R600/SI: Make sample intrinsic address parameter type overloaded.
[oota-llvm.git] / lib / Target / R600 / AMDGPUIndirectAddressing.cpp
1 //===-- AMDGPUIndirectAddressing.cpp - Indirect Adressing Support ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 /// \file
11 ///
12 /// Instructions can use indirect addressing to index the register file as if it
13 /// were memory.  This pass lowers RegisterLoad and RegisterStore instructions
14 /// to either a COPY or a MOV that uses indirect addressing.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "AMDGPU.h"
19 #include "R600InstrInfo.h"
20 #include "R600MachineFunctionInfo.h"
21 #include "llvm/CodeGen/MachineFunction.h"
22 #include "llvm/CodeGen/MachineFunctionPass.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Support/Debug.h"
26
27 using namespace llvm;
28
29 namespace {
30
31 class AMDGPUIndirectAddressingPass : public MachineFunctionPass {
32
33 private:
34   static char ID;
35   const AMDGPUInstrInfo *TII;
36
37   bool regHasExplicitDef(MachineRegisterInfo &MRI, unsigned Reg) const;
38
39 public:
40   AMDGPUIndirectAddressingPass(TargetMachine &tm) :
41     MachineFunctionPass(ID),
42     TII(static_cast<const AMDGPUInstrInfo*>(tm.getInstrInfo()))
43     { }
44
45   virtual bool runOnMachineFunction(MachineFunction &MF);
46
47   const char *getPassName() const { return "R600 Handle indirect addressing"; }
48
49 };
50
51 } // End anonymous namespace
52
53 char AMDGPUIndirectAddressingPass::ID = 0;
54
55 FunctionPass *llvm::createAMDGPUIndirectAddressingPass(TargetMachine &tm) {
56   return new AMDGPUIndirectAddressingPass(tm);
57 }
58
59 bool AMDGPUIndirectAddressingPass::runOnMachineFunction(MachineFunction &MF) {
60   MachineRegisterInfo &MRI = MF.getRegInfo();
61
62   int IndirectBegin = TII->getIndirectIndexBegin(MF);
63   int IndirectEnd = TII->getIndirectIndexEnd(MF);
64
65   if (IndirectBegin == -1) {
66     // No indirect addressing, we can skip this pass
67     assert(IndirectEnd == -1);
68     return false;
69   }
70
71   // The map keeps track of the indirect address that is represented by
72   // each virtual register. The key is the register and the value is the
73   // indirect address it uses.
74   std::map<unsigned, unsigned> RegisterAddressMap;
75
76   // First pass - Lower all of the RegisterStore instructions and track which
77   // registers are live.
78   for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
79                                                       BB != BB_E; ++BB) {
80     // This map keeps track of the current live indirect registers.
81     // The key is the address and the value is the register
82     std::map<unsigned, unsigned> LiveAddressRegisterMap;
83     MachineBasicBlock &MBB = *BB;
84
85     for (MachineBasicBlock::iterator I = MBB.begin(), Next = llvm::next(I);
86                                I != MBB.end(); I = Next) {
87       Next = llvm::next(I);
88       MachineInstr &MI = *I;
89
90       if (!TII->isRegisterStore(MI)) {
91         continue;
92       }
93
94       // Lower RegisterStore
95
96       unsigned RegIndex = MI.getOperand(2).getImm();
97       unsigned Channel = MI.getOperand(3).getImm();
98       unsigned Address = TII->calculateIndirectAddress(RegIndex, Channel);
99       const TargetRegisterClass *IndirectStoreRegClass =
100                    TII->getIndirectAddrStoreRegClass(MI.getOperand(0).getReg());
101
102       if (MI.getOperand(1).getReg() == AMDGPU::INDIRECT_BASE_ADDR) {
103         // Direct register access.
104         unsigned DstReg = MRI.createVirtualRegister(IndirectStoreRegClass);
105
106         BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::COPY), DstReg)
107                 .addOperand(MI.getOperand(0));
108
109         RegisterAddressMap[DstReg] = Address;
110         LiveAddressRegisterMap[Address] = DstReg;
111       } else {
112         // Indirect register access.
113         MachineInstrBuilder MOV = TII->buildIndirectWrite(BB, I,
114                                            MI.getOperand(0).getReg(), // Value
115                                            Address,
116                                            MI.getOperand(1).getReg()); // Offset
117         for (int i = IndirectBegin; i <= IndirectEnd; ++i) {
118           unsigned Addr = TII->calculateIndirectAddress(i, Channel);
119           unsigned DstReg = MRI.createVirtualRegister(IndirectStoreRegClass);
120           MOV.addReg(DstReg, RegState::Define | RegState::Implicit);
121           RegisterAddressMap[DstReg] = Addr;
122           LiveAddressRegisterMap[Addr] = DstReg;
123         }
124       }
125       MI.eraseFromParent();
126     }
127
128     // Update the live-ins of the succesor blocks
129     for (MachineBasicBlock::succ_iterator Succ = MBB.succ_begin(),
130                                           SuccEnd = MBB.succ_end();
131                                           SuccEnd != Succ; ++Succ) {
132       std::map<unsigned, unsigned>::const_iterator Key, KeyEnd;
133       for (Key = LiveAddressRegisterMap.begin(),
134            KeyEnd = LiveAddressRegisterMap.end(); KeyEnd != Key; ++Key) {
135         (*Succ)->addLiveIn(Key->second);
136       }
137     }
138   }
139
140   // Second pass - Lower the RegisterLoad instructions
141   for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
142                                                       BB != BB_E; ++BB) {
143     // Key is the address and the value is the register
144     std::map<unsigned, unsigned> LiveAddressRegisterMap;
145     MachineBasicBlock &MBB = *BB;
146
147     MachineBasicBlock::livein_iterator LI = MBB.livein_begin();
148     while (LI != MBB.livein_end()) {
149       std::vector<unsigned> PhiRegisters;
150
151       // Make sure this live in is used for indirect addressing
152       if (RegisterAddressMap.find(*LI) == RegisterAddressMap.end()) {
153         ++LI;
154         continue;
155       }
156
157       unsigned Address = RegisterAddressMap[*LI];
158       LiveAddressRegisterMap[Address] = *LI;
159       PhiRegisters.push_back(*LI);
160
161       // Check if there are other live in registers which map to the same
162       // indirect address.
163       for (MachineBasicBlock::livein_iterator LJ = llvm::next(LI),
164                                               LE = MBB.livein_end();
165                                               LJ != LE; ++LJ) {
166         unsigned Reg = *LJ;
167         if (RegisterAddressMap.find(Reg) == RegisterAddressMap.end()) {
168           continue;
169         }
170
171         if (RegisterAddressMap[Reg] == Address) {
172           if (!regHasExplicitDef(MRI, Reg)) {
173             continue;
174           }
175           PhiRegisters.push_back(Reg);
176         }
177       }
178
179       if (PhiRegisters.size() == 1) {
180         // We don't need to insert a Phi instruction, so we can just add the
181         // registers to the live list for the block.
182         LiveAddressRegisterMap[Address] = *LI;
183         MBB.removeLiveIn(*LI);
184       } else {
185         // We need to insert a PHI, because we have the same address being
186         // written in multiple predecessor blocks.
187         const TargetRegisterClass *PhiDstClass =
188                    TII->getIndirectAddrStoreRegClass(*(PhiRegisters.begin()));
189         unsigned PhiDstReg = MRI.createVirtualRegister(PhiDstClass);
190         MachineInstrBuilder Phi = BuildMI(MBB, MBB.begin(),
191                                           MBB.findDebugLoc(MBB.begin()),
192                                           TII->get(AMDGPU::PHI), PhiDstReg);
193
194         for (std::vector<unsigned>::const_iterator RI = PhiRegisters.begin(),
195                                                    RE = PhiRegisters.end();
196                                                    RI != RE; ++RI) {
197           unsigned Reg = *RI;
198           MachineInstr *DefInst = MRI.getVRegDef(Reg);
199           assert(DefInst);
200           MachineBasicBlock *RegBlock = DefInst->getParent();
201           Phi.addReg(Reg);
202           Phi.addMBB(RegBlock);
203           MBB.removeLiveIn(Reg);
204         }
205         RegisterAddressMap[PhiDstReg] = Address;
206         LiveAddressRegisterMap[Address] = PhiDstReg;
207       }
208       LI = MBB.livein_begin();
209     }
210
211     for (MachineBasicBlock::iterator I = MBB.begin(), Next = llvm::next(I);
212                                I != MBB.end(); I = Next) {
213       Next = llvm::next(I);
214       MachineInstr &MI = *I;
215
216       if (!TII->isRegisterLoad(MI)) {
217         if (MI.getOpcode() == AMDGPU::PHI) {
218           continue;
219         }
220         // Check for indirect register defs
221         for (unsigned OpIdx = 0, NumOperands = MI.getNumOperands();
222                                  OpIdx < NumOperands; ++OpIdx) {
223           MachineOperand &MO = MI.getOperand(OpIdx);
224           if (MO.isReg() && MO.isDef() &&
225               RegisterAddressMap.find(MO.getReg()) != RegisterAddressMap.end()) {
226             unsigned Reg = MO.getReg();
227             unsigned LiveAddress = RegisterAddressMap[Reg];
228             // Chain the live-ins
229             if (LiveAddressRegisterMap.find(LiveAddress) !=
230                                                      RegisterAddressMap.end()) {
231               MI.addOperand(MachineOperand::CreateReg(
232                                   LiveAddressRegisterMap[LiveAddress],
233                                   false, // isDef
234                                   true,  // isImp
235                                   true));  // isKill
236             }
237             LiveAddressRegisterMap[LiveAddress] = Reg;
238           }
239         }
240         continue;
241       }
242
243       const TargetRegisterClass *SuperIndirectRegClass =
244                                                 TII->getSuperIndirectRegClass();
245       const TargetRegisterClass *IndirectLoadRegClass =
246                                              TII->getIndirectAddrLoadRegClass();
247       unsigned IndirectReg = MRI.createVirtualRegister(SuperIndirectRegClass);
248
249       unsigned RegIndex = MI.getOperand(2).getImm();
250       unsigned Channel = MI.getOperand(3).getImm();
251       unsigned Address = TII->calculateIndirectAddress(RegIndex, Channel);
252
253       if (MI.getOperand(1).getReg() == AMDGPU::INDIRECT_BASE_ADDR) {
254         // Direct register access
255         unsigned Reg = LiveAddressRegisterMap[Address];
256         unsigned AddrReg = IndirectLoadRegClass->getRegister(Address);
257
258         if (regHasExplicitDef(MRI, Reg)) {
259           // If the register we are reading from has an explicit def, then that
260           // means it was written via a direct register access (i.e. COPY
261           // or other instruction that doesn't use indirect addressing).  In
262           // this case we know where the value has been stored, so we can just
263           // issue a copy.
264           BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::COPY),
265                   MI.getOperand(0).getReg())
266                   .addReg(Reg);
267         } else {
268           // If the register we are reading has an implicit def, then that
269           // means it was written by an indirect register access (i.e. An
270           // instruction that uses indirect addressing. 
271           BuildMI(MBB, I, MBB.findDebugLoc(I), TII->get(AMDGPU::COPY),
272                    MI.getOperand(0).getReg())
273                    .addReg(AddrReg);
274         }
275       } else {
276         // Indirect register access
277
278         // Note on REQ_SEQUENCE instructons: You can't actually use the register
279         // it defines unless  you have an instruction that takes the defined
280         // register class as an operand.
281
282         MachineInstrBuilder Sequence = BuildMI(MBB, I, MBB.findDebugLoc(I),
283                                                TII->get(AMDGPU::REG_SEQUENCE),
284                                                IndirectReg);
285         for (int i = IndirectBegin; i <= IndirectEnd; ++i) {
286           unsigned Addr = TII->calculateIndirectAddress(i, Channel);
287           if (LiveAddressRegisterMap.find(Addr) == LiveAddressRegisterMap.end()) {
288             continue;
289           }
290           unsigned Reg = LiveAddressRegisterMap[Addr];
291
292           // We only need to use REG_SEQUENCE for explicit defs, since the
293           // register coalescer won't do anything with the implicit defs.
294           MachineInstr *DefInstr = MRI.getVRegDef(Reg);
295           if (!DefInstr->getOperand(0).isReg() ||
296               DefInstr->getOperand(0).getReg() != Reg) {
297             continue;
298           }
299
300           // Insert a REQ_SEQUENCE instruction to force the register allocator
301           // to allocate the virtual register to the correct physical register.
302           Sequence.addReg(LiveAddressRegisterMap[Addr]);
303           Sequence.addImm(TII->getRegisterInfo().getIndirectSubReg(Addr));
304         }
305         MachineInstrBuilder Mov = TII->buildIndirectRead(BB, I,
306                                            MI.getOperand(0).getReg(), // Value
307                                            Address,
308                                            MI.getOperand(1).getReg()); // Offset
309
310
311
312         Mov.addReg(IndirectReg, RegState::Implicit | RegState::Kill);
313
314       }
315       MI.eraseFromParent();
316     }
317   }
318   return false;
319 }
320
321 bool AMDGPUIndirectAddressingPass::regHasExplicitDef(MachineRegisterInfo &MRI,
322                                                   unsigned Reg) const {
323   MachineInstr *DefInstr = MRI.getVRegDef(Reg);
324   return DefInstr && DefInstr->getOperand(0).isReg() &&
325          DefInstr->getOperand(0).getReg() == Reg;
326 }