1 Target Independent Opportunities:
3 //===---------------------------------------------------------------------===//
5 We should recognized various "overflow detection" idioms and translate them into
6 llvm.uadd.with.overflow and similar intrinsics. Here is a multiply idiom:
8 unsigned int mul(unsigned int a,unsigned int b) {
9 if ((unsigned long long)a*b>0xffffffff)
14 The legalization code for mul-with-overflow needs to be made more robust before
15 this can be implemented though.
17 //===---------------------------------------------------------------------===//
19 Get the C front-end to expand hypot(x,y) -> llvm.sqrt(x*x+y*y) when errno and
20 precision don't matter (ffastmath). Misc/mandel will like this. :) This isn't
21 safe in general, even on darwin. See the libm implementation of hypot for
22 examples (which special case when x/y are exactly zero to get signed zeros etc
25 //===---------------------------------------------------------------------===//
27 On targets with expensive 64-bit multiply, we could LSR this:
34 for (i = ...; ++i, tmp+=tmp)
37 This would be a win on ppc32, but not x86 or ppc64.
39 //===---------------------------------------------------------------------===//
41 Shrink: (setlt (loadi32 P), 0) -> (setlt (loadi8 Phi), 0)
43 //===---------------------------------------------------------------------===//
45 Reassociate should turn things like:
47 int factorial(int X) {
48 return X*X*X*X*X*X*X*X;
51 into llvm.powi calls, allowing the code generator to produce balanced
54 First, the intrinsic needs to be extended to support integers, and second the
55 code generator needs to be enhanced to lower these to multiplication trees.
57 //===---------------------------------------------------------------------===//
59 Interesting? testcase for add/shift/mul reassoc:
61 int bar(int x, int y) {
62 return x*x*x+y+x*x*x*x*x*y*y*y*y;
64 int foo(int z, int n) {
65 return bar(z, n) + bar(2*z, 2*n);
68 This is blocked on not handling X*X*X -> powi(X, 3) (see note above). The issue
69 is that we end up getting t = 2*X s = t*t and don't turn this into 4*X*X,
70 which is the same number of multiplies and is canonical, because the 2*X has
71 multiple uses. Here's a simple example:
73 define i32 @test15(i32 %X1) {
74 %B = mul i32 %X1, 47 ; X1*47
80 //===---------------------------------------------------------------------===//
82 Reassociate should handle the example in GCC PR16157:
84 extern int a0, a1, a2, a3, a4; extern int b0, b1, b2, b3, b4;
85 void f () { /* this can be optimized to four additions... */
86 b4 = a4 + a3 + a2 + a1 + a0;
87 b3 = a3 + a2 + a1 + a0;
92 This requires reassociating to forms of expressions that are already available,
93 something that reassoc doesn't think about yet.
96 //===---------------------------------------------------------------------===//
98 This function: (derived from GCC PR19988)
99 double foo(double x, double y) {
100 return ((x + 0.1234 * y) * (x + -0.1234 * y));
106 mulsd LCPI1_1(%rip), %xmm1
107 mulsd LCPI1_0(%rip), %xmm2
114 Reassociate should be able to turn it into:
116 double foo(double x, double y) {
117 return ((x + 0.1234 * y) * (x - 0.1234 * y));
120 Which allows the multiply by constant to be CSE'd, producing:
123 mulsd LCPI1_0(%rip), %xmm1
130 This doesn't need -ffast-math support at all. This is particularly bad because
131 the llvm-gcc frontend is canonicalizing the later into the former, but clang
132 doesn't have this problem.
134 //===---------------------------------------------------------------------===//
136 These two functions should generate the same code on big-endian systems:
138 int g(int *j,int *l) { return memcmp(j,l,4); }
139 int h(int *j, int *l) { return *j - *l; }
141 this could be done in SelectionDAGISel.cpp, along with other special cases,
144 //===---------------------------------------------------------------------===//
146 It would be nice to revert this patch:
147 http://lists.cs.uiuc.edu/pipermail/llvm-commits/Week-of-Mon-20060213/031986.html
149 And teach the dag combiner enough to simplify the code expanded before
150 legalize. It seems plausible that this knowledge would let it simplify other
153 //===---------------------------------------------------------------------===//
155 For vector types, DataLayout.cpp::getTypeInfo() returns alignment that is equal
156 to the type size. It works but can be overly conservative as the alignment of
157 specific vector types are target dependent.
159 //===---------------------------------------------------------------------===//
161 We should produce an unaligned load from code like this:
163 v4sf example(float *P) {
164 return (v4sf){P[0], P[1], P[2], P[3] };
167 //===---------------------------------------------------------------------===//
169 Add support for conditional increments, and other related patterns. Instead
174 je LBB16_2 #cond_next
185 //===---------------------------------------------------------------------===//
187 Combine: a = sin(x), b = cos(x) into a,b = sincos(x).
189 Expand these to calls of sin/cos and stores:
190 double sincos(double x, double *sin, double *cos);
191 float sincosf(float x, float *sin, float *cos);
192 long double sincosl(long double x, long double *sin, long double *cos);
194 Doing so could allow SROA of the destination pointers. See also:
195 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=17687
197 This is now easily doable with MRVs. We could even make an intrinsic for this
198 if anyone cared enough about sincos.
200 //===---------------------------------------------------------------------===//
202 quantum_sigma_x in 462.libquantum contains the following loop:
204 for(i=0; i<reg->size; i++)
206 /* Flip the target bit of each basis state */
207 reg->node[i].state ^= ((MAX_UNSIGNED) 1 << target);
210 Where MAX_UNSIGNED/state is a 64-bit int. On a 32-bit platform it would be just
211 so cool to turn it into something like:
213 long long Res = ((MAX_UNSIGNED) 1 << target);
215 for(i=0; i<reg->size; i++)
216 reg->node[i].state ^= Res & 0xFFFFFFFFULL;
218 for(i=0; i<reg->size; i++)
219 reg->node[i].state ^= Res & 0xFFFFFFFF00000000ULL
222 ... which would only do one 32-bit XOR per loop iteration instead of two.
224 It would also be nice to recognize the reg->size doesn't alias reg->node[i], but
227 //===---------------------------------------------------------------------===//
229 This isn't recognized as bswap by instcombine (yes, it really is bswap):
231 unsigned long reverse(unsigned v) {
233 t = v ^ ((v << 16) | (v >> 16));
235 v = (v << 24) | (v >> 8);
239 //===---------------------------------------------------------------------===//
243 We don't delete this output free loop, because trip count analysis doesn't
244 realize that it is finite (if it were infinite, it would be undefined). Not
245 having this blocks Loop Idiom from matching strlen and friends.
253 //===---------------------------------------------------------------------===//
257 These idioms should be recognized as popcount (see PR1488):
259 unsigned countbits_slow(unsigned v) {
261 for (c = 0; v; v >>= 1)
266 unsigned int popcount(unsigned int input) {
267 unsigned int count = 0;
268 for (unsigned int i = 0; i < 4 * 8; i++)
269 count += (input >> i) & i;
273 This should be recognized as CLZ: rdar://8459039
275 unsigned clz_a(unsigned a) {
283 This sort of thing should be added to the loop idiom pass.
285 //===---------------------------------------------------------------------===//
287 These should turn into single 16-bit (unaligned?) loads on little/big endian
290 unsigned short read_16_le(const unsigned char *adr) {
291 return adr[0] | (adr[1] << 8);
293 unsigned short read_16_be(const unsigned char *adr) {
294 return (adr[0] << 8) | adr[1];
297 //===---------------------------------------------------------------------===//
299 -instcombine should handle this transform:
300 icmp pred (sdiv X / C1 ), C2
301 when X, C1, and C2 are unsigned. Similarly for udiv and signed operands.
303 Currently InstCombine avoids this transform but will do it when the signs of
304 the operands and the sign of the divide match. See the FIXME in
305 InstructionCombining.cpp in the visitSetCondInst method after the switch case
306 for Instruction::UDiv (around line 4447) for more details.
308 The SingleSource/Benchmarks/Shootout-C++/hash and hash2 tests have examples of
311 //===---------------------------------------------------------------------===//
315 SingleSource/Benchmarks/Misc/dt.c shows several interesting optimization
316 opportunities in its double_array_divs_variable function: it needs loop
317 interchange, memory promotion (which LICM already does), vectorization and
318 variable trip count loop unrolling (since it has a constant trip count). ICC
319 apparently produces this very nice code with -ffast-math:
321 ..B1.70: # Preds ..B1.70 ..B1.69
322 mulpd %xmm0, %xmm1 #108.2
323 mulpd %xmm0, %xmm1 #108.2
324 mulpd %xmm0, %xmm1 #108.2
325 mulpd %xmm0, %xmm1 #108.2
327 cmpl $131072, %edx #108.2
328 jb ..B1.70 # Prob 99% #108.2
330 It would be better to count down to zero, but this is a lot better than what we
333 //===---------------------------------------------------------------------===//
337 typedef unsigned U32;
338 typedef unsigned long long U64;
339 int test (U32 *inst, U64 *regs) {
342 int r1 = (temp >> 20) & 0xf;
343 int b2 = (temp >> 16) & 0xf;
344 effective_addr2 = temp & 0xfff;
345 if (b2) effective_addr2 += regs[b2];
346 b2 = (temp >> 12) & 0xf;
347 if (b2) effective_addr2 += regs[b2];
348 effective_addr2 &= regs[4];
349 if ((effective_addr2 & 3) == 0)
354 Note that only the low 2 bits of effective_addr2 are used. On 32-bit systems,
355 we don't eliminate the computation of the top half of effective_addr2 because
356 we don't have whole-function selection dags. On x86, this means we use one
357 extra register for the function when effective_addr2 is declared as U64 than
358 when it is declared U32.
360 PHI Slicing could be extended to do this.
362 //===---------------------------------------------------------------------===//
364 Tail call elim should be more aggressive, checking to see if the call is
365 followed by an uncond branch to an exit block.
367 ; This testcase is due to tail-duplication not wanting to copy the return
368 ; instruction into the terminating blocks because there was other code
369 ; optimized out of the function after the taildup happened.
370 ; RUN: llvm-as < %s | opt -tailcallelim | llvm-dis | not grep call
372 define i32 @t4(i32 %a) {
374 %tmp.1 = and i32 %a, 1 ; <i32> [#uses=1]
375 %tmp.2 = icmp ne i32 %tmp.1, 0 ; <i1> [#uses=1]
376 br i1 %tmp.2, label %then.0, label %else.0
378 then.0: ; preds = %entry
379 %tmp.5 = add i32 %a, -1 ; <i32> [#uses=1]
380 %tmp.3 = call i32 @t4( i32 %tmp.5 ) ; <i32> [#uses=1]
383 else.0: ; preds = %entry
384 %tmp.7 = icmp ne i32 %a, 0 ; <i1> [#uses=1]
385 br i1 %tmp.7, label %then.1, label %return
387 then.1: ; preds = %else.0
388 %tmp.11 = add i32 %a, -2 ; <i32> [#uses=1]
389 %tmp.9 = call i32 @t4( i32 %tmp.11 ) ; <i32> [#uses=1]
392 return: ; preds = %then.1, %else.0, %then.0
393 %result.0 = phi i32 [ 0, %else.0 ], [ %tmp.3, %then.0 ],
398 //===---------------------------------------------------------------------===//
400 Tail recursion elimination should handle:
405 return 2 * pow2m1 (n - 1) + 1;
408 Also, multiplies can be turned into SHL's, so they should be handled as if
409 they were associative. "return foo() << 1" can be tail recursion eliminated.
411 //===---------------------------------------------------------------------===//
413 Argument promotion should promote arguments for recursive functions, like
416 ; RUN: llvm-as < %s | opt -argpromotion | llvm-dis | grep x.val
418 define internal i32 @foo(i32* %x) {
420 %tmp = load i32* %x ; <i32> [#uses=0]
421 %tmp.foo = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
425 define i32 @bar(i32* %x) {
427 %tmp3 = call i32 @foo( i32* %x ) ; <i32> [#uses=1]
431 //===---------------------------------------------------------------------===//
433 We should investigate an instruction sinking pass. Consider this silly
449 je LBB1_2 # cond_true
457 The PIC base computation (call+popl) is only used on one path through the
458 code, but is currently always computed in the entry block. It would be
459 better to sink the picbase computation down into the block for the
460 assertion, as it is the only one that uses it. This happens for a lot of
461 code with early outs.
463 Another example is loads of arguments, which are usually emitted into the
464 entry block on targets like x86. If not used in all paths through a
465 function, they should be sunk into the ones that do.
467 In this case, whole-function-isel would also handle this.
469 //===---------------------------------------------------------------------===//
471 Investigate lowering of sparse switch statements into perfect hash tables:
472 http://burtleburtle.net/bob/hash/perfect.html
474 //===---------------------------------------------------------------------===//
476 We should turn things like "load+fabs+store" and "load+fneg+store" into the
477 corresponding integer operations. On a yonah, this loop:
482 for (b = 0; b < 10000000; b++)
483 for (i = 0; i < 256; i++)
487 is twice as slow as this loop:
492 for (b = 0; b < 10000000; b++)
493 for (i = 0; i < 256; i++)
494 a[i] ^= (1ULL << 63);
497 and I suspect other processors are similar. On X86 in particular this is a
498 big win because doing this with integers allows the use of read/modify/write
501 //===---------------------------------------------------------------------===//
503 DAG Combiner should try to combine small loads into larger loads when
504 profitable. For example, we compile this C++ example:
506 struct THotKey { short Key; bool Control; bool Shift; bool Alt; };
507 extern THotKey m_HotKey;
508 THotKey GetHotKey () { return m_HotKey; }
510 into (-m64 -O3 -fno-exceptions -static -fomit-frame-pointer):
512 __Z9GetHotKeyv: ## @_Z9GetHotKeyv
513 movq _m_HotKey@GOTPCREL(%rip), %rax
526 //===---------------------------------------------------------------------===//
528 We should add an FRINT node to the DAG to model targets that have legal
529 implementations of ceil/floor/rint.
531 //===---------------------------------------------------------------------===//
536 long long input[8] = {1,0,1,0,1,0,1,0};
540 Clang compiles this into:
542 call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 64, i32 16, i1 false)
543 %0 = getelementptr [8 x i64]* %input, i64 0, i64 0
544 store i64 1, i64* %0, align 16
545 %1 = getelementptr [8 x i64]* %input, i64 0, i64 2
546 store i64 1, i64* %1, align 16
547 %2 = getelementptr [8 x i64]* %input, i64 0, i64 4
548 store i64 1, i64* %2, align 16
549 %3 = getelementptr [8 x i64]* %input, i64 0, i64 6
550 store i64 1, i64* %3, align 16
552 Which gets codegen'd into:
555 movaps %xmm0, -16(%rbp)
556 movaps %xmm0, -32(%rbp)
557 movaps %xmm0, -48(%rbp)
558 movaps %xmm0, -64(%rbp)
564 It would be better to have 4 movq's of 0 instead of the movaps's.
566 //===---------------------------------------------------------------------===//
568 http://llvm.org/PR717:
570 The following code should compile into "ret int undef". Instead, LLVM
571 produces "ret int 0":
580 //===---------------------------------------------------------------------===//
582 The loop unroller should partially unroll loops (instead of peeling them)
583 when code growth isn't too bad and when an unroll count allows simplification
584 of some code within the loop. One trivial example is:
590 for ( nLoop = 0; nLoop < 1000; nLoop++ ) {
599 Unrolling by 2 would eliminate the '&1' in both copies, leading to a net
600 reduction in code size. The resultant code would then also be suitable for
601 exit value computation.
603 //===---------------------------------------------------------------------===//
605 We miss a bunch of rotate opportunities on various targets, including ppc, x86,
606 etc. On X86, we miss a bunch of 'rotate by variable' cases because the rotate
607 matching code in dag combine doesn't look through truncates aggressively
608 enough. Here are some testcases reduces from GCC PR17886:
610 unsigned long long f5(unsigned long long x, unsigned long long y) {
611 return (x << 8) | ((y >> 48) & 0xffull);
613 unsigned long long f6(unsigned long long x, unsigned long long y, int z) {
616 return (x << 8) | ((y >> 48) & 0xffull);
618 return (x << 16) | ((y >> 40) & 0xffffull);
620 return (x << 24) | ((y >> 32) & 0xffffffull);
622 return (x << 32) | ((y >> 24) & 0xffffffffull);
624 return (x << 40) | ((y >> 16) & 0xffffffffffull);
628 //===---------------------------------------------------------------------===//
630 This (and similar related idioms):
632 unsigned int foo(unsigned char i) {
633 return i | (i<<8) | (i<<16) | (i<<24);
638 define i32 @foo(i8 zeroext %i) nounwind readnone ssp noredzone {
640 %conv = zext i8 %i to i32
641 %shl = shl i32 %conv, 8
642 %shl5 = shl i32 %conv, 16
643 %shl9 = shl i32 %conv, 24
644 %or = or i32 %shl9, %conv
645 %or6 = or i32 %or, %shl5
646 %or10 = or i32 %or6, %shl
650 it would be better as:
652 unsigned int bar(unsigned char i) {
653 unsigned int j=i | (i << 8);
659 define i32 @bar(i8 zeroext %i) nounwind readnone ssp noredzone {
661 %conv = zext i8 %i to i32
662 %shl = shl i32 %conv, 8
663 %or = or i32 %shl, %conv
664 %shl5 = shl i32 %or, 16
665 %or6 = or i32 %shl5, %or
669 or even i*0x01010101, depending on the speed of the multiplier. The best way to
670 handle this is to canonicalize it to a multiply in IR and have codegen handle
671 lowering multiplies to shifts on cpus where shifts are faster.
673 //===---------------------------------------------------------------------===//
675 We do a number of simplifications in simplify libcalls to strength reduce
676 standard library functions, but we don't currently merge them together. For
677 example, it is useful to merge memcpy(a,b,strlen(b)) -> strcpy. This can only
678 be done safely if "b" isn't modified between the strlen and memcpy of course.
680 //===---------------------------------------------------------------------===//
682 We compile this program: (from GCC PR11680)
683 http://gcc.gnu.org/bugzilla/attachment.cgi?id=4487
685 Into code that runs the same speed in fast/slow modes, but both modes run 2x
686 slower than when compile with GCC (either 4.0 or 4.2):
688 $ llvm-g++ perf.cpp -O3 -fno-exceptions
690 1.821u 0.003s 0:01.82 100.0% 0+0k 0+0io 0pf+0w
692 $ g++ perf.cpp -O3 -fno-exceptions
694 0.821u 0.001s 0:00.82 100.0% 0+0k 0+0io 0pf+0w
696 It looks like we are making the same inlining decisions, so this may be raw
697 codegen badness or something else (haven't investigated).
699 //===---------------------------------------------------------------------===//
701 Divisibility by constant can be simplified (according to GCC PR12849) from
702 being a mulhi to being a mul lo (cheaper). Testcase:
704 void bar(unsigned n) {
709 This is equivalent to the following, where 2863311531 is the multiplicative
710 inverse of 3, and 1431655766 is ((2^32)-1)/3+1:
711 void bar(unsigned n) {
712 if (n * 2863311531U < 1431655766U)
716 The same transformation can work with an even modulo with the addition of a
717 rotate: rotate the result of the multiply to the right by the number of bits
718 which need to be zero for the condition to be true, and shrink the compare RHS
719 by the same amount. Unless the target supports rotates, though, that
720 transformation probably isn't worthwhile.
722 The transformation can also easily be made to work with non-zero equality
723 comparisons: just transform, for example, "n % 3 == 1" to "(n-1) % 3 == 0".
725 //===---------------------------------------------------------------------===//
727 Better mod/ref analysis for scanf would allow us to eliminate the vtable and a
728 bunch of other stuff from this example (see PR1604):
738 std::scanf("%d", &t.val);
739 std::printf("%d\n", t.val);
742 //===---------------------------------------------------------------------===//
744 These functions perform the same computation, but produce different assembly.
746 define i8 @select(i8 %x) readnone nounwind {
747 %A = icmp ult i8 %x, 250
748 %B = select i1 %A, i8 0, i8 1
752 define i8 @addshr(i8 %x) readnone nounwind {
753 %A = zext i8 %x to i9
754 %B = add i9 %A, 6 ;; 256 - 250 == 6
756 %D = trunc i9 %C to i8
760 //===---------------------------------------------------------------------===//
764 f (unsigned long a, unsigned long b, unsigned long c)
766 return ((a & (c - 1)) != 0) || ((b & (c - 1)) != 0);
769 f (unsigned long a, unsigned long b, unsigned long c)
771 return ((a & (c - 1)) != 0) | ((b & (c - 1)) != 0);
773 Both should combine to ((a|b) & (c-1)) != 0. Currently not optimized with
774 "clang -emit-llvm-bc | opt -std-compile-opts".
776 //===---------------------------------------------------------------------===//
779 #define PMD_MASK (~((1UL << 23) - 1))
780 void clear_pmd_range(unsigned long start, unsigned long end)
782 if (!(start & ~PMD_MASK) && !(end & ~PMD_MASK))
785 The expression should optimize to something like
786 "!((start|end)&~PMD_MASK). Currently not optimized with "clang
787 -emit-llvm-bc | opt -std-compile-opts".
789 //===---------------------------------------------------------------------===//
791 unsigned int f(unsigned int i, unsigned int n) {++i; if (i == n) ++i; return
793 unsigned int f2(unsigned int i, unsigned int n) {++i; i += i == n; return i;}
794 These should combine to the same thing. Currently, the first function
795 produces better code on X86.
797 //===---------------------------------------------------------------------===//
800 #define abs(x) x>0?x:-x
803 return (abs(x)) >= 0;
805 This should optimize to x == INT_MIN. (With -fwrapv.) Currently not
806 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
808 //===---------------------------------------------------------------------===//
812 rotate_cst (unsigned int a)
814 a = (a << 10) | (a >> 22);
819 minus_cst (unsigned int a)
828 mask_gt (unsigned int a)
830 /* This is equivalent to a > 15. */
835 rshift_gt (unsigned int a)
837 /* This is equivalent to a > 23. */
842 All should simplify to a single comparison. All of these are
843 currently not optimized with "clang -emit-llvm-bc | opt
846 //===---------------------------------------------------------------------===//
849 int c(int* x) {return (char*)x+2 == (char*)x;}
850 Should combine to 0. Currently not optimized with "clang
851 -emit-llvm-bc | opt -std-compile-opts" (although llc can optimize it).
853 //===---------------------------------------------------------------------===//
855 int a(unsigned b) {return ((b << 31) | (b << 30)) >> 31;}
856 Should be combined to "((b >> 1) | b) & 1". Currently not optimized
857 with "clang -emit-llvm-bc | opt -std-compile-opts".
859 //===---------------------------------------------------------------------===//
861 unsigned a(unsigned x, unsigned y) { return x | (y & 1) | (y & 2);}
862 Should combine to "x | (y & 3)". Currently not optimized with "clang
863 -emit-llvm-bc | opt -std-compile-opts".
865 //===---------------------------------------------------------------------===//
867 int a(int a, int b, int c) {return (~a & c) | ((c|a) & b);}
868 Should fold to "(~a & c) | (a & b)". Currently not optimized with
869 "clang -emit-llvm-bc | opt -std-compile-opts".
871 //===---------------------------------------------------------------------===//
873 int a(int a,int b) {return (~(a|b))|a;}
874 Should fold to "a|~b". Currently not optimized with "clang
875 -emit-llvm-bc | opt -std-compile-opts".
877 //===---------------------------------------------------------------------===//
879 int a(int a, int b) {return (a&&b) || (a&&!b);}
880 Should fold to "a". Currently not optimized with "clang -emit-llvm-bc
881 | opt -std-compile-opts".
883 //===---------------------------------------------------------------------===//
885 int a(int a, int b, int c) {return (a&&b) || (!a&&c);}
886 Should fold to "a ? b : c", or at least something sane. Currently not
887 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
889 //===---------------------------------------------------------------------===//
891 int a(int a, int b, int c) {return (a&&b) || (a&&c) || (a&&b&&c);}
892 Should fold to a && (b || c). Currently not optimized with "clang
893 -emit-llvm-bc | opt -std-compile-opts".
895 //===---------------------------------------------------------------------===//
897 int a(int x) {return x | ((x & 8) ^ 8);}
898 Should combine to x | 8. Currently not optimized with "clang
899 -emit-llvm-bc | opt -std-compile-opts".
901 //===---------------------------------------------------------------------===//
903 int a(int x) {return x ^ ((x & 8) ^ 8);}
904 Should also combine to x | 8. Currently not optimized with "clang
905 -emit-llvm-bc | opt -std-compile-opts".
907 //===---------------------------------------------------------------------===//
909 int a(int x) {return ((x | -9) ^ 8) & x;}
910 Should combine to x & -9. Currently not optimized with "clang
911 -emit-llvm-bc | opt -std-compile-opts".
913 //===---------------------------------------------------------------------===//
915 unsigned a(unsigned a) {return a * 0x11111111 >> 28 & 1;}
916 Should combine to "a * 0x88888888 >> 31". Currently not optimized
917 with "clang -emit-llvm-bc | opt -std-compile-opts".
919 //===---------------------------------------------------------------------===//
921 unsigned a(char* x) {if ((*x & 32) == 0) return b();}
922 There's an unnecessary zext in the generated code with "clang
923 -emit-llvm-bc | opt -std-compile-opts".
925 //===---------------------------------------------------------------------===//
927 unsigned a(unsigned long long x) {return 40 * (x >> 1);}
928 Should combine to "20 * (((unsigned)x) & -2)". Currently not
929 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
931 //===---------------------------------------------------------------------===//
933 int g(int x) { return (x - 10) < 0; }
934 Should combine to "x <= 9" (the sub has nsw). Currently not
935 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
937 //===---------------------------------------------------------------------===//
939 int g(int x) { return (x + 10) < 0; }
940 Should combine to "x < -10" (the add has nsw). Currently not
941 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
943 //===---------------------------------------------------------------------===//
945 int f(int i, int j) { return i < j + 1; }
946 int g(int i, int j) { return j > i - 1; }
947 Should combine to "i <= j" (the add/sub has nsw). Currently not
948 optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
950 //===---------------------------------------------------------------------===//
952 unsigned f(unsigned x) { return ((x & 7) + 1) & 15; }
953 The & 15 part should be optimized away, it doesn't change the result. Currently
954 not optimized with "clang -emit-llvm-bc | opt -std-compile-opts".
956 //===---------------------------------------------------------------------===//
958 This was noticed in the entryblock for grokdeclarator in 403.gcc:
960 %tmp = icmp eq i32 %decl_context, 4
961 %decl_context_addr.0 = select i1 %tmp, i32 3, i32 %decl_context
962 %tmp1 = icmp eq i32 %decl_context_addr.0, 1
963 %decl_context_addr.1 = select i1 %tmp1, i32 0, i32 %decl_context_addr.0
965 tmp1 should be simplified to something like:
966 (!tmp || decl_context == 1)
968 This allows recursive simplifications, tmp1 is used all over the place in
969 the function, e.g. by:
971 %tmp23 = icmp eq i32 %decl_context_addr.1, 0 ; <i1> [#uses=1]
972 %tmp24 = xor i1 %tmp1, true ; <i1> [#uses=1]
973 %or.cond8 = and i1 %tmp23, %tmp24 ; <i1> [#uses=1]
977 //===---------------------------------------------------------------------===//
981 Store sinking: This code:
983 void f (int n, int *cond, int *res) {
986 for (i = 0; i < n; i++)
988 *res ^= 234; /* (*) */
991 On this function GVN hoists the fully redundant value of *res, but nothing
992 moves the store out. This gives us this code:
994 bb: ; preds = %bb2, %entry
995 %.rle = phi i32 [ 0, %entry ], [ %.rle6, %bb2 ]
996 %i.05 = phi i32 [ 0, %entry ], [ %indvar.next, %bb2 ]
997 %1 = load i32* %cond, align 4
998 %2 = icmp eq i32 %1, 0
999 br i1 %2, label %bb2, label %bb1
1002 %3 = xor i32 %.rle, 234
1003 store i32 %3, i32* %res, align 4
1006 bb2: ; preds = %bb, %bb1
1007 %.rle6 = phi i32 [ %3, %bb1 ], [ %.rle, %bb ]
1008 %indvar.next = add i32 %i.05, 1
1009 %exitcond = icmp eq i32 %indvar.next, %n
1010 br i1 %exitcond, label %return, label %bb
1012 DSE should sink partially dead stores to get the store out of the loop.
1014 Here's another partial dead case:
1015 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=12395
1017 //===---------------------------------------------------------------------===//
1019 Scalar PRE hoists the mul in the common block up to the else:
1021 int test (int a, int b, int c, int g) {
1031 It would be better to do the mul once to reduce codesize above the if.
1032 This is GCC PR38204.
1035 //===---------------------------------------------------------------------===//
1036 This simple function from 179.art:
1039 struct { double y; int reset; } *Y;
1044 for (i=0;i<numf2s;i++)
1045 if (Y[i].y > Y[winner].y)
1049 Compiles into (with clang TBAA):
1051 for.body: ; preds = %for.inc, %bb.nph
1052 %indvar = phi i64 [ 0, %bb.nph ], [ %indvar.next, %for.inc ]
1053 %i.01718 = phi i32 [ 0, %bb.nph ], [ %i.01719, %for.inc ]
1054 %tmp4 = getelementptr inbounds %struct.anon* %tmp3, i64 %indvar, i32 0
1055 %tmp5 = load double* %tmp4, align 8, !tbaa !4
1056 %idxprom7 = sext i32 %i.01718 to i64
1057 %tmp10 = getelementptr inbounds %struct.anon* %tmp3, i64 %idxprom7, i32 0
1058 %tmp11 = load double* %tmp10, align 8, !tbaa !4
1059 %cmp12 = fcmp ogt double %tmp5, %tmp11
1060 br i1 %cmp12, label %if.then, label %for.inc
1062 if.then: ; preds = %for.body
1063 %i.017 = trunc i64 %indvar to i32
1066 for.inc: ; preds = %for.body, %if.then
1067 %i.01719 = phi i32 [ %i.01718, %for.body ], [ %i.017, %if.then ]
1068 %indvar.next = add i64 %indvar, 1
1069 %exitcond = icmp eq i64 %indvar.next, %tmp22
1070 br i1 %exitcond, label %for.cond.for.end_crit_edge, label %for.body
1073 It is good that we hoisted the reloads of numf2's, and Y out of the loop and
1074 sunk the store to winner out.
1076 However, this is awful on several levels: the conditional truncate in the loop
1077 (-indvars at fault? why can't we completely promote the IV to i64?).
1079 Beyond that, we have a partially redundant load in the loop: if "winner" (aka
1080 %i.01718) isn't updated, we reload Y[winner].y the next time through the loop.
1081 Similarly, the addressing that feeds it (including the sext) is redundant. In
1082 the end we get this generated assembly:
1084 LBB0_2: ## %for.body
1085 ## =>This Inner Loop Header: Depth=1
1089 ucomisd (%rcx,%r8), %xmm0
1098 All things considered this isn't too bad, but we shouldn't need the movslq or
1099 the shlq instruction, or the load folded into ucomisd every time through the
1102 On an x86-specific topic, if the loop can't be restructure, the movl should be a
1105 //===---------------------------------------------------------------------===//
1109 GCC PR37810 is an interesting case where we should sink load/store reload
1110 into the if block and outside the loop, so we don't reload/store it on the
1131 We now hoist the reload after the call (Transforms/GVN/lpre-call-wrap.ll), but
1132 we don't sink the store. We need partially dead store sinking.
1134 //===---------------------------------------------------------------------===//
1136 [LOAD PRE CRIT EDGE SPLITTING]
1138 GCC PR37166: Sinking of loads prevents SROA'ing the "g" struct on the stack
1139 leading to excess stack traffic. This could be handled by GVN with some crazy
1140 symbolic phi translation. The code we get looks like (g is on the stack):
1144 %9 = getelementptr %struct.f* %g, i32 0, i32 0
1145 store i32 %8, i32* %9, align bel %bb3
1147 bb3: ; preds = %bb1, %bb2, %bb
1148 %c_addr.0 = phi %struct.f* [ %g, %bb2 ], [ %c, %bb ], [ %c, %bb1 ]
1149 %b_addr.0 = phi %struct.f* [ %b, %bb2 ], [ %g, %bb ], [ %b, %bb1 ]
1150 %10 = getelementptr %struct.f* %c_addr.0, i32 0, i32 0
1151 %11 = load i32* %10, align 4
1153 %11 is partially redundant, an in BB2 it should have the value %8.
1155 GCC PR33344 and PR35287 are similar cases.
1158 //===---------------------------------------------------------------------===//
1162 There are many load PRE testcases in testsuite/gcc.dg/tree-ssa/loadpre* in the
1163 GCC testsuite, ones we don't get yet are (checked through loadpre25):
1165 [CRIT EDGE BREAKING]
1166 loadpre3.c predcom-4.c
1168 [PRE OF READONLY CALL]
1171 [TURN SELECT INTO BRANCH]
1172 loadpre14.c loadpre15.c
1174 actually a conditional increment: loadpre18.c loadpre19.c
1176 //===---------------------------------------------------------------------===//
1178 [LOAD PRE / STORE SINKING / SPEC HACK]
1180 This is a chunk of code from 456.hmmer:
1182 int f(int M, int *mc, int *mpp, int *tpmm, int *ip, int *tpim, int *dpp,
1183 int *tpdm, int xmb, int *bp, int *ms) {
1185 for (k = 1; k <= M; k++) {
1186 mc[k] = mpp[k-1] + tpmm[k-1];
1187 if ((sc = ip[k-1] + tpim[k-1]) > mc[k]) mc[k] = sc;
1188 if ((sc = dpp[k-1] + tpdm[k-1]) > mc[k]) mc[k] = sc;
1189 if ((sc = xmb + bp[k]) > mc[k]) mc[k] = sc;
1194 It is very profitable for this benchmark to turn the conditional stores to mc[k]
1195 into a conditional move (select instr in IR) and allow the final store to do the
1196 store. See GCC PR27313 for more details. Note that this is valid to xform even
1197 with the new C++ memory model, since mc[k] is previously loaded and later
1200 //===---------------------------------------------------------------------===//
1203 There are many PRE testcases in testsuite/gcc.dg/tree-ssa/ssa-pre-*.c in the
1206 //===---------------------------------------------------------------------===//
1208 There are some interesting cases in testsuite/gcc.dg/tree-ssa/pred-comm* in the
1209 GCC testsuite. For example, we get the first example in predcom-1.c, but
1210 miss the second one:
1215 __attribute__ ((noinline))
1216 void count_averages(int n) {
1218 for (i = 1; i < n; i++)
1219 avg[i] = (((unsigned long) fib[i - 1] + fib[i] + fib[i + 1]) / 3) & 0xffff;
1222 which compiles into two loads instead of one in the loop.
1224 predcom-2.c is the same as predcom-1.c
1226 predcom-3.c is very similar but needs loads feeding each other instead of
1230 //===---------------------------------------------------------------------===//
1234 Type based alias analysis:
1235 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14705
1237 We should do better analysis of posix_memalign. At the least it should
1238 no-capture its pointer argument, at best, we should know that the out-value
1239 result doesn't point to anything (like malloc). One example of this is in
1240 SingleSource/Benchmarks/Misc/dt.c
1242 //===---------------------------------------------------------------------===//
1244 Interesting missed case because of control flow flattening (should be 2 loads):
1245 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26629
1246 With: llvm-gcc t2.c -S -o - -O0 -emit-llvm | llvm-as |
1247 opt -mem2reg -gvn -instcombine | llvm-dis
1248 we miss it because we need 1) CRIT EDGE 2) MULTIPLE DIFFERENT
1249 VALS PRODUCED BY ONE BLOCK OVER DIFFERENT PATHS
1251 //===---------------------------------------------------------------------===//
1253 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=19633
1254 We could eliminate the branch condition here, loading from null is undefined:
1256 struct S { int w, x, y, z; };
1257 struct T { int r; struct S s; };
1258 void bar (struct S, int);
1259 void foo (int a, struct T b)
1267 //===---------------------------------------------------------------------===//
1269 simplifylibcalls should do several optimizations for strspn/strcspn:
1271 strcspn(x, "a") -> inlined loop for up to 3 letters (similarly for strspn):
1273 size_t __strcspn_c3 (__const char *__s, int __reject1, int __reject2,
1275 register size_t __result = 0;
1276 while (__s[__result] != '\0' && __s[__result] != __reject1 &&
1277 __s[__result] != __reject2 && __s[__result] != __reject3)
1282 This should turn into a switch on the character. See PR3253 for some notes on
1285 456.hmmer apparently uses strcspn and strspn a lot. 471.omnetpp uses strspn.
1287 //===---------------------------------------------------------------------===//
1289 simplifylibcalls should turn these snprintf idioms into memcpy (GCC PR47917)
1291 char buf1[6], buf2[6], buf3[4], buf4[4];
1295 int ret = snprintf (buf1, sizeof buf1, "abcde");
1296 ret += snprintf (buf2, sizeof buf2, "abcdef") * 16;
1297 ret += snprintf (buf3, sizeof buf3, "%s", i++ < 6 ? "abc" : "def") * 256;
1298 ret += snprintf (buf4, sizeof buf4, "%s", i++ > 10 ? "abcde" : "defgh")*4096;
1302 //===---------------------------------------------------------------------===//
1304 "gas" uses this idiom:
1305 else if (strchr ("+-/*%|&^:[]()~", *intel_parser.op_string))
1307 else if (strchr ("<>", *intel_parser.op_string)
1309 Those should be turned into a switch.
1311 //===---------------------------------------------------------------------===//
1313 252.eon contains this interesting code:
1315 %3072 = getelementptr [100 x i8]* %tempString, i32 0, i32 0
1316 %3073 = call i8* @strcpy(i8* %3072, i8* %3071) nounwind
1317 %strlen = call i32 @strlen(i8* %3072) ; uses = 1
1318 %endptr = getelementptr [100 x i8]* %tempString, i32 0, i32 %strlen
1319 call void @llvm.memcpy.i32(i8* %endptr,
1320 i8* getelementptr ([5 x i8]* @"\01LC42", i32 0, i32 0), i32 5, i32 1)
1321 %3074 = call i32 @strlen(i8* %endptr) nounwind readonly
1323 This is interesting for a couple reasons. First, in this:
1325 The memcpy+strlen strlen can be replaced with:
1327 %3074 = call i32 @strlen([5 x i8]* @"\01LC42") nounwind readonly
1329 Because the destination was just copied into the specified memory buffer. This,
1330 in turn, can be constant folded to "4".
1332 In other code, it contains:
1334 %endptr6978 = bitcast i8* %endptr69 to i32*
1335 store i32 7107374, i32* %endptr6978, align 1
1336 %3167 = call i32 @strlen(i8* %endptr69) nounwind readonly
1338 Which could also be constant folded. Whatever is producing this should probably
1339 be fixed to leave this as a memcpy from a string.
1341 Further, eon also has an interesting partially redundant strlen call:
1343 bb8: ; preds = %_ZN18eonImageCalculatorC1Ev.exit
1344 %682 = getelementptr i8** %argv, i32 6 ; <i8**> [#uses=2]
1345 %683 = load i8** %682, align 4 ; <i8*> [#uses=4]
1346 %684 = load i8* %683, align 1 ; <i8> [#uses=1]
1347 %685 = icmp eq i8 %684, 0 ; <i1> [#uses=1]
1348 br i1 %685, label %bb10, label %bb9
1351 %686 = call i32 @strlen(i8* %683) nounwind readonly
1352 %687 = icmp ugt i32 %686, 254 ; <i1> [#uses=1]
1353 br i1 %687, label %bb10, label %bb11
1355 bb10: ; preds = %bb9, %bb8
1356 %688 = call i32 @strlen(i8* %683) nounwind readonly
1358 This could be eliminated by doing the strlen once in bb8, saving code size and
1359 improving perf on the bb8->9->10 path.
1361 //===---------------------------------------------------------------------===//
1363 I see an interesting fully redundant call to strlen left in 186.crafty:InputMove
1365 %movetext11 = getelementptr [128 x i8]* %movetext, i32 0, i32 0
1368 bb62: ; preds = %bb55, %bb53
1369 %promote.0 = phi i32 [ %169, %bb55 ], [ 0, %bb53 ]
1370 %171 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1371 %172 = add i32 %171, -1 ; <i32> [#uses=1]
1372 %173 = getelementptr [128 x i8]* %movetext, i32 0, i32 %172
1375 br i1 %or.cond, label %bb65, label %bb72
1377 bb65: ; preds = %bb62
1378 store i8 0, i8* %173, align 1
1381 bb72: ; preds = %bb65, %bb62
1382 %trank.1 = phi i32 [ %176, %bb65 ], [ -1, %bb62 ]
1383 %177 = call i32 @strlen(i8* %movetext11) nounwind readonly align 1
1385 Note that on the bb62->bb72 path, that the %177 strlen call is partially
1386 redundant with the %171 call. At worst, we could shove the %177 strlen call
1387 up into the bb65 block moving it out of the bb62->bb72 path. However, note
1388 that bb65 stores to the string, zeroing out the last byte. This means that on
1389 that path the value of %177 is actually just %171-1. A sub is cheaper than a
1392 This pattern repeats several times, basically doing:
1397 where it is "obvious" that B = A-1.
1399 //===---------------------------------------------------------------------===//
1401 186.crafty has this interesting pattern with the "out.4543" variable:
1403 call void @llvm.memcpy.i32(
1404 i8* getelementptr ([10 x i8]* @out.4543, i32 0, i32 0),
1405 i8* getelementptr ([7 x i8]* @"\01LC28700", i32 0, i32 0), i32 7, i32 1)
1406 %101 = call@printf(i8* ... @out.4543, i32 0, i32 0)) nounwind
1408 It is basically doing:
1410 memcpy(globalarray, "string");
1411 printf(..., globalarray);
1413 Anyway, by knowing that printf just reads the memory and forward substituting
1414 the string directly into the printf, this eliminates reads from globalarray.
1415 Since this pattern occurs frequently in crafty (due to the "DisplayTime" and
1416 other similar functions) there are many stores to "out". Once all the printfs
1417 stop using "out", all that is left is the memcpy's into it. This should allow
1418 globalopt to remove the "stored only" global.
1420 //===---------------------------------------------------------------------===//
1424 define inreg i32 @foo(i8* inreg %p) nounwind {
1426 %tmp1 = ashr i8 %tmp0, 5
1427 %tmp2 = sext i8 %tmp1 to i32
1431 could be dagcombine'd to a sign-extending load with a shift.
1432 For example, on x86 this currently gets this:
1438 while it could get this:
1443 //===---------------------------------------------------------------------===//
1447 int test(int x) { return 1-x == x; } // --> return false
1448 int test2(int x) { return 2-x == x; } // --> return x == 1 ?
1450 Always foldable for odd constants, what is the rule for even?
1452 //===---------------------------------------------------------------------===//
1454 PR 3381: GEP to field of size 0 inside a struct could be turned into GEP
1455 for next field in struct (which is at same address).
1457 For example: store of float into { {{}}, float } could be turned into a store to
1460 //===---------------------------------------------------------------------===//
1462 The arg promotion pass should make use of nocapture to make its alias analysis
1463 stuff much more precise.
1465 //===---------------------------------------------------------------------===//
1467 The following functions should be optimized to use a select instead of a
1468 branch (from gcc PR40072):
1470 char char_int(int m) {if(m>7) return 0; return m;}
1471 int int_char(char m) {if(m>7) return 0; return m;}
1473 //===---------------------------------------------------------------------===//
1475 int func(int a, int b) { if (a & 0x80) b |= 0x80; else b &= ~0x80; return b; }
1479 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1481 %0 = and i32 %a, 128 ; <i32> [#uses=1]
1482 %1 = icmp eq i32 %0, 0 ; <i1> [#uses=1]
1483 %2 = or i32 %b, 128 ; <i32> [#uses=1]
1484 %3 = and i32 %b, -129 ; <i32> [#uses=1]
1485 %b_addr.0 = select i1 %1, i32 %3, i32 %2 ; <i32> [#uses=1]
1489 However, it's functionally equivalent to:
1491 b = (b & ~0x80) | (a & 0x80);
1493 Which generates this:
1495 define i32 @func(i32 %a, i32 %b) nounwind readnone ssp {
1497 %0 = and i32 %b, -129 ; <i32> [#uses=1]
1498 %1 = and i32 %a, 128 ; <i32> [#uses=1]
1499 %2 = or i32 %0, %1 ; <i32> [#uses=1]
1503 This can be generalized for other forms:
1505 b = (b & ~0x80) | (a & 0x40) << 1;
1507 //===---------------------------------------------------------------------===//
1509 These two functions produce different code. They shouldn't:
1513 uint8_t p1(uint8_t b, uint8_t a) {
1514 b = (b & ~0xc0) | (a & 0xc0);
1518 uint8_t p2(uint8_t b, uint8_t a) {
1519 b = (b & ~0x40) | (a & 0x40);
1520 b = (b & ~0x80) | (a & 0x80);
1524 define zeroext i8 @p1(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1526 %0 = and i8 %b, 63 ; <i8> [#uses=1]
1527 %1 = and i8 %a, -64 ; <i8> [#uses=1]
1528 %2 = or i8 %1, %0 ; <i8> [#uses=1]
1532 define zeroext i8 @p2(i8 zeroext %b, i8 zeroext %a) nounwind readnone ssp {
1534 %0 = and i8 %b, 63 ; <i8> [#uses=1]
1535 %.masked = and i8 %a, 64 ; <i8> [#uses=1]
1536 %1 = and i8 %a, -128 ; <i8> [#uses=1]
1537 %2 = or i8 %1, %0 ; <i8> [#uses=1]
1538 %3 = or i8 %2, %.masked ; <i8> [#uses=1]
1542 //===---------------------------------------------------------------------===//
1544 IPSCCP does not currently propagate argument dependent constants through
1545 functions where it does not not all of the callers. This includes functions
1546 with normal external linkage as well as templates, C99 inline functions etc.
1547 Specifically, it does nothing to:
1549 define i32 @test(i32 %x, i32 %y, i32 %z) nounwind {
1551 %0 = add nsw i32 %y, %z
1554 %3 = add nsw i32 %1, %2
1558 define i32 @test2() nounwind {
1560 %0 = call i32 @test(i32 1, i32 2, i32 4) nounwind
1564 It would be interesting extend IPSCCP to be able to handle simple cases like
1565 this, where all of the arguments to a call are constant. Because IPSCCP runs
1566 before inlining, trivial templates and inline functions are not yet inlined.
1567 The results for a function + set of constant arguments should be memoized in a
1570 //===---------------------------------------------------------------------===//
1572 The libcall constant folding stuff should be moved out of SimplifyLibcalls into
1573 libanalysis' constantfolding logic. This would allow IPSCCP to be able to
1574 handle simple things like this:
1576 static int foo(const char *X) { return strlen(X); }
1577 int bar() { return foo("abcd"); }
1579 //===---------------------------------------------------------------------===//
1581 functionattrs doesn't know much about memcpy/memset. This function should be
1582 marked readnone rather than readonly, since it only twiddles local memory, but
1583 functionattrs doesn't handle memset/memcpy/memmove aggressively:
1585 struct X { int *p; int *q; };
1592 p = __builtin_memcpy (&x, &y, sizeof (int *));
1596 This can be seen at:
1597 $ clang t.c -S -o - -mkernel -O0 -emit-llvm | opt -functionattrs -S
1600 //===---------------------------------------------------------------------===//
1602 Missed instcombine transformation:
1603 define i1 @a(i32 %x) nounwind readnone {
1605 %cmp = icmp eq i32 %x, 30
1606 %sub = add i32 %x, -30
1607 %cmp2 = icmp ugt i32 %sub, 9
1608 %or = or i1 %cmp, %cmp2
1611 This should be optimized to a single compare. Testcase derived from gcc.
1613 //===---------------------------------------------------------------------===//
1615 Missed instcombine or reassociate transformation:
1616 int a(int a, int b) { return (a==12)&(b>47)&(b<58); }
1618 The sgt and slt should be combined into a single comparison. Testcase derived
1621 //===---------------------------------------------------------------------===//
1623 Missed instcombine transformation:
1625 %382 = srem i32 %tmp14.i, 64 ; [#uses=1]
1626 %383 = zext i32 %382 to i64 ; [#uses=1]
1627 %384 = shl i64 %381, %383 ; [#uses=1]
1628 %385 = icmp slt i32 %tmp14.i, 64 ; [#uses=1]
1630 The srem can be transformed to an and because if %tmp14.i is negative, the
1631 shift is undefined. Testcase derived from 403.gcc.
1633 //===---------------------------------------------------------------------===//
1635 This is a range comparison on a divided result (from 403.gcc):
1637 %1337 = sdiv i32 %1336, 8 ; [#uses=1]
1638 %.off.i208 = add i32 %1336, 7 ; [#uses=1]
1639 %1338 = icmp ult i32 %.off.i208, 15 ; [#uses=1]
1641 We already catch this (removing the sdiv) if there isn't an add, we should
1642 handle the 'add' as well. This is a common idiom with it's builtin_alloca code.
1645 int a(int x) { return (unsigned)(x/16+7) < 15; }
1647 Another similar case involves truncations on 64-bit targets:
1649 %361 = sdiv i64 %.046, 8 ; [#uses=1]
1650 %362 = trunc i64 %361 to i32 ; [#uses=2]
1652 %367 = icmp eq i32 %362, 0 ; [#uses=1]
1654 //===---------------------------------------------------------------------===//
1656 Missed instcombine/dagcombine transformation:
1657 define void @lshift_lt(i8 zeroext %a) nounwind {
1659 %conv = zext i8 %a to i32
1660 %shl = shl i32 %conv, 3
1661 %cmp = icmp ult i32 %shl, 33
1662 br i1 %cmp, label %if.then, label %if.end
1665 tail call void @bar() nounwind
1671 declare void @bar() nounwind
1673 The shift should be eliminated. Testcase derived from gcc.
1675 //===---------------------------------------------------------------------===//
1677 These compile into different code, one gets recognized as a switch and the
1678 other doesn't due to phase ordering issues (PR6212):
1680 int test1(int mainType, int subType) {
1683 else if (mainType == 9)
1685 else if (mainType == 11)
1690 int test2(int mainType, int subType) {
1700 //===---------------------------------------------------------------------===//
1702 The following test case (from PR6576):
1704 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1706 %cond1 = icmp eq i32 %b, 0 ; <i1> [#uses=1]
1707 br i1 %cond1, label %exit, label %bb.nph
1708 bb.nph: ; preds = %entry
1709 %tmp = mul i32 %b, %a ; <i32> [#uses=1]
1711 exit: ; preds = %entry
1715 could be reduced to:
1717 define i32 @mul(i32 %a, i32 %b) nounwind readnone {
1719 %tmp = mul i32 %b, %a
1723 //===---------------------------------------------------------------------===//
1725 We should use DSE + llvm.lifetime.end to delete dead vtable pointer updates.
1728 Another interesting case is that something related could be used for variables
1729 that go const after their ctor has finished. In these cases, globalopt (which
1730 can statically run the constructor) could mark the global const (so it gets put
1731 in the readonly section). A testcase would be:
1734 using namespace std;
1735 const complex<char> should_be_in_rodata (42,-42);
1736 complex<char> should_be_in_data (42,-42);
1737 complex<char> should_be_in_bss;
1739 Where we currently evaluate the ctors but the globals don't become const because
1740 the optimizer doesn't know they "become const" after the ctor is done. See
1741 GCC PR4131 for more examples.
1743 //===---------------------------------------------------------------------===//
1748 return x > 1 ? x : 1;
1751 LLVM emits a comparison with 1 instead of 0. 0 would be equivalent
1752 and cheaper on most targets.
1754 LLVM prefers comparisons with zero over non-zero in general, but in this
1755 case it choses instead to keep the max operation obvious.
1757 //===---------------------------------------------------------------------===//
1759 define void @a(i32 %x) nounwind {
1761 switch i32 %x, label %if.end [
1762 i32 0, label %if.then
1763 i32 1, label %if.then
1764 i32 2, label %if.then
1765 i32 3, label %if.then
1766 i32 5, label %if.then
1769 tail call void @foo() nounwind
1776 Generated code on x86-64 (other platforms give similar results):
1787 If we wanted to be really clever, we could simplify the whole thing to
1788 something like the following, which eliminates a branch:
1796 //===---------------------------------------------------------------------===//
1800 int foo(int a) { return (a & (~15)) / 16; }
1804 define i32 @foo(i32 %a) nounwind readnone ssp {
1806 %and = and i32 %a, -16
1807 %div = sdiv i32 %and, 16
1811 but this code (X & -A)/A is X >> log2(A) when A is a power of 2, so this case
1812 should be instcombined into just "a >> 4".
1814 We do get this at the codegen level, so something knows about it, but
1815 instcombine should catch it earlier:
1823 //===---------------------------------------------------------------------===//
1825 This code (from GCC PR28685):
1827 int test(int a, int b) {
1837 define i32 @test(i32 %a, i32 %b) nounwind readnone ssp {
1839 %cmp = icmp slt i32 %a, %b
1840 br i1 %cmp, label %return, label %if.end
1842 if.end: ; preds = %entry
1843 %cmp5 = icmp eq i32 %a, %b
1844 %conv6 = zext i1 %cmp5 to i32
1847 return: ; preds = %entry
1853 define i32 @test__(i32 %a, i32 %b) nounwind readnone ssp {
1855 %0 = icmp sle i32 %a, %b
1856 %retval = zext i1 %0 to i32
1860 //===---------------------------------------------------------------------===//
1862 This code can be seen in viterbi:
1864 %64 = call noalias i8* @malloc(i64 %62) nounwind
1866 %67 = call i64 @llvm.objectsize.i64(i8* %64, i1 false) nounwind
1867 %68 = call i8* @__memset_chk(i8* %64, i32 0, i64 %62, i64 %67) nounwind
1869 llvm.objectsize.i64 should be taught about malloc/calloc, allowing it to
1870 fold to %62. This is a security win (overflows of malloc will get caught)
1871 and also a performance win by exposing more memsets to the optimizer.
1873 This occurs several times in viterbi.
1875 Note that this would change the semantics of @llvm.objectsize which by its
1876 current definition always folds to a constant. We also should make sure that
1877 we remove checking in code like
1879 char *p = malloc(strlen(s)+1);
1880 __strcpy_chk(p, s, __builtin_objectsize(p, 0));
1882 //===---------------------------------------------------------------------===//
1884 This code (from Benchmarks/Dhrystone/dry.c):
1886 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1888 %sext = shl i32 %0, 24
1889 %conv = ashr i32 %sext, 24
1890 %sext6 = shl i32 %1, 24
1891 %conv4 = ashr i32 %sext6, 24
1892 %cmp = icmp eq i32 %conv, %conv4
1893 %. = select i1 %cmp, i32 10000, i32 0
1897 Should be simplified into something like:
1899 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1901 %sext = shl i32 %0, 24
1902 %conv = and i32 %sext, 0xFF000000
1903 %sext6 = shl i32 %1, 24
1904 %conv4 = and i32 %sext6, 0xFF000000
1905 %cmp = icmp eq i32 %conv, %conv4
1906 %. = select i1 %cmp, i32 10000, i32 0
1912 define i32 @Func1(i32, i32) nounwind readnone optsize ssp {
1914 %conv = and i32 %0, 0xFF
1915 %conv4 = and i32 %1, 0xFF
1916 %cmp = icmp eq i32 %conv, %conv4
1917 %. = select i1 %cmp, i32 10000, i32 0
1920 //===---------------------------------------------------------------------===//
1922 clang -O3 currently compiles this code
1924 int g(unsigned int a) {
1925 unsigned int c[100];
1928 unsigned int b = c[10] + c[11];
1936 define i32 @g(i32 a) nounwind readnone {
1937 %add = shl i32 %a, 1
1938 %mul = shl i32 %a, 1
1939 %cmp = icmp ugt i32 %add, %mul
1940 %a.addr.0 = select i1 %cmp, i32 11, i32 15
1944 The icmp should fold to false. This CSE opportunity is only available
1945 after GVN and InstCombine have run.
1947 //===---------------------------------------------------------------------===//
1949 memcpyopt should turn this:
1951 define i8* @test10(i32 %x) {
1952 %alloc = call noalias i8* @malloc(i32 %x) nounwind
1953 call void @llvm.memset.p0i8.i32(i8* %alloc, i8 0, i32 %x, i32 1, i1 false)
1957 into a call to calloc. We should make sure that we analyze calloc as
1958 aggressively as malloc though.
1960 //===---------------------------------------------------------------------===//
1962 clang -O3 doesn't optimize this:
1964 void f1(int* begin, int* end) {
1965 std::fill(begin, end, 0);
1968 into a memset. This is PR8942.
1970 //===---------------------------------------------------------------------===//
1972 clang -O3 -fno-exceptions currently compiles this code:
1975 std::vector<int> v(N);
1977 extern void sink(void*); sink(&v);
1982 define void @_Z1fi(i32 %N) nounwind {
1984 %v2 = alloca [3 x i32*], align 8
1985 %v2.sub = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 0
1986 %tmpcast = bitcast [3 x i32*]* %v2 to %"class.std::vector"*
1987 %conv = sext i32 %N to i64
1988 store i32* null, i32** %v2.sub, align 8, !tbaa !0
1989 %tmp3.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 1
1990 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1991 %tmp4.i.i.i.i.i = getelementptr inbounds [3 x i32*]* %v2, i64 0, i64 2
1992 store i32* null, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
1993 %cmp.i.i.i.i = icmp eq i32 %N, 0
1994 br i1 %cmp.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i, label %cond.true.i.i.i.i
1996 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.thread.i.i: ; preds = %entry
1997 store i32* null, i32** %v2.sub, align 8, !tbaa !0
1998 store i32* null, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
1999 %add.ptr.i5.i.i = getelementptr inbounds i32* null, i64 %conv
2000 store i32* %add.ptr.i5.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
2001 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
2003 cond.true.i.i.i.i: ; preds = %entry
2004 %cmp.i.i.i.i.i = icmp slt i32 %N, 0
2005 br i1 %cmp.i.i.i.i.i, label %if.then.i.i.i.i.i, label %_ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i
2007 if.then.i.i.i.i.i: ; preds = %cond.true.i.i.i.i
2008 call void @_ZSt17__throw_bad_allocv() noreturn nounwind
2011 _ZNSt12_Vector_baseIiSaIiEEC2EmRKS0_.exit.i.i: ; preds = %cond.true.i.i.i.i
2012 %mul.i.i.i.i.i = shl i64 %conv, 2
2013 %call3.i.i.i.i.i = call noalias i8* @_Znwm(i64 %mul.i.i.i.i.i) nounwind
2014 %0 = bitcast i8* %call3.i.i.i.i.i to i32*
2015 store i32* %0, i32** %v2.sub, align 8, !tbaa !0
2016 store i32* %0, i32** %tmp3.i.i.i.i.i, align 8, !tbaa !0
2017 %add.ptr.i.i.i = getelementptr inbounds i32* %0, i64 %conv
2018 store i32* %add.ptr.i.i.i, i32** %tmp4.i.i.i.i.i, align 8, !tbaa !0
2019 call void @llvm.memset.p0i8.i64(i8* %call3.i.i.i.i.i, i8 0, i64 %mul.i.i.i.i.i, i32 4, i1 false)
2020 br label %_ZNSt6vectorIiSaIiEEC1EmRKiRKS0_.exit
2022 This is just the handling the construction of the vector. Most surprising here
2023 is the fact that all three null stores in %entry are dead (because we do no
2026 Also surprising is that %conv isn't simplified to 0 in %....exit.thread.i.i.
2027 This is a because the client of LazyValueInfo doesn't simplify all instruction
2028 operands, just selected ones.
2030 //===---------------------------------------------------------------------===//
2032 clang -O3 -fno-exceptions currently compiles this code:
2034 void f(char* a, int n) {
2035 __builtin_memset(a, 0, n);
2036 for (int i = 0; i < n; ++i)
2042 define void @_Z1fPci(i8* nocapture %a, i32 %n) nounwind {
2044 %conv = sext i32 %n to i64
2045 tail call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %conv, i32 1, i1 false)
2046 %cmp8 = icmp sgt i32 %n, 0
2047 br i1 %cmp8, label %for.body.lr.ph, label %for.end
2049 for.body.lr.ph: ; preds = %entry
2050 %tmp10 = add i32 %n, -1
2051 %tmp11 = zext i32 %tmp10 to i64
2052 %tmp12 = add i64 %tmp11, 1
2053 call void @llvm.memset.p0i8.i64(i8* %a, i8 0, i64 %tmp12, i32 1, i1 false)
2056 for.end: ; preds = %entry
2060 This shouldn't need the ((zext (%n - 1)) + 1) game, and it should ideally fold
2061 the two memset's together.
2063 The issue with the addition only occurs in 64-bit mode, and appears to be at
2064 least partially caused by Scalar Evolution not keeping its cache updated: it
2065 returns the "wrong" result immediately after indvars runs, but figures out the
2066 expected result if it is run from scratch on IR resulting from running indvars.
2068 //===---------------------------------------------------------------------===//
2070 clang -O3 -fno-exceptions currently compiles this code:
2073 unsigned short m1, m2;
2074 unsigned char m3, m4;
2078 std::vector<S> v(N);
2079 extern void sink(void*); sink(&v);
2082 into poor code for zero-initializing 'v' when N is >0. The problem is that
2083 S is only 6 bytes, but each element is 8 byte-aligned. We generate a loop and
2084 4 stores on each iteration. If the struct were 8 bytes, this gets turned into
2087 In order to handle this we have to:
2088 A) Teach clang to generate metadata for memsets of structs that have holes in
2090 B) Teach clang to use such a memset for zero init of this struct (since it has
2091 a hole), instead of doing elementwise zeroing.
2093 //===---------------------------------------------------------------------===//
2095 clang -O3 currently compiles this code:
2097 extern const int magic;
2098 double f() { return 0.0 * magic; }
2102 @magic = external constant i32
2104 define double @_Z1fv() nounwind readnone {
2106 %tmp = load i32* @magic, align 4, !tbaa !0
2107 %conv = sitofp i32 %tmp to double
2108 %mul = fmul double %conv, 0.000000e+00
2112 We should be able to fold away this fmul to 0.0. More generally, fmul(x,0.0)
2113 can be folded to 0.0 if we can prove that the LHS is not -0.0, not a NaN, and
2114 not an INF. The CannotBeNegativeZero predicate in value tracking should be
2115 extended to support general "fpclassify" operations that can return
2116 yes/no/unknown for each of these predicates.
2118 In this predicate, we know that uitofp is trivially never NaN or -0.0, and
2119 we know that it isn't +/-Inf if the floating point type has enough exponent bits
2120 to represent the largest integer value as < inf.
2122 //===---------------------------------------------------------------------===//
2124 When optimizing a transformation that can change the sign of 0.0 (such as the
2125 0.0*val -> 0.0 transformation above), it might be provable that the sign of the
2126 expression doesn't matter. For example, by the above rules, we can't transform
2127 fmul(sitofp(x), 0.0) into 0.0, because x might be -1 and the result of the
2128 expression is defined to be -0.0.
2130 If we look at the uses of the fmul for example, we might be able to prove that
2131 all uses don't care about the sign of zero. For example, if we have:
2133 fadd(fmul(sitofp(x), 0.0), 2.0)
2135 Since we know that x+2.0 doesn't care about the sign of any zeros in X, we can
2136 transform the fmul to 0.0, and then the fadd to 2.0.
2138 //===---------------------------------------------------------------------===//
2140 We should enhance memcpy/memcpy/memset to allow a metadata node on them
2141 indicating that some bytes of the transfer are undefined. This is useful for
2142 frontends like clang when lowering struct copies, when some elements of the
2143 struct are undefined. Consider something like this:
2149 void foo(struct x*P);
2150 struct x testfunc() {
2158 We currently compile this to:
2159 $ clang t.c -S -o - -O0 -emit-llvm | opt -scalarrepl -S
2162 %struct.x = type { i8, [4 x i32] }
2164 define void @testfunc(%struct.x* sret %agg.result) nounwind ssp {
2166 %V1 = alloca %struct.x, align 4
2167 call void @foo(%struct.x* %V1)
2168 %tmp1 = bitcast %struct.x* %V1 to i8*
2169 %0 = bitcast %struct.x* %V1 to i160*
2170 %srcval1 = load i160* %0, align 4
2171 %tmp2 = bitcast %struct.x* %agg.result to i8*
2172 %1 = bitcast %struct.x* %agg.result to i160*
2173 store i160 %srcval1, i160* %1, align 4
2177 This happens because SRoA sees that the temp alloca has is being memcpy'd into
2178 and out of and it has holes and it has to be conservative. If we knew about the
2179 holes, then this could be much much better.
2181 Having information about these holes would also improve memcpy (etc) lowering at
2182 llc time when it gets inlined, because we can use smaller transfers. This also
2183 avoids partial register stalls in some important cases.
2185 //===---------------------------------------------------------------------===//
2187 We don't fold (icmp (add) (add)) unless the two adds only have a single use.
2188 There are a lot of cases that we're refusing to fold in (e.g.) 256.bzip2, for
2191 %indvar.next90 = add i64 %indvar89, 1 ;; Has 2 uses
2192 %tmp96 = add i64 %tmp95, 1 ;; Has 1 use
2193 %exitcond97 = icmp eq i64 %indvar.next90, %tmp96
2195 We don't fold this because we don't want to introduce an overlapped live range
2196 of the ivar. However if we can make this more aggressive without causing
2197 performance issues in two ways:
2199 1. If *either* the LHS or RHS has a single use, we can definitely do the
2200 transformation. In the overlapping liverange case we're trading one register
2201 use for one fewer operation, which is a reasonable trade. Before doing this
2202 we should verify that the llc output actually shrinks for some benchmarks.
2203 2. If both ops have multiple uses, we can still fold it if the operations are
2204 both sinkable to *after* the icmp (e.g. in a subsequent block) which doesn't
2205 increase register pressure.
2207 There are a ton of icmp's we aren't simplifying because of the reg pressure
2208 concern. Care is warranted here though because many of these are induction
2209 variables and other cases that matter a lot to performance, like the above.
2210 Here's a blob of code that you can drop into the bottom of visitICmp to see some
2213 { Value *A, *B, *C, *D;
2214 if (match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2215 match(Op1, m_Add(m_Value(C), m_Value(D))) &&
2216 (A == C || A == D || B == C || B == D)) {
2217 errs() << "OP0 = " << *Op0 << " U=" << Op0->getNumUses() << "\n";
2218 errs() << "OP1 = " << *Op1 << " U=" << Op1->getNumUses() << "\n";
2219 errs() << "CMP = " << I << "\n\n";
2223 //===---------------------------------------------------------------------===//
2225 define i1 @test1(i32 %x) nounwind {
2226 %and = and i32 %x, 3
2227 %cmp = icmp ult i32 %and, 2
2231 Can be folded to (x & 2) == 0.
2233 define i1 @test2(i32 %x) nounwind {
2234 %and = and i32 %x, 3
2235 %cmp = icmp ugt i32 %and, 1
2239 Can be folded to (x & 2) != 0.
2241 SimplifyDemandedBits shrinks the "and" constant to 2 but instcombine misses the
2244 //===---------------------------------------------------------------------===//
2270 Compiles into this IR (on x86-64 at least):
2272 %struct.t1 = type { i8, [3 x i8] }
2273 @s2 = global %struct.t1 zeroinitializer, align 4
2274 @s1 = global %struct.t1 zeroinitializer, align 4
2275 define void @func1() nounwind ssp noredzone {
2277 %0 = load i32* bitcast (%struct.t1* @s2 to i32*), align 4
2278 %bf.val.sext5 = and i32 %0, 1
2279 %1 = load i32* bitcast (%struct.t1* @s1 to i32*), align 4
2281 %3 = or i32 %2, %bf.val.sext5
2282 %bf.val.sext26 = and i32 %0, 2
2283 %4 = or i32 %3, %bf.val.sext26
2284 store i32 %4, i32* bitcast (%struct.t1* @s1 to i32*), align 4
2288 The two or/and's should be merged into one each.
2290 //===---------------------------------------------------------------------===//
2292 Machine level code hoisting can be useful in some cases. For example, PR9408
2300 void foo(funcs f, int which) {
2309 which we compile to:
2329 Note that bb1 and bb2 are the same. This doesn't happen at the IR level
2330 because one call is passing an i32 and the other is passing an i64.
2332 //===---------------------------------------------------------------------===//
2334 I see this sort of pattern in 176.gcc in a few places (e.g. the start of
2335 store_bit_field). The rem should be replaced with a multiply and subtract:
2337 %3 = sdiv i32 %A, %B
2338 %4 = srem i32 %A, %B
2340 Similarly for udiv/urem. Note that this shouldn't be done on X86 or ARM,
2341 which can do this in a single operation (instruction or libcall). It is
2342 probably best to do this in the code generator.
2344 //===---------------------------------------------------------------------===//
2346 unsigned foo(unsigned x, unsigned y) { return (x & y) == 0 || x == 0; }
2347 should fold to (x & y) == 0.
2349 //===---------------------------------------------------------------------===//
2351 unsigned foo(unsigned x, unsigned y) { return x > y && x != 0; }
2352 should fold to x > y.
2354 //===---------------------------------------------------------------------===//