X86: Custom lower <2 x i64> eq and ne when SSE41 is not available.
[oota-llvm.git] / lib / Target / README.txt
1 Target Independent Opportunities:
2
3 //===---------------------------------------------------------------------===//
4
5 We should recognized various "overflow detection" idioms and translate them into
6 llvm.uadd.with.overflow and similar intrinsics.  Here is a multiply idiom:
7
8 unsigned int mul(unsigned int a,unsigned int b) {
9  if ((unsigned long long)a*b>0xffffffff)
10    exit(0);
11   return a*b;
12 }
13
14 The legalization code for mul-with-overflow needs to be made more robust before
15 this can be implemented though.
16
17 //===---------------------------------------------------------------------===//
18
19 Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
20 precision don't matter (ffastmath).  Misc/mandel will like this. :)  This isn't
21 safe in general, even on darwin.  See the libm implementation of hypot for
22 examples (which special case when x/y are exactly zero to get signed zeros etc
23 right).
24
25 //===---------------------------------------------------------------------===//
26
27 On targets with expensive 64-bit multiply, we could LSR this:
28
29 for (i = ...; ++i) {
30    x = 1ULL << i;
31
32 into:
33  long long tmp = 1;
34  for (i = ...; ++i, tmp+=tmp)
35    x = tmp;
36
37 This would be a win on ppc32, but not x86 or ppc64.
38
39 //===---------------------------------------------------------------------===//
40
41 Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
42
43 //===---------------------------------------------------------------------===//
44
45 Reassociate should turn things like:
46
47 int factorial(int X) {
48  return X*X*X*X*X*X*X*X;
49 }
50
51 into llvm.powi calls, allowing the code generator to produce balanced
52 multiplication trees.
53
54 First, the intrinsic needs to be extended to support integers, and second the
55 code generator needs to be enhanced to lower these to multiplication trees.
56
57 //===---------------------------------------------------------------------===//
58
59 Interesting? testcase for add/shift/mul reassoc:
60
61 int bar(int x, int y) {
62   return x*x*x+y+x*x*x*x*x*y*y*y*y;
63 }
64 int foo(int z, int n) {
65   return bar(z, n) + bar(2*z, 2*n);
66 }
67
68 This is blocked on not handling X*X*X -> powi(X, 3) (see note above).  The issue
69 is that we end up getting t = 2*X  s = t*t   and don't turn this into 4*X*X,
70 which is the same number of multiplies and is canonical, because the 2*X has
71 multiple uses.  Here's a simple example:
72
73 define i32 @test15(i32 %X1) {
74   %B = mul i32 %X1, 47   ; X1*47
75   %C = mul i32 %B, %B
76   ret i32 %C
77 }
78
79
80 //===---------------------------------------------------------------------===//
81
82 Reassociate should handle the example in GCC PR16157:
83
84 extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4; 
85 void f () {  /* this can be optimized to four additions... */ 
86         b4 = a4 + a3 + a2 + a1 + a0; 
87         b3 = a3 + a2 + a1 + a0; 
88         b2 = a2 + a1 + a0; 
89         b1 = a1 + a0; 
90
91
92 This requires reassociating to forms of expressions that are already available,
93 something that reassoc doesn't think about yet.
94
95
96 //===---------------------------------------------------------------------===//
97
98 This function: (derived from GCC PR19988)
99 double foo(double x, double y) {
100   return ((x + 0.1234 * y) * (x + -0.1234 * y));
101 }
102
103 compiles to:
104 _foo:
105         movapd  %xmm1, %xmm2
106         mulsd   LCPI1_1(%rip), %xmm1
107         mulsd   LCPI1_0(%rip), %xmm2
108         addsd   %xmm0, %xmm1
109         addsd   %xmm0, %xmm2
110         movapd  %xmm1, %xmm0
111         mulsd   %xmm2, %xmm0
112         ret
113
114 Reassociate should be able to turn it into:
115
116 double foo(double x, double y) {
117   return ((x + 0.1234 * y) * (x - 0.1234 * y));
118 }
119
120 Which allows the multiply by constant to be CSE'd, producing:
121
122 _foo:
123         mulsd   LCPI1_0(%rip), %xmm1
124         movapd  %xmm1, %xmm2
125         addsd   %xmm0, %xmm2
126         subsd   %xmm1, %xmm0
127         mulsd   %xmm2, %xmm0
128         ret
129
130 This doesn't need -ffast-math support at all.  This is particularly bad because
131 the llvm-gcc frontend is canonicalizing the later into the former, but clang
132 doesn't have this problem.
133
134 //===---------------------------------------------------------------------===//
135
136 These two functions should generate the same code on big-endian systems:
137
138 int g(int *j,int *l)  {  return memcmp(j,l,4);  }
139 int h(int *j, int *l) {  return *j - *l; }
140
141 this could be done in SelectionDAGISel.cpp, along with other special cases,
142 for 1,2,4,8 bytes.
143
144 //===---------------------------------------------------------------------===//
145
146 It would be nice to revert this patch:
147 http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
148
149 And teach the dag combiner enough to simplify the code expanded before 
150 legalize.  It seems plausible that this knowledge would let it simplify other
151 stuff too.
152
153 //===---------------------------------------------------------------------===//
154
155 For vector types, DataLayout.cpp::getTypeInfo() returns alignment that is equal
156 to the type size. It works but can be overly conservative as the alignment of
157 specific vector types are target dependent.
158
159 //===---------------------------------------------------------------------===//
160
161 We should produce an unaligned load from code like this:
162
163 v4sf example(float *P) {
164   return (v4sf){P[0], P[1], P[2], P[3] };
165 }
166
167 //===---------------------------------------------------------------------===//
168
169 Add support for conditional increments, and other related patterns.  Instead
170 of:
171
172         movl 136(%esp), %eax
173         cmpl $0, %eax
174         je LBB16_2      #cond_next
175 LBB16_1:        #cond_true
176         incl _foo
177 LBB16_2:        #cond_next
178
179 emit:
180         movl    _foo, %eax
181         cmpl    $1, %edi
182         sbbl    $-1, %eax
183         movl    %eax, _foo
184
185 //===---------------------------------------------------------------------===//
186
187 Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
188
189 Expand these to calls of sin/cos and stores:
190       double sincos(double x, double *sin, double *cos);
191       float sincosf(float x, float *sin, float *cos);
192       long double sincosl(long double x, long double *sin, long double *cos);
193
194 Doing so could allow SROA of the destination pointers.  See also:
195 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
196
197 This is now easily doable with MRVs.  We could even make an intrinsic for this
198 if anyone cared enough about sincos.
199
200 //===---------------------------------------------------------------------===//
201
202 quantum_sigma_x in 462.libquantum contains the following loop:
203
204       for(i=0; i<reg->size; i++)
205         {
206           /* Flip the target bit of each basis state */
207           reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
208         } 
209
210 Where MAX_UNSIGNED/state is a 64-bit int.  On a 32-bit platform it would be just
211 so cool to turn it into something like:
212
213    long long Res = ((MAX_UNSIGNED) 1 << target);
214    if (target < 32) {
215      for(i=0; i<reg->size; i++)
216        reg->node[i].state ^= Res & 0xFFFFFFFFULL;
217    } else {
218      for(i=0; i<reg->size; i++)
219        reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
220    }
221    
222 ... which would only do one 32-bit XOR per loop iteration instead of two.
223
224 It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
225 this requires TBAA.
226
227 //===---------------------------------------------------------------------===//
228
229 This isn't recognized as bswap by instcombine (yes, it really is bswap):
230
231 unsigned long reverse(unsigned v) {
232     unsigned t;
233     t = v ^ ((v << 16) | (v >> 16));
234     t &= ~0xff0000;
235     v = (v << 24) | (v >> 8);
236     return v ^ (t >> 8);
237 }
238
239 //===---------------------------------------------------------------------===//
240
241 [LOOP DELETION]
242
243 We don't delete this output free loop, because trip count analysis doesn't
244 realize that it is finite (if it were infinite, it would be undefined).  Not
245 having this blocks Loop Idiom from matching strlen and friends.  
246
247 void foo(char *C) {
248   int x = 0;
249   while (*C)
250     ++x,++C;
251 }
252
253 //===---------------------------------------------------------------------===//
254
255 [LOOP RECOGNITION]
256
257 These idioms should be recognized as popcount (see PR1488):
258
259 unsigned countbits_slow(unsigned v) {
260   unsigned c;
261   for (c = 0; v; v >>= 1)
262     c += v & 1;
263   return c;
264 }
265
266 unsigned int popcount(unsigned int input) {
267   unsigned int count = 0;
268   for (unsigned int i =  0; i < 4 * 8; i++)
269     count += (input >> i) & i;
270   return count;
271 }
272
273 This should be recognized as CLZ:  rdar://8459039
274
275 unsigned clz_a(unsigned a) {
276   int i;
277   for (i=0;i<32;i++)
278     if (a & (1<<(31-i)))
279       return i;
280   return 32;
281 }
282
283 This sort of thing should be added to the loop idiom pass.
284
285 //===---------------------------------------------------------------------===//
286
287 These should turn into single 16-bit (unaligned?) loads on little/big endian
288 processors.
289
290 unsigned short read_16_le(const unsigned char *adr) {
291   return adr[0] | (adr[1] << 8);
292 }
293 unsigned short read_16_be(const unsigned char *adr) {
294   return (adr[0] << 8) | adr[1];
295 }
296
297 //===---------------------------------------------------------------------===//
298
299 -instcombine should handle this transform:
300    icmp pred (sdiv X / C1 ), C2
301 when X, C1, and C2 are unsigned.  Similarly for udiv and signed operands. 
302
303 Currently InstCombine avoids this transform but will do it when the signs of
304 the operands and the sign of the divide match. See the FIXME in 
305 InstructionCombining.cpp in the visitSetCondInst method after the switch case 
306 for Instruction::UDiv (around line 4447) for more details.
307
308 The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
309 this construct. 
310
311 //===---------------------------------------------------------------------===//
312
313 [LOOP OPTIMIZATION]
314
315 SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
316 opportunities in its double_array_divs_variable function: it needs loop
317 interchange, memory promotion (which LICM already does), vectorization and
318 variable trip count loop unrolling (since it has a constant trip count). ICC
319 apparently produces this very nice code with -ffast-math:
320
321 ..B1.70:                        # Preds ..B1.70 ..B1.69
322        mulpd     %xmm0, %xmm1                                  #108.2
323        mulpd     %xmm0, %xmm1                                  #108.2
324        mulpd     %xmm0, %xmm1                                  #108.2
325        mulpd     %xmm0, %xmm1                                  #108.2
326        addl      $8, %edx                                      #
327        cmpl      $131072, %edx                                 #108.2
328        jb        ..B1.70       # Prob 99%                      #108.2
329
330 It would be better to count down to zero, but this is a lot better than what we
331 do.
332
333 //===---------------------------------------------------------------------===//
334
335 Consider:
336
337 typedef unsigned U32;
338 typedef unsigned long long U64;
339 int test (U32 *inst, U64 *regs) {
340     U64 effective_addr2;
341     U32 temp = *inst;
342     int r1 = (temp >> 20) & 0xf;
343     int b2 = (temp >> 16) & 0xf;
344     effective_addr2 = temp & 0xfff;
345     if (b2) effective_addr2 += regs[b2];
346     b2 = (temp >> 12) & 0xf;
347     if (b2) effective_addr2 += regs[b2];
348     effective_addr2 &= regs[4];
349      if ((effective_addr2 & 3) == 0)
350         return 1;
351     return 0;
352 }
353
354 Note that only the low 2 bits of effective_addr2 are used.  On 32-bit systems,
355 we don't eliminate the computation of the top half of effective_addr2 because
356 we don't have whole-function selection dags.  On x86, this means we use one
357 extra register for the function when effective_addr2 is declared as U64 than
358 when it is declared U32.
359
360 PHI Slicing could be extended to do this.
361
362 //===---------------------------------------------------------------------===//
363
364 Tail call elim should be more aggressive, checking to see if the call is
365 followed by an uncond branch to an exit block.
366
367 ; This testcase is due to tail-duplication not wanting to copy the return
368 ; instruction into the terminating blocks because there was other code
369 ; optimized out of the function after the taildup happened.
370 ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
371
372 define i32 @t4(i32 %a) {
373 entry:
374         %tmp.1 = and i32 %a, 1          ; <i32> [#uses=1]
375         %tmp.2 = icmp ne i32 %tmp.1, 0          ; <i1> [#uses=1]
376         br i1 %tmp.2, label %then.0, label %else.0
377
378 then.0:         ; preds = %entry
379         %tmp.5 = add i32 %a, -1         ; <i32> [#uses=1]
380         %tmp.3 = call i32 @t4( i32 %tmp.5 )             ; <i32> [#uses=1]
381         br label %return
382
383 else.0:         ; preds = %entry
384         %tmp.7 = icmp ne i32 %a, 0              ; <i1> [#uses=1]
385         br i1 %tmp.7, label %then.1, label %return
386
387 then.1:         ; preds = %else.0
388         %tmp.11 = add i32 %a, -2                ; <i32> [#uses=1]
389         %tmp.9 = call i32 @t4( i32 %tmp.11 )            ; <i32> [#uses=1]
390         br label %return
391
392 return:         ; preds = %then.1, %else.0, %then.0
393         %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
394                             [ %tmp.9, %then.1 ]
395         ret i32 %result.0
396 }
397
398 //===---------------------------------------------------------------------===//
399
400 Tail recursion elimination should handle:
401
402 int pow2m1(int n) {
403  if (n == 0)
404    return 0;
405  return 2 * pow2m1 (n - 1) + 1;
406 }
407
408 Also, multiplies can be turned into SHL's, so they should be handled as if
409 they were associative.  "return foo() << 1" can be tail recursion eliminated.
410
411 //===---------------------------------------------------------------------===//
412
413 Argument promotion should promote arguments for recursive functions, like 
414 this:
415
416 ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
417
418 define internal i32 @foo(i32* %x) {
419 entry:
420         %tmp = load i32* %x             ; <i32> [#uses=0]
421         %tmp.foo = call i32 @foo( i32* %x )             ; <i32> [#uses=1]
422         ret i32 %tmp.foo
423 }
424
425 define i32 @bar(i32* %x) {
426 entry:
427         %tmp3 = call i32 @foo( i32* %x )                ; <i32> [#uses=1]
428         ret i32 %tmp3
429 }
430
431 //===---------------------------------------------------------------------===//
432
433 We should investigate an instruction sinking pass.  Consider this silly
434 example in pic mode:
435
436 #include <assert.h>
437 void foo(int x) {
438   assert(x);
439   //...
440 }
441
442 we compile this to:
443 _foo:
444         subl    $28, %esp
445         call    "L1$pb"
446 "L1$pb":
447         popl    %eax
448         cmpl    $0, 32(%esp)
449         je      LBB1_2  # cond_true
450 LBB1_1: # return
451         # ...
452         addl    $28, %esp
453         ret
454 LBB1_2: # cond_true
455 ...
456
457 The PIC base computation (call+popl) is only used on one path through the 
458 code, but is currently always computed in the entry block.  It would be 
459 better to sink the picbase computation down into the block for the 
460 assertion, as it is the only one that uses it.  This happens for a lot of 
461 code with early outs.
462
463 Another example is loads of arguments, which are usually emitted into the 
464 entry block on targets like x86.  If not used in all paths through a 
465 function, they should be sunk into the ones that do.
466
467 In this case, whole-function-isel would also handle this.
468
469 //===---------------------------------------------------------------------===//
470
471 Investigate lowering of sparse switch statements into perfect hash tables:
472 http://burtleburtle.net/bob/hash/perfect.html
473
474 //===---------------------------------------------------------------------===//
475
476 We should turn things like "load+fabs+store" and "load+fneg+store" into the
477 corresponding integer operations.  On a yonah, this loop:
478
479 double a[256];
480 void foo() {
481   int i, b;
482   for (b = 0; b < 10000000; b++)
483   for (i = 0; i < 256; i++)
484     a[i] = -a[i];
485 }
486
487 is twice as slow as this loop:
488
489 long long a[256];
490 void foo() {
491   int i, b;
492   for (b = 0; b < 10000000; b++)
493   for (i = 0; i < 256; i++)
494     a[i] ^= (1ULL << 63);
495 }
496
497 and I suspect other processors are similar.  On X86 in particular this is a
498 big win because doing this with integers allows the use of read/modify/write
499 instructions.
500
501 //===---------------------------------------------------------------------===//
502
503 DAG Combiner should try to combine small loads into larger loads when 
504 profitable.  For example, we compile this C++ example:
505
506 struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
507 extern THotKey m_HotKey;
508 THotKey GetHotKey () { return m_HotKey; }
509
510 into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer):
511
512 __Z9GetHotKeyv:                         ## @_Z9GetHotKeyv
513         movq    _m_HotKey@GOTPCREL(%rip), %rax
514         movzwl  (%rax), %ecx
515         movzbl  2(%rax), %edx
516         shlq    $16, %rdx
517         orq     %rcx, %rdx
518         movzbl  3(%rax), %ecx
519         shlq    $24, %rcx
520         orq     %rdx, %rcx
521         movzbl  4(%rax), %eax
522         shlq    $32, %rax
523         orq     %rcx, %rax
524         ret
525
526 //===---------------------------------------------------------------------===//
527
528 We should add an FRINT node to the DAG to model targets that have legal
529 implementations of ceil/floor/rint.
530
531 //===---------------------------------------------------------------------===//
532
533 Consider:
534
535 int test() {
536   long long input[8] = {1,0,1,0,1,0,1,0};
537   foo(input);
538 }
539
540 Clang compiles this into:
541
542   call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
543   %0 = getelementptr [8 x i64]* %input, i64 0, i64 0
544   store i64 1, i64* %0, align 16
545   %1 = getelementptr [8 x i64]* %input, i64 0, i64 2
546   store i64 1, i64* %1, align 16
547   %2 = getelementptr [8 x i64]* %input, i64 0, i64 4
548   store i64 1, i64* %2, align 16
549   %3 = getelementptr [8 x i64]* %input, i64 0, i64 6
550   store i64 1, i64* %3, align 16
551
552 Which gets codegen'd into:
553
554         pxor    %xmm0, %xmm0
555         movaps  %xmm0, -16(%rbp)
556         movaps  %xmm0, -32(%rbp)
557         movaps  %xmm0, -48(%rbp)
558         movaps  %xmm0, -64(%rbp)
559         movq    $1, -64(%rbp)
560         movq    $1, -48(%rbp)
561         movq    $1, -32(%rbp)
562         movq    $1, -16(%rbp)
563
564 It would be better to have 4 movq's of 0 instead of the movaps's.
565
566 //===---------------------------------------------------------------------===//
567
568 http://llvm.org/PR717:
569
570 The following code should compile into "ret int undef". Instead, LLVM
571 produces "ret int 0":
572
573 int f() {
574   int x = 4;
575   int y;
576   if (x == 3) y = 0;
577   return y;
578 }
579
580 //===---------------------------------------------------------------------===//
581
582 The loop unroller should partially unroll loops (instead of peeling them)
583 when code growth isn't too bad and when an unroll count allows simplification
584 of some code within the loop.  One trivial example is:
585
586 #include <stdio.h>
587 int main() {
588     int nRet = 17;
589     int nLoop;
590     for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
591         if ( nLoop & 1 )
592             nRet += 2;
593         else
594             nRet -= 1;
595     }
596     return nRet;
597 }
598
599 Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
600 reduction in code size.  The resultant code would then also be suitable for
601 exit value computation.
602
603 //===---------------------------------------------------------------------===//
604
605 We miss a bunch of rotate opportunities on various targets, including ppc, x86,
606 etc.  On X86, we miss a bunch of 'rotate by variable' cases because the rotate
607 matching code in dag combine doesn't look through truncates aggressively 
608 enough.  Here are some testcases reduces from GCC PR17886:
609
610 unsigned long long f5(unsigned long long x, unsigned long long y) {
611   return (x << 8) | ((y >> 48) & 0xffull);
612 }
613 unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
614   switch(z) {
615   case 1:
616     return (x << 8) | ((y >> 48) & 0xffull);
617   case 2:
618     return (x << 16) | ((y >> 40) & 0xffffull);
619   case 3:
620     return (x << 24) | ((y >> 32) & 0xffffffull);
621   case 4:
622     return (x << 32) | ((y >> 24) & 0xffffffffull);
623   default:
624     return (x << 40) | ((y >> 16) & 0xffffffffffull);
625   }
626 }
627
628 //===---------------------------------------------------------------------===//
629
630 This (and similar related idioms):
631
632 unsigned int foo(unsigned char i) {
633   return i | (i<<8) | (i<<16) | (i<<24);
634
635
636 compiles into:
637
638 define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
639 entry:
640   %conv = zext i8 %i to i32
641   %shl = shl i32 %conv, 8
642   %shl5 = shl i32 %conv, 16
643   %shl9 = shl i32 %conv, 24
644   %or = or i32 %shl9, %conv
645   %or6 = or i32 %or, %shl5
646   %or10 = or i32 %or6, %shl
647   ret i32 %or10
648 }
649
650 it would be better as:
651
652 unsigned int bar(unsigned char i) {
653   unsigned int j=i | (i << 8); 
654   return j | (j<<16);
655 }
656
657 aka:
658
659 define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
660 entry:
661   %conv = zext i8 %i to i32
662   %shl = shl i32 %conv, 8
663   %or = or i32 %shl, %conv
664   %shl5 = shl i32 %or, 16
665   %or6 = or i32 %shl5, %or
666   ret i32 %or6
667 }
668
669 or even i*0x01010101, depending on the speed of the multiplier.  The best way to
670 handle this is to canonicalize it to a multiply in IR and have codegen handle
671 lowering multiplies to shifts on cpus where shifts are faster.
672
673 //===---------------------------------------------------------------------===//
674
675 We do a number of simplifications in simplify libcalls to strength reduce
676 standard library functions, but we don't currently merge them together.  For
677 example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy.  This can only
678 be done safely if "b" isn't modified between the strlen and memcpy of course.
679
680 //===---------------------------------------------------------------------===//
681
682 We compile this program: (from GCC PR11680)
683 http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
684
685 Into code that runs the same speed in fast/slow modes, but both modes run 2x
686 slower than when compile with GCC (either 4.0 or 4.2):
687
688 $ llvm-g++ perf.cpp -O3 -fno-exceptions
689 $ time ./a.out fast
690 1.821u 0.003s 0:01.82 100.0%    0+0k 0+0io 0pf+0w
691
692 $ g++ perf.cpp -O3 -fno-exceptions
693 $ time ./a.out fast
694 0.821u 0.001s 0:00.82 100.0%    0+0k 0+0io 0pf+0w
695
696 It looks like we are making the same inlining decisions, so this may be raw
697 codegen badness or something else (haven't investigated).
698
699 //===---------------------------------------------------------------------===//
700
701 Divisibility by constant can be simplified (according to GCC PR12849) from
702 being a mulhi to being a mul lo (cheaper).  Testcase:
703
704 void bar(unsigned n) {
705   if (n % 3 == 0)
706     true();
707 }
708
709 This is equivalent to the following, where 2863311531 is the multiplicative
710 inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
711 void bar(unsigned n) {
712   if (n * 2863311531U < 1431655766U)
713     true();
714 }
715
716 The same transformation can work with an even modulo with the addition of a
717 rotate: rotate the result of the multiply to the right by the number of bits
718 which need to be zero for the condition to be true, and shrink the compare RHS
719 by the same amount.  Unless the target supports rotates, though, that
720 transformation probably isn't worthwhile.
721
722 The transformation can also easily be made to work with non-zero equality
723 comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
724
725 //===---------------------------------------------------------------------===//
726
727 Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
728 bunch of other stuff from this example (see PR1604): 
729
730 #include <cstdio>
731 struct test {
732     int val;
733     virtual ~test() {}
734 };
735
736 int main() {
737     test t;
738     std::scanf("%d", &t.val);
739     std::printf("%d\n", t.val);
740 }
741
742 //===---------------------------------------------------------------------===//
743
744 These functions perform the same computation, but produce different assembly.
745
746 define i8 @select(i8 %x) readnone nounwind {
747   %A = icmp ult i8 %x, 250
748   %B = select i1 %A, i8 0, i8 1
749   ret i8 %B 
750 }
751
752 define i8 @addshr(i8 %x) readnone nounwind {
753   %A = zext i8 %x to i9
754   %B = add i9 %A, 6       ;; 256 - 250 == 6
755   %C = lshr i9 %B, 8
756   %D = trunc i9 %C to i8
757   ret i8 %D
758 }
759
760 //===---------------------------------------------------------------------===//
761
762 From gcc bug 24696:
763 int
764 f (unsigned long a, unsigned long b, unsigned long c)
765 {
766   return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
767 }
768 int
769 f (unsigned long a, unsigned long b, unsigned long c)
770 {
771   return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
772 }
773 Both should combine to ((a|b) & (c-1)) != 0.  Currently not optimized with
774 "clang -emit-llvm-bc | opt -std-compile-opts".
775
776 //===---------------------------------------------------------------------===//
777
778 From GCC Bug 20192:
779 #define PMD_MASK    (~((1UL << 23) - 1))
780 void clear_pmd_range(unsigned long start, unsigned long end)
781 {
782    if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
783        f();
784 }
785 The expression should optimize to something like
786 "!((start|end)&~PMD_MASK). Currently not optimized with "clang
787 -emit-llvm-bc | opt -std-compile-opts".
788
789 //===---------------------------------------------------------------------===//
790
791 unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
792 i;}
793 unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
794 These should combine to the same thing.  Currently, the first function
795 produces better code on X86.
796
797 //===---------------------------------------------------------------------===//
798
799 From GCC Bug 15784:
800 #define abs(x) x>0?x:-x
801 int f(int x, int y)
802 {
803  return (abs(x)) >= 0;
804 }
805 This should optimize to x == INT_MIN. (With -fwrapv.)  Currently not
806 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
807
808 //===---------------------------------------------------------------------===//
809
810 From GCC Bug 14753:
811 void
812 rotate_cst (unsigned int a)
813 {
814  a = (a << 10) | (a >> 22);
815  if (a == 123)
816    bar ();
817 }
818 void
819 minus_cst (unsigned int a)
820 {
821  unsigned int tem;
822
823  tem = 20 - a;
824  if (tem == 5)
825    bar ();
826 }
827 void
828 mask_gt (unsigned int a)
829 {
830  /* This is equivalent to a > 15.  */
831  if ((a & ~7) > 8)
832    bar ();
833 }
834 void
835 rshift_gt (unsigned int a)
836 {
837  /* This is equivalent to a > 23.  */
838  if ((a >> 2) > 5)
839    bar ();
840 }
841
842 All should simplify to a single comparison.  All of these are
843 currently not optimized with "clang -emit-llvm-bc | opt
844 -std-compile-opts".
845
846 //===---------------------------------------------------------------------===//
847
848 From GCC Bug 32605:
849 int c(int* x) {return (char*)x+2 == (char*)x;}
850 Should combine to 0.  Currently not optimized with "clang
851 -emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it).
852
853 //===---------------------------------------------------------------------===//
854
855 int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
856 Should be combined to  "((b >> 1) | b) & 1".  Currently not optimized
857 with "clang -emit-llvm-bc | opt -std-compile-opts".
858
859 //===---------------------------------------------------------------------===//
860
861 unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
862 Should combine to "x | (y & 3)".  Currently not optimized with "clang
863 -emit-llvm-bc | opt -std-compile-opts".
864
865 //===---------------------------------------------------------------------===//
866
867 int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
868 Should fold to "(~a & c) | (a & b)".  Currently not optimized with
869 "clang -emit-llvm-bc | opt -std-compile-opts".
870
871 //===---------------------------------------------------------------------===//
872
873 int a(int a,int b) {return (~(a|b))|a;}
874 Should fold to "a|~b".  Currently not optimized with "clang
875 -emit-llvm-bc | opt -std-compile-opts".
876
877 //===---------------------------------------------------------------------===//
878
879 int a(int a, int b) {return (a&&b) || (a&&!b);}
880 Should fold to "a".  Currently not optimized with "clang -emit-llvm-bc
881 | opt -std-compile-opts".
882
883 //===---------------------------------------------------------------------===//
884
885 int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
886 Should fold to "a ? b : c", or at least something sane.  Currently not
887 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
888
889 //===---------------------------------------------------------------------===//
890
891 int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
892 Should fold to a && (b || c).  Currently not optimized with "clang
893 -emit-llvm-bc | opt -std-compile-opts".
894
895 //===---------------------------------------------------------------------===//
896
897 int a(int x) {return x | ((x & 8) ^ 8);}
898 Should combine to x | 8.  Currently not optimized with "clang
899 -emit-llvm-bc | opt -std-compile-opts".
900
901 //===---------------------------------------------------------------------===//
902
903 int a(int x) {return x ^ ((x & 8) ^ 8);}
904 Should also combine to x | 8.  Currently not optimized with "clang
905 -emit-llvm-bc | opt -std-compile-opts".
906
907 //===---------------------------------------------------------------------===//
908
909 int a(int x) {return ((x | -9) ^ 8) & x;}
910 Should combine to x & -9.  Currently not optimized with "clang
911 -emit-llvm-bc | opt -std-compile-opts".
912
913 //===---------------------------------------------------------------------===//
914
915 unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
916 Should combine to "a * 0x88888888 >> 31".  Currently not optimized
917 with "clang -emit-llvm-bc | opt -std-compile-opts".
918
919 //===---------------------------------------------------------------------===//
920
921 unsigned a(char* x) {if ((*x & 32) == 0) return b();}
922 There's an unnecessary zext in the generated code with "clang
923 -emit-llvm-bc | opt -std-compile-opts".
924
925 //===---------------------------------------------------------------------===//
926
927 unsigned a(unsigned long long x) {return 40 * (x >> 1);}
928 Should combine to "20 * (((unsigned)x) & -2)".  Currently not
929 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
930
931 //===---------------------------------------------------------------------===//
932
933 int g(int x) { return (x - 10) < 0; }
934 Should combine to "x <= 9" (the sub has nsw).  Currently not
935 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
936
937 //===---------------------------------------------------------------------===//
938
939 int g(int x) { return (x + 10) < 0; }
940 Should combine to "x < -10" (the add has nsw).  Currently not
941 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
942
943 //===---------------------------------------------------------------------===//
944
945 int f(int i, int j) { return i < j + 1; }
946 int g(int i, int j) { return j > i - 1; }
947 Should combine to "i <= j" (the add/sub has nsw).  Currently not
948 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
949
950 //===---------------------------------------------------------------------===//
951
952 unsigned f(unsigned x) { return ((x & 7) + 1) & 15; }
953 The & 15 part should be optimized away, it doesn't change the result. Currently
954 not optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
955
956 //===---------------------------------------------------------------------===//
957
958 This was noticed in the entryblock for grokdeclarator in 403.gcc:
959
960         %tmp = icmp eq i32 %decl_context, 4          
961         %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context 
962         %tmp1 = icmp eq i32 %decl_context_addr.0, 1 
963         %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
964
965 tmp1 should be simplified to something like:
966   (!tmp || decl_context == 1)
967
968 This allows recursive simplifications, tmp1 is used all over the place in
969 the function, e.g. by:
970
971         %tmp23 = icmp eq i32 %decl_context_addr.1, 0            ; <i1> [#uses=1]
972         %tmp24 = xor i1 %tmp1, true             ; <i1> [#uses=1]
973         %or.cond8 = and i1 %tmp23, %tmp24               ; <i1> [#uses=1]
974
975 later.
976
977 //===---------------------------------------------------------------------===//
978
979 [STORE SINKING]
980
981 Store sinking: This code:
982
983 void f (int n, int *cond, int *res) {
984     int i;
985     *res = 0;
986     for (i = 0; i < n; i++)
987         if (*cond)
988             *res ^= 234; /* (*) */
989 }
990
991 On this function GVN hoists the fully redundant value of *res, but nothing
992 moves the store out.  This gives us this code:
993
994 bb:             ; preds = %bb2, %entry
995         %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ] 
996         %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
997         %1 = load i32* %cond, align 4
998         %2 = icmp eq i32 %1, 0
999         br i1 %2, label %bb2, label %bb1
1000
1001 bb1:            ; preds = %bb
1002         %3 = xor i32 %.rle, 234 
1003         store i32 %3, i32* %res, align 4
1004         br label %bb2
1005
1006 bb2:            ; preds = %bb, %bb1
1007         %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]   
1008         %indvar.next = add i32 %i.05, 1 
1009         %exitcond = icmp eq i32 %indvar.next, %n
1010         br i1 %exitcond, label %return, label %bb
1011
1012 DSE should sink partially dead stores to get the store out of the loop.
1013
1014 Here's another partial dead case:
1015 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
1016
1017 //===---------------------------------------------------------------------===//
1018
1019 Scalar PRE hoists the mul in the common block up to the else:
1020
1021 int test (int a, int b, int c, int g) {
1022   int d, e;
1023   if (a)
1024     d = b * c;
1025   else
1026     d = b - c;
1027   e = b * c + g;
1028   return d + e;
1029 }
1030
1031 It would be better to do the mul once to reduce codesize above the if.
1032 This is GCC PR38204.
1033
1034
1035 //===---------------------------------------------------------------------===//
1036 This simple function from 179.art:
1037
1038 int winner, numf2s;
1039 struct { double y; int   reset; } *Y;
1040
1041 void find_match() {
1042    int i;
1043    winner = 0;
1044    for (i=0;i<numf2s;i++)
1045        if (Y[i].y > Y[winner].y)
1046               winner =i;
1047 }
1048
1049 Compiles into (with clang TBAA):
1050
1051 for.body:                                         ; preds = %for.inc, %bb.nph
1052   %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ]
1053   %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ]
1054   %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0
1055   %tmp5 = load double* %tmp4, align 8, !tbaa !4
1056   %idxprom7 = sext i32 %i.01718 to i64
1057   %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0
1058   %tmp11 = load double* %tmp10, align 8, !tbaa !4
1059   %cmp12 = fcmp ogt double %tmp5, %tmp11
1060   br i1 %cmp12, label %if.then, label %for.inc
1061
1062 if.then:                                          ; preds = %for.body
1063   %i.017 = trunc i64 %indvar to i32
1064   br label %for.inc
1065
1066 for.inc:                                          ; preds = %for.body, %if.then
1067   %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ]
1068   %indvar.next = add i64 %indvar, 1
1069   %exitcond = icmp eq i64 %indvar.next, %tmp22
1070   br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
1071
1072
1073 It is good that we hoisted the reloads of numf2's, and Y out of the loop and
1074 sunk the store to winner out.
1075
1076 However, this is awful on several levels: the conditional truncate in the loop
1077 (-indvars at fault? why can't we completely promote the IV to i64?).
1078
1079 Beyond that, we have a partially redundant load in the loop: if "winner" (aka 
1080 %i.01718) isn't updated, we reload Y[winner].y the next time through the loop.
1081 Similarly, the addressing that feeds it (including the sext) is redundant. In
1082 the end we get this generated assembly:
1083
1084 LBB0_2:                                 ## %for.body
1085                                         ## =>This Inner Loop Header: Depth=1
1086         movsd   (%rdi), %xmm0
1087         movslq  %edx, %r8
1088         shlq    $4, %r8
1089         ucomisd (%rcx,%r8), %xmm0
1090         jbe     LBB0_4
1091         movl    %esi, %edx
1092 LBB0_4:                                 ## %for.inc
1093         addq    $16, %rdi
1094         incq    %rsi
1095         cmpq    %rsi, %rax
1096         jne     LBB0_2
1097
1098 All things considered this isn't too bad, but we shouldn't need the movslq or
1099 the shlq instruction, or the load folded into ucomisd every time through the
1100 loop.
1101
1102 On an x86-specific topic, if the loop can't be restructure, the movl should be a
1103 cmov.
1104
1105 //===---------------------------------------------------------------------===//
1106
1107 [STORE SINKING]
1108
1109 GCC PR37810 is an interesting case where we should sink load/store reload
1110 into the if block and outside the loop, so we don't reload/store it on the
1111 non-call path.
1112
1113 for () {
1114   *P += 1;
1115   if ()
1116     call();
1117   else
1118     ...
1119 ->
1120 tmp = *P
1121 for () {
1122   tmp += 1;
1123   if () {
1124     *P = tmp;
1125     call();
1126     tmp = *P;
1127   } else ...
1128 }
1129 *P = tmp;
1130
1131 We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
1132 we don't sink the store.  We need partially dead store sinking.
1133
1134 //===---------------------------------------------------------------------===//
1135
1136 [LOAD PRE CRIT EDGE SPLITTING]
1137
1138 GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
1139 leading to excess stack traffic. This could be handled by GVN with some crazy
1140 symbolic phi translation.  The code we get looks like (g is on the stack):
1141
1142 bb2:            ; preds = %bb1
1143 ..
1144         %9 = getelementptr %struct.f* %g, i32 0, i32 0          
1145         store i32 %8, i32* %9, align  bel %bb3
1146
1147 bb3:            ; preds = %bb1, %bb2, %bb
1148         %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
1149         %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
1150         %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
1151         %11 = load i32* %10, align 4
1152
1153 %11 is partially redundant, an in BB2 it should have the value %8.
1154
1155 GCC PR33344 and PR35287 are similar cases.
1156
1157
1158 //===---------------------------------------------------------------------===//
1159
1160 [LOAD PRE]
1161
1162 There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
1163 GCC testsuite, ones we don't get yet are (checked through loadpre25):
1164
1165 [CRIT EDGE BREAKING]
1166 loadpre3.c predcom-4.c
1167
1168 [PRE OF READONLY CALL]
1169 loadpre5.c
1170
1171 [TURN SELECT INTO BRANCH]
1172 loadpre14.c loadpre15.c 
1173
1174 actually a conditional increment: loadpre18.c loadpre19.c
1175
1176 //===---------------------------------------------------------------------===//
1177
1178 [LOAD PRE / STORE SINKING / SPEC HACK]
1179
1180 This is a chunk of code from 456.hmmer:
1181
1182 int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
1183      int *tpdm, int xmb, int *bp, int *ms) {
1184  int k, sc;
1185  for (k = 1; k <= M; k++) {
1186      mc[k] = mpp[k-1]   + tpmm[k-1];
1187      if ((sc = ip[k-1]  + tpim[k-1]) > mc[k])  mc[k] = sc;
1188      if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k])  mc[k] = sc;
1189      if ((sc = xmb  + bp[k])         > mc[k])  mc[k] = sc;
1190      mc[k] += ms[k];
1191    }
1192 }
1193
1194 It is very profitable for this benchmark to turn the conditional stores to mc[k]
1195 into a conditional move (select instr in IR) and allow the final store to do the
1196 store.  See GCC PR27313 for more details.  Note that this is valid to xform even
1197 with the new C++ memory model, since mc[k] is previously loaded and later
1198 stored.
1199
1200 //===---------------------------------------------------------------------===//
1201
1202 [SCALAR PRE]
1203 There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
1204 GCC testsuite.
1205
1206 //===---------------------------------------------------------------------===//
1207
1208 There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
1209 GCC testsuite.  For example, we get the first example in predcom-1.c, but 
1210 miss the second one:
1211
1212 unsigned fib[1000];
1213 unsigned avg[1000];
1214
1215 __attribute__ ((noinline))
1216 void count_averages(int n) {
1217   int i;
1218   for (i = 1; i < n; i++)
1219     avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
1220 }
1221
1222 which compiles into two loads instead of one in the loop.
1223
1224 predcom-2.c is the same as predcom-1.c
1225
1226 predcom-3.c is very similar but needs loads feeding each other instead of
1227 store->load.
1228
1229
1230 //===---------------------------------------------------------------------===//
1231
1232 [ALIAS ANALYSIS]
1233
1234 Type based alias analysis:
1235 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
1236
1237 We should do better analysis of posix_memalign.  At the least it should
1238 no-capture its pointer argument, at best, we should know that the out-value
1239 result doesn't point to anything (like malloc).  One example of this is in
1240 SingleSource/Benchmarks/Misc/dt.c
1241
1242 //===---------------------------------------------------------------------===//
1243
1244 Interesting missed case because of control flow flattening (should be 2 loads):
1245 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
1246 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as | 
1247              opt -mem2reg -gvn -instcombine | llvm-dis
1248 we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
1249 VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
1250
1251 //===---------------------------------------------------------------------===//
1252
1253 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
1254 We could eliminate the branch condition here, loading from null is undefined:
1255
1256 struct S { int w, x, y, z; };
1257 struct T { int r; struct S s; };
1258 void bar (struct S, int);
1259 void foo (int a, struct T b)
1260 {
1261   struct S *c = 0;
1262   if (a)
1263     c = &b.s;
1264   bar (*c, a);
1265 }
1266
1267 //===---------------------------------------------------------------------===//
1268
1269 simplifylibcalls should do several optimizations for strspn/strcspn:
1270
1271 strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
1272
1273 size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
1274                      int __reject3) {
1275   register size_t __result = 0;
1276   while (__s[__result] != '\0' && __s[__result] != __reject1 &&
1277          __s[__result] != __reject2 && __s[__result] != __reject3)
1278     ++__result;
1279   return __result;
1280 }
1281
1282 This should turn into a switch on the character.  See PR3253 for some notes on
1283 codegen.
1284
1285 456.hmmer apparently uses strcspn and strspn a lot.  471.omnetpp uses strspn.
1286
1287 //===---------------------------------------------------------------------===//
1288
1289 simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917)
1290
1291 char buf1[6], buf2[6], buf3[4], buf4[4];
1292 int i;
1293
1294 int foo (void) {
1295   int ret = snprintf (buf1, sizeof buf1, "abcde");
1296   ret += snprintf (buf2, sizeof buf2, "abcdef") * 16;
1297   ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256;
1298   ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096;
1299   return ret;
1300 }
1301
1302 //===---------------------------------------------------------------------===//
1303
1304 "gas" uses this idiom:
1305   else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
1306 ..
1307   else if (strchr ("<>", *intel_parser.op_string)
1308
1309 Those should be turned into a switch.
1310
1311 //===---------------------------------------------------------------------===//
1312
1313 252.eon contains this interesting code:
1314
1315         %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
1316         %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
1317         %strlen = call i32 @strlen(i8* %3072)    ; uses = 1
1318         %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
1319         call void @llvm.memcpy.i32(i8* %endptr, 
1320           i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
1321         %3074 = call i32 @strlen(i8* %endptr) nounwind readonly 
1322         
1323 This is interesting for a couple reasons.  First, in this:
1324
1325 The memcpy+strlen strlen can be replaced with:
1326
1327         %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly 
1328
1329 Because the destination was just copied into the specified memory buffer.  This,
1330 in turn, can be constant folded to "4".
1331
1332 In other code, it contains:
1333
1334         %endptr6978 = bitcast i8* %endptr69 to i32*            
1335         store i32 7107374, i32* %endptr6978, align 1
1336         %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly    
1337
1338 Which could also be constant folded.  Whatever is producing this should probably
1339 be fixed to leave this as a memcpy from a string.
1340
1341 Further, eon also has an interesting partially redundant strlen call:
1342
1343 bb8:            ; preds = %_ZN18eonImageCalculatorC1Ev.exit
1344         %682 = getelementptr i8** %argv, i32 6          ; <i8**> [#uses=2]
1345         %683 = load i8** %682, align 4          ; <i8*> [#uses=4]
1346         %684 = load i8* %683, align 1           ; <i8> [#uses=1]
1347         %685 = icmp eq i8 %684, 0               ; <i1> [#uses=1]
1348         br i1 %685, label %bb10, label %bb9
1349
1350 bb9:            ; preds = %bb8
1351         %686 = call i32 @strlen(i8* %683) nounwind readonly          
1352         %687 = icmp ugt i32 %686, 254           ; <i1> [#uses=1]
1353         br i1 %687, label %bb10, label %bb11
1354
1355 bb10:           ; preds = %bb9, %bb8
1356         %688 = call i32 @strlen(i8* %683) nounwind readonly          
1357
1358 This could be eliminated by doing the strlen once in bb8, saving code size and
1359 improving perf on the bb8->9->10 path.
1360
1361 //===---------------------------------------------------------------------===//
1362
1363 I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
1364 which looks like:
1365        %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0 
1366  
1367
1368 bb62:           ; preds = %bb55, %bb53
1369         %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]             
1370         %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1371         %172 = add i32 %171, -1         ; <i32> [#uses=1]
1372         %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172       
1373
1374 ...  no stores ...
1375        br i1 %or.cond, label %bb65, label %bb72
1376
1377 bb65:           ; preds = %bb62
1378         store i8 0, i8* %173, align 1
1379         br label %bb72
1380
1381 bb72:           ; preds = %bb65, %bb62
1382         %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]            
1383         %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1384
1385 Note that on the bb62->bb72 path, that the %177 strlen call is partially
1386 redundant with the %171 call.  At worst, we could shove the %177 strlen call
1387 up into the bb65 block moving it out of the bb62->bb72 path.   However, note
1388 that bb65 stores to the string, zeroing out the last byte.  This means that on
1389 that path the value of %177 is actually just %171-1.  A sub is cheaper than a
1390 strlen!
1391
1392 This pattern repeats several times, basically doing:
1393
1394   A = strlen(P);
1395   P[A-1] = 0;
1396   B = strlen(P);
1397   where it is "obvious" that B = A-1.
1398
1399 //===---------------------------------------------------------------------===//
1400
1401 186.crafty has this interesting pattern with the "out.4543" variable:
1402
1403 call void @llvm.memcpy.i32(
1404         i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
1405        i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1) 
1406 %101 = call@printf(i8* ...   @out.4543, i32 0, i32 0)) nounwind 
1407
1408 It is basically doing:
1409
1410   memcpy(globalarray, "string");
1411   printf(...,  globalarray);
1412   
1413 Anyway, by knowing that printf just reads the memory and forward substituting
1414 the string directly into the printf, this eliminates reads from globalarray.
1415 Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
1416 other similar functions) there are many stores to "out".  Once all the printfs
1417 stop using "out", all that is left is the memcpy's into it.  This should allow
1418 globalopt to remove the "stored only" global.
1419
1420 //===---------------------------------------------------------------------===//
1421
1422 This code:
1423
1424 define inreg i32 @foo(i8* inreg %p) nounwind {
1425   %tmp0 = load i8* %p
1426   %tmp1 = ashr i8 %tmp0, 5
1427   %tmp2 = sext i8 %tmp1 to i32
1428   ret i32 %tmp2
1429 }
1430
1431 could be dagcombine'd to a sign-extending load with a shift.
1432 For example, on x86 this currently gets this:
1433
1434         movb    (%eax), %al
1435         sarb    $5, %al
1436         movsbl  %al, %eax
1437
1438 while it could get this:
1439
1440         movsbl  (%eax), %eax
1441         sarl    $5, %eax
1442
1443 //===---------------------------------------------------------------------===//
1444
1445 GCC PR31029:
1446
1447 int test(int x) { return 1-x == x; }     // --> return false
1448 int test2(int x) { return 2-x == x; }    // --> return x == 1 ?
1449
1450 Always foldable for odd constants, what is the rule for even?
1451
1452 //===---------------------------------------------------------------------===//
1453
1454 PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
1455 for next field in struct (which is at same address).
1456
1457 For example: store of float into { {{}}, float } could be turned into a store to
1458 the float directly.
1459
1460 //===---------------------------------------------------------------------===//
1461
1462 The arg promotion pass should make use of nocapture to make its alias analysis
1463 stuff much more precise.
1464
1465 //===---------------------------------------------------------------------===//
1466
1467 The following functions should be optimized to use a select instead of a
1468 branch (from gcc PR40072):
1469
1470 char char_int(int m) {if(m>7) return 0; return m;}
1471 int int_char(char m) {if(m>7) return 0; return m;}
1472
1473 //===---------------------------------------------------------------------===//
1474
1475 int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
1476
1477 Generates this:
1478
1479 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1480 entry:
1481   %0 = and i32 %a, 128                            ; <i32> [#uses=1]
1482   %1 = icmp eq i32 %0, 0                          ; <i1> [#uses=1]
1483   %2 = or i32 %b, 128                             ; <i32> [#uses=1]
1484   %3 = and i32 %b, -129                           ; <i32> [#uses=1]
1485   %b_addr.0 = select i1 %1, i32 %3, i32 %2        ; <i32> [#uses=1]
1486   ret i32 %b_addr.0
1487 }
1488
1489 However, it's functionally equivalent to:
1490
1491          b = (b & ~0x80) | (a & 0x80);
1492
1493 Which generates this:
1494
1495 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1496 entry:
1497   %0 = and i32 %b, -129                           ; <i32> [#uses=1]
1498   %1 = and i32 %a, 128                            ; <i32> [#uses=1]
1499   %2 = or i32 %0, %1                              ; <i32> [#uses=1]
1500   ret i32 %2
1501 }
1502
1503 This can be generalized for other forms:
1504
1505      b = (b & ~0x80) | (a & 0x40) << 1;
1506
1507 //===---------------------------------------------------------------------===//
1508
1509 These two functions produce different code. They shouldn't:
1510
1511 #include <stdint.h>
1512  
1513 uint8_t p1(uint8_t b, uint8_t a) {
1514   b = (b & ~0xc0) | (a & 0xc0);
1515   return (b);
1516 }
1517  
1518 uint8_t p2(uint8_t b, uint8_t a) {
1519   b = (b & ~0x40) | (a & 0x40);
1520   b = (b & ~0x80) | (a & 0x80);
1521   return (b);
1522 }
1523
1524 define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1525 entry:
1526   %0 = and i8 %b, 63                              ; <i8> [#uses=1]
1527   %1 = and i8 %a, -64                             ; <i8> [#uses=1]
1528   %2 = or i8 %1, %0                               ; <i8> [#uses=1]
1529   ret i8 %2
1530 }
1531
1532 define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1533 entry:
1534   %0 = and i8 %b, 63                              ; <i8> [#uses=1]
1535   %.masked = and i8 %a, 64                        ; <i8> [#uses=1]
1536   %1 = and i8 %a, -128                            ; <i8> [#uses=1]
1537   %2 = or i8 %1, %0                               ; <i8> [#uses=1]
1538   %3 = or i8 %2, %.masked                         ; <i8> [#uses=1]
1539   ret i8 %3
1540 }
1541
1542 //===---------------------------------------------------------------------===//
1543
1544 IPSCCP does not currently propagate argument dependent constants through
1545 functions where it does not not all of the callers.  This includes functions
1546 with normal external linkage as well as templates, C99 inline functions etc.
1547 Specifically, it does nothing to:
1548
1549 define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
1550 entry:
1551   %0 = add nsw i32 %y, %z                         
1552   %1 = mul i32 %0, %x                             
1553   %2 = mul i32 %y, %z                             
1554   %3 = add nsw i32 %1, %2                         
1555   ret i32 %3
1556 }
1557
1558 define i32 @test2() nounwind {
1559 entry:
1560   %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
1561   ret i32 %0
1562 }
1563
1564 It would be interesting extend IPSCCP to be able to handle simple cases like
1565 this, where all of the arguments to a call are constant.  Because IPSCCP runs
1566 before inlining, trivial templates and inline functions are not yet inlined.
1567 The results for a function + set of constant arguments should be memoized in a
1568 map.
1569
1570 //===---------------------------------------------------------------------===//
1571
1572 The libcall constant folding stuff should be moved out of SimplifyLibcalls into
1573 libanalysis' constantfolding logic.  This would allow IPSCCP to be able to
1574 handle simple things like this:
1575
1576 static int foo(const char *X) { return strlen(X); }
1577 int bar() { return foo("abcd"); }
1578
1579 //===---------------------------------------------------------------------===//
1580
1581 functionattrs doesn't know much about memcpy/memset.  This function should be
1582 marked readnone rather than readonly, since it only twiddles local memory, but
1583 functionattrs doesn't handle memset/memcpy/memmove aggressively:
1584
1585 struct X { int *p; int *q; };
1586 int foo() {
1587  int i = 0, j = 1;
1588  struct X x, y;
1589  int **p;
1590  y.p = &i;
1591  x.q = &j;
1592  p = __builtin_memcpy (&x, &y, sizeof (int *));
1593  return **p;
1594 }
1595
1596 This can be seen at:
1597 $ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S
1598
1599
1600 //===---------------------------------------------------------------------===//
1601
1602 Missed instcombine transformation:
1603 define i1 @a(i32 %x) nounwind readnone {
1604 entry:
1605   %cmp = icmp eq i32 %x, 30
1606   %sub = add i32 %x, -30
1607   %cmp2 = icmp ugt i32 %sub, 9
1608   %or = or i1 %cmp, %cmp2
1609   ret i1 %or
1610 }
1611 This should be optimized to a single compare.  Testcase derived from gcc.
1612
1613 //===---------------------------------------------------------------------===//
1614
1615 Missed instcombine or reassociate transformation:
1616 int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
1617
1618 The sgt and slt should be combined into a single comparison. Testcase derived
1619 from gcc.
1620
1621 //===---------------------------------------------------------------------===//
1622
1623 Missed instcombine transformation:
1624
1625   %382 = srem i32 %tmp14.i, 64                    ; [#uses=1]
1626   %383 = zext i32 %382 to i64                     ; [#uses=1]
1627   %384 = shl i64 %381, %383                       ; [#uses=1]
1628   %385 = icmp slt i32 %tmp14.i, 64                ; [#uses=1]
1629
1630 The srem can be transformed to an and because if %tmp14.i is negative, the
1631 shift is undefined.  Testcase derived from 403.gcc.
1632
1633 //===---------------------------------------------------------------------===//
1634
1635 This is a range comparison on a divided result (from 403.gcc):
1636
1637   %1337 = sdiv i32 %1336, 8                       ; [#uses=1]
1638   %.off.i208 = add i32 %1336, 7                   ; [#uses=1]
1639   %1338 = icmp ult i32 %.off.i208, 15             ; [#uses=1]
1640   
1641 We already catch this (removing the sdiv) if there isn't an add, we should
1642 handle the 'add' as well.  This is a common idiom with it's builtin_alloca code.
1643 C testcase:
1644
1645 int a(int x) { return (unsigned)(x/16+7) < 15; }
1646
1647 Another similar case involves truncations on 64-bit targets:
1648
1649   %361 = sdiv i64 %.046, 8                        ; [#uses=1]
1650   %362 = trunc i64 %361 to i32                    ; [#uses=2]
1651 ...
1652   %367 = icmp eq i32 %362, 0                      ; [#uses=1]
1653
1654 //===---------------------------------------------------------------------===//
1655
1656 Missed instcombine/dagcombine transformation:
1657 define void @lshift_lt(i8 zeroext %a) nounwind {
1658 entry:
1659   %conv = zext i8 %a to i32
1660   %shl = shl i32 %conv, 3
1661   %cmp = icmp ult i32 %shl, 33
1662   br i1 %cmp, label %if.then, label %if.end
1663
1664 if.then:
1665   tail call void @bar() nounwind
1666   ret void
1667
1668 if.end:
1669   ret void
1670 }
1671 declare void @bar() nounwind
1672
1673 The shift should be eliminated.  Testcase derived from gcc.
1674
1675 //===---------------------------------------------------------------------===//
1676
1677 These compile into different code, one gets recognized as a switch and the
1678 other doesn't due to phase ordering issues (PR6212):
1679
1680 int test1(int mainType, int subType) {
1681   if (mainType == 7)
1682     subType = 4;
1683   else if (mainType == 9)
1684     subType = 6;
1685   else if (mainType == 11)
1686     subType = 9;
1687   return subType;
1688 }
1689
1690 int test2(int mainType, int subType) {
1691   if (mainType == 7)
1692     subType = 4;
1693   if (mainType == 9)
1694     subType = 6;
1695   if (mainType == 11)
1696     subType = 9;
1697   return subType;
1698 }
1699
1700 //===---------------------------------------------------------------------===//
1701
1702 The following test case (from PR6576):
1703
1704 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1705 entry:
1706  %cond1 = icmp eq i32 %b, 0                      ; <i1> [#uses=1]
1707  br i1 %cond1, label %exit, label %bb.nph
1708 bb.nph:                                           ; preds = %entry
1709  %tmp = mul i32 %b, %a                           ; <i32> [#uses=1]
1710  ret i32 %tmp
1711 exit:                                             ; preds = %entry
1712  ret i32 0
1713 }
1714
1715 could be reduced to:
1716
1717 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1718 entry:
1719  %tmp = mul i32 %b, %a
1720  ret i32 %tmp
1721 }
1722
1723 //===---------------------------------------------------------------------===//
1724
1725 We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
1726 See GCC PR34949
1727
1728 Another interesting case is that something related could be used for variables
1729 that go const after their ctor has finished.  In these cases, globalopt (which
1730 can statically run the constructor) could mark the global const (so it gets put
1731 in the readonly section).  A testcase would be:
1732
1733 #include <complex>
1734 using namespace std;
1735 const complex<char> should_be_in_rodata (42,-42);
1736 complex<char> should_be_in_data (42,-42);
1737 complex<char> should_be_in_bss;
1738
1739 Where we currently evaluate the ctors but the globals don't become const because
1740 the optimizer doesn't know they "become const" after the ctor is done.  See
1741 GCC PR4131 for more examples.
1742
1743 //===---------------------------------------------------------------------===//
1744
1745 In this code:
1746
1747 long foo(long x) {
1748   return x > 1 ? x : 1;
1749 }
1750
1751 LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
1752 and cheaper on most targets.
1753
1754 LLVM prefers comparisons with zero over non-zero in general, but in this
1755 case it choses instead to keep the max operation obvious.
1756
1757 //===---------------------------------------------------------------------===//
1758
1759 define void @a(i32 %x) nounwind {
1760 entry:
1761   switch i32 %x, label %if.end [
1762     i32 0, label %if.then
1763     i32 1, label %if.then
1764     i32 2, label %if.then
1765     i32 3, label %if.then
1766     i32 5, label %if.then
1767   ]
1768 if.then:
1769   tail call void @foo() nounwind
1770   ret void
1771 if.end:
1772   ret void
1773 }
1774 declare void @foo()
1775
1776 Generated code on x86-64 (other platforms give similar results):
1777 a:
1778         cmpl    $5, %edi
1779         ja      LBB2_2
1780         cmpl    $4, %edi
1781         jne     LBB2_3
1782 .LBB0_2:
1783         ret
1784 .LBB0_3:
1785         jmp     foo  # TAILCALL
1786
1787 If we wanted to be really clever, we could simplify the whole thing to
1788 something like the following, which eliminates a branch:
1789         xorl    $1, %edi
1790         cmpl    $4, %edi
1791         ja      .LBB0_2
1792         ret
1793 .LBB0_2:
1794         jmp     foo  # TAILCALL
1795
1796 //===---------------------------------------------------------------------===//
1797
1798 We compile this:
1799
1800 int foo(int a) { return (a & (~15)) / 16; }
1801
1802 Into:
1803
1804 define i32 @foo(i32 %a) nounwind readnone ssp {
1805 entry:
1806   %and = and i32 %a, -16
1807   %div = sdiv i32 %and, 16
1808   ret i32 %div
1809 }
1810
1811 but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
1812 should be instcombined into just "a >> 4".
1813
1814 We do get this at the codegen level, so something knows about it, but 
1815 instcombine should catch it earlier:
1816
1817 _foo:                                   ## @foo
1818 ## BB#0:                                ## %entry
1819         movl    %edi, %eax
1820         sarl    $4, %eax
1821         ret
1822
1823 //===---------------------------------------------------------------------===//
1824
1825 This code (from GCC PR28685):
1826
1827 int test(int a, int b) {
1828   int lt = a < b;
1829   int eq = a == b;
1830   if (lt)
1831     return 1;
1832   return eq;
1833 }
1834
1835 Is compiled to:
1836
1837 define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
1838 entry:
1839   %cmp = icmp slt i32 %a, %b
1840   br i1 %cmp, label %return, label %if.end
1841
1842 if.end:                                           ; preds = %entry
1843   %cmp5 = icmp eq i32 %a, %b
1844   %conv6 = zext i1 %cmp5 to i32
1845   ret i32 %conv6
1846
1847 return:                                           ; preds = %entry
1848   ret i32 1
1849 }
1850
1851 it could be:
1852
1853 define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
1854 entry:
1855   %0 = icmp sle i32 %a, %b
1856   %retval = zext i1 %0 to i32
1857   ret i32 %retval
1858 }
1859
1860 //===---------------------------------------------------------------------===//
1861
1862 This code can be seen in viterbi:
1863
1864   %64 = call noalias i8* @malloc(i64 %62) nounwind
1865 ...
1866   %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
1867   %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
1868
1869 llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
1870 fold to %62.  This is a security win (overflows of malloc will get caught)
1871 and also a performance win by exposing more memsets to the optimizer.
1872
1873 This occurs several times in viterbi.
1874
1875 Note that this would change the semantics of @llvm.objectsize which by its
1876 current definition always folds to a constant. We also should make sure that
1877 we remove checking in code like
1878
1879   char *p = malloc(strlen(s)+1);
1880   __strcpy_chk(p, s, __builtin_objectsize(p, 0));
1881
1882 //===---------------------------------------------------------------------===//
1883
1884 This code (from Benchmarks/Dhrystone/dry.c):
1885
1886 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1887 entry:
1888   %sext = shl i32 %0, 24
1889   %conv = ashr i32 %sext, 24
1890   %sext6 = shl i32 %1, 24
1891   %conv4 = ashr i32 %sext6, 24
1892   %cmp = icmp eq i32 %conv, %conv4
1893   %. = select i1 %cmp, i32 10000, i32 0
1894   ret i32 %.
1895 }
1896
1897 Should be simplified into something like:
1898
1899 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1900 entry:
1901   %sext = shl i32 %0, 24
1902   %conv = and i32 %sext, 0xFF000000
1903   %sext6 = shl i32 %1, 24
1904   %conv4 = and i32 %sext6, 0xFF000000
1905   %cmp = icmp eq i32 %conv, %conv4
1906   %. = select i1 %cmp, i32 10000, i32 0
1907   ret i32 %.
1908 }
1909
1910 and then to:
1911
1912 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1913 entry:
1914   %conv = and i32 %0, 0xFF
1915   %conv4 = and i32 %1, 0xFF
1916   %cmp = icmp eq i32 %conv, %conv4
1917   %. = select i1 %cmp, i32 10000, i32 0
1918   ret i32 %.
1919 }
1920 //===---------------------------------------------------------------------===//
1921
1922 clang -O3 currently compiles this code
1923
1924 int g(unsigned int a) {
1925   unsigned int c[100];
1926   c[10] = a;
1927   c[11] = a;
1928   unsigned int b = c[10] + c[11];
1929   if(b > a*2) a = 4;
1930   else a = 8;
1931   return a + 7;
1932 }
1933
1934 into
1935
1936 define i32 @g(i32 a) nounwind readnone {
1937   %add = shl i32 %a, 1
1938   %mul = shl i32 %a, 1
1939   %cmp = icmp ugt i32 %add, %mul
1940   %a.addr.0 = select i1 %cmp, i32 11, i32 15
1941   ret i32 %a.addr.0
1942 }
1943
1944 The icmp should fold to false. This CSE opportunity is only available
1945 after GVN and InstCombine have run.
1946
1947 //===---------------------------------------------------------------------===//
1948
1949 memcpyopt should turn this:
1950
1951 define i8* @test10(i32 %x) {
1952   %alloc = call noalias i8* @malloc(i32 %x) nounwind
1953   call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false)
1954   ret i8* %alloc
1955 }
1956
1957 into a call to calloc.  We should make sure that we analyze calloc as
1958 aggressively as malloc though.
1959
1960 //===---------------------------------------------------------------------===//
1961
1962 clang -O3 doesn't optimize this:
1963
1964 void f1(int* begin, int* end) {
1965   std::fill(begin, end, 0);
1966 }
1967
1968 into a memset.  This is PR8942.
1969
1970 //===---------------------------------------------------------------------===//
1971
1972 clang -O3 -fno-exceptions currently compiles this code:
1973
1974 void f(int N) {
1975   std::vector<int> v(N);
1976
1977   extern void sink(void*); sink(&v);
1978 }
1979
1980 into
1981
1982 define void @_Z1fi(i32 %N) nounwind {
1983 entry:
1984   %v2 = alloca [3 x i32*], align 8
1985   %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0
1986   %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"*
1987   %conv = sext i32 %N to i64
1988   store i32* null, i32** %v2.sub, align 8, !tbaa !0
1989   %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1
1990   store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1991   %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2
1992   store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
1993   %cmp.i.i.i.i = icmp eq i32 %N, 0
1994   br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i
1995
1996 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry
1997   store i32* null, i32** %v2.sub, align 8, !tbaa !0
1998   store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1999   %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv
2000   store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
2001   br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
2002
2003 cond.true.i.i.i.i:                                ; preds = %entry
2004   %cmp.i.i.i.i.i = icmp slt i32 %N, 0
2005   br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i
2006
2007 if.then.i.i.i.i.i:                                ; preds = %cond.true.i.i.i.i
2008   call void @_ZSt17__throw_bad_allocv() noreturn nounwind
2009   unreachable
2010
2011 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i:    ; preds = %cond.true.i.i.i.i
2012   %mul.i.i.i.i.i = shl i64 %conv, 2
2013   %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind
2014   %0 = bitcast i8* %call3.i.i.i.i.i to i32*
2015   store i32* %0, i32** %v2.sub, align 8, !tbaa !0
2016   store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
2017   %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv
2018   store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
2019   call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false)
2020   br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
2021
2022 This is just the handling the construction of the vector. Most surprising here
2023 is the fact that all three null stores in %entry are dead (because we do no
2024 cross-block DSE).
2025
2026 Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i.
2027 This is a because the client of LazyValueInfo doesn't simplify all instruction
2028 operands, just selected ones.
2029
2030 //===---------------------------------------------------------------------===//
2031
2032 clang -O3 -fno-exceptions currently compiles this code:
2033
2034 void f(char* a, int n) {
2035   __builtin_memset(a, 0, n);
2036   for (int i = 0; i < n; ++i)
2037     a[i] = 0;
2038 }
2039
2040 into:
2041
2042 define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind {
2043 entry:
2044   %conv = sext i32 %n to i64
2045   tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false)
2046   %cmp8 = icmp sgt i32 %n, 0
2047   br i1 %cmp8, label %for.body.lr.ph, label %for.end
2048
2049 for.body.lr.ph:                                   ; preds = %entry
2050   %tmp10 = add i32 %n, -1
2051   %tmp11 = zext i32 %tmp10 to i64
2052   %tmp12 = add i64 %tmp11, 1
2053   call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false)
2054   ret void
2055
2056 for.end:                                          ; preds = %entry
2057   ret void
2058 }
2059
2060 This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold
2061 the two memset's together.
2062
2063 The issue with the addition only occurs in 64-bit mode, and appears to be at
2064 least partially caused by Scalar Evolution not keeping its cache updated: it
2065 returns the "wrong" result immediately after indvars runs, but figures out the
2066 expected result if it is run from scratch on IR resulting from running indvars.
2067
2068 //===---------------------------------------------------------------------===//
2069
2070 clang -O3 -fno-exceptions currently compiles this code:
2071
2072 struct S {
2073   unsigned short m1, m2;
2074   unsigned char m3, m4;
2075 };
2076
2077 void f(int N) {
2078   std::vector<S> v(N);
2079   extern void sink(void*); sink(&v);
2080 }
2081
2082 into poor code for zero-initializing 'v' when N is >0. The problem is that
2083 S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and
2084 4 stores on each iteration. If the struct were 8 bytes, this gets turned into
2085 a memset.
2086
2087 In order to handle this we have to:
2088   A) Teach clang to generate metadata for memsets of structs that have holes in
2089      them.
2090   B) Teach clang to use such a memset for zero init of this struct (since it has
2091      a hole), instead of doing elementwise zeroing.
2092
2093 //===---------------------------------------------------------------------===//
2094
2095 clang -O3 currently compiles this code:
2096
2097 extern const int magic;
2098 double f() { return 0.0 * magic; }
2099
2100 into
2101
2102 @magic = external constant i32
2103
2104 define double @_Z1fv() nounwind readnone {
2105 entry:
2106   %tmp = load i32* @magic, align 4, !tbaa !0
2107   %conv = sitofp i32 %tmp to double
2108   %mul = fmul double %conv, 0.000000e+00
2109   ret double %mul
2110 }
2111
2112 We should be able to fold away this fmul to 0.0.  More generally, fmul(x,0.0)
2113 can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and
2114 not an INF.  The CannotBeNegativeZero predicate in value tracking should be
2115 extended to support general "fpclassify" operations that can return 
2116 yes/no/unknown for each of these predicates.
2117
2118 In this predicate, we know that uitofp is trivially never NaN or -0.0, and
2119 we know that it isn't +/-Inf if the floating point type has enough exponent bits
2120 to represent the largest integer value as < inf.
2121
2122 //===---------------------------------------------------------------------===//
2123
2124 When optimizing a transformation that can change the sign of 0.0 (such as the
2125 0.0*val -> 0.0 transformation above), it might be provable that the sign of the
2126 expression doesn't matter.  For example, by the above rules, we can't transform
2127 fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the
2128 expression is defined to be -0.0.
2129
2130 If we look at the uses of the fmul for example, we might be able to prove that
2131 all uses don't care about the sign of zero.  For example, if we have:
2132
2133   fadd(fmul(sitofp(x), 0.0), 2.0)
2134
2135 Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can
2136 transform the fmul to 0.0, and then the fadd to 2.0.
2137
2138 //===---------------------------------------------------------------------===//
2139
2140 We should enhance memcpy/memcpy/memset to allow a metadata node on them
2141 indicating that some bytes of the transfer are undefined.  This is useful for
2142 frontends like clang when lowering struct copies, when some elements of the
2143 struct are undefined.  Consider something like this:
2144
2145 struct x {
2146   char a;
2147   int b[4];
2148 };
2149 void foo(struct x*P);
2150 struct x testfunc() {
2151   struct x V1, V2;
2152   foo(&V1);
2153   V2 = V1;
2154
2155   return V2;
2156 }
2157
2158 We currently compile this to:
2159 $ clang t.c -S -o - -O0 -emit-llvm | opt -scalarrepl -S
2160
2161
2162 %struct.x = type { i8, [4 x i32] }
2163
2164 define void @testfunc(%struct.x* sret %agg.result) nounwind ssp {
2165 entry:
2166   %V1 = alloca %struct.x, align 4
2167   call void @foo(%struct.x* %V1)
2168   %tmp1 = bitcast %struct.x* %V1 to i8*
2169   %0 = bitcast %struct.x* %V1 to i160*
2170   %srcval1 = load i160* %0, align 4
2171   %tmp2 = bitcast %struct.x* %agg.result to i8*
2172   %1 = bitcast %struct.x* %agg.result to i160*
2173   store i160 %srcval1, i160* %1, align 4
2174   ret void
2175 }
2176
2177 This happens because SRoA sees that the temp alloca has is being memcpy'd into
2178 and out of and it has holes and it has to be conservative.  If we knew about the
2179 holes, then this could be much much better.
2180
2181 Having information about these holes would also improve memcpy (etc) lowering at
2182 llc time when it gets inlined, because we can use smaller transfers.  This also
2183 avoids partial register stalls in some important cases.
2184
2185 //===---------------------------------------------------------------------===//
2186
2187 We don't fold (icmp (add) (add)) unless the two adds only have a single use.
2188 There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for
2189 example:
2190
2191  %indvar.next90 = add i64 %indvar89, 1     ;; Has 2 uses
2192  %tmp96 = add i64 %tmp95, 1                ;; Has 1 use
2193  %exitcond97 = icmp eq i64 %indvar.next90, %tmp96
2194
2195 We don't fold this because we don't want to introduce an overlapped live range
2196 of the ivar.  However if we can make this more aggressive without causing
2197 performance issues in two ways:
2198
2199 1. If *either* the LHS or RHS has a single use, we can definitely do the
2200    transformation.  In the overlapping liverange case we're trading one register
2201    use for one fewer operation, which is a reasonable trade.  Before doing this
2202    we should verify that the llc output actually shrinks for some benchmarks.
2203 2. If both ops have multiple uses, we can still fold it if the operations are
2204    both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't
2205    increase register pressure.
2206
2207 There are a ton of icmp's we aren't simplifying because of the reg pressure
2208 concern.  Care is warranted here though because many of these are induction
2209 variables and other cases that matter a lot to performance, like the above.
2210 Here's a blob of code that you can drop into the bottom of visitICmp to see some
2211 missed cases:
2212
2213   { Value *A, *B, *C, *D;
2214     if (match(Op0, m_Add(m_Value(A), m_Value(B))) && 
2215         match(Op1, m_Add(m_Value(C), m_Value(D))) &&
2216         (A == C || A == D || B == C || B == D)) {
2217       errs() << "OP0 = " << *Op0 << "  U=" << Op0->getNumUses() << "\n";
2218       errs() << "OP1 = " << *Op1 << "  U=" << Op1->getNumUses() << "\n";
2219       errs() << "CMP = " << I << "\n\n";
2220     }
2221   }
2222
2223 //===---------------------------------------------------------------------===//
2224
2225 define i1 @test1(i32 %x) nounwind {
2226   %and = and i32 %x, 3
2227   %cmp = icmp ult i32 %and, 2
2228   ret i1 %cmp
2229 }
2230
2231 Can be folded to (x & 2) == 0.
2232
2233 define i1 @test2(i32 %x) nounwind {
2234   %and = and i32 %x, 3
2235   %cmp = icmp ugt i32 %and, 1
2236   ret i1 %cmp
2237 }
2238
2239 Can be folded to (x & 2) != 0.
2240
2241 SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the
2242 icmp transform.
2243
2244 //===---------------------------------------------------------------------===//
2245
2246 This code:
2247
2248 typedef struct {
2249 int f1:1;
2250 int f2:1;
2251 int f3:1;
2252 int f4:29;
2253 } t1;
2254
2255 typedef struct {
2256 int f1:1;
2257 int f2:1;
2258 int f3:30;
2259 } t2;
2260
2261 t1 s1;
2262 t2 s2;
2263
2264 void func1(void)
2265 {
2266 s1.f1 = s2.f1;
2267 s1.f2 = s2.f2;
2268 }
2269
2270 Compiles into this IR (on x86-64 at least):
2271
2272 %struct.t1 = type { i8, [3 x i8] }
2273 @s2 = global %struct.t1 zeroinitializer, align 4
2274 @s1 = global %struct.t1 zeroinitializer, align 4
2275 define void @func1() nounwind ssp noredzone {
2276 entry:
2277   %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4
2278   %bf.val.sext5 = and i32 %0, 1
2279   %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4
2280   %2 = and i32 %1, -4
2281   %3 = or i32 %2, %bf.val.sext5
2282   %bf.val.sext26 = and i32 %0, 2
2283   %4 = or i32 %3, %bf.val.sext26
2284   store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4
2285   ret void
2286 }
2287
2288 The two or/and's should be merged into one each.
2289
2290 //===---------------------------------------------------------------------===//
2291
2292 Machine level code hoisting can be useful in some cases.  For example, PR9408
2293 is about:
2294
2295 typedef union {
2296  void (*f1)(int);
2297  void (*f2)(long);
2298 } funcs;
2299
2300 void foo(funcs f, int which) {
2301  int a = 5;
2302  if (which) {
2303    f.f1(a);
2304  } else {
2305    f.f2(a);
2306  }
2307 }
2308
2309 which we compile to:
2310
2311 foo:                                    # @foo
2312 # BB#0:                                 # %entry
2313        pushq   %rbp
2314        movq    %rsp, %rbp
2315        testl   %esi, %esi
2316        movq    %rdi, %rax
2317        je      .LBB0_2
2318 # BB#1:                                 # %if.then
2319        movl    $5, %edi
2320        callq   *%rax
2321        popq    %rbp
2322        ret
2323 .LBB0_2:                                # %if.else
2324        movl    $5, %edi
2325        callq   *%rax
2326        popq    %rbp
2327        ret
2328
2329 Note that bb1 and bb2 are the same.  This doesn't happen at the IR level
2330 because one call is passing an i32 and the other is passing an i64.
2331
2332 //===---------------------------------------------------------------------===//
2333
2334 I see this sort of pattern in 176.gcc in a few places (e.g. the start of
2335 store_bit_field).  The rem should be replaced with a multiply and subtract:
2336
2337   %3 = sdiv i32 %A, %B
2338   %4 = srem i32 %A, %B
2339
2340 Similarly for udiv/urem.  Note that this shouldn't be done on X86 or ARM,
2341 which can do this in a single operation (instruction or libcall).  It is
2342 probably best to do this in the code generator.
2343
2344 //===---------------------------------------------------------------------===//
2345
2346 unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; }
2347 should fold to (x & y) == 0.
2348
2349 //===---------------------------------------------------------------------===//
2350
2351 unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
2352 should fold to x > y.
2353
2354 //===---------------------------------------------------------------------===//