
1024       return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1));
1025
1026   case Intrinsic::AMDGPU_class:
1027     return DAG.getNode(AMDGPUISD::FP_CLASS, DL, VT,
1028                        Op.getOperand(1), Op.getOperand(2));
1029
1030     case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
1031       return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
1032
1033     case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
1034       return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
1035     case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
1036       return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
1037   }
1038 }
1039
1040 ///IABS(a) = SMAX(sub(0, a), a)
1041 SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
1042                                                  SelectionDAG &DAG) const {
1043   SDLoc DL(Op);
1044   EVT VT = Op.getValueType();
1045   SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
1046                                               Op.getOperand(1));
1047
1048   return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Neg, Op.getOperand(1));
1049 }
1050
1051 /// Linear Interpolation
1052 /// LRP(a, b, c) = muladd(a,  b, (1 - a) * c)
1053 SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
1054                                                 SelectionDAG &DAG) const {
1055   SDLoc DL(Op);
1056   EVT VT = Op.getValueType();
1057   SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
1058                                 DAG.getConstantFP(1.0f, MVT::f32),
1059                                 Op.getOperand(1));
1060   SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
1061                                                     Op.getOperand(3));
1062   return DAG.getNode(ISD::FADD, DL, VT,
1063       DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
1064       OneSubAC);
1065 }
1066
1067 /// \brief Generate Min/Max node
1068 SDValue AMDGPUTargetLowering::CombineFMinMaxLegacy(SDLoc DL,
1069                                                    EVT VT,
1070                                                    SDValue LHS,
1071                                                    SDValue RHS,
1072                                                    SDValue True,
1073                                                    SDValue False,
1074                                                    SDValue CC,
1075                                                    DAGCombinerInfo &DCI) const {
1076   if (Subtarget->getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS)
1077     return SDValue();
1078
1079   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1080     return SDValue();
1081
1082   SelectionDAG &DAG = DCI.DAG;
1083   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1084   switch (CCOpcode) {
1085   case ISD::SETOEQ:
1086   case ISD::SETONE:
1087   case ISD::SETUNE:
1088   case ISD::SETNE:
1089   case ISD::SETUEQ:
1090   case ISD::SETEQ:
1091   case ISD::SETFALSE:
1092   case ISD::SETFALSE2:
1093   case ISD::SETTRUE:
1094   case ISD::SETTRUE2:
1095   case ISD::SETUO:
1096   case ISD::SETO:
1097     break;
1098   case ISD::SETULE:
1099   case ISD::SETULT: {
1100     if (LHS == True)
1101       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1102     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1103   }
1104   case ISD::SETOLE:
1105   case ISD::SETOLT:
1106   case ISD::SETLE:
1107   case ISD::SETLT: {
1108     // Ordered. Assume ordered for undefined.
1109
1110     // Only do this after legalization to avoid interfering with other combines
1111     // which might occur.
1112     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1113         !DCI.isCalledByLegalizer())
1114       return SDValue();
1115
1116     // We need to permute the operands to get the correct NaN behavior. The
1117     // selected operand is the second one based on the failing compare with NaN,
1118     // so permute it based on the compare type the hardware uses.
1119     if (LHS == True)
1120       return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1121     return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1122   }
1123   case ISD::SETUGE:
1124   case ISD::SETUGT: {
1125     if (LHS == True)
1126       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, RHS, LHS);
1127     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, LHS, RHS);
1128   }
1129   case ISD::SETGT:
1130   case ISD::SETGE:
1131   case ISD::SETOGE:
1132   case ISD::SETOGT: {
1133     if (DCI.getDAGCombineLevel() < AfterLegalizeDAG &&
1134         !DCI.isCalledByLegalizer())
1135       return SDValue();
1136
1137     if (LHS == True)
1138       return DAG.getNode(AMDGPUISD::FMAX_LEGACY, DL, VT, LHS, RHS);
1139     return DAG.getNode(AMDGPUISD::FMIN_LEGACY, DL, VT, RHS, LHS);
1140   }
1141   case ISD::SETCC_INVALID:
1142     llvm_unreachable("Invalid setcc condcode!");
1143   }
1144   return SDValue();
1145 }
1146
1147 /// \brief Generate Min/Max node
1148 SDValue AMDGPUTargetLowering::CombineIMinMax(SDLoc DL,
1149                                              EVT VT,
1150                                              SDValue LHS,
1151                                              SDValue RHS,
1152                                              SDValue True,
1153                                              SDValue False,
1154                                              SDValue CC,
1155                                              SelectionDAG &DAG) const {
1156   if (!(LHS == True && RHS == False) && !(LHS == False && RHS == True))
1157     return SDValue();
1158
1159   ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
1160   switch (CCOpcode) {
1161   case ISD::SETULE:
1162   case ISD::SETULT: {
1163     unsigned Opc = (LHS == True) ? AMDGPUISD::UMIN : AMDGPUISD::UMAX;
1164     return DAG.getNode(Opc, DL, VT, LHS, RHS);
1165   }
1166   case ISD::SETLE:
1167   case ISD::SETLT: {
1168     unsigned Opc = (LHS == True) ? AMDGPUISD::SMIN : AMDGPUISD::SMAX;
1169     return DAG.getNode(Opc, DL, VT, LHS, RHS);
1170   }
1171   case ISD::SETGT:
1172   case ISD::SETGE: {
1173     unsigned Opc = (LHS == True) ? AMDGPUISD::SMAX : AMDGPUISD::SMIN;
1174     return DAG.getNode(Opc, DL, VT, LHS, RHS);
1175   }
1176   case ISD::SETUGE:
1177   case ISD::SETUGT: {
1178     unsigned Opc = (LHS == True) ? AMDGPUISD::UMAX : AMDGPUISD::UMIN;
1179     return DAG.getNode(Opc, DL, VT, LHS, RHS);
1180   }
1181   default:
1182     return SDValue();
1183   }
1184 }
1185
1186 SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op,
1187                                                   SelectionDAG &DAG) const {
1188   LoadSDNode *Load = cast<LoadSDNode>(Op);
1189   EVT MemVT = Load->getMemoryVT();
1190   EVT MemEltVT = MemVT.getVectorElementType();
1191
1192   EVT LoadVT = Op.getValueType();
1193   EVT EltVT = LoadVT.getVectorElementType();
1194   EVT PtrVT = Load->getBasePtr().getValueType();
1195
1196   unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
1197   SmallVector<SDValue, 8> Loads;
1198   SmallVector<SDValue, 8> Chains;
1199
1200   SDLoc SL(Op);
1201   unsigned MemEltSize = MemEltVT.getStoreSize();
1202   MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
1203
1204   for (unsigned i = 0; i < NumElts; ++i) {
1205     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
1206                               DAG.getConstant(i * MemEltSize, PtrVT));
1207
1208     SDValue NewLoad
1209       = DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
1210                        Load->getChain(), Ptr,
1211                        SrcValue.getWithOffset(i * MemEltSize),
1212                        MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
1213                        Load->isInvariant(), Load->getAlignment());
1214     Loads.push_back(NewLoad.getValue(0));
1215     Chains.push_back(NewLoad.getValue(1));
1216   }
1217
1218   SDValue Ops[] = {
1219     DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
1220     DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
1221   };
1222
1223   return DAG.getMergeValues(Ops, SL);
1224 }
1225
1226 SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
1227                                               SelectionDAG &DAG) const {
1228   EVT VT = Op.getValueType();
1229
1230   // If this is a 2 element vector, we really want to scalarize and not create
1231   // weird 1 element vectors.
1232   if (VT.getVectorNumElements() == 2)
1233     return ScalarizeVectorLoad(Op, DAG);
1234
1235   LoadSDNode *Load = cast<LoadSDNode>(Op);
1236   SDValue BasePtr = Load->getBasePtr();
1237   EVT PtrVT = BasePtr.getValueType();
1238   EVT MemVT = Load->getMemoryVT();
1239   SDLoc SL(Op);
1240   MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
1241
1242   EVT LoVT, HiVT;
1243   EVT LoMemVT, HiMemVT;
1244   SDValue Lo, Hi;
1245
1246   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1247   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1248   std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
1249   SDValue LoLoad
1250     = DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
1251                      Load->getChain(), BasePtr,
1252                      SrcValue,
1253                      LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
1254                      Load->isInvariant(), Load->getAlignment());
1255
1256   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1257                               DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
1258
1259   SDValue HiLoad
1260     = DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
1261                      Load->getChain(), HiPtr,
1262                      SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1263                      HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
1264                      Load->isInvariant(), Load->getAlignment());
1265
1266   SDValue Ops[] = {
1267     DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
1268     DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
1269                 LoLoad.getValue(1), HiLoad.getValue(1))
1270   };
1271
1272   return DAG.getMergeValues(Ops, SL);
1273 }
1274
1275 SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
1276                                                SelectionDAG &DAG) const {
1277   StoreSDNode *Store = cast<StoreSDNode>(Op);
1278   EVT MemVT = Store->getMemoryVT();
1279   unsigned MemBits = MemVT.getSizeInBits();
1280
1281   // Byte stores are really expensive, so if possible, try to pack 32-bit vector
1282   // truncating store into an i32 store.
1283   // XXX: We could also handle optimize other vector bitwidths.
1284   if (!MemVT.isVector() || MemBits > 32) {
1285     return SDValue();
1286   }
1287
1288   SDLoc DL(Op);
1289   SDValue Value = Store->getValue();
1290   EVT VT = Value.getValueType();
1291   EVT ElemVT = VT.getVectorElementType();
1292   SDValue Ptr = Store->getBasePtr();
1293   EVT MemEltVT = MemVT.getVectorElementType();
1294   unsigned MemEltBits = MemEltVT.getSizeInBits();
1295   unsigned MemNumElements = MemVT.getVectorNumElements();
1296   unsigned PackedSize = MemVT.getStoreSizeInBits();
1297   SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, MVT::i32);
1298
1299   assert(Value.getValueType().getScalarSizeInBits() >= 32);
1300
1301   SDValue PackedValue;
1302   for (unsigned i = 0; i < MemNumElements; ++i) {
1303     SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
1304                               DAG.getConstant(i, MVT::i32));
1305     Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
1306     Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
1307
1308     SDValue Shift = DAG.getConstant(MemEltBits * i, MVT::i32);
1309     Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
1310
1311     if (i == 0) {
1312       PackedValue = Elt;
1313     } else {
1314       PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
1315     }
1316   }
1317
1318   if (PackedSize < 32) {
1319     EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
1320     return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
1321                              Store->getMemOperand()->getPointerInfo(),
1322                              PackedVT,
1323                              Store->isNonTemporal(), Store->isVolatile(),
1324                              Store->getAlignment());
1325   }
1326
1327   return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
1328                       Store->getMemOperand()->getPointerInfo(),
1329                       Store->isVolatile(),  Store->isNonTemporal(),
1330                       Store->getAlignment());
1331 }
1332
1333 SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op,
1334                                                    SelectionDAG &DAG) const {
1335   StoreSDNode *Store = cast<StoreSDNode>(Op);
1336   EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
1337   EVT EltVT = Store->getValue().getValueType().getVectorElementType();
1338   EVT PtrVT = Store->getBasePtr().getValueType();
1339   unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
1340   SDLoc SL(Op);
1341
1342   SmallVector<SDValue, 8> Chains;
1343
1344   unsigned EltSize = MemEltVT.getStoreSize();
1345   MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
1346
1347   for (unsigned i = 0, e = NumElts; i != e; ++i) {
1348     SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
1349                               Store->getValue(),
1350                               DAG.getConstant(i, MVT::i32));
1351
1352     SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), PtrVT);
1353     SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset);
1354     SDValue NewStore =
1355       DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
1356                         SrcValue.getWithOffset(i * EltSize),
1357                         MemEltVT, Store->isNonTemporal(), Store->isVolatile(),
1358                         Store->getAlignment());
1359     Chains.push_back(NewStore);
1360   }
1361
1362   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
1363 }
1364
1365 SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
1366                                                SelectionDAG &DAG) const {
1367   StoreSDNode *Store = cast<StoreSDNode>(Op);
1368   SDValue Val = Store->getValue();
1369   EVT VT = Val.getValueType();
1370
1371   // If this is a 2 element vector, we really want to scalarize and not create
1372   // weird 1 element vectors.
1373   if (VT.getVectorNumElements() == 2)
1374     return ScalarizeVectorStore(Op, DAG);
1375
1376   EVT MemVT = Store->getMemoryVT();
1377   SDValue Chain = Store->getChain();
1378   SDValue BasePtr = Store->getBasePtr();
1379   SDLoc SL(Op);
1380
1381   EVT LoVT, HiVT;
1382   EVT LoMemVT, HiMemVT;
1383   SDValue Lo, Hi;
1384
1385   std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
1386   std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
1387   std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
1388
1389   EVT PtrVT = BasePtr.getValueType();
1390   SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
1391                               DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
1392
1393   MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
1394   SDValue LoStore
1395     = DAG.getTruncStore(Chain, SL, Lo,
1396                         BasePtr,
1397                         SrcValue,
1398                         LoMemVT,
1399                         Store->isNonTemporal(),
1400                         Store->isVolatile(),
1401                         Store->getAlignment());
1402   SDValue HiStore
1403     = DAG.getTruncStore(Chain, SL, Hi,
1404                         HiPtr,
1405                         SrcValue.getWithOffset(LoMemVT.getStoreSize()),
1406                         HiMemVT,
1407                         Store->isNonTemporal(),
1408                         Store->isVolatile(),
1409                         Store->getAlignment());
1410
1411   return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
1412 }
1413
1414
1415 SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
1416   SDLoc DL(Op);
1417   LoadSDNode *Load = cast<LoadSDNode>(Op);
1418   ISD::LoadExtType ExtType = Load->getExtensionType();
1419   EVT VT = Op.getValueType();
1420   EVT MemVT = Load->getMemoryVT();
1421
1422   if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
1423     assert(VT == MVT::i1 && "Only i1 non-extloads expected");
1424     // FIXME: Copied from PPC
1425     // First, load into 32 bits, then truncate to 1 bit.
1426
1427     SDValue Chain = Load->getChain();
1428     SDValue BasePtr = Load->getBasePtr();
1429     MachineMemOperand *MMO = Load->getMemOperand();
1430
1431     SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
1432                                    BasePtr, MVT::i8, MMO);
1433
1434     SDValue Ops[] = {
1435       DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
1436       NewLD.getValue(1)
1437     };
1438
1439     return DAG.getMergeValues(Ops, DL);
1440   }
1441
1442   if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS ||
1443       Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
1444       ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
1445     return SDValue();
1446
1447
1448   SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
1449                             DAG.getConstant(2, MVT::i32));
1450   SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
1451                             Load->getChain(), Ptr,
1452                             DAG.getTargetConstant(0, MVT::i32),
1453                             Op.getOperand(2));
1454   SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
1455                                 Load->getBasePtr(),
1456                                 DAG.getConstant(0x3, MVT::i32));
1457   SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1458                                  DAG.getConstant(3, MVT::i32));
1459
1460   Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
1461
1462   EVT MemEltVT = MemVT.getScalarType();
1463   if (ExtType == ISD::SEXTLOAD) {
1464     SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
1465
1466     SDValue Ops[] = {
1467       DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
1468       Load->getChain()
1469     };
1470
1471     return DAG.getMergeValues(Ops, DL);
1472   }
1473
1474   SDValue Ops[] = {
1475     DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
1476     Load->getChain()
1477   };
1478
1479   return DAG.getMergeValues(Ops, DL);
1480 }
1481
1482 SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
1483   SDLoc DL(Op);
1484   SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
1485   if (Result.getNode()) {
1486     return Result;
1487   }
1488
1489   StoreSDNode *Store = cast<StoreSDNode>(Op);
1490   SDValue Chain = Store->getChain();
1491   if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
1492        Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
1493       Store->getValue().getValueType().isVector()) {
1494     return ScalarizeVectorStore(Op, DAG);
1495   }
1496
1497   EVT MemVT = Store->getMemoryVT();
1498   if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
1499       MemVT.bitsLT(MVT::i32)) {
1500     unsigned Mask = 0;
1501     if (Store->getMemoryVT() == MVT::i8) {
1502       Mask = 0xff;
1503     } else if (Store->getMemoryVT() == MVT::i16) {
1504       Mask = 0xffff;
1505     }
1506     SDValue BasePtr = Store->getBasePtr();
1507     SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
1508                               DAG.getConstant(2, MVT::i32));
1509     SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
1510                               Chain, Ptr, DAG.getTargetConstant(0, MVT::i32));
1511
1512     SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
1513                                   DAG.getConstant(0x3, MVT::i32));
1514
1515     SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
1516                                    DAG.getConstant(3, MVT::i32));
1517
1518     SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
1519                                     Store->getValue());
1520
1521     SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
1522
1523     SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
1524                                        MaskedValue, ShiftAmt);
1525
1526     SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, DAG.getConstant(Mask, MVT::i32),
1527                                   ShiftAmt);
1528     DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
1529                           DAG.getConstant(0xffffffff, MVT::i32));
1530     Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
1531
1532     SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
1533     return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
1534                        Chain, Value, Ptr, DAG.getTargetConstant(0, MVT::i32));
1535   }
1536   return SDValue();
1537 }
1538
1539 // This is a shortcut for integer division because we have fast i32<->f32
1540 // conversions, and fast f32 reciprocal instructions. The fractional part of a
1541 // float is enough to accurately represent up to a 24-bit integer.
1542 SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const {
1543   SDLoc DL(Op);
1544   EVT VT = Op.getValueType();
1545   SDValue LHS = Op.getOperand(0);
1546   SDValue RHS = Op.getOperand(1);
1547   MVT IntVT = MVT::i32;
1548   MVT FltVT = MVT::f32;
1549
1550   ISD::NodeType ToFp  = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
1551   ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
1552
1553   if (VT.isVector()) {
1554     unsigned NElts = VT.getVectorNumElements();
1555     IntVT = MVT::getVectorVT(MVT::i32, NElts);
1556     FltVT = MVT::getVectorVT(MVT::f32, NElts);
1557   }
1558
1559   unsigned BitSize = VT.getScalarType().getSizeInBits();
1560
1561   SDValue jq = DAG.getConstant(1, IntVT);
1562
1563   if (sign) {
1564     // char|short jq = ia ^ ib;
1565     jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
1566
1567     // jq = jq >> (bitsize - 2)
1568     jq = DAG.getNode(ISD::SRA, DL, VT, jq, DAG.getConstant(BitSize - 2, VT));
1569
1570     // jq = jq | 0x1
1571     jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, VT));
1572
1573     // jq = (int)jq
1574     jq = DAG.getSExtOrTrunc(jq, DL, IntVT);
1575   }
1576
1577   // int ia = (int)LHS;
1578   SDValue ia = sign ?
1579     DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT);
1580
1581   // int ib, (int)RHS;
1582   SDValue ib = sign ?
1583     DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT);
1584
1585   // float fa = (float)ia;
1586   SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
1587
1588   // float fb = (float)ib;
1589   SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
1590
1591   // float fq = native_divide(fa, fb);
1592   SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
1593                            fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
1594
1595   // fq = trunc(fq);
1596   fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
1597
1598   // float fqneg = -fq;
1599   SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
1600
1601   // float fr = mad(fqneg, fb, fa);
1602   SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT,
1603                            DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa);
1604
1605   // int iq = (int)fq;
1606   SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
1607
1608   // fr = fabs(fr);
1609   fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
1610
1611   // fb = fabs(fb);
1612   fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
1613
1614   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), VT);
1615
1616   // int cv = fr >= fb;
1617   SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
1618
1619   // jq = (cv ? jq : 0);
1620   jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, VT));
1621
1622   // dst = trunc/extend to legal type
1623   iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT);
1624
1625   // dst = iq + jq;
1626   SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
1627
1628   // Rem needs compensation, it's easier to recompute it
1629   SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
1630   Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
1631
1632   SDValue Res[2] = {
1633     Div,
1634     Rem
1635   };
1636   return DAG.getMergeValues(Res, DL);
1637 }
1638
1639 void AMDGPUTargetLowering::LowerUDIVREM64(SDValue Op,
1640                                       SelectionDAG &DAG,
1641                                       SmallVectorImpl<SDValue> &Results) const {
1642   assert(Op.getValueType() == MVT::i64);
1643
1644   SDLoc DL(Op);
1645   EVT VT = Op.getValueType();
1646   EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1647
1648   SDValue one = DAG.getConstant(1, HalfVT);
1649   SDValue zero = DAG.getConstant(0, HalfVT);
1650
1651   //HiLo split
1652   SDValue LHS = Op.getOperand(0);
1653   SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, zero);
1654   SDValue LHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, one);
1655
1656   SDValue RHS = Op.getOperand(1);
1657   SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, zero);
1658   SDValue RHS_Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, one);
1659
1660   if (VT == MVT::i64 &&
1661     DAG.MaskedValueIsZero(RHS, APInt::getHighBitsSet(64, 32)) &&
1662     DAG.MaskedValueIsZero(LHS, APInt::getHighBitsSet(64, 32))) {
1663
1664     SDValue Res = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1665                               LHS_Lo, RHS_Lo);
1666
1667     SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(0), zero);
1668     SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, Res.getValue(1), zero);
1669     Results.push_back(DIV);
1670     Results.push_back(REM);
1671     return;
1672   }
1673
1674   // Get Speculative values
1675   SDValue DIV_Part = DAG.getNode(ISD::UDIV, DL, HalfVT, LHS_Hi, RHS_Lo);
1676   SDValue REM_Part = DAG.getNode(ISD::UREM, DL, HalfVT, LHS_Hi, RHS_Lo);
1677
1678   SDValue REM_Lo = DAG.getSelectCC(DL, RHS_Hi, zero, REM_Part, LHS_Hi, ISD::SETEQ);
1679   SDValue REM = DAG.getNode(ISD::BUILD_PAIR, DL, VT, REM_Lo, zero);
1680
1681   SDValue DIV_Hi = DAG.getSelectCC(DL, RHS_Hi, zero, DIV_Part, zero, ISD::SETEQ);
1682   SDValue DIV_Lo = zero;
1683
1684   const unsigned halfBitWidth = HalfVT.getSizeInBits();
1685
1686   for (unsigned i = 0; i < halfBitWidth; ++i) {
1687     const unsigned bitPos = halfBitWidth - i - 1;
1688     SDValue POS = DAG.getConstant(bitPos, HalfVT);
1689     // Get value of high bit
1690     SDValue HBit = DAG.getNode(ISD::SRL, DL, HalfVT, LHS_Lo, POS);
1691     HBit = DAG.getNode(ISD::AND, DL, HalfVT, HBit, one);
1692     HBit = DAG.getNode(ISD::ZERO_EXTEND, DL, VT, HBit);
1693
1694     // Shift
1695     REM = DAG.getNode(ISD::SHL, DL, VT, REM, DAG.getConstant(1, VT));
1696     // Add LHS high bit
1697     REM = DAG.getNode(ISD::OR, DL, VT, REM, HBit);
1698
1699     SDValue BIT = DAG.getConstant(1 << bitPos, HalfVT);
1700     SDValue realBIT = DAG.getSelectCC(DL, REM, RHS, BIT, zero, ISD::SETUGE);
1701
1702     DIV_Lo = DAG.getNode(ISD::OR, DL, HalfVT, DIV_Lo, realBIT);
1703
1704     // Update REM
1705     SDValue REM_sub = DAG.getNode(ISD::SUB, DL, VT, REM, RHS);
1706     REM = DAG.getSelectCC(DL, REM, RHS, REM_sub, REM, ISD::SETUGE);
1707   }
1708
1709   SDValue DIV = DAG.getNode(ISD::BUILD_PAIR, DL, VT, DIV_Lo, DIV_Hi);
1710   Results.push_back(DIV);
1711   Results.push_back(REM);
1712 }
1713
1714 SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
1715                                            SelectionDAG &DAG) const {
1716   SDLoc DL(Op);
1717   EVT VT = Op.getValueType();
1718
1719   if (VT == MVT::i64) {
1720     SmallVector<SDValue, 2> Results;
1721     LowerUDIVREM64(Op, DAG, Results);
1722     return DAG.getMergeValues(Results, DL);
1723   }
1724
1725   SDValue Num = Op.getOperand(0);
1726   SDValue Den = Op.getOperand(1);
1727
1728   if (VT == MVT::i32) {
1729     if (DAG.MaskedValueIsZero(Num, APInt::getHighBitsSet(32, 8)) &&
1730         DAG.MaskedValueIsZero(Den, APInt::getHighBitsSet(32, 8))) {
1731       // TODO: We technically could do this for i64, but shouldn't that just be
1732       // handled by something generally reducing 64-bit division on 32-bit
1733       // values to 32-bit?
1734       return LowerDIVREM24(Op, DAG, false);
1735     }
1736   }
1737
1738   // RCP =  URECIP(Den) = 2^32 / Den + e
1739   // e is rounding error.
1740   SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
1741
1742   // RCP_LO = mul(RCP, Den) */
1743   SDValue RCP_LO = DAG.getNode(ISD::MUL, DL, VT, RCP, Den);
1744
1745   // RCP_HI = mulhu (RCP, Den) */
1746   SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
1747
1748   // NEG_RCP_LO = -RCP_LO
1749   SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
1750                                                      RCP_LO);
1751
1752   // ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
1753   SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1754                                            NEG_RCP_LO, RCP_LO,
1755                                            ISD::SETEQ);
1756   // Calculate the rounding error from the URECIP instruction
1757   // E = mulhu(ABS_RCP_LO, RCP)
1758   SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
1759
1760   // RCP_A_E = RCP + E
1761   SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
1762
1763   // RCP_S_E = RCP - E
1764   SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
1765
1766   // Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
1767   SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
1768                                      RCP_A_E, RCP_S_E,
1769                                      ISD::SETEQ);
1770   // Quotient = mulhu(Tmp0, Num)
1771   SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
1772
1773   // Num_S_Remainder = Quotient * Den
1774   SDValue Num_S_Remainder = DAG.getNode(ISD::MUL, DL, VT, Quotient, Den);
1775
1776   // Remainder = Num - Num_S_Remainder
1777   SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
1778
1779   // Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
1780   SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
1781                                                  DAG.getConstant(-1, VT),
1782                                                  DAG.getConstant(0, VT),
1783                                                  ISD::SETUGE);
1784   // Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
1785   SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
1786                                                   Num_S_Remainder,
1787                                                   DAG.getConstant(-1, VT),
1788                                                   DAG.getConstant(0, VT),
1789                                                   ISD::SETUGE);
1790   // Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
1791   SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
1792                                                Remainder_GE_Zero);
1793
1794   // Calculate Division result:
1795
1796   // Quotient_A_One = Quotient + 1
1797   SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
1798                                                          DAG.getConstant(1, VT));
1799
1800   // Quotient_S_One = Quotient - 1
1801   SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
1802                                                          DAG.getConstant(1, VT));
1803
1804   // Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
1805   SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1806                                      Quotient, Quotient_A_One, ISD::SETEQ);
1807
1808   // Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
1809   Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1810                             Quotient_S_One, Div, ISD::SETEQ);
1811
1812   // Calculate Rem result:
1813
1814   // Remainder_S_Den = Remainder - Den
1815   SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
1816
1817   // Remainder_A_Den = Remainder + Den
1818   SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
1819
1820   // Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
1821   SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
1822                                     Remainder, Remainder_S_Den, ISD::SETEQ);
1823
1824   // Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
1825   Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
1826                             Remainder_A_Den, Rem, ISD::SETEQ);
1827   SDValue Ops[2] = {
1828     Div,
1829     Rem
1830   };
1831   return DAG.getMergeValues(Ops, DL);
1832 }
1833
1834 SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
1835                                            SelectionDAG &DAG) const {
1836   SDLoc DL(Op);
1837   EVT VT = Op.getValueType();
1838
1839   SDValue LHS = Op.getOperand(0);
1840   SDValue RHS = Op.getOperand(1);
1841
1842   SDValue Zero = DAG.getConstant(0, VT);
1843   SDValue NegOne = DAG.getConstant(-1, VT);
1844
1845   if (VT == MVT::i32 &&
1846       DAG.ComputeNumSignBits(LHS) > 8 &&
1847       DAG.ComputeNumSignBits(RHS) > 8) {
1848     return LowerDIVREM24(Op, DAG, true);
1849   }
1850   if (VT == MVT::i64 &&
1851       DAG.ComputeNumSignBits(LHS) > 32 &&
1852       DAG.ComputeNumSignBits(RHS) > 32) {
1853     EVT HalfVT = VT.getHalfSizedIntegerVT(*DAG.getContext());
1854
1855     //HiLo split
1856     SDValue LHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, LHS, Zero);
1857     SDValue RHS_Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, HalfVT, RHS, Zero);
1858     SDValue DIVREM = DAG.getNode(ISD::SDIVREM, DL, DAG.getVTList(HalfVT, HalfVT),
1859                                  LHS_Lo, RHS_Lo);
1860     SDValue Res[2] = {
1861       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(0)),
1862       DAG.getNode(ISD::SIGN_EXTEND, DL, VT, DIVREM.getValue(1))
1863     };
1864     return DAG.getMergeValues(Res, DL);
1865   }
1866
1867   SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
1868   SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
1869   SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
1870   SDValue RSign = LHSign; // Remainder sign is the same as LHS
1871
1872   LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
1873   RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
1874
1875   LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
1876   RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
1877
1878   SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
1879   SDValue Rem = Div.getValue(1);
1880
1881   Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
1882   Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
1883
1884   Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
1885   Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
1886
1887   SDValue Res[2] = {
1888     Div,
1889     Rem
1890   };
1891   return DAG.getMergeValues(Res, DL);
1892 }
1893
1894 // (frem x, y) -> (fsub x, (fmul (ftrunc (fdiv x, y)), y))
1895 SDValue AMDGPUTargetLowering::LowerFREM(SDValue Op, SelectionDAG &DAG) const {
1896   SDLoc SL(Op);
1897   EVT VT = Op.getValueType();
1898   SDValue X = Op.getOperand(0);
1899   SDValue Y = Op.getOperand(1);
1900
1901   SDValue Div = DAG.getNode(ISD::FDIV, SL, VT, X, Y);
1902   SDValue Floor = DAG.getNode(ISD::FTRUNC, SL, VT, Div);
1903   SDValue Mul = DAG.getNode(ISD::FMUL, SL, VT, Floor, Y);
1904
1905   return DAG.getNode(ISD::FSUB, SL, VT, X, Mul);
1906 }
1907
1908 SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
1909   SDLoc SL(Op);
1910   SDValue Src = Op.getOperand(0);
1911
1912   // result = trunc(src)
1913   // if (src > 0.0 && src != result)
1914   //   result += 1.0
1915
1916   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
1917
1918   const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
1919   const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
1920
1921   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
1922
1923   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
1924   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
1925   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
1926
1927   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
1928   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
1929 }
1930
1931 static SDValue extractF64Exponent(SDValue Hi, SDLoc SL, SelectionDAG &DAG) {
1932   const unsigned FractBits = 52;
1933   const unsigned ExpBits = 11;
1934
1935   SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_U32, SL, MVT::i32,
1936                                 Hi,
1937                                 DAG.getConstant(FractBits - 32, MVT::i32),
1938                                 DAG.getConstant(ExpBits, MVT::i32));
1939   SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
1940                             DAG.getConstant(1023, MVT::i32));
1941
1942   return Exp;
1943 }
1944
1945 SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
1946   SDLoc SL(Op);
1947   SDValue Src = Op.getOperand(0);
1948
1949   assert(Op.getValueType() == MVT::f64);
1950
1951   const SDValue Zero = DAG.getConstant(0, MVT::i32);
1952   const SDValue One = DAG.getConstant(1, MVT::i32);
1953
1954   SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
1955
1956   // Extract the upper half, since this is where we will find the sign and
1957   // exponent.
1958   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
1959
1960   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
1961
1962   const unsigned FractBits = 52;
1963
1964   // Extract the sign bit.
1965   const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, MVT::i32);
1966   SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
1967
1968   // Extend back to to 64-bits.
1969   SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
1970                                   Zero, SignBit);
1971   SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
1972
1973   SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
1974   const SDValue FractMask
1975     = DAG.getConstant((UINT64_C(1) << FractBits) - 1, MVT::i64);
1976
1977   SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
1978   SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
1979   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
1980
1981   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
1982
1983   const SDValue FiftyOne = DAG.getConstant(FractBits - 1, MVT::i32);
1984
1985   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
1986   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
1987
1988   SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
1989   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
1990
1991   return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
1992 }
1993
1994 SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
1995   SDLoc SL(Op);
1996   SDValue Src = Op.getOperand(0);
1997
1998   assert(Op.getValueType() == MVT::f64);
1999
2000   APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
2001   SDValue C1 = DAG.getConstantFP(C1Val, MVT::f64);
2002   SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
2003
2004   SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
2005   SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
2006
2007   SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
2008
2009   APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
2010   SDValue C2 = DAG.getConstantFP(C2Val, MVT::f64);
2011
2012   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
2013   SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
2014
2015   return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
2016 }
2017
2018 SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
2019   // FNEARBYINT and FRINT are the same, except in their handling of FP
2020   // exceptions. Those aren't really meaningful for us, and OpenCL only has
2021   // rint, so just treat them as equivalent.
2022   return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
2023 }
2024
2025 // XXX - May require not supporting f32 denormals?
2026 SDValue AMDGPUTargetLowering::LowerFROUND32(SDValue Op, SelectionDAG &DAG) const {
2027   SDLoc SL(Op);
2028   SDValue X = Op.getOperand(0);
2029
2030   SDValue T = DAG.getNode(ISD::FTRUNC, SL, MVT::f32, X);
2031
2032   SDValue Diff = DAG.getNode(ISD::FSUB, SL, MVT::f32, X, T);
2033
2034   SDValue AbsDiff = DAG.getNode(ISD::FABS, SL, MVT::f32, Diff);
2035
2036   const SDValue Zero = DAG.getConstantFP(0.0, MVT::f32);
2037   const SDValue One = DAG.getConstantFP(1.0, MVT::f32);
2038   const SDValue Half = DAG.getConstantFP(0.5, MVT::f32);
2039
2040   SDValue SignOne = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f32, One, X);
2041
2042   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f32);
2043
2044   SDValue Cmp = DAG.getSetCC(SL, SetCCVT, AbsDiff, Half, ISD::SETOGE);
2045
2046   SDValue Sel = DAG.getNode(ISD::SELECT, SL, MVT::f32, Cmp, SignOne, Zero);
2047
2048   return DAG.getNode(ISD::FADD, SL, MVT::f32, T, Sel);
2049 }
2050
2051 SDValue AMDGPUTargetLowering::LowerFROUND64(SDValue Op, SelectionDAG &DAG) const {
2052   SDLoc SL(Op);
2053   SDValue X = Op.getOperand(0);
2054
2055   SDValue L = DAG.getNode(ISD::BITCAST, SL, MVT::i64, X);
2056
2057   const SDValue Zero = DAG.getConstant(0, MVT::i32);
2058   const SDValue One = DAG.getConstant(1, MVT::i32);
2059   const SDValue NegOne = DAG.getConstant(-1, MVT::i32);
2060   const SDValue FiftyOne = DAG.getConstant(51, MVT::i32);
2061   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
2062
2063
2064   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, X);
2065
2066   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC, One);
2067
2068   SDValue Exp = extractF64Exponent(Hi, SL, DAG);
2069
2070   const SDValue Mask = DAG.getConstant(INT64_C(0x000fffffffffffff), MVT::i64);
2071
2072   SDValue M = DAG.getNode(ISD::SRA, SL, MVT::i64, Mask, Exp);
2073   SDValue D = DAG.getNode(ISD::SRA, SL, MVT::i64,
2074                           DAG.getConstant(INT64_C(0x0008000000000000), MVT::i64),
2075                           Exp);
2076
2077   SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, L, M);
2078   SDValue Tmp1 = DAG.getSetCC(SL, SetCCVT,
2079                               DAG.getConstant(0, MVT::i64), Tmp0,
2080                               ISD::SETNE);
2081
2082   SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, Tmp1,
2083                              D, DAG.getConstant(0, MVT::i64));
2084   SDValue K = DAG.getNode(ISD::ADD, SL, MVT::i64, L, Tmp2);
2085
2086   K = DAG.getNode(ISD::AND, SL, MVT::i64, K, DAG.getNOT(SL, M, MVT::i64));
2087   K = DAG.getNode(ISD::BITCAST, SL, MVT::f64, K);
2088
2089   SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
2090   SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
2091   SDValue ExpEqNegOne = DAG.getSetCC(SL, SetCCVT, NegOne, Exp, ISD::SETEQ);
2092
2093   SDValue Mag = DAG.getNode(ISD::SELECT, SL, MVT::f64,
2094                             ExpEqNegOne,
2095                             DAG.getConstantFP(1.0, MVT::f64),
2096                             DAG.getConstantFP(0.0, MVT::f64));
2097
2098   SDValue S = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, Mag, X);
2099
2100   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpLt0, S, K);
2101   K = DAG.getNode(ISD::SELECT, SL, MVT::f64, ExpGt51, X, K);
2102
2103   return K;
2104 }
2105
2106 SDValue AMDGPUTargetLowering::LowerFROUND(SDValue Op, SelectionDAG &DAG) const {
2107   EVT VT = Op.getValueType();
2108
2109   if (VT == MVT::f32)
2110     return LowerFROUND32(Op, DAG);
2111
2112   if (VT == MVT::f64)
2113     return LowerFROUND64(Op, DAG);
2114
2115   llvm_unreachable("unhandled type");
2116 }
2117
2118 SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
2119   SDLoc SL(Op);
2120   SDValue Src = Op.getOperand(0);
2121
2122   // result = trunc(src);
2123   // if (src < 0.0 && src != result)
2124   //   result += -1.0.
2125
2126   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2127
2128   const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
2129   const SDValue NegOne = DAG.getConstantFP(-1.0, MVT::f64);
2130
2131   EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
2132
2133   SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
2134   SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
2135   SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
2136
2137   SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
2138   return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
2139 }
2140
2141 SDValue AMDGPUTargetLowering::LowerINT_TO_FP64(SDValue Op, SelectionDAG &DAG,
2142                                                bool Signed) const {
2143   SDLoc SL(Op);
2144   SDValue Src = Op.getOperand(0);
2145
2146   SDValue BC = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
2147
2148   SDValue Lo = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2149                            DAG.getConstant(0, MVT::i32));
2150   SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, BC,
2151                            DAG.getConstant(1, MVT::i32));
2152
2153   SDValue CvtHi = DAG.getNode(Signed ? ISD::SINT_TO_FP : ISD::UINT_TO_FP,
2154                               SL, MVT::f64, Hi);
2155
2156   SDValue CvtLo = DAG.getNode(ISD::UINT_TO_FP, SL, MVT::f64, Lo);
2157
2158   SDValue LdExp = DAG.getNode(AMDGPUISD::LDEXP, SL, MVT::f64, CvtHi,
2159                               DAG.getConstant(32, MVT::i32));
2160
2161   return DAG.getNode(ISD::FADD, SL, MVT::f64, LdExp, CvtLo);
2162 }
2163
2164 SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
2165                                                SelectionDAG &DAG) const {
2166   SDValue S0 = Op.getOperand(0);
2167   if (S0.getValueType() != MVT::i64)
2168     return SDValue();
2169
2170   EVT DestVT = Op.getValueType();
2171   if (DestVT == MVT::f64)
2172     return LowerINT_TO_FP64(Op, DAG, false);
2173
2174   assert(DestVT == MVT::f32);
2175
2176   SDLoc DL(Op);
2177
2178   // f32 uint_to_fp i64
2179   SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
2180                            DAG.getConstant(0, MVT::i32));
2181   SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
2182   SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
2183                            DAG.getConstant(1, MVT::i32));
2184   SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
2185   FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
2186                         DAG.getConstantFP(4294967296.0f, MVT::f32)); // 2^32
2187   return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
2188 }
2189
2190 SDValue AMDGPUTargetLowering::LowerSINT_TO_FP(SDValue Op,
2191                                               SelectionDAG &DAG) const {
2192   SDValue Src = Op.getOperand(0);
2193   if (Src.getValueType() == MVT::i64 && Op.getValueType() == MVT::f64)
2194     return LowerINT_TO_FP64(Op, DAG, true);
2195
2196   return SDValue();
2197 }
2198
2199 SDValue AMDGPUTargetLowering::LowerFP64_TO_INT(SDValue Op, SelectionDAG &DAG,
2200                                                bool Signed) const {
2201   SDLoc SL(Op);
2202
2203   SDValue Src = Op.getOperand(0);
2204
2205   SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
2206
2207   SDValue K0
2208     = DAG.getConstantFP(BitsToDouble(UINT64_C(0x3df0000000000000)), MVT::f64);
2209   SDValue K1
2210     = DAG.getConstantFP(BitsToDouble(UINT64_C(0xc1f0000000000000)), MVT::f64);
2211
2212   SDValue Mul = DAG.getNode(ISD::FMUL, SL, MVT::f64, Trunc, K0);
2213
2214   SDValue FloorMul = DAG.getNode(ISD::FFLOOR, SL, MVT::f64, Mul);
2215
2216
2217   SDValue Fma = DAG.getNode(ISD::FMA, SL, MVT::f64, FloorMul, K1, Trunc);
2218
2219   SDValue Hi = DAG.getNode(Signed ? ISD::FP_TO_SINT : ISD::FP_TO_UINT, SL,
2220                            MVT::i32, FloorMul);
2221   SDValue Lo = DAG.getNode(ISD::FP_TO_UINT, SL, MVT::i32, Fma);
2222
2223   SDValue Result = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32, Lo, Hi);
2224
2225   return DAG.getNode(ISD::BITCAST, SL, MVT::i64, Result);
2226 }
2227
2228 SDValue AMDGPUTargetLowering::LowerFP_TO_SINT(SDValue Op,
2229                                               SelectionDAG &DAG) const {
2230   SDValue Src = Op.getOperand(0);
2231
2232   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2233     return LowerFP64_TO_INT(Op, DAG, true);
2234
2235   return SDValue();
2236 }
2237
2238 SDValue AMDGPUTargetLowering::LowerFP_TO_UINT(SDValue Op,
2239                                               SelectionDAG &DAG) const {
2240   SDValue Src = Op.getOperand(0);
2241
2242   if (Op.getValueType() == MVT::i64 && Src.getValueType() == MVT::f64)
2243     return LowerFP64_TO_INT(Op, DAG, false);
2244
2245   return SDValue();
2246 }
2247
2248 SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
2249                                                      SelectionDAG &DAG) const {
2250   EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
2251   MVT VT = Op.getSimpleValueType();
2252   MVT ScalarVT = VT.getScalarType();
2253
2254   if (!VT.isVector())
2255     return SDValue();
2256
2257   SDValue Src = Op.getOperand(0);
2258   SDLoc DL(Op);
2259
2260   // TODO: Don't scalarize on Evergreen?
2261   unsigned NElts = VT.getVectorNumElements();
2262   SmallVector<SDValue, 8> Args;
2263   DAG.ExtractVectorElements(Src, Args, 0, NElts);
2264
2265   SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
2266   for (unsigned I = 0; I < NElts; ++I)
2267     Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
2268
2269   return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
2270 }
2271
2272 //===----------------------------------------------------------------------===//
2273 // Custom DAG optimizations
2274 //===----------------------------------------------------------------------===//
2275
2276 static bool isU24(SDValue Op, SelectionDAG &DAG) {
2277   APInt KnownZero, KnownOne;
2278   EVT VT = Op.getValueType();
2279   DAG.computeKnownBits(Op, KnownZero, KnownOne);
2280
2281   return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
2282 }
2283
2284 static bool isI24(SDValue Op, SelectionDAG &DAG) {
2285   EVT VT = Op.getValueType();
2286
2287   // In order for this to be a signed 24-bit value, bit 23, must
2288   // be a sign bit.
2289   return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
2290                                      // as unsigned 24-bit values.
2291          (VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
2292 }
2293
2294 static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
2295
2296   SelectionDAG &DAG = DCI.DAG;
2297   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2298   EVT VT = Op.getValueType();
2299
2300   APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
2301   APInt KnownZero, KnownOne;
2302   TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
2303   if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
2304     DCI.CommitTargetLoweringOpt(TLO);
2305 }
2306
2307 template <typename IntTy>
2308 static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
2309                                uint32_t Offset, uint32_t Width) {
2310   if (Width + Offset < 32) {
2311     uint32_t Shl = static_cast<uint32_t>(Src0) << (32 - Offset - Width);
2312     IntTy Result = static_cast<IntTy>(Shl) >> (32 - Width);
2313     return DAG.getConstant(Result, MVT::i32);
2314   }
2315
2316   return DAG.getConstant(Src0 >> Offset, MVT::i32);
2317 }
2318
2319 static bool usesAllNormalStores(SDNode *LoadVal) {
2320   for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) {
2321     if (!ISD::isNormalStore(*I))
2322       return false;
2323   }
2324
2325   return true;
2326 }
2327
2328 // If we have a copy of an illegal type, replace it with a load / store of an
2329 // equivalently sized legal type. This avoids intermediate bit pack / unpack
2330 // instructions emitted when handling extloads and truncstores. Ideally we could
2331 // recognize the pack / unpack pattern to eliminate it.
2332 SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
2333                                                   DAGCombinerInfo &DCI) const {
2334   if (!DCI.isBeforeLegalize())
2335     return SDValue();
2336
2337   StoreSDNode *SN = cast<StoreSDNode>(N);
2338   SDValue Value = SN->getValue();
2339   EVT VT = Value.getValueType();
2340
2341   if (isTypeLegal(VT) || SN->isVolatile() ||
2342       !ISD::isNormalLoad(Value.getNode()) || VT.getSizeInBits() < 8)
2343     return SDValue();
2344
2345   LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
2346   if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal))
2347     return SDValue();
2348
2349   EVT MemVT = LoadVal->getMemoryVT();
2350
2351   SDLoc SL(N);
2352   SelectionDAG &DAG = DCI.DAG;
2353   EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT);
2354
2355   SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
2356                                 LoadVT, SL,
2357                                 LoadVal->getChain(),
2358                                 LoadVal->getBasePtr(),
2359                                 LoadVal->getOffset(),
2360                                 LoadVT,
2361                                 LoadVal->getMemOperand());
2362
2363   SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0));
2364   DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false);
2365
2366   return DAG.getStore(SN->getChain(), SL, NewLoad,
2367                       SN->getBasePtr(), SN->getMemOperand());
2368 }
2369
2370 SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
2371                                                 DAGCombinerInfo &DCI) const {
2372   EVT VT = N->getValueType(0);
2373
2374   if (VT.isVector() || VT.getSizeInBits() > 32)
2375     return SDValue();
2376
2377   SelectionDAG &DAG = DCI.DAG;
2378   SDLoc DL(N);
2379
2380   SDValue N0 = N->getOperand(0);
2381   SDValue N1 = N->getOperand(1);
2382   SDValue Mul;
2383
2384   if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
2385     N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
2386     N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
2387     Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
2388   } else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
2389     N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
2390     N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
2391     Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
2392   } else {
2393     return SDValue();
2394   }
2395
2396   // We need to use sext even for MUL_U24, because MUL_U24 is used
2397   // for signed multiply of 8 and 16-bit types.
2398   return DAG.getSExtOrTrunc(Mul, DL, VT);
2399 }
2400
2401 SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
2402                                                 DAGCombinerInfo &DCI) const {
2403   SelectionDAG &DAG = DCI.DAG;
2404   SDLoc DL(N);
2405
2406   switch(N->getOpcode()) {
2407     default: break;
2408     case ISD::MUL:
2409       return performMulCombine(N, DCI);
2410     case AMDGPUISD::MUL_I24:
2411     case AMDGPUISD::MUL_U24: {
2412       SDValue N0 = N->getOperand(0);
2413       SDValue N1 = N->getOperand(1);
2414       simplifyI24(N0, DCI);
2415       simplifyI24(N1, DCI);
2416       return SDValue();
2417     }
2418   case ISD::SELECT: {
2419     SDValue Cond = N->getOperand(0);
2420     if (Cond.getOpcode() == ISD::SETCC && Cond.hasOneUse()) {
2421       SDLoc DL(N);
2422       EVT VT = N->getValueType(0);
2423       SDValue LHS = Cond.getOperand(0);
2424       SDValue RHS = Cond.getOperand(1);
2425       SDValue CC = Cond.getOperand(2);
2426
2427       SDValue True = N->getOperand(1);
2428       SDValue False = N->getOperand(2);
2429
2430       if (VT == MVT::f32)
2431         return CombineFMinMaxLegacy(DL, VT, LHS, RHS, True, False, CC, DCI);
2432
2433       // TODO: Implement min / max Evergreen instructions.
2434       if (VT == MVT::i32 &&
2435           Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
2436         return CombineIMinMax(DL, VT, LHS, RHS, True, False, CC, DAG);
2437       }
2438     }
2439
2440     break;
2441   }
2442   case AMDGPUISD::BFE_I32:
2443   case AMDGPUISD::BFE_U32: {
2444     assert(!N->getValueType(0).isVector() &&
2445            "Vector handling of BFE not implemented");
2446     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
2447     if (!Width)
2448       break;
2449
2450     uint32_t WidthVal = Width->getZExtValue() & 0x1f;
2451     if (WidthVal == 0)
2452       return DAG.getConstant(0, MVT::i32);
2453
2454     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
2455     if (!Offset)
2456       break;
2457
2458     SDValue BitsFrom = N->getOperand(0);
2459     uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
2460
2461     bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
2462
2463     if (OffsetVal == 0) {
2464       // This is already sign / zero extended, so try to fold away extra BFEs.
2465       unsigned SignBits =  Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
2466
2467       unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
2468       if (OpSignBits >= SignBits)
2469         return BitsFrom;
2470
2471       EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
2472       if (Signed) {
2473         // This is a sign_extend_inreg. Replace it to take advantage of existing
2474         // DAG Combines. If not eliminated, we will match back to BFE during
2475         // selection.
2476
2477         // TODO: The sext_inreg of extended types ends, although we can could
2478         // handle them in a single BFE.
2479         return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
2480                            DAG.getValueType(SmallVT));
2481       }
2482
2483       return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
2484     }
2485
2486     if (ConstantSDNode *CVal = dyn_cast<ConstantSDNode>(BitsFrom)) {
2487       if (Signed) {
2488         return constantFoldBFE<int32_t>(DAG,
2489                                         CVal->getSExtValue(),
2490                                         OffsetVal,
2491                                         WidthVal);
2492       }
2493
2494       return constantFoldBFE<uint32_t>(DAG,
2495                                        CVal->getZExtValue(),
2496                                        OffsetVal,
2497                                        WidthVal);
2498     }
2499
2500     if ((OffsetVal + WidthVal) >= 32) {
2501       SDValue ShiftVal = DAG.getConstant(OffsetVal, MVT::i32);
2502       return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
2503                          BitsFrom, ShiftVal);
2504     }
2505
2506     if (BitsFrom.hasOneUse()) {
2507       APInt Demanded = APInt::getBitsSet(32,
2508                                          OffsetVal,
2509                                          OffsetVal + WidthVal);
2510
2511       APInt KnownZero, KnownOne;
2512       TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2513                                             !DCI.isBeforeLegalizeOps());
2514       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2515       if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
2516           TLI.SimplifyDemandedBits(BitsFrom, Demanded,
2517                                    KnownZero, KnownOne, TLO)) {
2518         DCI.CommitTargetLoweringOpt(TLO);
2519       }
2520     }
2521
2522     break;
2523   }
2524
2525   case ISD::STORE:
2526     return performStoreCombine(N, DCI);
2527   }
2528   return SDValue();
2529 }
2530
2531 //===----------------------------------------------------------------------===//
2532 // Helper functions
2533 //===----------------------------------------------------------------------===//
2534
2535 void AMDGPUTargetLowering::getOriginalFunctionArgs(
2536                                SelectionDAG &DAG,
2537                                const Function *F,
2538                                const SmallVectorImpl<ISD::InputArg> &Ins,
2539                                SmallVectorImpl<ISD::InputArg> &OrigIns) const {
2540
2541   for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
2542     if (Ins[i].ArgVT == Ins[i].VT) {
2543       OrigIns.push_back(Ins[i]);
2544       continue;
2545     }
2546
2547     EVT VT;
2548     if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
2549       // Vector has been split into scalars.
2550       VT = Ins[i].ArgVT.getVectorElementType();
2551     } else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
2552                Ins[i].ArgVT.getVectorElementType() !=
2553                Ins[i].VT.getVectorElementType()) {
2554       // Vector elements have been promoted
2555       VT = Ins[i].ArgVT;
2556     } else {
2557       // Vector has been spilt into smaller vectors.
2558       VT = Ins[i].VT;
2559     }
2560
2561     ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
2562                       Ins[i].OrigArgIndex, Ins[i].PartOffset);
2563     OrigIns.push_back(Arg);
2564   }
2565 }
2566
2567 bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
2568   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2569     return CFP->isExactlyValue(1.0);
2570   }
2571   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2572     return C->isAllOnesValue();
2573   }
2574   return false;
2575 }
2576
2577 bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
2578   if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
2579     return CFP->getValueAPF().isZero();
2580   }
2581   if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
2582     return C->isNullValue();
2583   }
2584   return false;
2585 }
2586
2587 SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
2588                                                   const TargetRegisterClass *RC,
2589                                                    unsigned Reg, EVT VT) const {
2590   MachineFunction &MF = DAG.getMachineFunction();
2591   MachineRegisterInfo &MRI = MF.getRegInfo();
2592   unsigned VirtualRegister;
2593   if (!MRI.isLiveIn(Reg)) {
2594     VirtualRegister = MRI.createVirtualRegister(RC);
2595     MRI.addLiveIn(Reg, VirtualRegister);
2596   } else {
2597     VirtualRegister = MRI.getLiveInVirtReg(Reg);
2598   }
2599   return DAG.getRegister(VirtualRegister, VT);
2600 }
2601
2602 #define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
2603
2604 const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
2605   switch (Opcode) {
2606   default: return nullptr;
2607   // AMDIL DAG nodes
2608   NODE_NAME_CASE(CALL);
2609   NODE_NAME_CASE(UMUL);
2610   NODE_NAME_CASE(RET_FLAG);
2611   NODE_NAME_CASE(BRANCH_COND);
2612
2613   // AMDGPU DAG nodes
2614   NODE_NAME_CASE(DWORDADDR)
2615   NODE_NAME_CASE(FRACT)
2616   NODE_NAME_CASE(CLAMP)
2617   NODE_NAME_CASE(FMAX_LEGACY)
2618   NODE_NAME_CASE(SMAX)
2619   NODE_NAME_CASE(UMAX)
2620   NODE_NAME_CASE(FMIN_LEGACY)
2621   NODE_NAME_CASE(SMIN)
2622   NODE_NAME_CASE(UMIN)
2623   NODE_NAME_CASE(FMAX3)
2624   NODE_NAME_CASE(SMAX3)
2625   NODE_NAME_CASE(UMAX3)
2626   NODE_NAME_CASE(FMIN3)
2627   NODE_NAME_CASE(SMIN3)
2628   NODE_NAME_CASE(UMIN3)
2629   NODE_NAME_CASE(URECIP)
2630   NODE_NAME_CASE(DIV_SCALE)
2631   NODE_NAME_CASE(DIV_FMAS)
2632   NODE_NAME_CASE(DIV_FIXUP)
2633   NODE_NAME_CASE(TRIG_PREOP)
2634   NODE_NAME_CASE(RCP)
2635   NODE_NAME_CASE(RSQ)
2636   NODE_NAME_CASE(RSQ_LEGACY)
2637   NODE_NAME_CASE(RSQ_CLAMPED)
2638   NODE_NAME_CASE(LDEXP)
2639   NODE_NAME_CASE(FP_CLASS)
2640   NODE_NAME_CASE(DOT4)
2641   NODE_NAME_CASE(BFE_U32)
2642   NODE_NAME_CASE(BFE_I32)
2643   NODE_NAME_CASE(BFI)
2644   NODE_NAME_CASE(BFM)
2645   NODE_NAME_CASE(BREV)
2646   NODE_NAME_CASE(MUL_U24)
2647   NODE_NAME_CASE(MUL_I24)
2648   NODE_NAME_CASE(MAD_U24)
2649   NODE_NAME_CASE(MAD_I24)
2650   NODE_NAME_CASE(EXPORT)
2651   NODE_NAME_CASE(CONST_ADDRESS)
2652   NODE_NAME_CASE(REGISTER_LOAD)
2653   NODE_NAME_CASE(REGISTER_STORE)
2654   NODE_NAME_CASE(LOAD_CONSTANT)
2655   NODE_NAME_CASE(LOAD_INPUT)
2656   NODE_NAME_CASE(SAMPLE)
2657   NODE_NAME_CASE(SAMPLEB)
2658   NODE_NAME_CASE(SAMPLED)
2659   NODE_NAME_CASE(SAMPLEL)
2660   NODE_NAME_CASE(CVT_F32_UBYTE0)
2661   NODE_NAME_CASE(CVT_F32_UBYTE1)
2662   NODE_NAME_CASE(CVT_F32_UBYTE2)
2663   NODE_NAME_CASE(CVT_F32_UBYTE3)
2664   NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
2665   NODE_NAME_CASE(CONST_DATA_PTR)
2666   NODE_NAME_CASE(STORE_MSKOR)
2667   NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
2668   }
2669 }
2670
2671 SDValue AMDGPUTargetLowering::getRsqrtEstimate(SDValue Operand,
2672                                                DAGCombinerInfo &DCI,
2673                                                unsigned &RefinementSteps,
2674                                                bool &UseOneConstNR) const {
2675   SelectionDAG &DAG = DCI.DAG;
2676   EVT VT = Operand.getValueType();
2677
2678   if (VT == MVT::f32) {
2679     RefinementSteps = 0;
2680     return DAG.getNode(AMDGPUISD::RSQ, SDLoc(Operand), VT, Operand);
2681   }
2682
2683   // TODO: There is also f64 rsq instruction, but the documentation is less
2684   // clear on its precision.
2685
2686   return SDValue();
2687 }
2688
2689 SDValue AMDGPUTargetLowering::getRecipEstimate(SDValue Operand,
2690                                                DAGCombinerInfo &DCI,
2691                                                unsigned &RefinementSteps) const {
2692   SelectionDAG &DAG = DCI.DAG;
2693   EVT VT = Operand.getValueType();
2694
2695   if (VT == MVT::f32) {
2696     // Reciprocal, < 1 ulp error.
2697     //
2698     // This reciprocal approximation converges to < 0.5 ulp error with one
2699     // newton rhapson performed with two fused multiple adds (FMAs).
2700
2701     RefinementSteps = 0;
2702     return DAG.getNode(AMDGPUISD::RCP, SDLoc(Operand), VT, Operand);
2703   }
2704
2705   // TODO: There is also f64 rcp instruction, but the documentation is less
2706   // clear on its precision.
2707
2708   return SDValue();
2709 }
2710
2711 static void computeKnownBitsForMinMax(const SDValue Op0,
2712                                       const SDValue Op1,
2713                                       APInt &KnownZero,
2714                                       APInt &KnownOne,
2715                                       const SelectionDAG &DAG,
2716                                       unsigned Depth) {
2717   APInt Op0Zero, Op0One;
2718   APInt Op1Zero, Op1One;
2719   DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
2720   DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
2721
2722   KnownZero = Op0Zero & Op1Zero;
2723   KnownOne = Op0One & Op1One;
2724 }
2725
2726 void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
2727   const SDValue Op,
2728   APInt &KnownZero,
2729   APInt &KnownOne,
2730   const SelectionDAG &DAG,
2731   unsigned Depth) const {
2732
2733   KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
2734
2735   APInt KnownZero2;
2736   APInt KnownOne2;
2737   unsigned Opc = Op.getOpcode();
2738
2739   switch (Opc) {
2740   default:
2741     break;
2742   case ISD::INTRINSIC_WO_CHAIN: {
2743     // FIXME: The intrinsic should just use the node.
2744     switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
2745     case AMDGPUIntrinsic::AMDGPU_imax:
2746     case AMDGPUIntrinsic::AMDGPU_umax:
2747     case AMDGPUIntrinsic::AMDGPU_imin:
2748     case AMDGPUIntrinsic::AMDGPU_umin:
2749       computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
2750                                 KnownZero, KnownOne, DAG, Depth);
2751       break;
2752     default:
2753       break;
2754     }
2755
2756     break;
2757   }
2758   case AMDGPUISD::SMAX:
2759   case AMDGPUISD::UMAX:
2760   case AMDGPUISD::SMIN:
2761   case AMDGPUISD::UMIN:
2762     computeKnownBitsForMinMax(Op.getOperand(0), Op.getOperand(1),
2763                               KnownZero, KnownOne, DAG, Depth);
2764     break;
2765
2766   case AMDGPUISD::CARRY:
2767   case AMDGPUISD::BORROW: {
2768     KnownZero = APInt::getHighBitsSet(32, 31);
2769     break;
2770   }
2771
2772   case AMDGPUISD::BFE_I32:
2773   case AMDGPUISD::BFE_U32: {
2774     ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2775     if (!CWidth)
2776       return;
2777
2778     unsigned BitWidth = 32;
2779     uint32_t Width = CWidth->getZExtValue() & 0x1f;
2780
2781     if (Opc == AMDGPUISD::BFE_U32)
2782       KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
2783
2784     break;
2785   }
2786   }
2787 }
2788
2789 unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
2790   SDValue Op,
2791   const SelectionDAG &DAG,
2792   unsigned Depth) const {
2793   switch (Op.getOpcode()) {
2794   case AMDGPUISD::BFE_I32: {
2795     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2796     if (!Width)
2797       return 1;
2798
2799     unsigned SignBits = 32 - Width->getZExtValue() + 1;
2800     ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2801     if (!Offset || !Offset->isNullValue())
2802       return SignBits;
2803
2804     // TODO: Could probably figure something out with non-0 offsets.
2805     unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
2806     return std::max(SignBits, Op0SignBits);
2807   }
2808
2809   case AMDGPUISD::BFE_U32: {
2810     ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2811     return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
2812   }
2813
2814   case AMDGPUISD::CARRY:
2815   case AMDGPUISD::BORROW:
2816     return 31;
2817
2818   default:
2819     return 1;
2820   }
2821 }